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Olivier Danvy and Lasse R. Nielsen †
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November 2004

Abstract

The evaluation function of a reduction semantics (i.e., a small-step operational
semantics with an explicit representation of the reduction context) is canonically
defined as the transitive closure of (1) decomposing a term into a reduction con-
text and a redex, (2) contracting this redex, and (3) plugging the contractum in
the context. Directly implementing this evaluation function therefore yields an
interpreter with a worst-case overhead, for each step, that is linear in the size of
the input term.

We present sufficient conditions over the constituents of a reduction semantics
to circumvent this overhead, by replacing the composition of (3) plugging and (1)
decomposing by a single “refocus” function mapping a contractum and a context
into a new context and a new redex, if any. We also show how to construct such
a refocus function, we prove the correctness of this construction, and we analyze
the complexity of the resulting refocus function.

The refocused evaluation function of a reduction semantics implements the
transitive closure of the refocus function, i.e., a “pre-abstract machine.” Fusing
the refocus function with the trampoline function computing the transitive closure
gives a state-transition function, i.e., an abstract machine. This abstract machine
clearly separates between the transitions implementing the congruence rules of
the reduction semantics and the transitions implementing its reduction rules. The
construction of a refocus function therefore shows how to mechanically obtain an
abstract machine out of a reduction semantics, which was done previously on a
case-by-case basis.

We illustrate refocusing by mechanically constructing Felleisen et al.’s CK ma-
chine from a call-by-value reduction semantics of the lambda-calculus, and by con-
structing a substitution-based version of Krivine’s machine from a call-by-name
reduction semantics of the lambda-calculus. We also mechanically construct three
one-pass CPS transformers from three quadratic context-based CPS transformers
for the lambda-calculus.

Keywords
Reduction semantics, refocusing, pre-abstract machine, abstract machine, defunc-
tionalization, transformation into continuation-passing style (CPS).
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1 Introduction

A reduction semantics (a.k.a. syntactic theory) is a small-step operational semantics
with an explicit representation of the reduction context [10–12]. We consider the prob-
lem of implementing the evaluation function of a reduction semantics in the form of an
interpreter. Our emphasis, however, is not on automating this process, as in Xiao and
Ariola’s SL project [28, 29]. Instead, we observe that the direct implementation of an
evaluation function entails an overhead and we show how to circumvent this overhead.

1.1 Related work

Probably because every interesting programming language corresponds to an inter-
esting model of computation, the meta-language of formal semantics has consistently
inspired a range of programming languages—witness denotational semantics and func-
tional programming [25, 27], Moggi’s computational monads and monad-based func-
tional programming [26], operational semantics and logic programming with definite
clause grammars [17], algebraic semantics and OBJ [15], etc. These similarities between
language and meta-language make it possible to write ‘executable specifications.’ For
reduction semantics, however, executable specifications appear not to scale up in prac-
tice [24, 28].

We identify a source of inefficiency in the direct implementation of a reduction
semantics as an interpreter, and we show how to bypass it. The result can be used to
mechanically construct an abstract machine out of a reduction semantics, an issue that
is usually dealt with on a case-by-case basis [11, Chapter 7].

1.2 Interpreters for reduction semantics

A reduction semantics is a small-step operational semantics where evaluation is defined
as the transitive closure of single reductions, each performed by (1) decomposing a term
into a reduction context and a potential redex, (2) contracting the redex, if possible,1

and (3) plugging the contractum into the context. Most reduction semantics are de-
veloped for deterministic programming languages and satisfy a unique-decomposition
property.

The interpreter for a reduction semantics implements its evaluation function. It
naturally consists of a decompose-contract-plug loop. Decomposition is usually im-
plemented with a depth-first search in the abstract-syntax tree. The decompose step
therefore introduces an overhead that is proportional to the size of the input term.
Likewise, plugging takes time linear in the size of the context.

1.3 A canonical example: the λ-calculus

Here is a call-by-value reduction semantics of the λ-calculus:

Terms t ::= x | λx.t | t t t ∈ Λ
Values v ::= x | λx.t v ∈ Value ⊆ Λ
Variables x ∈ Var
Reduction contexts C ::= [ ] | C[[ ] t] | C[v [ ]] C ∈ RedCont
Potential redexes r ::= v v r ∈ PotRedex ⊆ Λ

1Not all potential redexes are actual reducible expressions—some are stuck terms [20].
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Among potential redexes, only β-redexes are actual reducible terms. Therefore, the
only reduction rule is the following one:

C[(λx.t) v] → C[t {v/x}]

Plugging the hole of a reduction context with a term is defined by induction on the
context, and thus it operates in time proportional to the size of the context:

([ ])[t] = t
(C[[ ] t ′])[t] = C[t t ′]
(C[v [ ]])[t] = C[v t]

Likewise, decomposition operates in time proportional, in the worst case, to the size of
the term to decompose.

Let us illustrate this overhead with Church numerals: the Church numeral for the
number n is λs.λz. s(s(s(. . . (s︸ ︷︷ ︸

n

z) . . .))) and is noted dne.

Example 1 (Church numeral) We consider the term dne (λx.x) v where v is any
value. This term reduces in two steps to (λx.x)((λx.x)((λx.x)(. . . ((λx.x)︸ ︷︷ ︸

n

v) . . .))). From

then on, each decomposition into a context and a redex (where the redex is always
(λx.x) v) takes time proportional to the number of remaining applications. The total
time taken by decomposition during evaluation is thus proportional to n2. �

The evaluation function of a reduction semantics is inefficient because it constructs
intermediate terms (see the left side of Figure 1). We observe, though, that in the
course of evaluation, each decompose step always follows a plug step (even for the first
step, since ([ ])[t] = t). One could therefore deforest intermediate terms by fusing the
plug step and the decompose step into one ‘refocus’ step (see the right side of Figure 1).

Rather than deforesting plug and decompose on a case-by-case basis, we seek general
conditions over the constituents of a reduction semantics to construct such an efficient
refocus step.

1.4 This work

We state conditions under which consecutive plug-and-decompose operations can be re-
placed by a more efficient ‘refocus’ operation where the intermediate term is deforested
away. These conditions pertain to the order in which a redex occurs in the depth-first
traversal of the decompose operation. We show that these conditions hold if the re-
duction semantics is given in the “standard” way, i.e., by a context-free grammar of
values and reduction contexts, and if it satisfies a unique-decomposition property. We
also show how to mechanically construct such a refocus function.

Overview: The rest of this article is structured as follows. We first list sufficient
conditions to obtain the refocus function of a reduction semantics (Section 2). The proof
that these conditions are sufficient is constructive. It indicates how to mechanically
rephrase the evaluation function of a reduction semantics to circumvent the plug-and-
decompose overhead. These conditions are general enough to make refocusing useful

2
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Figure 1: Canonical vs. refocused evaluation

in practice—for example, they are fulfilled in all the deterministic reduction semantics
described in Felleisen and Flatt’s lecture notes [11] and all the examples documented
in the SL project [28, 29].

We then illustrate refocusing with two reduction semantics for the λ-calculus, one
for call by value and one for call by name (Sections 3 and 4). In the call-by-value
case, the refocused evaluation function implements Felleisen et al.’s CK machine, and
in the call-by-name case, the refocused evaluation function implements a substitution-
based version of Krivine’s machine. We also consider three context-based, quadratic
CPS transformers (two for call by value and one for call by name) and we make them
operate in one pass.
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2 Refocusing in a reduction semantics

In this section we show how to construct from scratch a refocus function for a reduction
semantics, as an alternative to plugging and decomposing for defining an evaluation
function. We prove that this function computes the correct result and we give an exact
measure of its computational complexity. Finally we show that refocusing is always at
least as efficient as plugging and then decomposing.

2.1 The language

A programming language is defined by its syntax and its semantics. Here, the semantics
is specified by a reduction semantics. Without loss of generality we assume that the
abstract syntax is specified by a context-free grammar (or BNF) with only productions
of the form

t ::= c(t1, . . . , tn)

where c ranges over a set of constructor names and t, t1, . . . , tn are non-terminals
corresponding to the syntactic categories of the language. Each constructor may occur
only once in a grammar.

2.2 Reduction semantics

A reduction semantics is a specification of a small-step operational semantics, i.e., it
specifies a reduction relation between terms. Reduction semantics usually come with
context-free grammars for values and reduction contexts, a notion of decomposition
and potential redex, often a unique-decomposition lemma, and finally reduction rules
of the form C[r] → t, where the term r denotes a redex. Let us review each of these
concepts in turn.

2.2.1 Values

The grammar of values extends the BNF of the language with one new non-terminal,
v, per non-terminal t. The set of values ranged over by a v is included in the set of
terms ranged over by the matching t. The productions for values are all of the form

v ::= c(x1, . . . , xn)

where t ::= c(t1, . . . , tn) is a production of the language grammar and each xi is either
ti or vi.

If a reduction semantics of the language contains only values, then it is irrelevant
whether we use vi or ti in place of xi. From here on we will consistently use a ti for
such a syntactic category.

2.2.2 Reduction contexts

Reduction contexts (often called ‘evaluation contexts’) are also specified by context-free
grammars, and their meaning is given by an associated plug function. For example,
the reduction contexts of the λ-calculus under call by value and the associated plug
function were shown in Section 1.3.

All the reduction contexts of a reduction semantics can be written as the composi-
tion of elementary reduction contexts. Composition is a binary function on reduction

4



contexts, ◦, that together with the plug function satisfies (C1 ◦ C2)[t] = C1[C2[t]], and
is thus associative.2 Elementary contexts are those that cannot themselves be written
as compositions of other non-empty contexts.

For example, for the λ-calculus under call by value (see Section 3), the elemen-
tary contexts are app([ ], t) and app(v, [ ]). The construction of reduction contexts
corresponds to composing an elementary context to the right of another context, e.g.,
C[app([ ], t)] = C ◦ app([ ], t). In many articles about reduction semantics, though,
compound contexts are constructed by composing an elementary context on the left
rather than on the right [11, 13]. For the λ-calculus under call by value, the grammar
of reduction contexts then reads as follows.

C ::= [ ] | app(C, t) | app(v, C)

This notation induces the same elementary contexts.

2.2.3 Decompositions and potential redexes

If a term t ′ is the result of plugging another term t into a reduction context C, i.e.,
if C[t] = t ′, then we say that C and t form a decomposition (into a reduction context
and a term) of t ′, or alternatively that t ′ can be decomposed into C and t. In general,
a term can be decomposed in many different ways.

If t ′ = C[t] then the decomposition is trivial if either C is the empty context or
t is a value. We assume that values are normal forms: they cannot have a non-value
sub-term in a position where it can be evaluated, so all their decompositions must be
trivial.3 Non-value terms that can only be decomposed trivially are called potential
redexes. For the λ-calculus under call by value, the potential redexes are exactly the
terms of the form app(v, v).

If t ′ = C[t] then the decomposition is complete if t is a potential redex. The
reduction rules of a reduction semantics contain only complete decompositions. If a
term has a decomposition, C1[t1], that is not complete, then either t1 is a value or it can
be further decomposed in a non-trivial way as C2[t2]. Then (C1 ◦C2)[t2] is again a non-
trivial decomposition of the original term. The context of a complete decomposition is
maximal in the sense that further decompositions would be trivial.

2.2.4 Unique decomposition

Unique decomposition is a property of reduction semantics that guarantees the exis-
tence and uniqueness of complete decompositions for arbitrary terms.

Definition 1 (Unique decomposition) A reduction semantics is said to satisfy the
unique-decomposition property if any non-value term t can be uniquely decomposed as
t = C[r] where r is a potential redex.

Unique decomposition is so fundamental to reduction semantics for deterministic
languages that it is almost always the first property to be established. Its proof is

2We note that reduction contexts, together with composition and the empty context, form a monoid,
which explains why they can indifferently be represented “outside in” or “inside out” [7, 11, 13]. Rep-
resenting contexts inside out leads one to a stack implementation: extending a context is implemented
by pushing, and decomposing the innermost context is implemented by popping and dispatching.

3This does not preclude, e.g., weak head normal forms or lazy pairs.
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often technically simple, but because of its many small cases, it tends to be tedious
and error-prone. This state of affairs motivated Xiao, Sabry, and Ariola to develop
automated support for proving unique-decomposition properties [29].4

2.2.5 Reduction rules

The reduction rules of a reduction semantics are of the form C[r] → t where r is a
potential redex and t depends only on C and on the sub-terms of r. Often t is written
as C[t ′] for some t ′ depending on r.

The potential redexes that occur in a reduction rule are the actual reducible terms
of the reduction semantics. The remaining potential redexes are stuck, to use Plotkin’s
terminology [20]. Stuck terms encompass type-incorrect terms (e.g., the application of
a literal) and undefined terms (e.g., the application of an identifier).

The only reduction rule of the λ-calculus under call by value is

C[app(lam(x, t), v)] → C[t {v/x}]

and thus app(lam(x, t), v) is a reducible term. The remaining potential redexes (of the
form app(x, v)) are stuck terms.

2.3 Requirements

We state three requirements that are sufficient for constructing a refocus function. We
consider reduction semantics whose structure is as described in Section 2.2 and that
satisfy unique decomposition.

2.3.1 No redundant constructs

A reduction semantics specifies a reduction relation. Any part of a specification that
does not affect the specified relation is redundant and can be ignored. Specifically:

• If the language has a grammar production t ::= c(t1, . . . , ti, . . . , tn) and the syn-
tactic category ranged over by ti contains only values, then an elementary reduc-
tion context of the form c(x1, . . . , xi−1, [ ], xi+1, . . . , xn) is redundant. Since
only values can be plugged in the hole, and values can only be trivially de-
composed, then no reduction context constructed by composing this elementary
context can ever be part of a complete decomposition.

• If a syntactic category ranged over by t contains no values, i.e., the corresponding
values ranged over by v is the empty set, then any occurrence of v in a rule makes
that rule redundant. (Syntactic categories with no values are not useless; they
can occur meaningfully in, e.g., languages with control effects.)

• If the syntactic category ranged over by t is empty, then that entire syntactic
category and all other productions containing t are redundant and can safely be
ignored.

4Xiao, Sabry, and Ariola also point out that proving unique decomposition reduces to proving
equivalence and unambiguity of context-free grammars—two undecidable properties. In their system
SL, they reduce the problem to regular tree languages, for which equivalence and unambiguity are
decidable. Similarly, the grammars we consider here are regular tree grammars.

6



The above properties are all decidable. Deciding whether the set of terms ranged
over by a non-terminal is empty is decidable for context-free grammars. The specific
structure of the productions of values guarantees that values must be a subset of terms,
and that it is decidable whether t and v generate the same set of terms, i.e., whether
t only ranges over values.

2.3.2 Distinct value constructors and potential-redex constructors

By definition, potential redexes are distinct from values, and values are defined by a
context-free grammar of the form shown in Section 2.2.1. If an instance of a syntactic
construct can become a value by evaluating its sub-terms, then another instance must
not also be able to become a redex, and vice-versa.

The only way a syntactic construct can become both a value and a potential redex
is if the value is given by a production of the form v ::= c(. . . , vi, . . .) and there is no
elementary context of the form c(. . . , [ ], . . .) with a hole in the ith position. Then
c(. . . , ti, . . .) is a potential redex when ti is not a value.

There are several ways to verify the property that no syntactic construct can become
both a value and a potential redex. We use the equivalent requirement that the poten-
tial redexes can be specified by a context-free grammar with productions of the same
type as for values. In other words, the productions are of the form r ::= c(x1, . . . , xn)
where xi is either vi or ti.

2.3.3 Left-to-right evaluation of sub-terms

Without loss of generality, we assume that sub-terms of a syntactic construct are or-
dered so that evaluating them proceeds from left to right. In other words, the unique
decomposition into reduction context and potential redex will always have the hole of
the context occurring in the left-most non-value sub-term, in the ordering of sub-terms
chosen for the abstract syntax.

Finally, we assume that in an elementary context, if the syntactic category vi occurs
to the left of the hole, then the corresponding category ti actually contains non-value
terms.

2.4 Consequences of the requirements

The requirements of Section 2.3 guarantee that a reduction semantics contains elemen-
tary reduction contexts, values, and potential redexes of a specific form. This form is
described in Figure 2.

An example where the m in Figure 2 is strictly smaller than n is a conditional
expression such as if(t, t, t). The only elementary reduction context is if([ ], t, t), since
the other two sub-terms should not be evaluated until the conditional expression has
itself been reduced. Another example is the λ-calculus under call by name where only
the function part of an application is evaluated.

Lemma 1 A reduction semantics satisfying the requirements stated in Section 2.3 con-
tains productions corresponding to Figure 2.

Proof (sketch): Take the production t ::= c(t1, . . . , tn).
If there is a value production v ::= c(t1, . . . , tn) or a potential-redex production

r ::= c(t1, . . . , tn), then m = 0 and c becomes a value or a potential redex.
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For a syntactic construct with n sub-terms, t ::= c(t1, . . . , tn), there is a
number 0 ≤ m ≤ n such that the elementary reduction contexts for c are
exactly:

c([ ], t2, . . . , tn)
c(v1, [ ], t3, . . . , tn)
...
c(v1, . . . , vm−1, [ ], tm+1, . . . , tn)

If terms of the form c(v1, . . . , vm, tm+1, . . . , tn) exist (i.e., the syntactic
categories ranged over by t1, . . . tm all contain values) then they are either
all values or all potential redexes. In other words, either

v ::= c(v1, . . . , vm, tm+1, . . . , tn)

or
r ::= c(v1, . . . , vm, tm+1, . . . , tn)

is a production, but not both.

We then say that c needs to evaluate m sub-terms. If c(v1, . . . , vm,
tm+1, . . . , tn) is a value we say that c becomes a value. If it is a potential
redex we say that c becomes a potential redex.

Figure 2: Elementary contexts, values, and potential redexes

If there is no such production then, since t is not redundant, there must exist a
term c(t1, . . . , tn) that has a non-trivial decomposition and thus there must exist an
elementary reduction context c(t1, . . . , ti−1, [ ], ti+1, . . . , tn). We assume that evalu-
ation proceeds from left to right, so the hole must be in the left-most term, i.e., the
elementary context is c([ ], t2, . . . , tn).

Assume that there exists an elementary reduction context of the form

c(v1, . . . , vi−1, [ ], ti+1, . . . , tn).

Three cases occur:

1. If ti only ranges over non-values then m = i and c becomes neither a value nor a
potential redex.

2. If ti ranges over values and there exists a production

v ::= c(v1, . . . , vi, ti+1, . . . , tn)

or
r ::= c(v1, . . . , vi, ti+1, . . . , tn)

then m = i and c becomes either a value or a potential redex (since it cannot be
both).

3. If ti ranges over values, but terms of the form c(v1, . . . , vi, ti+1, . . . , tn) are not
values or potential redexes, then they must have non-trivial decompositions, so
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there is a corresponding elementary reduction context. Under left-to-right evalu-
ation, the context must be c(v1, . . . , vi, [ ], ti+2, . . . , tn).

In other words, either (1) c(v1, . . . , vi, ti+1, . . . , tn) does not exist, or it is a value or
a potential redex, and then m = i, or (2) there exists an elementary reduction context
c(v1, . . . , vi, [ ], ti+2, . . . , tn), and then m > i.

An induction argument shows that m is the smallest i such that (1) holds. There
exists such a smallest i: a term of the form c(v1, . . . , vn) either does not exist or it has
only trivial decompositions, i.e., is either a value or a potential redex, and thus m ≤ n
as required. �

We have shown that a reduction semantics satisfying the requirements contains
the productions of Figure 2. We do not show that there are no further productions.
However, we show in the next section that one can compute the unique decomposition
of any term using only the productions of Figure 2, and thus any further productions
would either be redundant or violate the unique-decomposition property.

2.5 Constructing a refocus function

We construct a function, refocus , that is extensionally equivalent to the composition
of the plug function and the decompose function. We choose to make it use a stack of
elementary contexts to represent reduction contexts. Such a stack allows an efficient
implementation of composing an elementary reduction context and plugging a term in a
context. We use [ ] for the empty context/stack and C◦c(v1, . . . , vi−1, [ ], ti+1, . . . , tn)
for composing/pushing an elementary context.

The refocusing function is defined with two mutually recursive functions. The first,
refocus , takes a term and a stack of elementary reduction contexts, and is defined by
cases on the term; it has the same type as decompose. The other function, refocusaux ,
takes a stack of elementary contexts and a value as arguments, and is defined by cases
on the top-most elementary reduction context on the stack.

For each t ::= c(t1, . . . , tn) in the language grammar, there exists one corresponding
rule in refocus . If c needs to evaluate m sub-terms then there are m rules in refocusaux

corresponding to the elementary contexts c([ ], t2, . . . , tn) through c(v1, . . . , vm−1, [ ],
tm+1, . . . , tn). If refocus and refocusaux are implemented in a typed setting (e.g., ML),
there is one refocus and one refocusaux for each syntactic category of the language.
The rules of refocus mentioned above go in the refocus functions corresponding to the
syntactic category ranged over by t. The rules of refocusaux go in the auxiliary refocus
functions corresponding to the syntactic category of the hole, which is the same as the
syntactic category of the value argument.

1. If c needs to evaluate zero sub-terms, then we know that c(t1, . . . , tn) is a value
or a potential redex.

(a) If c becomes a value, then

refocus(c(t1, . . . , tn),C) = refocusaux (C, c(t1, . . . , tn))

(b) If instead c becomes a potential redex, then

refocus(c(t1, . . . , tn), C) = (C, c(t1, . . . , en))

since we have found the decomposition.
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2. If c needs to evaluate more than zero sub-terms then the first term must be
reduced first, and we simply refocus on it:

refocus(c(t1, . . . , tn),C) = refocus(t1,C ◦ c([ ], t2, . . . , tn))

Likewise, the refocusaux function is defined by cases on the reduction context on top
of the stack. If c(v1, . . . , vi−1, [ ], ti+1, . . . , tn) is the top-most elementary context on
the stack, then the corresponding case is one of the following.

1. If c needs to evaluate exactly i sub-terms, then c(v1, . . . , vi, ti+1, . . . , tn), if such
a term exists, is either a value or a potential redex.

(a) If c becomes a value then the case is

refocusaux (C ◦ c(v1, . . . , vi−1, [ ], ti+1, . . . , tn), vi)
= refocusaux (C, c(v1, . . . , vi−1, vi, ti+1, . . . , tn))

(b) If c becomes a potential redex then we have found a decomposition into
reduction context and potential redex, and the case is

refocusaux (C ◦ c(v1, . . . , vi−1, [ ], ti+1, . . . , tn), vi)
= (C, c(v1, . . . , vi−1, vi, ti+1, . . . , tn))

(c) If ti ranges over only non-values then there is no rule. In a typed setting
there is no refocusaux corresponding to the constructors of that syntactic
category.

2. If c needs to evaluate more than i sub-terms, then we continue searching for a
potential redex in the next sub-term, and the rule is:

refocusaux (C ◦ c(v1, . . . , vi−1, [ ], ti+1, . . . , tn), vi)
= refocus(ti+1,C ◦ c(v1, . . . , vi, [ ], tn))

3. Finally there is one rule for the empty context.

refocusaux ([ ], v) = v

This base case accounts for the situation where the entire term is a value, so the
decomposition has to return a value rather than a context and a potential redex.

In Appendix A, we illustrate the construction of a refocus function for a reduction
semantics of arithmetic expressions with precedence.

In the following section we show that the refocus function generated by the above
rules computes a correct decomposition of a term into a reduction context and a po-
tential redex, and that it does so at least as efficiently as the combination of plug and
decompose.
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2.6 Correctness

By construction, refocus can only return either a value or a pair of a reduction context
and a potential redex, since the remaining cases all perform a tail call. Both refocus
and refocusaux are passed a decomposition of a term, i.e., a reduction context and
another term, and if they make a recursive call, it is on another decomposition of the
same term. Therefore, if refocus(t,C) returns a decomposition, then it is a complete
decomposition of C[t].

It thus suffices to prove that refocus terminates on any argument. Let us show
that if C[t] = C ′[r], where r is a potential redex, then refocus(t,C) performs T (C ′) +
Taux (r)− T (C) tail-recursive calls, where T and Taux are defined as follows:

T : RedCont → N
T ([ ]) = 0

T (C ◦ c(v1, . . . , vk−1, [ ], tk+1, . . . , ten)) = 1 + T (C) +
∑k+1

i=1 (1 + Taux (vi))

Taux : Val + PotRedex → N
Taux (c(v1, . . . , vm, tm+1, . . . , tn)) = 1 +

∑m
i=1(1 + Taux (vi))

Given a reduction context, T computes the number of edges traversed to go from
the root to the hole in a depth-first left-to-right traversal, counting the edges to values
both on the way down and on the way up. This traversal is illustrated by the following
picture:

c

~~
~~

~~
~~

@@
@@

@@
@@

~~ ��   v

>>

v

OO

c

��
��

��
��

==
==

==
==

�� ��
v

??

c

��
��

��
��

<<
<<

<<
<<

��

t

c

��
��

��
��

==
==

==
==

�� ��

t t

v

@@

[ ] t

As for Taux , it computes the number of edges followed by a full traversal of a composite
value.

All fully traversed sub-terms must be values. With this definition, the result of
T (C) is at most twice the number of nodes visited on such a traversal.

We use the T function to measure how far the refocus function has progressed in
its traversal of its argument.

Lemma 2 (Termination) If C[t] = C ′[r] then refocus(t,C) terminates after T (C ′)+
Taux (r)− T (C) tail-recursive calls.

Proof: Let us use T to define a progress measure on all the left-hand sides and right-
hand sides of the definition of refocus and refocusaux :
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Progress(refocus(t,C))) = T (C)
Progress(refocusaux (C, v)) = T (C) + Taux (v)

Progress(C, r) = T (C) + Taux (r)
Progress(v) = Taux (v)

With this definition, all choices of arguments to refocus and refocusaux give a right-
hand side with a progress value one greater than the left-hand side. We omit the details
and give only one case as example.

If c needs to evaluate m sub-terms to become a value and 0 < k < m, then refocusaux

contains the following case:

refocusaux (C ◦ c(v1, . . . , vk−1, [ ], tk+1, tk+2, . . . , tn), vk)
= refocus(tk+1,C ◦ c(v1, . . . , vk−1, vk, [ ], tk+2, . . . , tn))

Taking the progress measure on both the left-hand side and the right-hand side gives
the expected one-greater value on the right-hand side:

Progress(refocusaux (C ◦ c(v1, . . . , vk−1, [ ], tk+1, . . . , tn), vi))
= T (C ◦ c(v1, . . . , vk−1, [ ], tk+1, . . . , tn)) + Taux (vk)
= 1 + T (C) +

∑k−1
i=1 (1 + Taux (vi)) + Taux (vk)

and
Progress(refocus(tk+1,C ◦ c(v1, . . . , vk, [ ], tk+2, . . . , tn)))
= T (C ◦ c(v1, . . . , vk, [ ], tk+2, . . . , tn))
= 1 + T (C) +

∑k
i=1(1 + Taux (vi))

= 1 + T (C) +
∑k−1

i=1 (1 + Taux (vi)) + Taux (vk) + 1

Since each recursive call increases the progress measure by one, and there is only a
finite possible number of different such calls (each call is to one of two functions on a
decomposition of the same term, and a term has only finitely many decompositions),
the recursion must eventually end. When this happens, the cumulative increase in
the progress measure is also the number of recursive calls performed to reach it. This
number is exactly

Progress((C ′, r))−Progress(refocus(t,C)) = T (C ′) + Taux (r)− T (C).

�
Lemma 2 tells us both that refocus is a total function and how many calls it takes

to find the result. In Section 2.7, we use it to show that refocus is always at least as
efficient as using plug and decompose .

2.7 Complexity

In order to show that refocus is more efficient than the composition of plug and
decompose, we must first decide on a relevant complexity measure, and we must find
the complexity of plug and decompose .

For measuring the time complexity of refocus we use the number of recursive calls,
as in Section 2.6. Each call performs a bounded number of basic operations on the
syntax (either constructing a term or deconstructing a term while naming the sub-
terms—the latter is performed implicitly since the function is defined by cases). If each
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such operation takes constant time, the time taken to compute the result of refocus is
proportional to the number of recursive calls (i.e., bounded by a constant factor times
the number of calls).

Let us informally argue that any implementation of a function decompose : Term →
Val + (RedCont ×PotRedex) finding the unique complete decomposition of terms
(in a syntactic category satisfying our requirements) must perform at least (T (C) +
Taux (r))/2 basic operations on the syntax to compute decompose(C[r]) = (C, r). If
it uses fewer operations, it cannot inspect all the values of the reduction context and
of the potential redex. If we changed such a value to a non-value, then the hole of
the reduction context should be in the new non-value term, but the function cannot
see this without inspecting the value and thus it must generate an erroneous result,
contradicting the assumption that it computes the unique complete decomposition.

The plug function is implemented in time proportional to the depth of the hole in
the reduction context. Since the time complexity of decompose is always greater, we
ignore plug in our comparison.

In summary, the complexity of computing decompose(C[t]) = C ′[r] is at least pro-
portional to T (C ′)+Taux (r), whereas the complexity of computing refocus(t,C) = C ′[r]
is proportional to T (C ′) +Taux (r)−T (C). For reduction semantics where rewrites are
often local, the difference between T (C) and T (C ′) is often significantly smaller than
the value of T (C ′) itself. For example, in the Church-numeral example of Section 1.3
(Example 1), the difference between T (C) and T (C ′) is constant whereas T (C ′) alone
is proportional to the size of the input term.

In some cases, refocus does no better than decompose, e.g., when the context argu-
ment to refocus is always empty (e.g., for tail-recursive or continuation-passing style
λ-terms, and for trampoline-like programs with control operators where the context is
discarded in each step). Likewise, if the size of the context is bounded, the saving is at
most a constant factor.

2.8 Summary

We have presented a few mild requirements to construct a refocus function for a re-
duction semantics. We have also proven the correctness of this construction and char-
acterized the complexity of the constructed function. Refocusing is at least as efficient
as first plugging and then decomposing, and it is often significantly more efficient.
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3 The λ-calculus under call by value

Let us go back to the λ-calculus as initially considered in Section 1.3. We first re-
state the grammars of the language and of the reduction semantics in the format used
in Section 2. These grammars can be expressed directly as ML data types and the
corresponding plug and decompose functions as ML functions (see Appendix A).

Terms t ::= var(x) | lam(x, t) | app(t, t) t∈Term

Values v ::= var(x) | lam(x, t) v∈Val

Variables x∈Var

Reduction contexts C ::= [ ] | C[app([ ], t)] | C[app(v, [ ])] C∈RedCont

Potential redexes r ::= app(v, v) r∈PotRedex

We make plugging and decomposition explicit with two functions:

plug : Term ×RedCont → Term

decompose : Term → Val + (RedCont ×PotRedex)

The refocusing function refocus is defined as the composition of decompose and
plug. Its type is thus:

refocus : Term ×RedCont → Val + (RedCont ×PotRedex)

We now consider a call-by-value interpreter and then two call-by-value CPS trans-
formers for the λ-calculus (Sections 3.1, 3.2, and 3.3). Each uses decompose and plug ,
which we fuse into a more efficient refocus function (Section 3.4).

3.1 A call-by-value interpreter

We start from a traditional call-by-value reduction semantics for the λ-calculus [10–12].
The corresponding interpreter is defined as the transitive closure of (1) decomposing
a term into a reduction context and a potential redex, (2) contracting this redex if
possible, and (3) plugging the contractum into the context. We restate this interpreter
so that the decomposition function is always applied to the result of the plug function.

3.1.1 The original specification

The following interpreter implements the evaluation function of the reduction seman-
tics. It takes a term as argument and repeatedly decomposes, contracts, and plugs
until either a value or a stuck term is reached, if any:

evaluate : Term → Val + (RedCont ×PotRedex)
evaluate(t) = iterate(decompose(t))

iterate : Val + (RedCont ×PotRedex) → Val + (RedCont ×PotRedex)
iterate(v) = v

iterate(C, app(lam(x, t), v)) = evaluate(plug(t {v/x}, C))
iterate(C, app(var(x), v)) = (C, app(var(x), v))

The evaluation of a term t is evaluate(t). (NB: The last clause of iterate is used for
stuck terms.)
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The interpreter contains two calls to evaluate : one in the second clause of iterate
and one in the initial call. In the second clause of iterate, the argument of evaluate is
the result of plug, and the same holds in the initial call, since t = plug(t, [ ]). In that
sense, decompose is always called with the result of plug.

Let us re-express the interpreter with a refocusing function that combines the effects
of decompose and plug .

3.1.2 The refocused specification

We change the interpreter to use refocus instead of decompose and plug . Instead
of decompose(t) above, we write decompose(plug(t, [ ])), i.e., refocus(t, [ ]); and in-
stead of evaluate(plug(t {v/x}, C)), we inline the (old) definition of evaluate and write
iterate(decompose(plug(t {v/x}, C))), i.e., iterate(refocus(t {v/x}, C)):

evaluate : Term → Val + (RedCont ×PotRedex)
evaluate(t) = iterate(refocus(t, [ ]))

iterate : Val + (RedCont ×PotRedex) → Val + (RedCont ×PotRedex)
iterate(v) = v

iterate(C, app(lam(x, t), v)) = iterate(refocus(t {v/x}, C))
iterate(C, app(var(x), v)) = (C, app(var(x), v))

The evaluation of a term t is evaluate(t).

Proposition 1 The original interpreter and the refocused interpreter implement the
same evaluation function.

Proof: Immediate. �
We are now free to use any implementation of refocus that is extensionally equivalent

to decompose ◦ plug .

3.2 Sabry and Felleisen’s CPS transformer

In their work on reasoning about programs in continuation-passing style (CPS), Sabry
and Felleisen designed a new CPS transformation [23, Definition 5]. This CPS transfor-
mation integrates a notion of generalized reduction and thus yields very compact CPS
programs [6]. It is also unusual in the sense that it builds on the notion of a reduction
semantics. Therefore, it is defined as the transitive closure of decomposing, perform-
ing an elementary CPS transformation, and plugging, which makes it a candidate for
refocusing.

3.2.1 The original specification

Definition 2 (Sabry and Felleisen, 1993) The following CPS transformer uses three
mutually recursive functions: Ck (and the auxiliary function C′k) to transform terms,
Φ to transform values, and Kk to transform reduction contexts. The functions Ck, C′k,
and Kk are parameterized over a variable k that represents the current continuation.

Ck : Term → Term

Ck(t) = C′k(decompose(t))
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C′k : Val + (RedCont ×PotRedex) → Term

C′k(v) = app(var(k), Φ(v))
C′k(C, app(var(x), v)) = app(app(var(x), Kk(C)), Φ(v))

C′k(C, app(lam(x, t), v)) = app(lam(x, Ck(plug(t, C))), Φ(v))

Φ : Val → Val

Φ(var(x)) = var(x)
Φ(lam(x, t)) = lam(k, lam(x, Ck(t)))

for a fresh k

Kk : RedCont → Term

Kk([ ]) = var(k)
Kk(C[app(var(x), [ ])]) = app(var(x), Kk(C))

Kk(C[app(lam(x, t), [ ])]) = lam(x, Ck(plug(t, C)))
Kk(C[app([ ], t)]) = lam(ui, Ck(plug(app(var(ui), t), C)))

for a fresh ui

The CPS transformation of a term t is lam(k, Ck(t)), for a fresh k. �
The CPS transformer contains five calls to Ck (counting the initial one). In three

cases, the argument of Ck is the result of plug , and in two cases, the argument is t. As
in Section 3.1.1, and since t = plug(t, [ ]), we can say that decompose , in the definition
of Ck, is always called with the result of plug .

If they are implemented literally, decomposition and plugging entail a time factor
for each transformation step that is linear in the size of the input term, in the worst
case. Overall, the worst-case time complexity of this CPS transformation is quadratic
in the size of the input term.

Let us re-express the CPS transformer with a refocusing function that combines the
effects of decompose and plug .

3.2.2 The refocused specification

We change the CPS transformer to use refocus instead of decompose and plug.

Ck : Term → Term

Ck(t) = C′k(refocus(t, [ ]))

C′k : Val + (RedCont ×PotRedex) → Term

C′k(v) = app(var(k), Φ(v))
C′k(C, app(var(x), v)) = app(app(var(x), Kk(C)), Φ(v))

C′k(C, app(lam(x, t), v)) = app(lam(x, C′k(refocus(t, C))), Φ(v))

Φ : Val → Val

Φ(var(x)) = var(x)
Φ(lam(x, t)) = lam(k, lam(x, Ck(t)))

for a fresh k

Kk : RedCont → Term

Kk([ ]) = var(k)
Kk(C[app(var(x), [ ])]) = app(var(x), Kk(C))

Kk(C[app(lam(x, t), [ ])]) = lam(x, C′k(refocus(t, C)))
Kk(C[app([ ], t)]) = lam(ui, C′k(refocus(app(var(ui), t), C)))

for a fresh ui
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The CPS transformation of a term t is lam(k, Ck(t)), for a fresh k.

Proposition 2 The original CPS transformer and the refocused CPS transformer im-
plement the same transformation function.

Proof: Immediate. �
We are now free to use any implementation of refocus that is extensionally equivalent

to decompose ◦ plug .

3.3 A simpler CPS transformer

We present a simplified, less compacting, version of Sabry and Felleisen’s context-based
CPS transformer, one that produces CPS terms à la Plotkin (λx.λk. ...) rather than
à la Fischer (λk.λx. ...) [6]. We then restate it so that the decomposition function is
always applied to the result of the plug function.

3.3.1 The original specification

The following CPS transformation repeatedly decomposes a source term into a context
and the application of one value to another value, CPS transforms the application, and
plugs a fresh variable in the context. This process continues until the source term is a
value.

Definition 3 (Context-based CPS transformation)

Ck : Term → Term

Ck(t) = C′k(decompose(t))

C′k : Val + (RedCont ×PotRedex) → Term

C′k(v) = app(var(k), Φ(v))
C′k(C, app(v, v′)) = app(app(Φ(v), Φ(v′)), Kk(C))

Φ : Val → Val

Φ(var(x)) = var(x)
Φ(lam(x, t)) = lam(x, lam(k, Ck(t)))

for a fresh k

Kk : RedCont → Val

Kk(C) = lam(ui, Ck(plug(var(ui), C)))
for a fresh ui

The CPS transformation of a term t is lam(k, Ck(t)), for a fresh k. �

Again, and for the same reasons as in Section 3.2.1, the worst-case time complexity
of this CPS transformation is quadratic in the size of the input term.

3.3.2 The refocused specification

We change the CPS transformer to use refocus instead of decompose and plug . In-
stead of decompose(t) above, we write decompose(plug(t, [ ])), i.e., refocus(t, [ ]); and
instead of Ck(plug(var(ui), C)), we write C′k(decompose(plug(var(ui), C))), i.e., we write
C′k(refocus(var(ui), C)):
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Ck : Term → Term

Ck(t) = C′k(refocus(t, [ ]))

C′k : Val + (RedCont ×PotRedex) → Term

C′k(v) = app(var(k), Φ(v))
C′k(C, app(v, v′)) = app(app(Φ(v), Φ(v′)), Kk(C))

Φ : Val → Val

Φ(var(x)) = var(x)
Φ(lam(x, t)) = lam(x, lam(k, Ck(t)))

for a fresh k

Kk : RedCont → Val

Kk(C) = lam(ui, C′k(refocus(var(ui), C)))
for a fresh ui

The CPS transformation of a term t is lam(k, Ck(t)), for a fresh k.

Proposition 3 The original CPS transformer and the refocused CPS transformer im-
plement the same transformation function.

Proof: Immediate. �
We are now free to use any implementation of refocus that is extensionally equivalent

to decompose ◦ plug .

3.4 Refocusing efficiently

Applying the construction of Section 2.5 yields the following functions:

refocus : Term ×RedCont → Val + (RedCont ×PotRedex)
refocus(v, C) = refocusaux (C, v)

refocus(app(t, t ′), C) = refocus(t, C[app([ ], t ′)])

refocusaux : RedCont ×Val → Val + (RedCont ×PotRedex)
refocusaux ([ ], v) = v

refocusaux (C[app([ ], t ′)], v) = refocus(t ′, C[app(v, [ ])])
refocusaux (C[app(v, [ ])], v′) = (C, app(v, v′))

By construction, refocus implements a depth-first search for the first application of
one value to another, by recursively descending into a term and accumulating the
corresponding context. As for refocusaux , it dispatches on the accumulated context.

The following definition of decompose holds as a corollary:

decompose : Term → Val + (RedCont ×PotRedex)
decompose(t) = refocus(t, [ ])

3.4.1 The call-by-value interpreter

Proposition 4 The new refocused interpreter and the previous one implement the
same evaluation function.

Proof: A corollary of the correctness of the refocus construction. �
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Let us return to Church-numeral example of Section 1.3. When evaluating a term
such as dne (λx.x) v, the time taken to efficiently refocus from a contractum and a
context to a new context and a redex is independent of the number of remaining
applications. The new interpreter therefore operates more efficiently than the original
one.

3.4.2 Sabry and Felleisen’s CPS transformer

Proposition 5 The new refocused CPS transformer and the previous one implement
the same transformation function.

Proof: A corollary of the correctness of the refocus construction. �
In contrast to the original CPS transformer, the new refocused CPS transformer

operates in one pass over its input.
Incidentally, the transformation can be optimized to read as follows:

Kk(C[app([ ], t)]) = lam(ui, Ck(refocus(t, C[app(var(ui), [ ])])))

This way, each var(ui) is not inspected as a term.

3.4.3 The simpler CPS transformer

Proposition 6 The new refocused CPS transformer and the previous one implement
the same transformation function.

Proof: A corollary of the correctness of the refocus construction. �
In contrast to the original CPS transformer, the new refocused CPS transformer

operates in one pass over its input.

3.5 Analysis of the refocused call-by-value interpreter

The refocused interpreter takes the form of a “pre-abstract machine” (Section 3.5.1).
We successively show how to transform this pre-abstract machine into an abstract
machine (Section 3.5.2), how to put this abstract machine in eval/apply form (Sec-
tion 3.5.3), and how to put it in push/enter form (Section 3.5.4). We also exhibit the
corresponding big-step semantics (Section 3.5.5).

3.5.1 A pre-abstract machine

In Section 3.4.1, the refocused interpreter in a particular form, which we name pre-
abstract machine, and which involves a transition function and a ‘trampoline’ [14]:
refocus and refocusaux (in Section 3.4) define one transition function and iterate (in
Section 3.1.2) defines a trampoline, i.e., another transition function that keeps acti-
vating the other until a value is obtained, if there is any. The trampoline function
computes the transitive closure of the transition function.

3.5.2 From the pre-abstract machine to an abstract machine

In the pre-abstract machine, iterate is always called on the result of refocus . Let us fuse
these two functions into one transition function so that refocus is called tail-recursively
and that iterate is applied to its result (and to the result of refocusaux ):
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evaluate : Term → Val + (RedCont ×PotRedex)
evaluate(t) = refocus(t, [ ])

iterate : Val + (RedCont ×PotRedex) → Val + (RedCont ×PotRedex)
iterate(v) = v

iterate(C, app(lam(x, t), v)) = refocus(t {v/x}, C)
iterate(C, app(var(x), v)) = (C, app(var(x), v))

refocus : Term ×RedCont → Val + (RedCont ×PotRedex)
refocus(v, C) = refocusaux (C, v)

refocus(app(t, t ′), C) = refocus(t, C[app([ ], t ′)])

refocusaux : RedCont ×Val → Val + (RedCont ×PotRedex)
refocusaux ([ ], v) = iterate(v)

refocusaux (C[app([ ], t ′)], v) = refocus(t ′, C[app(v, [ ])])
refocusaux (C[app(v, [ ])], v′) = iterate(C, app(v, v′))

The result is a (tail-recursive) state-transition function, i.e., an abstract machine [21].

Proposition 7 The pre-abstract machine and the abstract machine implement the
same evaluation function.

Proof: Immediate. �
The form of the abstract machine is rather ideal because iterate implements the

reduction rules of the reduction semantics and refocus and refocusaux implement its
congruence rules—a distinction that usually requires a non-trivial analysis to establish
for existing abstract machines [16].

3.5.3 An eval/apply abstract machine

Inlining iterate yields an eval/apply abstract machine [18] which we recognize to be
Felleisen et al.’s CK machine [10–12]:

evaluate : Term → Val + (RedCont ×PotRedex)
evaluate(t) = refocus(t, [ ])

refocus : Term ×RedCont → Val + (RedCont ×PotRedex)
refocus(v, C) = refocusaux (C, v)

refocus(app(t, t ′), C) = refocus(t, C[app([ ], t ′)])

refocusaux : RedCont ×Val → Val + (RedCont ×PotRedex)
refocusaux ([ ], v) = v

refocusaux (C[app([ ], t ′)], v) = refocus(t ′, C[app(v, [ ])])
refocusaux (C[app(lam(x, t), [ ])], v) = refocus(t {v/x}, C)

refocusaux (C[app(var(x), [ ])], v) = (C, app(var(x), v))

Proposition 8 The abstract machine and the eval/apply abstract machine implement
the same evaluation function.

Proof: Immediate. �
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3.5.4 A push/enter abstract machine

Inlining refocusaux yields a push/enter [18] version of the CK machine:

evaluate : Term → Val + (RedCont ×PotRedex)
evaluate(t) = refocus(t, [ ])

refocus : Term ×RedCont → Val + (RedCont ×PotRedex)
refocus(v, [ ]) = v

refocus(v, C[app([ ], t ′)]) = refocus(t ′, C[app(v, [ ])])
refocus(v, C[app(lam(x, t), [ ])]) = refocus(t {v/x}, C)

refocus(v, C[app(var(x), [ ])]) = (C, app(var(x), v))
refocus(app(t, t ′), C) = refocus(t, C[app([ ], t ′)])

Proposition 9 The eval/apply abstract machine and the push/enter abstract machine
implement the same evaluation function.

Proof: Immediate. �

3.5.5 From the eval/apply abstract machine to a big-step semantics

As already observed elsewhere [1, 5], the eval/apply CK machine of Section 3.5.3 is
in defunctionalized form [7, 22]: the reduction contexts, together with refocusaux , are
the first-order counterpart of a function (or, more precisely, of a continuation). The
higher-order counterpart of this abstract machine is a continuation-passing evaluation
function. Writing it in direct style [4] yields an evaluation function that implements a
traditional big-step operational semantics of the λ-calculus under call by value [19,24].
We state it below without proof and in a form where the contexts are constructed
inside-out in case of stuck terms:

v ⇓ v

t ⇓ lam(x, t ′′) t ′ ⇓ v′ t ′′ {v′/x} ⇓ a

app(t, t ′) ⇓ a

t ⇓ var(x) t ′ ⇓ v′

app(t, t ′) ⇓ ([ ], app(var(x), v′))

t ⇓ (C, r)
app(t, t ′) ⇓ (app(C, t ′), r)

t ⇓ v t ′ ⇓ (C, r)
app(t, t ′) ⇓ (app(v, C), r)

3.6 Analysis of the refocused CPS transformers

The refocused CPS transformers also take the form of pre-abstract machines, i.e., of a
trampoline function computing the transitive closure of a transition function. We can
fuse these two functions into an abstract machine. This abstract machine is in defunc-
tionalized form, and we can write its higher-order counterpart, obtaining a traditional
one-pass CPS transformer, as we have shown elsewhere [9].

21



3.7 Summary

We have described how to efficiently implement the evaluation function of a call-by-
value reduction semantics for the λ-calculus, by deforesting the intermediate terms
produced in each decompose-contract-plug cycle. As a byproduct, we have shown how
refocusing makes it possible to mechanically obtain an array of abstract machines—
including the CK machine—out of this reduction semantics. From these abstract ma-
chines, we have exhibited the corresponding big-step operational semantics. It is also
simple to walk back from a big-step operational semantics to an abstract machine, from
this abstract machine to a refocused interpreter, and from this refocused interpreter to
a reduction semantics.

We have also shown how to refocus quadratic-time context-based CPS transformers
into linear-time ones.

In the literature [11], the decompose function is usually left unspecified. Our work
suggests that an iterative definition with an accumulator is convenient since it connects
one-step reduction and evaluation in the form of an abstract machine.
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4 The λ-calculus under call by name

We briefly illustrate the call-by-name counterpart of Section 3: a call-by-name inter-
preter and a simple call-by-name CPS transformer for the λ-calculus. We first state
the grammars of the language and of the reduction semantics.

Terms t ::= var(x) | val(x) | lam(x, t) | app(t, t) t ∈ Term

Values v ::= val(x) | lam(x, t) v ∈ Val

Variables x ∈ Var

Reduction contexts C ::= [ ] | C[app([ ], t)] C ∈ RedCont

Potential redexes r ::= app(v, t) | var(x) r ∈ PotRedex

The val constructor is used for variables that denote values (e.g., literals) rather than
computations—for those, the var constructor is used.

Plugging and decomposition are achieved with the two following functions:

plug : Term ×RedCont → Term

decompose : Term → Val + (RedCont ×PotRedex)

We now consider a call-by-name interpreter and then a call-by-name CPS trans-
former for the λ-calculus. Each uses decompose and plug, which we fuse into a more
efficient refocus function:

refocus : Term ×RedCont → Val + (RedCont ×PotRedex)

4.1 A call-by-name interpreter

We start from a traditional reduction semantics for the λ-calculus under call by name [11].
The corresponding interpreter is defined as the transitive closure of (1) decomposing
a term into a reduction context and a potential redex, (2) contracting this redex, if
possible, and (3) plugging the contractum in the context. We restate this interpreter
so that the decomposition function is always applied to the result of the plug function.

4.1.1 The original specification

The following interpreter implements the evaluation function of the reduction seman-
tics. It takes a term as argument and repeatedly decomposes, contracts, and plugs
until either a value or a stuck term is reached, if any.

evaluate : Term → Val + (RedCont ×PotRedex)
evaluate(t) = iterate(decompose(t))

iterate : Val + (RedCont ×PotRedex) → Val + (RedCont ×PotRedex)
iterate(v) = v

iterate(C, app(val(x), t)) = (C, app(val(x), t))
iterate(C, app(lam(x, t), t ′)) = evaluate(plug(t {t ′/x}, C))

iterate(C, var(x)) = (C, var(x))

The evaluation of a term t is evaluate(t). (NB: The second and fourth clauses of iterate
are used for stuck terms.)

23



The interpreter contains two calls to evaluate : one in the third clause of iterate and
one in the initial call. In the third clause of iterate, the argument of evaluate is the
result of plug , and the same holds in the initial call, since t = plug(t, [ ]). Therefore,
decompose is always called with the result of plug .

Let us re-express the interpreter with a refocusing function that combines the effects
of decompose and plug .

4.1.2 The refocused specification

We change the interpreter to use refocus instead of decompose and plug . Instead
of decompose(t) above, we write decompose(plug(t, [ ])), i.e., refocus(t, [ ]); and in-
stead of evaluate(plug(t {t ′/x}, C)), we write iterate(decompose(plug(t {t ′/x}, C))),
i.e., iterate(refocus(t {t ′/x}, C)):

evaluate : Term → Val + (RedCont ×PotRedex)
evaluate(t) = iterate(refocus(t, [ ]))

iterate : Val + (RedCont ×PotRedex) → Val + (RedCont ×PotRedex)
iterate(v) = v

iterate(C, app(val(x), t)) = (C, app(val(x), t))
iterate(C, app(lam(x, t), t ′)) = iterate(refocus(t {t ′/x}, C))

iterate(C, var(x)) = (C, var(x))

The evaluation of a term t is evaluate(t).

Proposition 10 The original interpreter and the refocused interpreter implement the
same evaluation function.

Proof: Immediate. �
We are now free to use any implementation of refocus that is extensionally equivalent

to decompose ◦ plug .

4.2 A simple CPS transformer

We present the call-by-name analogue of the context-based CPS transformer of Sec-
tion 3.3. We then restate it so that the decomposition function is always applied to
the result of the plug function.

4.2.1 The original specification

The following CPS transformation repeatedly decomposes a source term into a context
and the application of one value to another value, CPS transforms the application,
and plugs a fresh variable (one that denotes a value) into the context. This process
continues until the source term is a value.

Definition 4 (Context-based CPS transformation)

Ck : Term → Term

Ck(t) = C′k(decompose(t))

24



C′k : Val + (RedCont ×PotRedex) → Term

C′k(v) = app(var(k), Φ(v))
C′k(C, app(v, t)) = app(app(Φ(v), lam(k′, Ck′(t))), Kk(C))

for a fresh k′

C′k(C, var(x)) = app(var(x), Kk(C))

Φ : Val → Val

Φ(val(x)) = val(x)
Φ(lam(x, t)) = lam(x, lam(k, Ck(t)))

for a fresh k

Kk : RedCont → Val

Kk(C) = lam(ui, Ck(plug(val(ui), C)))
for a fresh ui

The CPS transformation of a term t is lam(k, Ck(t)), for a fresh k. �

As in Section 3, the worst-case time complexity of this CPS transformation is
quadratic in the size of the input term.

4.2.2 The refocused specification

We change the CPS transformer to use refocus instead of decompose and plug . Instead
of decompose(t) above, we write decompose(plug(t, [ ])), i.e., refocus(t, [ ]); and instead
of Ck(plug(val(ui), C)), we write C′k(decompose(plug(val(ui), C))), i.e., C′k(refocus(val(ui), C)):

Ck : Term → Term

Ck(t) = C′k(refocus(t, [ ]))

C′k : Val + (RedCont ×PotRedex) → Term

C′k(v) = app(var(k), Φ(v))
C′k(C, app(v, t)) = app(app(Φ(v), lam(k′, Ck′ (t))), Kk(C))

for a fresh k′

C′k(C, var(x)) = app(var(x), Kk(C))

Φ : Val → Val

Φ(val(x)) = val(x)
Φ(lam(x, t)) = lam(x, lam(k, Ck(t)))

for a fresh k

Kk : RedCont → Val

Kk(C) = lam(ui, C′k(refocus(val(ui), C)))
for a fresh ui

The CPS transformation of a term t is lam(k, Ck(t)), for a fresh k.

Proposition 11 The original CPS transformer and the refocused CPS transformer
implement the same transformation function.

Proof: Immediate. �
We are now free to use any implementation of refocus that is extensionally equivalent

to decompose ◦ plug .
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4.3 Refocusing efficiently

Applying the construction of Section 2.5 yields the following functions:

refocus : Term ×RedCont → Val + (RedCont ×PotRedex)
refocus(v, C) = refocusaux (C, v)

refocus(app(t, t ′), C) = refocus(t, C[app([ ], t ′)])
refocus(var(x), C) = (C, var(x))

refocusaux : RedCont ×Val → Val + (RedCont ×PotRedex)
refocusaux ([ ], v) = v

refocusaux (C[app([ ], t)], v) = (C, app(v, t))

By construction, refocus implements a depth-first search for the first application of
one value to another, by recursively descending into a term and accumulating the
corresponding context. As for refocusaux , it dispatches on the accumulated context.

The following definition of decompose holds as a corollary:

decompose : Term → Val + (RedCont ×PotRedex)
decompose(t) = refocus(t, [ ])

4.3.1 The call-by-name interpreter

Proposition 12 The new refocused interpreter and the previous one implement the
same evaluation function.

Proof: A corollary of the correctness of the refocus construction. �
As in Section 3.4.1, the new refocused interpreter operates more efficiently than the

original one, e.g., on the Church-numerals example of Section 1.3.

4.3.2 The simple CPS transformer

Proposition 13 The new refocused CPS transformer and the previous one implement
the same transformation function.

Proof: A corollary of the correctness of the refocus construction. �
In contrast to the original CPS transformer, the new refocused CPS transformer

operates in one pass over its input.

4.4 Analysis of the refocused call-by-name interpreter

As in Section 3.5, the refocused interpreter takes the form of a “pre-abstract machine”.
We successively show how to transform this pre-abstract machine into an abstract
machine, how to put this abstract machine in eval/apply form, and how to put it in
push/enter form. We also exhibit the corresponding big-step semantics.

4.4.1 A pre-abstract machine

As in Section 3.1.2, the refocused interpreter is in the form of a pre-abstract machine:
iterate is a trampoline function computing the transitive closure of the transition func-
tion defined by refocus and refocusaux .
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4.4.2 From the pre-abstract machine to an abstract machine

In the pre-abstract machine, iterate is always called on the result of refocus . Let us fuse
these two functions into one transition function so that refocus is called tail-recursively
and that iterate is applied on its result (and to the result of refocusaux ):

evaluate : Term → Val + (RedCont ×PotRedex)
evaluate(t) = refocus(t, [ ])

iterate : Val + (RedCont ×PotRedex) → Val + (RedCont ×PotRedex)
iterate(v) = v

iterate(C, app(val(x), t)) = (C, app(val(x), t))
iterate(C, app(lam(x, t), t ′)) = refocus(t {t ′/x}, C)

iterate(C, var(x)) = (C, var(x))

refocus : Term ×RedCont → Val + (RedCont ×PotRedex)
refocus(v, C) = refocusaux (C, v)

refocus(app(t, t ′), C) = refocus(t, C[app([ ], t ′)])
refocus(var(x), C) = iterate(C, var(x))

refocusaux : RedCont ×Val → Val + (RedCont ×PotRedex)
refocusaux ([ ], v) = iterate(v)

refocusaux (C[app([ ], t)], v) = iterate(C, app(v, t))

Proposition 14 The pre-abstract machine and the abstract machine implement the
same evaluation function.

Proof: Immediate. �
As in Section 3.5.2, the form of the abstract machine is rather ideal because iterate

implements the reduction rules of the reduction semantics and refocus and refocusaux

implement its congruence rules.

4.4.3 An eval/apply abstract machine

Inlining iterate yields the following eval/apply abstract machine:

evaluate : Term → Val + (RedCont ×PotRedex)
evaluate(t) = refocus(t, [ ])

refocus : Term ×RedCont → Val + (RedCont ×PotRedex)
refocus(v, C) = refocusaux (C, v)

refocus(app(t, t ′), C) = refocus(t, C[app([ ], t ′)])
refocus(var(x), C) = (C, var(x))

refocusaux : RedCont ×Val → Val + (RedCont ×PotRedex)
refocusaux ([ ], v) = v

refocusaux (C[app([ ], t ′)], val(x)) = (C, app(val(x), t))
refocusaux (C[app([ ], t ′)], lam(x, t)) = refocus(t {t ′/x}, C)

Proposition 15 The abstract machine and the eval/apply abstract machine implement
the same evaluation function.

Proof: Immediate. �
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4.4.4 A push/enter abstract machine

Inlining refocusaux and obtain a push/enter abstract machine which we recognize to be
(a substitution-based version of) Krivine’s machine [2, 3]:

evaluate : Term → Val + (RedCont ×PotRedex)
evaluate(t) = refocus(t, [ ])

refocus : Term ×RedCont → Val + (RedCont ×PotRedex)
refocus(v, [ ]) = v

refocus(var(x), C[app([ ], t)]) = (C, var(x))
refocus(lam(x, t), C[app([ ], t ′)]) = refocus(t {t ′/x}, C)

refocus(app(t, t ′), C) = refocus(t, C[app([ ], t ′)])
refocus(var(x), C) = (C, var(x))

Proposition 16 The eval/apply abstract machine and the push/enter abstract ma-
chine implement the same evaluation function.

Proof: Immediate. �

4.4.5 From the eval/apply abstract machine to a big-step semantics

As in Section 3.5.5, the eval/apply machine of Section 4.4.3 is in defunctionalized form:
the reduction contexts, together with refocusaux , are the first-order counterpart of a
function (or, more precisely, of a continuation). The higher-order counterpart of this
abstract machine is a continuation-passing evaluation function. Writing it in direct
style yields an evaluation function that implements a traditional big-step operational
semantics of the λ-calculus under call by name, as in Section 3.5.5. We state it below
without proof and in a form where the contexts are constructed inside-out in case of
stuck terms:

v ⇓ v

t ⇓ lam(x, t ′′) t ′′ {t ′/x} ⇓ a

app(t, t ′) ⇓ a

t ⇓ val(x)
app(t, t ′) ⇓ ([ ], app(val(x), t ′))

t ⇓ (C, r)
app(t, t ′) ⇓ (app(C, t ′), r) var(x) ⇓ ([ ], var(x))

4.5 Analysis of the refocused CPS transformer

As in Section 3.6, the refocused CPS transformer also takes the form of a pre-abstract
machine. We can fuse the trampoline function and the two refocus functions into an
abstract machine. Again, this abstract machine is in defunctionalized form, and we can
write its higher-order counterpart, obtaining a traditional one-pass CPS transformer.
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4.6 Summary

We have described how to efficiently implement the evaluation function of a reduction
semantics for the λ-calculus under call by name, by deforesting the intermediate terms
produced in each decompose-contract-plug cycle. As a byproduct, we have shown how
refocusing makes it possible to mechanically obtain an array of abstract machines—
including (a substitution-based version of) Krivine’s machine—out of this reduction
semantics. From these abstract machines, we have exhibited the corresponding big-
step operational semantics. As in Section 3, it is also simple to walk back from a
big-step operational semantics to an abstract machine, from this abstract machine to
a refocused interpreter, and from this refocused interpreter to a reduction semantics.

We have also shown how to refocus a quadratic-time context-based CPS transformer
into a linear-time one.

5 Conclusion

We have presented a structural result about reduction semantics with context-free
grammars of values, reduction contexts, and redexes, and satisfying a unique-decom-
position property. These conditions are quite general: they hold for deterministic
languages and also for oracle-based non-deterministic languages, as illustrated in Ap-
pendix A; they however do not hold when the next redex is searched non-deterministically.

Our structural result enables one to mechanically construct a refocus function that
iteratively goes from redex site to redex site and avoids the overhead of first plug-
ging and then decomposing in an evaluation function, as illustrated in Figure 1. The
refocused evaluation function implements a state-transition function, i.e., an abstract
machine. We have illustrated this property by mechanically constructing Felleisen et
al.’s CK machine and a substitution-based version of Krivine’s machine out of two re-
duction semantics of the λ-calculus. We have also mechanically turned context-based
quadratic-time program transformations into program transformations that operate in
one pass.

The construction of the refocus function suggests a convenient definition of the
decompose function that directly connects one-step reduction and evaluation in the
form of an abstract machine. It also suggests a practical method to obtain a reduction
semantics out of an abstract machine.
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A Arithmetic expressions with precedence

This section treats a comprehensive example illustrating all the cases of the construc-
tion of a refocus function as presented in Section 2.5. We consider arithmetic expres-
sions with addition, multiplication, conditional expressions checking whether their first
argument is zero, parenthesized expressions, literals, and oracles returning 0 or 1, non-
deterministically. (The oracles are only there to illustrate a case of the construction.)

The grammar is unambiguous and hierarchic, as often given in undergraduate com-
piler courses. It specifies expressions, terms, and factors, and reads as follows:

e ∈ Expr e ::= t + e | Ifz e e e | t
t ∈ Term t ::= f × t | f
f ∈ Fact f ::= n | flip | (e)
n ∈ Lit

A program is an expression.
The rest of this appendix is structured as follows. We first present a reduction

semantics for arithmetic expressions (Section A.1), we review how to represent reduc-
tion contexts outside-in or inside-out (Section A.2), and we present a detailed imple-
mentation of the reduction semantics (Section A.3). We then apply the algorithm of
Section 2.5 and construct a refocus function (Section A.4).

A.1 A reduction semantics

We define the reduction semantics of arithmetic expressions by specifying its values,
its computations, its reduction contexts, its redexes and its reduction rules.

Values (trivial terms):

ve ∈ ExprVal ve ::= vt

vt ∈ TermVal vt ::= vf
vf ∈ FactVal vf ::= n

Computations (serious terms):

ce ∈ ExprComp ce ::= t + e | Ifz e e e | ct

ct ∈ TermComp ct ::= f × t | cf
cf ∈ FactComp cf ::= flip | (e)

Reduction contexts:

Ee ∈ ExprEvCont Ee ::= [ ]e | Et + e | vt + Ee | Ifz Ee e e | Et

Et ∈ TermEvCont Et ::= [ ]t | Ef × t | vf × Et | Ef

Ef ∈ FactEvCont Ef ::= [ ]f | (Ee)
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Redexes:

re ∈ ExprRedex re ::= vt + ve | Ifz ve e e | rt

rt ∈ TermRedex rt ::= vf × vt | rf
rf ∈ FactRedex rf ::= flip | (ve)

Reduction rules:

Ee[n1 + n2] → Ee[n3] where n3 is the sum of n1 and n2

Ee[Ifz n e1 e2] → Ee[e1] if n = 0
Ee[Ifz n e1 e2] → Ee[e2] if n 6= 0

Ee[n1 × n2] → Ee[n3] where n3 is the product of n1 and n2

Ee[flip] → Ee[0]
Ee[flip] → Ee[1]
Ee[(n)] → Ee[n]

The reduction rules are defined only on decompositions that “make sense”, i.e., only
an expression is plugged into [ ]e, only a term into [ ]t and a factor into [ ]f . The result
of a reduction is an expression.

This reduction semantics satisfies three unique-decomposition lemmas, i.e., decom-
posing an expression (resp. a term and a factor) into a reduction context and a redex
yields a unique result. We prove these lemmas by structural induction on the syntax.
The language is simple enough that the number of cases is manageable.

There are no stuck terms, and reduction always yields an expression. The reduc-
tion relation, however, is not a function from expressions to expressions, even though
decompositions are unique, because of the oracles.

A.2 An alternative representation of contexts

In Section A.1, the grammar of reduction contexts embodies left composition, i.e., the
construction of contexts by composition with an elementary context on the left. In
other words, each production except for the empty context, e.g., Ee ::= vt + Ee, could
be written as Ee ::=(vt + [ ]e) ◦Ee. Since composition of contexts is associative, we
could define the same contexts using right composition, giving a production of the form
Ee ::= Ee ◦(vt+[ ]e). We write it, however, in the more common way: Ee ::= Ee[vt+[ ]e].

We transform the grammar of contexts into one representing composition on the
right, and we do this in a completely mechanical way. The example just above shows
the general idea, though it does not illustrate the case where the sub-context is not of
the same type as the generated context.

We have three groups of reduction contexts, grouped by the syntactic category
they produce when plugged. Take the elementary context [ ]t + e. If we left-compose
another reduction context with this elementary context, we require that the other
context produces terms. If we right-compose this elementary context, however, we
require the other context to accept expressions in the hole. To capture this restriction
in the grammar, we group the productions by the type of the hole instead. So for
example, the production Ee ::= Et + e is transformed into Et ::= Ee[[ ]t + e].
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In general, the transformation rewrites a production of the form Ea ::= c(x1, . . . ,
Eb, . . . , xn) into Eb ::= Ea[c(x1, . . . , [ ]b, . . . , xn)], and it keeps the productions of
empty contexts. Performing this transformation on the grammar of reduction contexts
above gives the following grammar.

Reduction contexts:

Ee ∈ ExprEvCont Ee ::= [ ]e | Ee[vt + [ ]e] | Ee[Ifz [ ]e e e] | Ef [([ ])]
Et ∈ TermEvCont Et ::= [ ]t | Ee[[ ]t + e] | Et[vf × [ ]t] | Ee

Ef ∈ FactEvCont Ef ::= [ ]f | Et[[ ]f × t] | Et

In the original representation, Ee ranged over all contexts that generated expression,
but made no restriction on the type of the hole. The second representation likewise lets
Ee range over all contexts with a hole accepting an expression, but makes no restriction
on the type of the result of a plug. Using this second representation, we must require
that the reduction contexts appearing in the reduction rules must output expressions,
i.e., we rule out the empty contexts from Et and Ef in the grammar of reduction
contexts. The resulting reduction contexts and reduction rules read as follows.

Reduction contexts:

Ee ∈ ExprEvCont Ee ::= [ ]e | Ee[vt + [ ]e] | Ee[Ifz [ ]e e e] | Ef [([ ])]
Et ∈ TermEvCont Et ::= Ee[[ ]t + e] | Et[vf × [ ]t] | Ee

Ef ∈ FactEvCont Ef ::= Et[[ ]f × t] | Et

Reduction rules:

Ee[n1 + n2] → Ee[n3] where n3 is the sum of n1 and n2

Ee[Ifz n e1 e2] → Ee[e1] if n = 0
Ee[Ifz n e1 e2] → Ee[e2] if n 6= 0

Et[n1 × n2] → Et[n3] where n3 is the product of n1 and n2

Ef [flip] → Ef [0]
Ef [flip] → Ef [1]
Ef [(n)] → Ef [n]

A.3 Implementation

Figure 3 displays the BNF of arithmetic expressions in Standard ML. As usual with
reduction semantics, we distinguish between values (trivial terms) and computations
(serious terms). An expression (expr) is thus trivial (expr val) or serious (expr comp);
a term (term) is trivial (term val) or serious (term comp); and a factor (fact) is trivial
(fact val) or serious (fact comp). The only values are integers, hence values are defined
with the hierarchy of types expr val, term val, fact val, and int. Computations are
similarly embedded, hence the hierarchy of types expr comp, term comp, and fact comp.

Figure 4 displays the reduction contexts and Figure 5, the corresponding plug func-
tions. Figure 6 displays the implementation of redexes and the result of decomposition,
and Figure 7, the corresponding decomposition functions.
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datatype expr = EXPR_VAL of expr_val

| EXPR_COMP of expr_comp

and expr_val = TERM_VAL’ of term_val

and expr_comp = ADD of term * expr

| IFZ of expr * expr * expr

| TERM_COMP’ of term_comp

and term = TERM_VAL of term_val

| TERM_COMP of term_comp

and term_val = FACT_VAL’ of fact_val

and term_comp = MUL of fact * term

| FACT_COMP’ of fact_comp

and fact = FACT_VAL of fact_val

| FACT_COMP of fact_comp

and fact_val = INT of int

and fact_comp = FLIP

| PARENS of expr

Figure 3: Abstract syntax of arithmetic expressions

datatype expr_evcont = EEC0

| EEC1 of term_val * expr_evcont

| EEC2 of expr * expr * expr_evcont

| EEC3 of fact_evcont

and term_evcont = TEC1 of expr * expr_evcont

| TEC2 of fact_val * term_evcont

| TEC3 of expr_evcont

and fact_evcont = FEC1 of term * term_evcont

| FEC2 of term_evcont

Figure 4: Reduction contexts for arithmetic expressions
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(* plug_expr : expr * expr_evcont -> expr *)

(* plug_term : term * term_evcont -> expr *)

(* plug_fact : fact * fact_evcont -> expr *)

fun

plug_expr (e, EEC0)

= e

| plug_expr (e, EEC1 (tt, eec))

= plug_expr (EXPR_COMP (ADD (TERM_VAL tt, e)), eec)

| plug_expr (e, EEC2 (e1, e2, eec))

= plug_expr (EXPR_COMP (IFZ (e, e1, e2)), eec)

| plug_expr (e, EEC3 fec)

= plug_fact (FACT_COMP (PARENS e), fec)

and

plug_term (t, TEC1 (e, eec))

= plug_expr (EXPR_COMP (ADD (t, e)), eec)

| plug_term (t, TEC2 (tf, tec))

= plug_term (TERM_COMP (MUL (FACT_VAL tf, t)), tec)

| plug_term (TERM_VAL tt, TEC3 eec)

= plug_expr (EXPR_VAL (TERM_VAL’ tt), eec)

| plug_term (TERM_COMP st, TEC3 eec)

= plug_expr (EXPR_COMP (TERM_COMP’ st), eec)

and

plug_fact (f, FEC1 (t, tec))

= plug_term (TERM_COMP (MUL (f, t)), tec)

| plug_fact (FACT_VAL tf, FEC2 tec)

= plug_term (TERM_VAL (FACT_VAL’ tf), tec)

| plug_fact (FACT_COMP sf, FEC2 tec)

= plug_term (TERM_COMP (FACT_COMP’ sf), tec)

Figure 5: Iterative plug functions for arithmetic expressions

datatype expr_redex = ADD_REDEX of term_val * expr_val

| IFZ_REDEX of expr_val * expr * expr

datatype term_redex = MUL_REDEX of fact_val * term_val

datatype fact_redex = FLIP_REDEX

| PARENS_REDEX of expr_val

datatype decomposed = VALUE of expr_val

| EXPR_DECOMPOSITION of expr_evcont * expr_redex

| TERM_DECOMPOSITION of term_evcont * term_redex

| FACT_DECOMPOSITION of fact_evcont * fact_redex

Figure 6: Redexes and the result of decomposition for arithmetic expressions
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(* decompose_expr : expr -> decomposed *)

(* decompose_expr_comp : expr_comp * expr_evcont -> decomposed *)

(* decompose_term_comp : term_comp * term_evcont -> decomposed *)

(* decompose_fact_comp : fact_comp * fact_evcont -> decomposed *)

fun

decompose_expr (EXPR_VAL te)

= VALUE te

| decompose_expr (EXPR_COMP se)

= decompose_expr_comp (se, EEC0)

and

decompose_expr_comp (ADD (TERM_VAL tt, EXPR_VAL te), eec)

= EXPR_DECOMPOSITION (eec, ADD_REDEX (tt, te))

| decompose_expr_comp (ADD (TERM_VAL tt, EXPR_COMP se), eec)

= decompose_expr_comp (se, EEC1 (tt, eec))

| decompose_expr_comp (ADD (TERM_COMP st, e), eec)

= decompose_term_comp (st, TEC1 (e, eec))

| decompose_expr_comp (IFZ (EXPR_VAL te, e1, e2), eec)

= EXPR_DECOMPOSITION (eec, IFZ_REDEX (te, e1, e2))

| decompose_expr_comp (IFZ (EXPR_COMP se, e1, e2), eec)

= decompose_expr_comp (se, EEC2 (e1, e2, eec))

| decompose_expr_comp (TERM_COMP’ st, eec)

= decompose_term_comp (st, TEC3 eec)

and

decompose_term_comp (MUL (FACT_VAL tf, TERM_VAL tt), tec)

= TERM_DECOMPOSITION (tec, MUL_REDEX (tf, tt))

| decompose_term_comp (MUL (FACT_VAL tf, TERM_COMP st), tec)

= decompose_term_comp (st, TEC2 (tf, tec))

| decompose_term_comp (MUL (FACT_COMP sf, t), tec)

= decompose_fact_comp (sf, FEC1 (t, tec))

| decompose_term_comp (FACT_COMP’ sf, tec)

= decompose_fact_comp (sf, FEC2 tec)

and

decompose_fact_comp (FLIP, fec)

= FACT_DECOMPOSITION (fec, FLIP_REDEX)

| decompose_fact_comp (PARENS (EXPR_VAL te), fec)

= FACT_DECOMPOSITION (fec, PARENS_REDEX te)

| decompose_fact_comp (PARENS (EXPR_COMP se), fec)

= decompose_expr_comp (se, EEC3 fec)

Figure 7: Iterative decomposition of an arithmetic expression

35



(* evaluate : expr -> expr_val *)

(* iterate : decomposed -> expr_val *)

fun

evaluate e

= iterate (decompose_expr e)

and

iterate (VALUE te)

= te

| iterate (EXPR_DECOMPOSITION

(eec, ADD_REDEX (FACT_VAL’ (INT n1),

TERM_VAL’ (FACT_VAL’ (INT n2)))))

= evaluate (plug_expr

(EXPR_VAL (TERM_VAL’ (FACT_VAL’ (INT (n1 + n2)))),

eec))

| iterate (EXPR_DECOMPOSITION

(eec, IFZ_REDEX (TERM_VAL’ (FACT_VAL’ (INT 0)), e1, e2)))

= evaluate (plug_expr (e1, eec))

| iterate (EXPR_DECOMPOSITION

(eec, IFZ_REDEX (TERM_VAL’ (FACT_VAL’ (INT n)), e1, e2)))

= evaluate (plug_expr (e2, eec))

| iterate (TERM_DECOMPOSITION

(tec, MUL_REDEX (INT n1, FACT_VAL’ (INT n2))))

= evaluate (plug_term (TERM_VAL (FACT_VAL’ (INT (n1 * n2))), tec))

| iterate (FACT_DECOMPOSITION

(fec, FLIP_REDEX))

= evaluate (plug_fact (FACT_VAL (INT (Oracle.flip ())), fec))

| iterate (FACT_DECOMPOSITION

(fec, PARENS_REDEX (TERM_VAL’ (FACT_VAL’ (INT n)))))

= evaluate (plug_fact (FACT_VAL (INT n), fec))

Figure 8: Canonical evaluation of an arithmetic expression

Figure 8 displays the evaluation function, which attempts to decompose its input
expression into a reduction context and a redex. If the expression is a value (and thus
cannot be decomposed), then the result is found. Otherwise, the redex is contracted,
the contractum is plugged into the context, and evaluation is iterated. Contracting a
redex amounts to adding two integers, selecting between two expressions, multiplying
two integers, calling an oracle (which is unspecified here; our implementation is state-
based), or skipping parentheses. No terms are stuck.

A.4 Refocusing

We now construct the refocus functions. We start from the ML definition of the gram-
mar, in Figure 3, which fits the format expected for the construction.

Let us determine the reduction sequence of each syntactic construct.

The main syntactic constructs: Both the addition and the multiplication evaluate
their arguments from left to right. The conditional expression is special in that
it only evaluates its first argument. The oracle has no argument. The parenthe-
ses have one argument and evaluate it. All of these syntactic constructs create
redexes.
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The auxiliary syntactic constructs: The coercions between terms and expressions
and between factors and expressions have one argument. This argument is eval-
uated.

The refocus functions follow the grammatical structure of the source language.
Their skeleton is thus as follows.

fun refocus_expr (EXPR_VAL te, eec)

= refocus_expr_val (te, eec)

| refocus_expr (EXPR_COMP se, eec)

= refocus_expr_comp (se, eec)

and refocus_expr_val (te, eec)

= ...

and refocus_expr_comp (ADD (t, e), eec)

= ...

| refocus_expr_comp (IFZ (e0, e1, e2), eec)

= ...

| refocus_expr_comp (TERM_COMP’ st, eec)

= ...

and refocus_term (TERM_VAL tt, tec)

= refocus_term_val (tt, tec)

| refocus_term (TERM_COMP st, tec)

= refocus_term_comp (st, tec)

and refocus_term_val (tt, tec)

= ...

and refocus_term_comp (MUL (f, t), tec)

= ...

| refocus_term_comp (FACT_COMP’ sf, tec)

= ...

and refocus_fact (FACT_VAL tf, fec)

= refocus_fact_val (tf, fec)

| refocus_fact (FACT_COMP sf, fec)

= refocus_fact_comp (sf, fec)

and refocus_fact_val (tf, fec)

= ...

and refocus_fact_comp (FLIP, fec)

= ...

| refocus_fact_comp (PARENS e, fec)

= ...

In the rest of this section, we complete each missing case in this definition.

1. If the length of the reduction sequence of a production is zero, then the result of
the production is a value or a redex.

(a) The case of values is already taken care of because the grammar differentiates
between values and computations. All functions refocus x call refocus x val

if given a value, and call refocus x comp if given a computation.
(b) If the result of a production is a redex, then we have found a decomposition.

Here, only the oracle fits the bill. We thus return a decomposition.

refocus_fact_comp (FLIP, fec)

= FACT_DECOMP (fec, FLIP_REDEX)
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2. If the length of the reduction sequence is non-zero, then the first sub-expression
must be evaluated.

refocus_expr_comp (ADD (t, e), eec)

= refocus_term (t, TEC1 (e, eec))

| refocus_expr_comp (IFZ (e0, e1, e2), eec)

= refocus_expr (e0, EEC2 (e1, e2, eec))

| refocus_expr_comp (TERM_COMP’ st, eec)

= refocus_term_comp (st, TEC3 eec)

refocus_term_comp (MUL (f, t), tec)

= refocus_fact (f, FEC1 (t, tec))

| refocus_term_comp (FACT_COMP’ sf, tec)

= refocus_fact_comp (sf, FEC2 tec)

| refocus_fact_comp (PARENS e, fec)

= refocus_expr (e, EEC3 fec)

3. Likewise, each refocus x val is defined by cases on the inner elementary reduction
context.

refocus_expr_val (te, EEC0)

= ...

| refocus_expr_val (te, EEC1 (tt, eec))

= ...

| refocus_expr_val (te, EEC2 (e1, e2, eec))

= ...

| refocus_expr_val (te, EEC3 fec)

= ...

refocus_term_val (tt, TEC1 (e, eec))

= ...

| refocus_term_val (tt, TEC2 (tf, tec))

= ...

| refocus_term_val (tt, TEC3 eec)

= ...

refocus_fact_val (tf, FEC1 (t, tec))

= ...

| refocus_fact_val (tf, FEC2 tec)

= ...

(a) If the length of the reduction sequence of a production is reached and the
production constructs a value, we refocus on this value.

| refocus_term_val (tt, TEC3 eec)

= refocus_expr_val (TERM_VAL’ tt, eec)

| refocus_fact_val (tf, FEC2 tec)

= refocus_term_val (FACT_VAL’ tf, tec)

(b) If the length of the reduction sequence of a production is reached and the
production constructs a redex, we have found a decomposition.
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| refocus_expr_val (te, EEC1 (tt, eec))

= EXPR_DECOMP (eec, ADD_REDEX (tt, te))

| refocus_expr_val (te, EEC2 (e1, e2, eec))

= EXPR_DECOMP (eec, IFZ_REDEX (te, e1, e2))

| refocus_expr_val (te, EEC3 fec)

= FACT_DECOMP (fec, PARENS_REDEX te)

| refocus_term_val (tt, TEC2 (tf, tec))

= TERM_DECOMP (tec, MUL_REDEX (tf, tt))

(c) If the length of the reduction sequence of a production is not reached, we
refocus on the next sub-expression to be reduced.

refocus_term_val (tt, TEC1 (e, eec))

= refocus_expr (e, EEC1 (tt, eec))

refocus_fact_val (tf, FEC1 (t, tec))

= refocus_term (t, TEC2 (tf, tec))

4. Finally, we turn to the empty context:

refocus_expr_val (te, EEC0)

= VALUE te

The refocus functions are now complete (see Figures 9 and 10).

(* refocus_expr : expr * expr_evcont -> decomposed *)

(* refocus_expr_val : expr_val * expr_evcont -> decomposed *)

(* refocus_expr_comp : expr_comp * expr_evcont -> decomposed *)

(* refocus_term : term * term_evcont -> decomposed *)

(* refocus_term_val : term_val * term_evcont -> decomposed *)

(* refocus_term_comp : term_comp * term_evcont -> decomposed *)

(* refocus_fact : fact * fact_evcont -> decomposed *)

(* refocus_fact_val : fact_val * fact_evcont -> decomposed *)

(* refocus_fact_comp : fact_comp * fact_evcont -> decomposed *)

Figure 9: Refocusing over an arithmetic expression (signature)
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fun refocus_expr (EXPR_VAL te, eec)

= refocus_expr_val (te, eec)

| refocus_expr (EXPR_COMP se, eec)

= refocus_expr_comp (se, eec)

and refocus_expr_val (te, EEC0)

= VALUE te

| refocus_expr_val (te, EEC1 (tt, eec))

= EXPR_DECOMPOSITION (eec, ADD_REDEX (tt, te))

| refocus_expr_val (te, EEC2 (e1, e2, eec))

= EXPR_DECOMPOSITION (eec, IFZ_REDEX (te, e1, e2))

| refocus_expr_val (te, EEC3 fec)

= FACT_DECOMPOSITION (fec, PARENS_REDEX te)

and refocus_expr_comp (ADD (t, e), eec)

= refocus_term (t, TEC1 (e, eec))

| refocus_expr_comp (IFZ (e0, e1, e2), eec)

= refocus_expr (e0, EEC2 (e1, e2, eec))

| refocus_expr_comp (TERM_COMP’ st, eec)

= refocus_term_comp (st, TEC3 eec)

and refocus_term (TERM_VAL tt, tec)

= refocus_term_val (tt, tec)

| refocus_term (TERM_COMP st, tec)

= refocus_term_comp (st, tec)

and refocus_term_val (tt, TEC1 (e, eec))

= refocus_expr (e, EEC1 (tt, eec))

| refocus_term_val (tt, TEC2 (tf, tec))

= TERM_DECOMPOSITION (tec, MUL_REDEX (tf, tt))

| refocus_term_val (tt, TEC3 eec)

= refocus_expr_val (TERM_VAL’ tt, eec)

and refocus_term_comp (MUL (f, t), tec)

= refocus_fact (f, FEC1 (t, tec))

| refocus_term_comp (FACT_COMP’ sf, tec)

= refocus_fact_comp (sf, FEC2 tec)

and refocus_fact (FACT_VAL tf, fec)

= refocus_fact_val (tf, fec)

| refocus_fact (FACT_COMP sf, fec)

= refocus_fact_comp (sf, fec)

and refocus_fact_val (tf, FEC1 (t, tec))

= refocus_term (t, TEC2 (tf, tec))

| refocus_fact_val (tf, FEC2 tec)

= refocus_term_val (FACT_VAL’ tf, tec)

and refocus_fact_comp (FLIP, fec)

= FACT_DECOMPOSITION (fec, FLIP_REDEX)

| refocus_fact_comp (PARENS e, fec)

= refocus_expr (e, EEC3 fec)

Figure 10: Refocusing over an arithmetic expression (definition)
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(* evaluate : expr -> expr_val *)

(* iterate : decomposed -> expr_val *)

fun

evaluate e

= iterate (refocus_expr (e, EEC0))

and

iterate (VALUE te)

= te

| iterate (EXPR_DECOMPOSITION

(eec, ADD_REDEX (FACT_VAL’ (INT n1),

TERM_VAL’ (FACT_VAL’ (INT n2)))))

= iterate (refocus_expr

(EXPR_VAL (TERM_VAL’ (FACT_VAL’ (INT (n1 + n2)))), eec))

| iterate (EXPR_DECOMPOSITION

(eec, IFZ_REDEX (TERM_VAL’ (FACT_VAL’ (INT 0)), e1, e2)))

= iterate (refocus_expr (e1, eec))

| iterate (EXPR_DECOMPOSITION

(eec, IFZ_REDEX (TERM_VAL’ (FACT_VAL’ (INT n)), e1, e2)))

= iterate (refocus_expr (e2, eec))

| iterate (TERM_DECOMPOSITION

(tec, MUL_REDEX (INT n1, FACT_VAL’ (INT n2))))

= iterate (refocus_term (TERM_VAL (FACT_VAL’ (INT (n1 * n2))), tec))

| iterate (FACT_DECOMPOSITION

(fec, FLIP_REDEX))

= iterate (refocus_fact (FACT_VAL (INT (Oracle.flip ())), fec))

| iterate (FACT_DECOMPOSITION

(fec, PARENS_REDEX (TERM_VAL’ (FACT_VAL’ (INT n)))))

= iterate (refocus_fact (FACT_VAL (INT n), fec))

Figure 11: Refocused evaluation of an arithmetic expression

The refocused evaluation function is displayed in Figure 11. Rather than decompos-
ing the result of the plug functions, as in Figure 8, iterate refocuses each contractum
and iterates. Fusing iterate and each of the refocus functions yields an abstract ma-
chine for arithmetic expressions.

A.5 Summary

We have considered arithmetic expressions with precedence and we have specified their
meaning with a reduction semantics. We have then applied the algorithm of Section 2.5
to write refocusing functions that map a reduction context and a syntactic entity into
either a value or a decomposition into a reduction context and a potential redex. The
construction suggests an alternative definition of decomposition:

fun decompose_expr_alt e

= refocus_expr (e, EEC0)

41



References

[1] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional
correspondence between evaluators and abstract machines. In Dale Miller, editor,
Proceedings of the Fifth ACM-SIGPLAN International Conference on Principles
and Practice of Declarative Programming (PPDP’03), pages 8–19. ACM Press,
August 2003.

[2] Pierre Crégut. An abstract machine for lambda-terms normalization. In Mitchell
Wand, editor, Proceedings of the 1990 ACM Conference on Lisp and Functional
Programming, pages 333–340, Nice, France, June 1990. ACM Press.

[3] Pierre-Louis Curien. An abstract framework for environment machines. Theoretical
Computer Science, 82:389–402, 1991.

[4] Olivier Danvy. Back to direct style. Science of Computer Programming, 22(3):183–
195, 1994.

[5] Olivier Danvy. On evaluation contexts, continuations, and the rest of the com-
putation. In Hayo Thielecke, editor, Proceedings of the Fourth ACM SIGPLAN
Workshop on Continuations, Technical report CSR-04-1, Department of Computer
Science, Queen Mary’s College, pages 13–23, Venice, Italy, January 2004. Invited
talk.

[6] Olivier Danvy and Lasse R. Nielsen. CPS transformation of beta-redexes. In Amr
Sabry, editor, Proceedings of the Third ACM SIGPLAN Workshop on Continu-
ations, Technical report 545, Computer Science Department, Indiana University,
pages 35–39, London, England, January 2001. Accepted for publication in Infor-
mation Processing Letters (2004).

[7] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Harald
Søndergaard, editor, Proceedings of the Third International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming (PPDP’01), pages
162–174, Firenze, Italy, September 2001. ACM Press. Extended version available
as the technical report BRICS RS-01-23.

[8] Olivier Danvy and Lasse R. Nielsen. Syntactic theories in practice. In Mark
van den Brand and Rakesh M. Verma, editors, Informal proceedings of the Second
International Workshop on Rule-Based Programming (RULE 2001), volume 59.4
of Electronic Notes in Theoretical Computer Science, Firenze, Italy, September
2001.

[9] Olivier Danvy and Lasse R. Nielsen. On one-pass CPS transformations. Technical
Report BRICS RS-02-3, DAIMI, Department of Computer Science, University of
Aarhus, Aarhus, Denmark, January 2002. Accepted for publication in the Journal
of Functional Programming.

[10] Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory of
Control and State in Imperative Higher-Order Programming Languages. PhD the-
sis, Department of Computer Science, Indiana University, Bloomington, Indiana,
August 1987.

42



[11] Matthias Felleisen and Matthew Flatt. Programming languages and lambda
calculi. Unpublished lecture notes. http://www.ccs.neu.edu/home/matthias/
3810-w02/readings.html, 1989-2003.

[12] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD machine,
and the λ-calculus. In Martin Wirsing, editor, Formal Description of Programming
Concepts III, pages 193–217. Elsevier Science Publishers B.V. (North-Holland),
Amsterdam, 1986.

[13] Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba. Ab-
stract continuations: A mathematical semantics for handling full functional jumps.
In Robert (Corky) Cartwright, editor, Proceedings of the 1988 ACM Conference
on Lisp and Functional Programming, pages 52–62, Snowbird, Utah, July 1988.
ACM Press.

[14] Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. Trampolined style. In
Peter Lee, editor, Proceedings of the 1999 ACM SIGPLAN International Confer-
ence on Functional Programming, pages 18–27, Paris, France, September 1999.
ACM Press.

[15] Joseph Goguen and Grant Malcolm. Algebraic Semantics of Imperative Programs.
The MIT Press, 1996.
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