-39 0193V t¢-70-Sd SOldd

1dnuIBlu| YIm vdg Jano paseg AjlaNui- Jou st Airejiwisig

BRICS

Basic Research in Computer Science

Bisimilarity is not Finitely Based over
BPA with Interrupt

Luca Aceto

Willem Jan Fokkink
Anna Ingolfsdottir
Sumit Nain

BRICS Report Series RS-04-24
ISSN 0909-0878 October 2004

Copyright (© 2004, Luca Aceto & Willem Jan Fokkink & Anna
Ing 6lfsdottir & Sumit Nain.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
DK-8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLSs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/04/24/

Bisimilarity is not Finitely Based over BPA with
Interrupt

Luca Acetd ' Wan Fokkink Anna Ingolfsdottit®
Sumit Nairr

Abstract

This paper shows that bisimulation equivalence does not afford a finite
equational axiomatization over the language obtained by enriching Bergstra
and Klop’s Basic Process Algebra with the interrupt operator. Moreover, it
is shown that the collection of closed equations over this language is also not
finitely based.

AMS SUBJECTCLASSIFICATION (1991): 68Q15, 68Q70.

CR SUBJECTCLASSIFICATION (1991): D.3.1, F.1.1, F4.1.

KEYWORDS AND PHRASES Concurrency, process algebra, Basic Process
Algebra (BPA), interrupt, bisimulation, equational logic, complete axiomati-
zations, non-finitely based algebras, expressiveness.

1 Introduction

Programming and specification languages often include constructs to specify mode
switches (see, e.gl.][7,]110,122] 23] 25]). Indeed, some form of mode transfer in
computation appears in the time-honoured theory of operating systems in the guise
of, e.g., interrupts, in programming languages as exceptions, and in the behaviour
of control programs and embedded systems as discrete “mode switches” triggered
by changes in the state of their environment.

*BRICS (BasicResearchin ComputerScience), Centre of the Danish National Research Founda-
tion, Department of Computer Science, Aalborg University, Fr. Bajersvej 7B, 9220 Aalborg &, Den-
mark. Email: luca@cs.aau.dk (Luca Aceto), annai@cs.aau.dk (Anna Ingolfsdottir), nain@cs.aau.dk
(Sumit Nain).

fSchool of Computer Science, ReykikWniversity, Ofanleiti 2, 103 Reykjak; Iceland.

tvrije Universiteit Amsterdam, Department of Computer Science, Section Theoretical Computer
Science, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands. Email; wanf@cs.vu.nl.

$Department of Computer Science, University of Iceland, 107 Reykja¢eland. Email:
annaing@hi.is.

mailto:luca@cs.aau.dk
mailto:annai@cs.aau.dk
mailto:nain@cs.aau.dk
mailto:wanf@cs.vu.nl
mailto:annaing@hi.is

In light of the ubiquitous nature of mode changes in computation, it is not
surprising that classic process description languages either include primitive oper-
ators to describe mode changes—for instance, LOTOS [14, 22] offers the so-called
disruption operater-or have been extended with variations on mode transfer op-
erators. For instance, examples of such operators that may be added to CCS are
discussed by Milner in [24, pp. 192-193], and the reference [16] offers some dis-
cussion of the benefits of adding one of those, viz.adheckpointing operatpto
that language.

In the setting of Basic Process Algebra (BPA), as introduced by Bergstra and
Klop in [11], some of these extensions, and their relative expressiveness, have been
discussed in the early papér [10]. That preprint of Bergstra’s has later been revised
and extended in_[6]Ibidem Baeten and Bergstra study the equational theory and
expressiveness of BRAthe extension of BPA with a constahto describe “dead-
lock™) enriched with two mode transfer operators, viz. tisruptand interrupt
operators. In particular, they offer an equational axiomatization of bisimulation
equivalencel]24, 28] over the resulting extension of the language; BP#is ax-
iomatization is finite, if so is the underlying set of actions—a state of affairs that is
most pleasing for process algebraists.

However, the axiomatization of bisimulation equivalence offered by Baeten
and Bergstra irop. cit relies on the use of four auxiliary operators—two per mode
transfer operator. Although the use of auxiliary operators in the axiomatization of
behavioral equivalences over process description languages has been well estab-
lished since Bergstra and Klop’s axiomatization of parallel composition using the
left and communication merge operatars![12], to our mind, a result like the afore-
mentioned one always begs the question whether the use of auxiliary operators is
necessary to obtain a finite axiomatization of bisimulation equivalence.

For the case of parallel composition, Moller showedLin [26, 27] that strong
bisimulation equivalence is not finitely based over CCS [24] and PA [12] without
the left merge operator. (The process algebra PA [12] contains a parallel composi-
tion operator based on pure interleaving without communication and the left merge
operator.) Thus auxiliary operators are necessary to obtain a finite axiomatization
of parallel composition. But, is the use of auxiliary operators necessary to give a
finite axiomatization of bisimulation equivalence over the language BPA enriched
with the mode transfer operators studied by Baeten and Bergstra in [6]?

We address the above natural question in this paper. In particular, we focus on
BPA enriched with the interrupt operator. Intuitively, thterrupted byy” describes
a process that normally behaves lijkeHowever, at each point of the computation
beforep terminatesg can interrupt it, and begin its execution. If this happens,
resumes its computation upon terminatioryof

We show that, in the presence of two distinct actions, bisimulation equivalence

2

is not finitely based over BPA with the interrupt operator. Moreover, we prove
that the collection of closed equations over this language is also not finitely based.
This result provides some evidence that the use of auxiliary operators in the tech-
nical developments presented fin [6] is indeed necessary in order to obtain a finite
axiomatization of bisimulation equivalence.

Our main result adds the interrupt operator to the list of operators whose addi-
tion to a process algebra spoils finite axiomatizability modulo bisimulation equiva-
lence; see, e.gl.[8! 5, 113.115) 19! 29, 30] for other examples of non-finite axiomati-
zability results over process algebras, and some of their precursors in the setting of
formal language theory. Of special relevance for concurrency theory are the afore-
mentioned results of Moller’s to the effect that the process algebras CCS and PA
without the auxiliary left merge operator from |11] do not have a finite equational
axiomatization modulo bisimulation equivalencel[26] 27]. Recently, in collabora-
tion with Luttik, the first three authors have shown|in [4] that the process algebra
obtained by adding Hennessy's merge operator friom [21] to CCS does not have
a finite equational axiomatization modulo bisimulation equivalence. Fokkink and
Luttik have shown in[[17] that the process algebra PA [12] affords-atomplete
axiomatization that is finite if so is the underlying set of actions. AcEsik and
Ingolfsdottir proved in[[2] that there is no finite equational axiomatization that is
w-complete for the max-plus algebra of the natural numbers, a result whose process
algebraic implications are discussed|in [1]. Fokkink and Nain have shown in [18]
that no congruence over the language BCCSP, a basic formalism to express finite
process behaviour, that is included in possible worlds equivalence, and includes
ready trace equivalence, affords a finitecomplete equational axiomatization.

The paper is organized as follows. We begin by presenting the language BPA
with the interrupt operator, its operational semantics and preliminaries on equa-
tional logic in Sectiom R2./bidemwe also show that the interrupt operator is not
definable in BPA modulo bisimilarity. The general structure of the proof of our
main result, to the effect that bisimilarity is not finitely based over the language
we consider in this paper, is presented in Sedtion 3. There we also show how to
reduce the proof of our main result to that of a technical statement describing a key
property of closed instantiations of sound equations that is preserved under equa-
tional derivations (Propositidn_3.2). We conclude the paper by offering a proof of
Propositior 3.2 in Sectidd 4.

2 Preliminaries

We begin by introducing the basic definitions and results on which the technical
developments to follow are based. The interested reader is referied to [6, 11] for

more information.

2.1 The LanguageBPA

We assume a non-empty alphabkebf atomic actions, with typical elemenisb.

The language for processes we shall consider in this paper, henceforth referred to
as BPA:, is obtained by adding the interrupt operator frarn [6] to Bergstra and
Klop’s BPA [11]. This language is given by the following grammar:

te=zx|alt-t|t+t|t>t,

wherex is a variable drawn from a countably infinite détanda is an action. In
the above grammar, we use the symiolfor the interrupt operatorWe shall use
the meta-variables, u, v, w to range over process terms, and write-(¢) for the
collection of variables occurring in the terinThe sizeof a term is the number of
operator symbols in it. A process termdesedf it does not contain any variables.
Closed terms will be typically denoted byq, r, s. As usual, we shall often write
tu in lieu of t - u, and we assume thabinds stronger than-.

A (closed) substitution is a mapping from process variables to (closed),BPA
terms. For every termand (closed) substitution, the (closed) term obtained by
replacing every occurrence of a variahlen ¢ with the (closed) ternw () will
be writteno(¢). In what follows, we shall use the notatieriz — p|, whereo
is a closed substitution andis a closed BPA term, to stand for the substitution
mappingx to p, and acting likes on all of the other variables i

In the remainder of this paper, we let denotea, anda™*! denotea(a™),
and terms are considered modulo associativity and commutativity. dh other
words, we do not distinguistH- v andu + ¢, nor (t + u) + v andt + (u + v). This
is justified because- is associative and commutative with respect to the notion
of equivalence we shall consider over BRA(See axioms Al, A2 in Tablg 3 on
pagd1ll.) In what follows, the symbe! will denote equality modulo associativity
and commutativity oft.

We say that a termh has+ as head operatdf t = ¢, + to for some terms;
andt,. For exampleg + b has+ as head operator, b(i + b)a does not.

Fork > 1, we use asummatior) ;¢ ;y ti to denotety + - + 1. Itis easy
to see that every BRA term¢ has the form)_,_; ¢;, for some finite, non-empty
index set/, and termg; (i € I) that do not have- as head operator. The terms
(¢ € I) will be referred to as thésyntactic) summandsf t. For example, the term
(a 4 b)a has only itself as (syntactic) summand.

The following observation, whose simple proof is omitted, will find application
in the subsequent technical developments.

Lemma 2.1 Let ¢t be a BPA,: term, and lets be a substitution. Assume théats
neither a variable nor a term of the fortm+ ¢, for somety,t;. Thent ando(t)
have the same number of summands.

The operational semantics for the language RFA given by the labelled transi-
tion system

(BPAmt, {&| ac A}, {$/ lae A}) ,

where the transition relationé: and the unary predicate$ v are, respectively,
the least subsets of BRA x BPA; and BPA; satisfying the rules in Table] 1.
Intuitively, a transitiont = u means that the system represented by the tezam
perform the actioru, thereby evolving inta:. The special symbol” stands for
(successful) termination; therefore the interpretation of the statemé&nt is that
the process termcan terminate by performing. Note that, for every closed term
p, there is some actioa for which eitherp % p’ holds for some/’, or p v does.
For termst, u, and actioru, we say that: is ana-derivativeof t if t < .

a —v
t S U v tS ¢ u
t+u-Sv t+u-Sv t+u->t t+uu
t &y t & ¢
t-uu t-ut.u
t Ly tL u v u -
D> u =y t>u—=t>u t>u -t t>u—u -t

Table 1: Transition Rules for BRA

The transition relations> naturally compose to determine the possible effects
that performing a sequence of actions may have on gB@Am.

Definition 2.1 For a sequence of actions - - - a5 (k > 0), and BPAy; termst, ¢/,
we writet 5" ¢/ iff there exists a sequence of transitions

t=tg 3B By =1 .
Similarly, we say thati; - - - a5 (k > 1) is a termination trace of a BRAtermst
iff there exists a sequence of transitions

t=tg L B ... %y .

If ¢ “5™ ¢ holds for some BP# termt/, ora; - - - a is a termination trace of
thena, - - - a;, is atraceof t.

The depthof a termt, written depth(t), is the length of the longest trace it
affords.

The normof a termt, denoted bynorm(t), is the length of its shortest termi-
nation trace; this notion stems froi [8].

The depth and the norm of closed terms can also be characterized inductively thus:

depth(a) = 1
depth(p +q) = max{depth(p), depth(q)}
depth(pq) = depth(p) + depth(q)
depth(p > q) = depth(p) + depth(q)
norm/(a) 1
norm(p+q) = min{norm(p), norm(q)}
norm(pq) = mnorm(p) + norm(q)
norm(p > q) = mnorm(p) .

Note that the depth and the norm of each closed;RP&m are positive.

In what follows, we shall sometimes need to consider the possible origins of a
transition of the formo (¢) N p, for some actioru, closed substitutionr, BPA:
termt and closed termp. Naturally enough, we expect thaft) affords that tran-
sition if ¢ % ¢, for somet’ such thap = o(t"). However, the above transition may
also derive from the initial behaviour of some closed terfn), provided that the
collection of initial moves ofr(¢) depends, in some formal sense, on that of the
closed term substituted for the variahle Similarly, we shall sometimes need to
consider the possible origins of a transition of the fartn) -%v, for some action
a, closed substitutioa and BPAy: termt.

To fully describe these situations, we introduce the auxiliary notion of config-
uration of a BPAy: term. To this end, we assume a set of symbols

Vd:{xd\xEV}

disjoint from V. Intuitively, the symbolz, (read “duringz”) will be used to denote
that the closed term substituted for variablbas begun executing, but has not yet
terminated.

Definition 2.2 The collection of BPAy configurationss given by the following
grammar:
cu=tlzgle-tle>t,

wheret is a BPA term, andzy € V.

t5St t 5 e t Ly
t4+u >t t+u e t+u SV
u u=c U -S>V
t4+u S t+uc t4+u SV
t St t3 ¢ t 5
tu =t tu 23 cu tu = u
t St t 5 e t 5y
t>u—=t>u tcuSer>u D> U=y
u S use U SV
t>u-—>u't t>uset t>u-—>t

Table 2: SOS Rules for the Auxiliary TransitioAs, =5 and->v (z € V)

For example, the configuratian,; - (a > z) is meant to describe a state of the
computation of some term in which the (closed term substituted for the) occurrence
of variablex on the left-hand side of theoperator has begun its execution (and
has not terminated), but the one on the right-hand side has not. Note that each
configuration contains at most one occurrence aof aeg V.

We shall consider the symbolg as variables, and use the notatign:; — p),
whereo is a closed substitution angis a closed BPA: term, to stand for the
substitution mapping;; to p, and acting likes on all of the other variables.

The way in which the initial behaviour of a term may depend on that of the
variables that occur in it is formally described by three auxiliary transition relations
whose elements have the following forms:

e t 53 ¢ (read 't can start executing and become in doing so”), where is
aterm,x is a variable, and is a configuration,

e t 5 ', wheret andt’ are terms and is a variable, or
e t 5y, wheret is a term.

The first of these types of transitions will be used to account for those transitions
of the forma (t) % p that are due ta-labelled transitions of the closed teriz)

that do not lead to its termination. The second will describe the origin of transitions
of the formo () % o(¢') that are due ta-labelled transitions of the closed term
o(x) that lead to its termination. Finally, transitions of the third kind will allow us
to describe the origin of termination transitions of the fari) %+ that are due
to a-labelled termination transitions of the closed ter(x).

The SOS rules defining these transitions are given in Table 2. In those rules, the
meta-variableg, u, ¢’ andu’ denote BPAy terms, and: ranges over the collection
of configurations that contain one occurrence of a symbol of the foymThe
attentive reader might have already noticed that the left-hand sides of the rules in
Table[2 are always BRA terms, and therefore that no (auxiliary) transitions are
possible from configurations that contain one occurrence of a symbol of the form
z4. Thisis in line with our aim in defining the auxiliary transition relatiohs =5
and5v (z € V), viz. to describe the possible origins of timtial transitions of a
term of the formo (¢), with ¢t a BPA term ando a closed substitution.

Lemma 2.2 For each BPA\ termt, configurationc and variabler, if ¢ s ¢, then
x4 Occurs inc. Moreover, ifc = x4 thenx is a summand of.

The precise connection between the transitions of a tefth and those of is
expressed by the following lemma.

Lemma 2.3 [Operational Correspondence] Assume thista BPA, term, o is a
closed substitution andis an action. Then the following statements hold:

1. Ift &v, theno(t) Sv'.
2. Ift 5v ando(x) %v, theno(t) Sv.

3. Ift 5 ¢ ando(z) 5V, theno(t) = o(t).
4

. Assume that %% ¢ ando(x) = p, for some closed term. Theno(t) =
olzg — pl(c).

(621

It St theno(t) % o(t).

6. Assume that (1) -v'. Then either v or there is a variable such that
t 5v ando(z) Sv.

7. Assume that (t) % p, for some closed term. Then one of the following
possibilities applies:

o t Lt/ o(x) =v andp = o(t'), for some ternt’ and variabler,
e t % t' for somet’ such thap = o(t'), or

8

ot 5 ¢ ando(x) N q, for some variablex, configurationc and closed
termq such thav [z, — ¢](c) = p.

Proof: Statements]I35 are proven by induction on the proof of the relevant transi-
tions. The proof of statemdnl 3 uses staterient 2. On the other hand, staf@fients 6—7
are proven by induction on the structure of the teétnThe proof of statemeini 7
uses statemeft 6.

The details are lengthy, but straightforward, and we therefore omit them.

In this paper, we shall consider the language BP#odulo bisimulation equiva-
lence [28].

Definition 2.3 Two closed BPAy; termsp andq are bisimilar, denoted by < ¢,
if there exists a symmetric binary relatiéhover closed BP# terms which relates
p andg, such that:

- if » B sandr % 7/, then there is a transition = s’ such that”’ B ¢/,

- if r B sandr 5v, thens 5v.

Such a relatiorB will be called abisimulation The relation«< will be referred to
asbisimulation equivalencer bisimilarity.

It is well known that— is an equivalence relatioh_[28]. Moreover, the transition
rules in Tablé Il are in the ‘path’ format of Baeten and Verhoef [9]. Hence, bisimu-
lation equivalence is a congruence with respect to all the operators in the signature
of BPA.
Note that bisimilar closed BRA terms afford the same finite non-empty col-
lection of (termination) traces, and therefore have the same norm and depth.
Bisimulation equivalence is extended to arbitrary BPferms thus:

Definition 2.4 Let ¢, u be BPAy terms. Thent < w iff o(t) < o(u) for every
closed substitutiown.

For instance, we have that
r>ye (z>y) +yx

because, as our readers can easily check, the emng and(p > ¢) + gp have
the same set of initial “capabilities”, i.e.,

p>q-Sriff (p>q)+qp > r , for eacha andr, and
p>q-Sviff (p>q)+qp v, foreacha .
It is natural to expect that the interrupt operator cannot be defined in the language

BPA modulo bisimulation equivalence. This expectation is confirmed by the fol-
lowing simple, but instructive, result:

Proposition 2.1 There is no BPA termt such that does not contain occurrences
of the interrupt operator, and— x > .

Proof: Assume, towards a contradiction, thas a BPA,; term such that does
not contain occurrences of the interrupt operator, andz > y.
Consider the closed substitutiey mapping each variable ta Since

o4(t) = a>aanda > a5V

we have thaw,(t) = v. LemmalZE(B) yields that either % v or there is a
variablez such that %" ando,(z) %v. We shall now argue that both of these
possibilities imply that <4 x > y, contradicting our assumption.

Indeed, using the former possibility we may infer thafz — a?)(t) = v
(LemmalZH{)). This implies that« z > y, becausa®> > a does not have
termination traces of length 1.

Assume now there is a variabtesuch that %v ando,(z) %v'. Itis not hard
to see that < z + « for some termu, sincet does not contain occurrences of the
interrupt operator antl =v". We claim that

oafr — a?)(t) £ a®> > a .

If z # z, our claim follows, because, reasoning as above,

ooz — a®)(t) = a + ogfr — a®](u) SV

whereas:? > a does not have termination traces of length 1.

If t < 2+ u, theno,[z — a?](t) % p for somep < a. On the other hand, the
two a-derivatives ofa® > a, namelya > a anda?, have depth 2, and thus neither
of them is bisimilar taa. O

2.2 Equational Logic

An axiom systems a collection of equations= u over the language BRA. An
equationt =~ u is derivable from an axiom systef), notationE + t ~ u, if it can
be proven from the axioms iff using the rules of equational logic (viz. reflexivity,
symmetry, transitivity, substitution and closure under BPéontexts):

f ot t~u t=cuu=xv t=~u
T oust t~wv o(t) =~ o(u)
~u t ~u ~u t ~u ~u t ~u

t+t ~u+d tt ~ uu' t>t ~up>u

10

Al T+y ~ y+x

A2 (z+y)+z = z+(y+2)
A3 r4+zx = =

A4 (x+y)z ~ (z2)+ (y2)
A5 () ~ a(y2)

Table 3: Some Axioms for BRA

Without loss of generality one may assume that substitutions happen first in equa-
tional proofs, i.e., that the rule

t~u
o(t) ~ o(u)

may only be used whe¥ ~ u) € E. In this cases(t) ~ o(u) is called a
substitution instancef an axiom inkE.

Moreover, by postulating that for each axiomAhalso its symmetric counter-
part is present itf/, one may assume that applications of symmetry happen firstin
equational proofs. In the remainder of this paper, we shall tacitly assume that our
equational axiom systems are closed with respect to symmetry.

Itis well-known (cf., e.g., Sect. 2 in[20]) that if an equation relating two closed
terms can be proven from an axiom systéiythen there is a closed proof for it.

Definition 2.5 An equationt ~ u over the language BRA is soundwith respect
to « iff t & u. An axiom system is sound with respect4e iff so is each of its
equations.

An example of a collection of equations over the language BP#at are sound
with respect to— is given in Tablé B. Those equations stem from [11]. Equations
dealing with the interrupt operator using two auxiliary operators are offeréd in [6].

3 Bisimilarity is not Finitely Based over BPA

Our order of business in the remainder of this paper will be to show the following
theorem:

Theorem 3.1 Bisimilarity is not finitely based over the language BRA-that is,
there is no finite axiom system that is sound with respeet:taand proves all of

11

the equationg ~ u such thatt < u. Moreover, the same holds true if we restrict
ourselves to the collection of closed equations over BRAat hold modulc—.

The above theorem is an immediate corollary of the following result:

Theorem 3.2 Let E be a finite collection of equations over the language &PA
that hold modulg—. Letn > 2 be larger than the size of each term in the equations
in E. ThenE' t/ e,, where the family of equations, (n > 1) is defined thus:

€n : (Z?lei)Da%b—i—Zb((bi*l—i—b)Da)—i—aZpi) (1)
i=2 i1
In the above familyp; = b andp; = b(b~! + b) for i > 1.

Observe that, for each > 1, the closed equatiosy, is sound modulo bisimilarity.
Indeed, the left-hand and right-hand sides of the equation have isomorphic labelled
transitions systems. Therefore, as claimed above, Thelorém 3.1 is an immediate
consequence of Theorém B.2.

The following simple properties of the closed terms mentioneflin (1) will find
repeated application in what follows.

Lemma 3.1

1. Letn > 1 andi € {1,...,n}. Then, the norm op; is 1 if i = 1, and2
otherwise. The depth gf; is i.

2. Foreachn > 1, the norm of(3>"7, p;) > ais 1, and its depth is + 1.

In the remainder of this study, we shall offer a proof of Theotem 3.2. In order to
prove this theorem, it will be sufficient to establish the following technical result:

Proposition 3.1 Let £ be a finite axiom system over the language BPthat is
sound modulo bisimilarity. Let > 2 be larger than the size of each term in the
equations ink. Assume, furthermore, that

e FFp=yq,
o p (2?:1 pi) > a and
e phas a summand bisimilar (3" , p;) > a.

Theng has a summand bisimilar {3~ p;) &> a.

Indeed, assuming Propositibn 3.1, we can prove Thebreim 3.2, and therefore Theo-
rem3.1, as follows.

12

Proof of Theorem[3.2: Assume thatZ is a finite axiom system over the language
BPA;,; that is sound modulo bisimilarity. Piek > 2 and larger than the size of the
terms in the equations iff. Assume that, for some closed tegn

E-(Xr p)>arg .

Using Propositioi 3]1, we have thahas a summand bisimilar &~ , p;) &> a.
Note now that the summands of the right-hand side of equationiz.

b—l—z:b((b"’1 +0b) > a)—i—aZpi ,
i=2 i=1

are the terms
e b,

e b((b'"! +b) > a), for some2 < i < n, and

® ay il i

Unlike (2?:1pi) > a, none of these terms can initially perform both @and
a b action. It follows that no summand of the right-hand side of equatipis
bisimilar to (37, pi) &> a, and thus that

q#b+ > b +b) >a)+ad pi .
=2 =1
We may therefore conclude that does not prove equatiot),, which was to be
shown. 0

Our order of business will now be to provide a proof of Proposifioh 3.1. Our proof
of that result will be proof-theoretic in nature, and will proceed by induction on
the depth of equational derivations from a finite axiom systEm The crux in
such an induction proof is given by the following proposition, to the effect that the
statement of Propositidn_3.1 holds for closed instantiations of axioms in

Proposition 3.2 Let ¢t ~ u be an equation over the language BpAhat holds
modulo bisimilarity. Leto be a closed substitutiory = o(t) andq = o(u).
Assume that

e 1 > 2 and the size of is smaller tham,

e p (X7, pi) >aand

13

e phas a summand bisimilar 0" , p;) > a.

Theng has a summand bisimilar &7, p;) &> a.

Indeed, let us assume for the moment that the above result holds. Using it, we can
prove Proposition 311 thus:

Proof of Proposition[3.1: Assume thatt' is a finite axiom system over the lan-
guage BP# that is sound with respect to bisimulation equivalence, and that the
following hold, for some closed termsand ¢ and positive integen > 2 that is
larger than the size of each term in the equation&:in

1. EFp=yg,

2.p= (30, p) > a,and
3. p has a summand bisimilar 3" | p;) > a.

We prove thay also has a summand bisimilar @:?:1 pi) > a by induction on
the depth of the closed proof of the equatipr- ¢ from E. Recall that, without
loss of generality, we may assume that applications of symmetry happen first in
equational proofs (that idy is closed with respect to symmetry).

We proceed by a case analysis on the last rule used in the prpotaf from
E. The case of reflexivity is trivial, and that of transitivity follows immediately by
using the inductive hypothesis twice. Below we only consider the other possibili-
ties.

e CASEE | p~ g, BECAUSEC(t) = p AND o(u) = ¢ FOR SOME EQUATION
(t # u) € E AND CLOSED SUBSTITUTIONo. Sincen > 2 is larger than
the size of each term mentioned in equationsFinthe claim follows by
Propositiori 3.R.

e CASEE + p ~ ¢, BECAUSEp = p' + p” AND ¢ = ¢’ + ¢" FOR SOME
p.q¢,p",¢" SUCH THATE p' ~ ¢ AND E | p" = ¢". Sincep has
a summand bisimilar td>"7 ; p;) > a, we have that so does eithgf
or p”. Assume, without loss of generality, thalt has a summand bisim-
ilar to (31", p;) > a. Sincep is bisimilar to (3> ; p;) > a, so isp'.
The inductive hypothesis now yields thgt has a summand bisimilar to
(X" ,pi) > a. Hence,q has a summand bisimilar t"" , p;) > a,
which was to be shown.

e CASEF | p~ q,BECAUSEp = p'p” AND q = ¢'q” FOR SOMEY’, ¢/, p", ¢"
SUCH THAT E F p' ~ ¢ AND E I p” =~ ¢". This case is vacuous. In fact,
norm(p) = 1 by our assumption that < (3" | p;) > a, whereas the
norm of a closed term of the forpip” is at least 2.

14

e CASEFE F p ~ ¢q, BECAUSEp = p' > p” AND q = ¢’ > ¢” FOR SOME
p.q¢,p",¢" SUCHTHATE F p' ~ ¢ AND E p” ~ ¢". The claim is
immediate becaugeandq are their only summands, atis sound modulo
bisimilarity.

This completes the proof. O

In light of our previous discussion, all that we are left to do to complete our proof
of Theorem 31 is to show Propositibn3.2. The remainder of this paper will be
entirely devoted to a proof of that result.

4 Proof of Proposition[3.2

We begin our proof of Propositidn_3.2 by stating a few auxiliary results that will
find application in the technical developments to follow.

Lemma 4.1 Assume thak > 2 andp > ¢ = (31, p;) & a, for closed BPAy
termsp andg. Thenp < > | p; andq < a.

Proof: Sincep > ¢ < (3.7, p;) > a and
n
(Z;Ll pz’) > a5 sz')
=1

there is a closed termsuch thap > ¢ — r andr < > o pi

We proceed by examining the possible origins of the transitian ¢ — 7.
There are three possibilities to consider, viz.

1. ¢ = ¢’ andr = ¢'p, for somey/,
2. ¢ >v andr = p, or
3. pSpandr=9p >q.

The first case is impossible because the norm ef ¢'p is at least 2, whereas the
norm of)", p; is 1. This contradicts < >, p;.
In the second case, we have that: >, p;. Therefore

prqge (Ol p)pge (X p)>a.

We claim thatg < a, which was to be shown. In fact, observe that the depth of
q is 1 (Lemmd3.IL{(R)). Moreoveg, can only perform actiom, or else the terms

15

(X% pi) > gand (X1, p;) > a would not afford the same traces. It follows
thatq < a as claimed.

Finally, assume that the third case applies. We shall show that this leads to a
contradiction. Observe, first of all, that, since

n
Pqe Y pi,
=1
b is the only actiory can perform. We claim that <~ 6. To see that this claim
holds, assume thqt—b> ¢ for someg’. Then
W >qS gy andnorm(q'p’) > 2 .

On the other hand, eadhderivative of the ternd_"_; p; has the fornd’ ! + b for
somej € {2,...,n}, and thus has norm 1. This contradicts

n
Peqe Y b
=1
Thusqg < b and, using congruence ef,

Prbe Y pi 2
=1

It follows thatdepth(p’) = n — 1. Sincep’ > b 2, p’, and the onlyb-derivative of
>, pi whose depth is — 1is 5"~ ! + b, we may infer that

peob b (3)
Using congruence of> again, together with {2)=(3), yields that
) > b Y pi (4)
=1

Sincen > 2 by one of the assumptions of the lemma, we havesthatl # 1, and
thereforeb(b"~2 + b) is a summand 0§ .-, p;. Consider now the transition

sz 2 pn— 2

Observe that the depth of the target of that transitiom-is2. It is now easy to see
that nob-derivative of (b ! + b) > b has deptm — 2, contradicting[(#).
The proof of the lemma is now complete. O

16

Remark 4.1 The proviso thah be larger than 2 in the statement of the above result
is necessary. In fact, it = 2 then

(ba)>be (b+b)>ae (pr+p)>a,
butb <4 a andb > a <4 b+ b2

The following observations will be used repeatedly in the proof of Propositidn 3.2.

Lemma 4.2 Lett be a BPA,: term,z be a variable, and be a closed substitution.
Assume that: € var(t). Then the following statements hold:

1. depth(o(t)) > depth(c(z)), and

2. if depth(o(t)) = depth(o(x)), then eithert — z ort — z + u for some
BPAt termu that does not contain occurrencesrof

Proof: Both statements are shown by induction on the structure dflere we
limit ourselves to presenting a proof for statenmlént 2. The tase: is trivial, and
those wherg = ¢t ort = t1 > to, for some terms,, t, are vacuous, because
depth(o(t)) is larger thandepth (o (x)) for termst of those forms. We are thus left
to examine the case= t; + ¢, for some termsy, ¢s.

Sincex € wvar(t), we have that eithet € var(t1) N var(te) or x occurs in
exactly one of; andt,. We examine these two possibilities in turn.

Assume that: € var(t1) N var(tz). We claim that, for € {1, 2},

depth(o(z)) = depth(o(t;)) .

Indeed, by statemehi 1 of the lemma, we have thath(o(z)) < depth(o(t;))
fori € {1,2}. Moreover, fori € {1,2},

depth(o(t;)) < max{depth(c(t1)), depth(o(t2))}
= depth(o(t1 + t2)) = depth(o(x)) .

Therefore, by the induction hypothesis, foe {1,2}, we may infer that either
t; < x ort; — x + u; for some BPA: termu; that does not contain occurrences
of z.

If both ¢; < x andty < z, thent; + ty < z. Otherwisef =t1 +ty =z +u
for some BPAy termw that does not contain occurrencesrof

Assume now, without loss of generality, thate var(t;) andx & var(te).
Reasoning as above, we may apply the inductive hypothesgis ttw obtain that
eithert; « z or t; « x + uy for some BPA: term u; that does not contain
occurrences of. In both cases, it follows that = ¢; + t3 <« = + u for some
BPA;: termu that does not contain occurrencesrof a

17

Lemma 4.3 Let t ~ u be an equation over the language BpAhat is sound
with respect to bisimulation equivalence. Assume that some variabdeurs as a
summand irt. Thenx also occurs as a summancin

Proof: Recall that, for some finite index s&twe can write

icl
where none of the; (i €) has+ as head operator. Assume that variableccurs
as a summand ih—i.e., there is an € I with ¢, = z. We shall argue that also
occurs as a summandin

Consider the substitutios, mapping each variable @ Ast ~ w is sound
with respect to bisimulation equivalence, we have that

oa(t) = og(u) .

Pick an integern larger than the depth of, (¢) and ofo,(u). Leto be the substi-
tution mappinge to the terma™+! and agreeing witlr, on all the other variables.

Ast =~ wu is sound with respect to bisimulation equivalence, we have that
o(t) = o(u) .

Moreover, the ternw (¢) affords the transitiowr(t) % o™, for t; = 2 ando(z) =
amt % @™, Hence, for some closed tenm

o(u) >pea™ .
By Lemmd_ 2.8(7) and the definition ef we have that one of the following holds:
o u, o(y) Sv andp = o(u), for some term/ and variabley # z,
o u % ' for someu’ such thap = o(u/), or
e u 23 ¢ for some configuratior such thatr[z; — a™](c) = p.

In the first two cases, we have that eithiepth(p) > m + 1, if z € var(u'), or
depth(p) < m, otherwise. This contradicts < a™. In the third case, we claim
thatc = 24 and thatr is a summand ofi. In fact, x; occurs inc (Lemma2.2).
Moreover, ifc # x4 then it is easy to see thdepth(o[xy — ¢](c)) > m, again
contradictingp < a™. Hencec = x4 as claimed. Sincey 23 ¢ = xy, it follows
thatz is a summand ofi (LemmaZ.2), which was to be shown. O

We are finally in a position to conclude our technical developments by offering a
proof of Propositiol 312.

18

Proof of Proposition[3.2: Recall that, by the proviso of the proposition,

1.

2.
3.
4,
5.

~ wu is an equation over the language BR#hat holds modulo bisimilarity,
n > 2 and the size of is smaller tham,
o is a closed substitutiom, = o(¢) andg = o(u),
pe (Xrpi) >aand

p has a summand bisimilar ;" , p;) &> a.

We shall prove thag also has a summand bisimilar (-, p;) &> a.
We can assume that, for some finite non-empty indexisets

t = Zti and (5)
icl

— Zuj, (6)
jeJ

where none of the; (« € I) andu; (j € J) has+ as its head operator.

Sincep = o(t) has a summand bisimilar "}, p;) > a, then so does (¢;)
for some index € I. Our aim is now to show that there is an index J such that
o(u;) has a summand bisimilar {37, p;) > a, proving thaty = o(u) also has
a summand bisimilar t(()Z?Zl pi) > a. This we proceed to do by a case analysis
on the form¢; may have.

1.

CASE t; = z FOR SOME VARIABLE z. In this case, we have tha{z) has a
summand bisimilar t§>"7 , p;) > a, andt hasz as a summand. As~ u
is sound with respect to bisimulation equivalence, it follows thatso hast
as a summand (Lemrha #.3). Thus there is an index/ such that:; = z,
and, modulo bisimulationg(u) has(}-" ; p;) > a as a summand, which
was to be shown.

. CASEt; = t't” FOR SOME TERMS, t”’. This case is vacuous. Indeed, note,

first of all, thato (¢;) = o(t')o(t”) is its only summand. Therefore,

a(ti) =o(t)o(t") = (i pi) > a .
This is a contradiction because

norm((3 0y pi) > a) =1 <2 < norm(o(t')o(t")) = norm(a(t;)) -

19

3. Caset; =t' > t” FOR SOME TERMSt, t”. The analysis of this case is the
crux of the proof, and we present the argument in considerable detail.

Sinceo(t;) = o(t') > o(t”) is its only summand, we have that

oti)=ct)>ot") o (X p)>a .

By Lemmal4.1, this yields that

o) < > pi and)
=1

a(t”) af . (8)

1

Now, ¢’ can be written thus:
t'=wi+ - +w, (k>1),

where none of the summandsg has+ as head operator. Observe that, since
n is larger than the size af we have thakt < n. Hence, since

U(t,) had sz 3
i=1
there must be some < {1, ..., k} such that

o(wp) < pi, + - + i,

for somem > 1andl <i; < ... < i,, <n. By LemmdZ2.1, it follows that
wy, can only be a variable and thus that

o) < py+--+pi, -)
Note that, ag: is a summand of,
t'=x+1t" , for some term’” .

Moreover, we have that ¢ var(t"), or elses (t") <4 a, contradicting[(B).

Our order of business will now be to use the information collected so far
in this case of the proof to argue thatu) has a summand bisimilar to
(>-1 1 pi) > a. To this end, consider the substitution

o =olx— a((Z?:l pz‘) >a)l .

20

We have that
ot;) = o{t")>d (")
(O'/(CC) (///)) > O'/(t//) (AS t/ S + t///)
= (@) + (") >o(t") (Asz & var(t"))
o (d(Zrip) e a)+o(t") ma (Aso(t") < a) .
Thus, for some/,
ot)Sp = (Xl p)>a)>a .

By (B), we have that’(t) % p’ also holds. Sinceé ~ u is sound with
respect to— , it follows thato’(t) « o’(u). Hence, by[(B), there exist an
index; € J and ag’ such that

o) S qd = (Chip)>a)>a. (10)
Recall that, by one of the assumptions of the proposition,
o(u) = (X i) >a,
and thusy(u) has deptm + 1. On the other hand, b/ (1L0),
depth(o’(u;)) >n+2 .

Sinceos ando’ differ only in the closed term they map variahléo, it follows
that
x € var(u;) . (11)

We shall now argue that(u;) < (3_;", pi) > a by a further case analysis
on the form a termu; satisfying [(10) and (11) may have.

(a) Casewu; = x. This case is vacuous because
o' (uj) = o'(z) = a((Xy pi) > a) = (i pi) >a=d

is the only initial transition afforded by’(w;). This contradicts[{10)
because

depth(¢’) = n+1
< n+2

= depth((Ypi) > a) & a) -
=1

21

(b) CAsSE u; = v/u” FOR SOME TERMSu,u”. We show that this case
also leads to a contradiction.
Recall that

o' (u;) =o' ()’ (W) S ¢ = (Xh p)>a)>a .
We proceed by a case analysis on the possible origin of this transition.
There are two possibilities, viz.
i. o’(v/) % randg = ro’(u"), for somer, or
i. o'(u') 5v andq = o' (u").
The former case is vacuous because,[bY (20)m(q') = 1, whereas
norm(ro’(u’")) > 2.

In the latter case, we claim thate var(u”). In fact, if z & var(u”),
then we obtain a contradiction thus:

n+2 = depth(al(u”)) (By (10))

depth(a(u")) (Asz & var(u"))
< depth(o(u;)) (Asuj =u'u”
< depth(o(u))

n+1 <ASU(U)2 <ipz> > a> .
i=1

Thusz € var(u”), as claimed.
Observe now that, in light of{10),” <4 x. Indeed, ifu” were bisimilar
to z, then we could infer that

¢ =0'u)=d(x)= a((Z?zl pz’) >a) .
Thusq’ 3», contradicting[(ID). Since, by (10),
depth(o’(z)) = n+ 2 = depth(q’) = depth(o’'(uv")) ,
Lemmd4.4(R) thus yields that

1 n
u =rt+u

for somev’ that does not contain. Hence,

/

¢ = W

= o(x)+ o' (u")

= a((Z?:1 pi) >a)+o(u”) (Asxz & var(u"))
(", p) >a)>a (By(@D) .

1

22

(©

Since the transition
(X pi)>a)>a LR ("' +b)>a)>a
can only be matched by a transition of the form
a(u) LA (" t+b)>a)>a,
for somer, we may infer that
depth(o(u")) >n+1 .
We can finally derive a contradiction as follows:

n+1 = depth(q)

v
IS
kBRI
-~ o+~ =
a a9 Q9

g £
> Sl ~—r

)) + depth(o(u”))
o(u)) + depth(o(z) + o(u™))
> n+1.

I
&

s
S~
=

This completes the proof for the cage= u'u".

CASE u; = «' > u” FOR SOME TERMS/, u”. This is the lengthiest
sub-case of cagé 3 of the proof, and its analysis will occupy us for the
next few pages.

Recall that, by[(1D),
o'(uj) =o' (W) > o'(u") 5 ¢ = (X p)rara.

We proceed by a case analysis on the possible origin of this transition.
There are three possibilities, namely

i. o/ (u") % ¢" andq’ = ¢"o’(u'), for someq”,

i. o'(u)2%q" andq = ¢" > o' (u"), for someq”, or
ii. of(u") %y andq = o' (u).
We examine these sub-cases in turn.

e Casg 3(c)i. This case is vacuous because, since

¢ = (XZieip) >a)>a,

we have thatiorm(q¢’) = 1. On the other-hand, the norm of a
closed term of the forng” o’ (u’), for someq”, is at least 2.

23

e Case 3(c)li. Note, first of all, that, since

¢=q¢">dW)= (XL ip)>a)>a,

we have that: ¢ var(u”). In fact, ifz € var(v”), then we would
be able to infer that

depth(q') = depth(q”) + depth(a’(u"))
> depth(o’(u"))
> n+2 (ByLemmd4.H(L)),

contradicting the above equivalence. Sincg var(u”) andx €
var(u;) by (11), we may infer that

x € var(u') . (12)

a

Recall that, by the assumptions for this sub-casge;’) — ¢” and
¢ = 4" > o'(v"). Using Lemma_ZI8(7), we have that one of the

following possibilities arises:
i v L ow, o (y) v andg’ = o' (w), for some termw and
variabley,
i. u' % w for somew such thay” = o’/ (w), or
ii. v % cando’(y) > r, for some variabley, configuratione
and closed term such that'[y, — r|(c) = ¢".
We consider these possibilities in turn.
The first of these cases is vacuous. In fact, using the assumptions
for this case, we can derive a contradiction as follows. Note, first

of all, thaty # = because’(y) v . Therefore
a(y) =a'(y) v .
Hence, by Lemm@a21B3(3), we have thdt/) = o(w). So
o(uj) = o) > o) % o(w) > o(u”) .

Note thatdepth(o(w) > o(u”)) < n. This implies thatr €
var(w), or else

¢ =0d(w)> o W) =ow) > o)

would have depth at most, contradicting [(10). But, since <
var(w), Lemmd4.4(1l) yields that

depth(q') > depth(o’(w)) > depth(o'(z)) =n+2 ,

24

again contradicting (10).
The second case is also vacuous because, exactly as in the first
case, we can show thalkepth(q¢’) < n, if x ¢ wvar(w), and
depth(q’) > n + 2, otherwise. This contradicts ({10).
We are therefore left to examine the third possibility. Recall, for
the sake of clarity, that, for some variahje configurationc and
closed ternr,

-u B,

- o'(y) S,

= 0'[ya— 7](c) = 4",

-z & var(v"), and

-¢d=q¢">dW)=¢">oc0) = ((Z?lei) > a) > a by

(@0).

Note thatr ¢ var(c), or else
depth(q') > depth(¢") >n+2 ,

contradicting [[I0). We claim that = z. To see that this does
hold, assume, towards a contradiction, that x. Then

o(y)=d'(y) =7 .

Statemenitl4 in Lemma 2.3 now yields that

o(u') = olya = r](c) = 'lya > 1)(c) = ¢"

(The first equality holds becauseZ var(c).) Hence,

This implies thatdepth(q') < n, contradicting[(ID).
To sum up, we have that=z,r = (3>°7_, p;) > a, and

q =0d'[vg—r](c) > o) .

Sincedepth(q') = n + 2 by (@0),z4 occurs inc, anddepth(r) =
n + 1, this is only possible if
— ¢=1xq4and

- o(u") < a.

25

We shall now argue that

o(uj) = (X pi) >a (13)

proving thalg = o (u) has a summand bisimilar (&7, p;) & a,
which was to be shown.
In fact,

o(u;) = o) o)

= oW)>a .

We claim thatr (u') < >, p;, and thus thaf{13) holds. Indeed,
sinceo(u") %v/, we have that

o(uj) % a(u') .

As o (u;) is a summand of (u), we obtain that

also holds. Recall that(u) < (31 ;p;) > a. The onlya-
labelled transition out of >_7"_; p;) > ais

n
(2?:1 pi) >a Zpi :
i=1

Thereforeg (u') & Y1, p;, as claimed.
The proof for casg 3(C)ii is now complete.
Cas¢ 3(C)iii. Recall, for the sake of clarity, that
H AN
i. o'(v") —v and
ii. ¢ =0'(u) = (i pi) > a) > a.
Our order of business will be to show that, under these assump-
tions,

o)) = O pra, (14)
=1

and thus that-(u) has a summand bisimilar t6>"7 , p;) > a,

which was to be shown. Sineg(u”) %/, using statemerifl 6 in
Lemmad 2.8 we may infer that

- S or

26

— " %y ando’(y) v, for some variabley.
In the latter case, as’(x) 2, v does not hold, we have that
y # x, and soo(y) = o'(y) = . Using statements 1 ard 2
of Lemmd 2.8, we therefore have that

o(u") SV .

This yields that (u;) = o(u') > o(v”) = o(u). Aso(u;) is a
summand ofr(u), ando(u) < (37, p;) > a, we may therefore
infer as above that(u') < > | p;. Hence

o(uj) = (Dorpi) > o(u”) .

This equivalence yields thalepth (o (u;)) = depth(o(u)) = n +
1, and that the depth of (v”) is 1. We claim thair (v") < a,
proving that [I#) holds as claimed. In fact,difu”) L/, then
o(u;) would afford the tracé™ !, contradicting our assumption
thato (u) is bisimilar to (Y7 ; p;) > a.

This completes the proof of calsg 3c, and thus that of[dase 3.

Since we have examined all the possible forms thatn take, the proof of the
proposition is now complete. O

References

[1] L. ACETO, Z. ESIK, AND A. INGOLFSDOTTIR On the two-variable frag-
ment of the equational theory of the max-sum algebra of the natural numbers
in Proceedings of the 17th International Symposium on Theoretical Aspects
of Computer Science, STACS 2000 (Lille), H. Reichel and S. Tison, eds.,
vol. 1770 of Lecture Notes in Computer Science, Springer-Verlag, Feb. 2000,
pp. 267-278.

[2] ——, The max-plus algebra of the natural numbers has no finite equational
basis Theoretical Comput. Sci., 293 (2003), pp. 169-188.

[3] L. AceETO, W. FOKKINK, AND A. INGOLFSDOTTIR A menagerie of
non-finitely based process semantics over BPA*—from ready simulation to
completed tracedMathematical Structures in Computer Science, 8 (1998),
pp. 193-230.

27

[4]

[5]

[6]

[7]

L. ACETO, W. FOKKINK, A. INGOLFSDOTTIR AND B. LUTTIK, CCS with
Hennessy’s merge has no finite equational axiomatizalR@search report
RS-03-34, BRICS, Nov. 2003. To appearTiheoretical Computer Science

L. ACETO, W. FOKKINK, R. VAN GLABBEEK, AND A. INGOLFSDOTTIR,
Nested semantics over finite trees are equationally, Hafdrmation and
Computation, 191 (2004), pp. 203-232.

J. C. BAETEN AND J. BERGSTRA Mode transfer in process algebmRe-
port CSR 00-01, Technische Universiteit Eindhoven, 2000. This paper is an
expanded and revised version|ofl[10].

J. C. BAETEN, J. BERGSTRA AND J. W. KLOP, Syntax and defining equa-
tions for an interrupt mechanism in process algeBtndamenta Informati-
cae, 1X (1986), pp. 127-168.

[8] ——, Decidability of bisimulation equivalence for processes generating

context-free language3. Assoc. Comput. Mach., 40 (1993), pp. 653-682.

[9] J. C. BAETEN AND C. VERHOEFR A congruence theorem for structured

[10]

[11]

operational semanticén Proceedings CONCUR 93, Hildesheim, Germany,
E. Best, ed., vol. 715 of Lecture Notes in Computer Science, Springer-Verlag,
1993, pp. 477-492.

J. BERGSTRA A mode transfer operator in process algeliteport P8808,
Programming Research Group, University of Amsterdam, 1988.

J. BERGSTRA ANDJ. W. KLOP, Fixed point semantics in process algebras
Report IW 206, Mathematisch Centrum, Amsterdam, 1982.

[12] ——, Process algebra for synchronous communicatioformation and

[13]

[14]

Control, 60 (1984), pp. 109-137.

S. BLoMm, W. FOKKINK, AND S. NAIN, On the axiomatizability of ready
traces, ready simulation and failure tracesProceedings 30th Colloquium
on Automata, Languages and Programming—ICALP’03, Eindhoven, J. C.
Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, eds., vol. 2719 of
Lecture Notes in Computer Science, Springer-Verlag, 2003, pp. 109-118.

E. BRINKSMA, A tutorial on LOTOS in Proceedings of the IFIP Work-
shop on Protocol Specification, Testing and Verification, M. Diaz, ed., North-
Holland, 1986, pp. 73-84.

28

[15] J. H. CoNnwAY, Regular Algebra and Finite Machindglathematics Series
(R. Brown and J. De Wet eds.), Chapman and Hall, London, United Kingdom,
1971.

[16] A. DsouzA AND B. BLooOM, On the expressive power of CCi§ Founda-
tions of Software Technology and Theoretical Computer Science (Bangalore,
1995), P. S. Thiagarajan, ed., vol. 1026 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, 1995, pp. 309-323.

[17] W. FOKKINK AND B. LUTTIK, An omega-complete equational specifica-
tion of interleaving in Proceedings 27th Colloquium on Automata, Lan-
guages and Programming—ICALP’00, Geneva, U. Montanari, J. Rolinn, and
E. Welzl, eds., vol. 1853 of Lecture Notes in Computer Science, Springer-
Verlag, July 2000, pp. 729-743.

[18] W. FOKKINK AND S. NAaIN, On finite alphabets and infinite bases: From
ready pairs to possible worldm Proceedings of Foundations of Software
Science and Computation Structures, 7th International Conference, FOS-
SACS 2004, I. Walukiewicz, ed., vol. 2897, Springer-Verlag, 2004, pp. 182—
194.

[19] J. L. GISCHER, The equational theory of pomsgetheoretical Comput. Sci.,
61 (1988), pp. 199-224.

[20] J. F. QROOTE, A new strategy for provingo—completeness with applica-
tions in process algebran Proceedings CONCUR 90, Amsterdam, J. C.
Baeten and J. W. Klop, eds., vol. 458 of Lecture Notes in Computer Science,
Springer-Verlag, 1990, pp. 314-331.

[21] M. HENNESSY, Axiomatising finite concurrent process&AM J. Compult.,
17 (1988), pp. 997-1017.

[22] ISO, Information processing systems — open systems interconnection — LO-
TOS — a formal description technique based on the temporal ordering of ob-
servational behaviodBO/TC97/SC21/N DIS8807, 1987.

[23] S. Mauw, PSF — A Process Specification FormaljgPhD thesis, University
of Amsterdam, Dec. 1991.

[24] R. MILNER, Communication and Concurrendyrentice-Hall International,
Englewood Cliffs, 1989.

[25] R. MILNER, M. TOFTE, R. HARPER, AND D. MACQUEEN, The Definition
of Standard ML (RevisedMIT Press, 1997.

29

[26]

[27]

(28]

[29]

[30]

F. MOLLER, The importance of the left merge operator in process algebras
in Proceedingd 7" ICALP, Warwick, M. Paterson, ed., vol. 443 of Lecture
Notes in Computer Science, Springer-Verlag, July 1990, pp. 752-764.

—, The nonexistence of finite axiomatisations for CCS congruennes
Proceedings!” Annual Symposium on Logic in Computer Science, Philadel-
phia, USA, IEEE Computer Society Press, 1990, pp. 142-153.

D. PaRK, Concurrency and automata on infinite sequenires® GI Con-
ference, Karlsruhe, Germany, P. Deussen, ed., vol. 104 of Lecture Notes in
Computer Science, Springer-Verlag, 1981, pp. 167-183.

V. REDKO, On defining relations for the algebra of regular evedigainskii
Matematicheskii Zhurnal, 16 (1964), pp. 120-126. In Russian.

P. SEWELL, Nonaxiomatisability of equivalences over finite state processes
Annals of Pure and Applied Logic, 90 (1997), pp. 163—-191.

30

Recent BRICS Report Series Publications

RS-04-24 Luca Aceto, Willem Jan Fokkink, Anna Inglfsdobttir, and
Sumit Nain. Bisimilarity is not Finitely Based over BPA with
Interrupt. October 2004. 30 pp.

RS-04-23 Hans Hittel and Jifi Srba. Recursion vs. Replication in Simple
Cryptographic ProtocolsOctober 2004.

RS-04-22 Gian Luca Cattani and Glynn Winskel. Profunctors, Open
Maps and Bisimulation October 2004. 64 pp. To appear in
Mathematical Structures in Computer Science

RS-04-21 Glynn Winskel and Francesco Zappa NardelliNew-HOPLA—
A Higher-Order Process Language with Name Generatio®c-
tober 2004. 38 pp.

RS-04-20 Mads Sig AgerFrom Natural Semantics to Abstract Machines
October 2004. 21 pp. Presented at thimternational Symposium
on Logic-based Program Synthesis and TransformatjdrOP-
STR 2004, Verona, Italy, August 26—-28, 2004.

RS-04-19 Bolette Ammitzbgll Madsen and Peter RossmanitiMaximum
Exact Satisfiability: NP-completeness Proofs and Exact Algo-
rithms. October 2004. 20 pp.

RS-04-18 Bolette Ammitzbgll Madsen. An Algorithm for Exact Satis-
fiability Analysed with the Number of Clauses as Parameter
September 2004. 4 pp.

RS-04-17 Mayer Goldberg. Computing Logarithms Digit-by-Digit
September 2004. 6 pp.

RS-04-16 Karl Krukow and Andrew Twigg. Distributed Approximation
of Fixed-Points in Trust Structures September 2004. 25 pp.

RS-04-15 JeBs Fernando Almansa. Full Abstraction of the UC Frame-
work in the Probabilistic Polynomial-time Calculus ppcAugust
2004.

RS-04-14 Jesper Makholm Byskov. Maker-Maker and Maker-Breaker
Games are PSPACE-CompletAugust 2004. 5 pp.

RS-04-13 Jens Groth and Gorm Salomonsen.Strong Privacy Protec-
tion in Electronic Voting. July 2004. 12 pp. Preliminary ab-
stract presented at Tjoa and Wagner, editors,13th Interna-
tional Workshop on Database and Expert Systems Applications
DEXA '02 Proceedings, 2002, page 436.

	Introduction
	Preliminaries
	The Language BPAint
	Equational Logic

	Bisimilarity is not Finitely Based over BPAint
	Proof of Proposition 3.2

