siaquinp [eay Jo Alxajdwo) pue Aljigeindwo) ayy 01 yoreoiddy Jake1-om] v :Aoqwe] g 0S-£0-SH SOIdg

BRICS

Basic Research in Computer Science

A Two-Layer Approach to
the Computability and Complexity of
Real Numbers

Branimir Lambov

BRICS Report Series RS-03-50

ISSN 0909-0878 December 2003

Copyright (© 2003, Branimir Lambov.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
DK-8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLSs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/03/50/

A two-layer approach to the computability and
complexity of real functions

Branimir Lambov

BRICS'
Department of Computer Science
University of Aarhus
DK-8000 Aarhus C
Denmark
barnie@brics.dk
December, 2003

AMS Classification: 03D65, 03D15, 68Q15, 68Q05, 03D80

Abstract

We present a new approach to computability of real numbers in which
real functions have type-1 representations, which also includes the ability to
reason about the complexity of real numbers and functions. We discuss how
this allows efficient implementations of exact real numbers and also present
a new real number system that is based on it.

1 Introduction

Most theoretical approaches to the computability of real functions rely on higher-
type computations, taking a description of a real number into a computation of an-
other description. In practice, creating and maintaining such descriptions is a very
complicated process, requiring extra storage along with time-consuming memory
management tools such as garbage collection and, if not enough care is applied,
also introducing external complexity that may even lead to changing the complex-
ity class of the problem.

*Basic Research in Computer Scieneaviv.brics.dk),
funded by the Danish National Research Foundation.

For example, to compute simply* a, wherea is a real number described as
some function computing its approximations, anig a type-2 function that com-
putes multiplication on the reals, the straightforward implementation would require
the computation of approximations totwice. Then, an efficient implementation
of a™ wheren € N using*, which on ground types would have complexity of
operations)(log n), would inevitably end up being of complexity(n), because
every multiplication would require computing its arguments, leading to at teast
requests to compute approximations:to

The problem in this example can be circumvented by introducing approxima-
tion caching. Unfortunately, this leads to other issues and the process of circum-
venting problems can go on indefinitely.

This paper tries to address this problem from the roots, creating a firm theory on
which implementations without such efficiency problems can be devised. The the-
ory presented is a new model of computation, based on representing real functions
as objects operating grartial approximationsnstead of proper real numbers. The
novelty of this model is in the introduced second layer that adds the ability to rea-
son about complexity, at the same time separating these concerns from the objects
that carry out the computation. No other type-1 model so far has been able to de-
fine complexity, and ours manages to do it in a way that is compatible with existing
complexity measures for computable analysis.

In the next section we will present the two-layer approach, prove its properties,
and compare it to existing models. Following this, we will discuss the usefulness
of the ideas presented, along with a short introduction to an actual implementation
and the conclusions it allows us to draw. At the end we will take a look at the future
plans for this research.

2 Model

2.1 Established notions

First we will introduce two widely accepted notions of computability on real num-
bers and functions on real numbers, which we will use to justify that the definitions
in the model coincide with the established ones.

Let B be a computable base fBrthat contains the dyadic numbers, d83g, =
{z:z € BAz >0} U/{oco} together with operations that respect To allow us
to talk about feasibility, we will usgh(n) = [log, 1| + 1 in the exponents instead
of simply n.

Let there exist computable and even poly-time encodings of the elemeBts of
and B, and of the pairing8 x B,,. In some of the proofs we will also need
certain basic properties of the encodings:

2

e a1 <ag Abp < by < oo — ((ar,b1)) < ((az,b2))
e Ith(((a,b))) is polynomial inmax(lth(a),1th(b))

e there exists a functionat(n, 2¢) that selects a code for the rational number
n2~¢, such that whenever, b, ¢, d are positive integers; < cAb < d —
rat(a,2?) < rat(c,2%)

¢ the absolute value operator on the rational codes is suclitthat (|b|) for
any rationalb

These properties are satisfied by e.g. the Cantor pairing and the encoding of
rational numberg as pairgn, d), such that

= oyl D)

Definition 2.1 A Cauchy function representation (CF-representation) of a real num-
ber a is a functiona : N — B, such that/n € N (\a(n) —al < 2*“}1("))

Definition 2.2 A Cauchy function representation of a partial function R — R
is a partial functional® : (N — B) x N — B, such that

Va € dom ¢,Va — CF — representations of «
VneN ((a,n) € dom @ A |P(a,n) — ¢(a)| < 2—1th(n))

Definition 2.3 A real number or a real function is computable in a classof
computable functions, resp. functionals, iff there exists a representatiorfonit
in the sense of Definitions 2.1 or 2.2 respectively.

2.2 Partial approximation representations of real numbers

The inefficiency in these definitions comes from the higher type of the function
object @ in Definition 2.2. To alleviate this, we need to transfer the precision
information to the type-0 level. Our approach to this is similar to the domain
theoretic and the interval arithmetic ideas, and uses a basic object called a partial
approximation.

Definition 2.4 A partial approximatiorio a real numbekx is a pair (v, e) of type

B x B, such thatv — a| < e. We will denote the class of partial approximations
to a with A, and the class of partial approximations to any real witly =
UaerRAG. If a € Ar we will usea,, a. to denote respectively the value and error
in a.

Definition 2.5 A partial approximation representation, p.af.a real number is
afunctionA : N — A, for whichvk3n((A(n)). < 27F).

If a real number is computable, then it certainly has a computable p.&isif
a representation af, then\n.(B(n), 27 *(™) is one of its p.a.r’s. Conversely, if
ais a p.a.r. ofa, then\k. A(un[A(n), < 27th(*)]), is a valid CF-representation
for it.

This equivalence does not hold for restrictions of the notion of computablily.
Moreover, it is possible to define all computable reals using p.a.r.’s in subrecursive
classes such as primitive recursive, elementary or poly-time functions. For a proof
of this, see [12].

In order to be able to speak about different complexity classes of real numbers,
a similar equivalence must be available. This gives rise to the following definitions
and equivalence property:

Definition 2.6 A modulusfor a p.a.r. A of a real numberx is a functionm : N —
N, such that for allk, (A(m(k))). < 271,

Definition 2.7 We will say that a real number is p.a.r.-computable in a given class
C of computable functions, if there exist both a p.a.r. and a modulus foidit in

Theorem 2.8 A real number is computable in a subrecursive cl@ghat contains
the poly-time functions and is closed under composition if and only if it is p.a.r.-
computable inC.

Proof Take A := An.(B(n),2" ")) andm := An.n, or for the other direction
B = \k. A(m(k)). .

On the level of feasible functions, poly-time p.a.r. computability coincides with
Ko’s notion of poly-time computable real numbers [8] (Ko speaks about numbers
given in unary notation, which is equivalent to th&(n) parameter used in our
definitions).

2.3 Partial approximation representations of real functions

For real functions, we want to have objects that operate on partial approximations
instead of the full representations. They will have to convert approximations to an
input to approximations to the result of the application of the function, and also

we need to require that the precision of the output approximations gets arbitrarily
good as the precision of the input increases. In other words,

Definition 2.9 A partial approximation representatiaf a partial function¢ :
R — R is a partial functionF : Ag — Ag, such that for any choice of
a € dom ¢ and a partial approximation representatioA of «, An.F(A(n))
is a partial approximation representation ¢f«).

Remark 2.10 This definition impliess € A, — F(a) € Ay, for a € dom ¢,
because for any p.a.rA we can createB(n) := sg(n) - a + sg(n) - A(n — 1),
which is another p.a.r. of that hasB(0) = a, henceF'(a) has to be a partial
approximation tap(«).

Remark 2.11 Unlike the domain theoretic and interval arithmetic approaches, we
do not require the image interval to be described accurately. Our requirement is
only that we are able to provide a superset of it, and this superset gets smaller as
the input interval gets smaller.

2.3.1 Computability

We have severely restricted the information to which the function object has access;
nevertheless, the following theorem proves we have not restricted the class of real
functions that are computable:

Theorem 2.12 A partial functiong : R — R is computable iff it has a computable
p.a.r.

Proof («) If we have a p.a.r.F" of a function¢, anda € dom ¢, then the
functional

(I)(B’n) .= let (m = up [(F(B(p), 2—1th(p))e < 2—1th(n)}) in F(B(m), 2—1th(m))

is total inn for any CF-representatio® of « since from Definitions 2.9 and 2.5
the minimization will always stop, and Definition 2.4 together with Remark 2.10
ensures®(a,n) — ¢p(a)| < 27100, .
Proof (—) We have a fixedr € dom ¢, and a CF-representatianfor ¢.
For anya € A, with a. < 1, we can effectively find the largest natural number
m with the property2™a. < 1. If a. > 1, we takem = 0. Define the function

b= An.271th() | Qlth(M) 4 g /9], 1)
For0 < Ith(n) < m we have that

|b(n) —al < |a, —al+ 9= (Ith(n)+1) < 9=m 4 9=(Ith(n)+1) < 9-Ith(n)

Using the fact that exceptions are computable and that given the code of a
computable functionad, we can construct a parallel ode that honors a new
exceptionz, we can effectively create a function

b(n), ifn<m
raise x, otherwise

b[m := An. {

and then define
®¥(B,n) := try ®'(B[m,n) + 1 catch(z) 0. (2)

(i.e. ®F will return ®(b,n) + 1 if b restricted to lengthn was sufficient to compute
it, and O otherwise)
We will now prove that the function

_ [0.) it =0
F(a) := { (®F(b,1 — 1) — 1,27 1R(=1)) " otherwise

for
L= pup < m | &b, p) = 0] (3)

is the required p.a.r. af. To do this, we need to prove th&t= \n.F(A(n)) is a
p.a.r. of¢(«) for any p.a.r.A of a.

The first condition,F'(a) € Ay foranya € A,, follows from the require-
ment for ® and the fact that there is a CF-representationddhat starts with
b(0),b(1),...,b(m —1).

For the second condition, we need to prove the existen2e’oipproximations
to ¢(a) amongG(n) for any k. The sequence defined by

¢ = An.27 ()| gth(m) g, 4 1 /9|

is a proper CF-name fax. If « is not a dyadic number, then for an arbitrary
lo — ¢(n)| < 2=+, There exists; depending om, such thatior — ¢(n)| <
2-"(1/2 — 2=(a=")) and for all partial approximations with a, < 2-¢ we have
2%|a, — c(i)| < 1/2 for all 0 < i < n. But this implies that the sequence obtained
by (1) coincides withe on the firstn + 1 elements.

Now, since® would look at finitely many elements ofto produce a value with
any precisior2—*, using that count in the procedure described above, we can come
up with ag supplying a long enough sequence. Combining this with a requirement
that the minimization (3) reaches the target precision, we have)), < 27 for
all a’'s with a, < 2~ m2x(@k) and sinced has arbitrarily close approximations, this
can be satisfied far = A(n) for somen.

6

If «is a dyadic number, i.elc,n(c(n) = «), then there are only finitely many
variations ofb that can exists, because they have to coincide after thenfitst
positions. Then there exists a maximumfor the number of lookup® can make
to any of these’s in order to get & *-precise result. Hence, < 2~ max(mk)
suffices to get the required precision fa). o

Remark 2.13 The proof of the existence of arbitrarily close approximations in
this form is ineffective. There also exists a construction for which this proof can
be carried out effectively (by making the choicé abn-deterministic and using a
representation generated byinstead of). The presented proof, however, is much
more easily adjustable to the restricted conditions in which it will be used later.

As well as in the case of real numbers, this equivalence does not hold for sub-
classes of the type-2 computable functions. To define all computable functions, it
suffices to use severely restricted type-1 computability subclasses:

Theorem 2.14 A partial real function is computable iff it has a p.a.r. in any sub-
recursive clasg’ that contains the poly-time functions.

Proof (—) It suffices to change the definition df~ to a version bounded in
execution time:

&~ (B,n) :=try ®"(B[m,n) + 1 catch(z) 0.

where by®™ we denoted! executed form steps, which is a basic feasible func-
tional (BFF, [1]).

Sincem is of the order ofith(a) for the encoding of: it is possible to do all
required steps in time polynomial toh(a). The proof of the existence of good
appoximations can be carried out here as well, the only difference being the need
to satisfy a condition in the form, < 2-™a%(¢:k:3) for s being the number of steps
it takes for® to complete its evaluation dnof lengthg.

The p.a.r. is type-1 basic feasible, therefore it is poly-time by a known property
of the BFF [2]. o

Proof («) Follows from the previous theorem. °

2.3.2 Type-2 complexity

Again taking the p.a.r. of a real function we lose all complexity information about
that function. To talk about complexity classes again, we define

Definition 2.15 A modulusfor a p.a.r. F' of a partial real functiong is a partial
functional M : (AR — ARr) x (N — N) x N — N, such that for allo €
dom ¢, p.a.r. A of &, modulim for A,

Vk((F(A(M(A,m, k))))e < 2700, (4)

Note that even though the actual function object is a type-1 object, we now
introduce a type-2 operation to characterize it. However, the strength comes from
the separation of these two objects: to have a e.g. a feasible real function you
do not have to have a feasible type-2 object, but only need to prove that it exists.
Moreover, if a CF-representation of a function needs extra information to be in a
certain class (e.g. division needs evidence that the denominator is non-zero to be
primitive recursive), it will in general only be needed for the modulus.

Definition 2.16 We will say that a real function is p.a.r.-computable in a given
classC of computable type-2 functionals, if both a computable p.a.r. and its mod-
ulus can be found g

Theorem 2.17 If a function is p.a.r.-computable in a given clagsthat contains
BFF and is closed under functional substitution, then it is computable in the same
class.

Proof For¢ : R — R, a € dom ¢, F- p.a.r. of¢, M-modulus forF’, andB -
CF-representation af, take

(B, n) := (F(A(M(A; Ap.p,n))))w

where
A= p.(B(p), 27 ")),

A is ap.a.r. for with a modulusi\p.p, and hence fromd/ being a modulus to
F, we havel®(B,n) — ¢(a)| < 27, & is a basic feasible functional relative
to F' and M, therefore it is inC. °

Theorem 2.18 If a partial function¢ : R — R is computable, then it is p.a.r.-
computable.

Proof We've already proved in Theorem 2.12 that there exists a computable p.a.r.
to every computable real function. If it i, then

M(A,m,n) := pp[F(A(p)) <270

is a modulus for. °

This modulus does not even use the modulus for the real number. This is
true, because in the presence of minimization brute force search makes the moduli
redundant.

This is not the case for restricted complexity classes. To prove the equivalence
between p.a.r. and CF-computability on some of them, we will introduce the notion
of majorizability.

Definition 2.19 (W.A. Howard [5]) We definez* maj, x for a finite typep by
induction on the type:
¥ majy x =" > x,

" maj._, :=Vy"'y (y* maj .y — x*y* maj, %‘y) :

We will say that a subrecursive clagsis majorizable, if for every functiorf in
C there existsf* € C with f* maj f, where the majorization operator is of the
appropriate type.

Lemma 2.20 The class of primitive recursive type-2 functionals is majorizable.

This lemma is a corollary to the fact that the class of the primitive recursive
functionals of finite type (PR) are majorizeable, proved in e.g. [9]. We will use
the same technique to prove

Lemma 2.21 The class of basic feasible type-2 functionals (BFF) is majorizable.
which is a corollary to

Lemma 2.22 The class of basic feasible functionals of finite type (BFiE ma-
jorizable.

Proof We will use the fact [2] that every functional in BEFEan be written as a
term which only contains constants, variablesy,, poly-time functionss , -,
I1, - and bounded recursion on notatifi, .

(o, ifte=0
Ryn(z,y,9,h) = { min (g(z, Rpn(|2/2],9,9,h),h(x)), otherwise

0, Yp» Xs,p,- andIl, ; are self majorizable, and for every poly-time functién
there exists a polynomial with coefficients among the natural numbers, such that
f(z) < 2rth@) — #+(z). But the right hand side of this inequality is a polytime
function for whichvavy < z (f*(g) > f*(y) > f(g)), i.e. f* maj, f. Define

R} (x,y,9,h) := h(z)

9

If 2*,y* > x,y, g* majy_o_o g andh* maj, h
Ry, (2%, y", 9", h") = h*(2") > h(x) > Rpn(2,y,9,h),

which provesR;, MAJ 00— (0—0—0)—1—0 Lbn-
Now the result follows from the fact that maj, ., t A s* maj, s implies
t*"s* maj . ts. °
To prove equivalence of the computability classes, we will also need

Lemma 2.23 The following variation of the functioh created in (1) along the
course of evaluation of' on ap.a.r.A

b(n) := rat(|2%™a, + 1/2], 21h () (5)

can be majorized on partial approximations with errgr 1 if there is an upper
bound for the absolute value of the real number described by

Proof Let a(be a rational number such thaf < a, for « being the real described
by A. Then for any partial approximationwith a. < 1 we have|a,| < ag + 1
and therefore by the properties of the encoding

b*(n) = rat(1 + |2 May 4 1/2], 2400y > p(p)

and also, since when is increased both the numerator and denominator will not
decrease, we havg: < n(b*(n) > b*(k) > b(k)), which mean$* maj, b. o

Theorem 2.24 If a partial real function is computable in a majorizeable class of
type-2 functionals that contains BFF and is closed under functional substitution,
then it is p.a.r.-computable in that class.

Proof We will use the proof of Theorem 2.12, substituting the definitioh with
(5). All operations used in the generation Bfcan be done without leaving the
class ofd. HenceF' is in the class. We now need to find a modulus for it.

In the class ofd there exists a functional that does exactly the same job as
®, but instead of returning the approximation it gives the largastwhich B was
applied. Since the class contains this functional and is majorizable, it also contains
a majorizer¥* for it. The modulus forA gives us means to bound the absolute
value of the real number described by it, therefore, with the previous lemma, in
our class there is a functiohthat givenA andm computes* which majorizes all
functionsb generated by good partial approximations.

HenceU*(b*,n) > W(b,n) for all goodd’s, in particular for the one (call it
bo) generated byig = A(m(¥*(b*,n))), which meansgb(by, n) will not raise an
exception, and”'(ag) will give a result with the required precision.

HenceM (A, m,n) = m(V*(J(A,m),n)) is a modulus forF. o

10

2.3.3 Real number complexity

In the previous subsection we found correspondence between complexities in this
model and type-2 complexity. As this is not the complexity measure normally used
for real functions, we also define notions which are more closely related to the
latter by defining type-1 moduli on closed subsets of the domain:

Definition 2.25 A uniform moduluson [a,b] C dom ¢ of a p.a.r. F' of a real
function¢ is a functionU : N — N, such that

Vo € [a, VA — p.a.r. of aVkYn(A(n). < U(k) — (F(A(n))), < 271thk)

Theorem 2.26 A patrtial real functiong is computable in a majorizable class of
type-2 functionals orfz, b] C dom ¢ if and only if it has a p.a.r. and aniform
modulusin the same class.

Proof (—) Usea andb to find an upper bound for the absolute valuengfthen

apply the same reasoning as in the previous proof. °
Proof («) M (A, m,k) = m(U(k)) is amodulus for ald’s representing reals
in the interval, thus is p.a.r.-computable in the class. °

With this definition we're back at the type-1 level, and we also have a few
important equivalences:

Corollary 2.27 A partial real functione is primitive recursive ona, b] C dom ¢
iff it has a primitive recursive p.a.r. and a primitive recursive uniform modulus on
[a, b].

Corollary 2.28 A partial real function¢ is BFF-computable ofia, b] € dom ¢
iff it has a poly-time p.a.r. and a poly-time uniform modulus/@yb].

And this combined with the following theorem gives us equivalence with the
established notion for feasible real functions.

Theorem 2.29 A partial real function is poly-time computable da,b] in the
sense of Ko's defintion [8] iff it is BFF-computable.

Proof A function is poly-time computable in Ko's sense iff there is an oracle Turing
machine computing it in the dyadic representation, which runs in time polynomial
to the precision given in” notation.

Type-2 complexity theory says a functional is in BFF if and only if there exists
an oracle Turing machine computing it running in time which is a second-order
polynomial in the length of the inputs [6]. There exist representations of any real
number that satisfith(B(k)) < p(lth(k)) for a polynomial p (using dyadic rep-
resentations cut after tHeh(k)'th digit), and therefore a second order polynomial
in1th(k), 1th(B) does not give more power than simply a polynomidktink). e

11

3 An example: reciprocal of a real number

The task in this section will be to define a suitable p.a.r. of the fundtioan: R —
R and to inspect its properties.

Theorem 3.1 The poly-time functiod” defined as

(La%)a if Qe < |CLU|
F(a) ={ ‘o’ lal(Jav]—ac) 6
(@) { (0, 00), if ae > |ay| ©

is a p.a.r. of the reciprocal function on the reals.

Proof Given a fixeda # 0, if a is a partial approximation ta with a. < a,,
then

1 1 ay| — (lay| — ae) _ Qe

= aw| — ae B lao] = lav|(|av] — ae) B |ay|(|ay| _ae)7

‘11
a a

which meand converts partial approximations ¢ointo partial approximations to
1/a. If ag is a positive rational number smaller thar, then to ge{ F'(a)). < ¢, it
is enough to supply a partial approximation with< a3z /2 (assumingig, e < 1).

[]

It is a well known fact that the reciprocal function on the reals is not even
primitive recursively computable. However, it is poly-time computable on every
closed interval that does not contain 0. How does this translate to our framework?

Having a closed interval that does not contain 0 is equivalent to having witness
information for the strict positivity ofa|. But this extra information is enough to
allow us to define

M(ag, A,m, k) = m(ao#tao#tk#2)
Ulag, k) = 2 2(1th(a0))*1th(k)

(with # being the smash functiom#y = 2" @)1th)) which are, respectively,
a modulus forF' and an uniform modulus foF' on the full real line. Therefore,
F defined in (6) is uniformly linear in the error of the approximatianand the
requested precisioh, and quadratic in the value of the appriximatienand the
witnessag on the full real interval.

Note that we needed the witness only to define and prove a property of the p.a.r.
The representation itself is not changed by whether it can be found or not.

12

4 Comparison with existing models

During the presentation of the model we made some parallels with existing models.
But how do we actually compare to them?

This model has the same expressive power as the type-2 model for Computable
Analisys as treated for example in [13]. Important restricted variations and sub-
classes of the computable real functions and numbers can also be defined in our
model with straightforward and natural definitions. The advantage of this model is
in its ability to avoid type-2 objects and still define the same notions.

In the setting of feasible real functions, this model complies with Ko’s defini-
tion of poly-time computability [8]. Moreover, our model is able to define feasibil-
ity of a representation of a function avoiding the use of an oracle Turing machine
and any type-2 object at all using the definition of the uniform modulus for a p.a.r.
It is an interesting question how it can be extended to arbitrary Polish spaces and
what definition of feasibility on type-2 in general that would give.

The core of this model, the p.a.r.’s without their moduli, is very similar to the
domain theoretic model for computability on the real line of Edalat anttiSrhauf
[3]. The most significant distinction of ours is in dropping the requirement of
accurately describing the image interval of a function’s application on an interval,
along with freedom to omit unnecessary data from the sequences describing real
numbers. With this relaxation we have been able to define complexity in this model
using restricted classes of real numbers and functions.

Interval arithmetic [7], can be used as the building block for the p.a.r. computa-
tions. However, our model does not have the requirement for accurate descriptions
of the image intervals, and it sometimes proves more efficient to use more rough
approximation schemes instead of the elaborate algorithms used in interval arith-
metic.

5 Implementation

We will try to answer what advantages this model gives for implementations and if
there are any visible shortcomings. Most of the discussion in this part is based on
observations made during the creationRefalLib', an exact real number package
based on the two-layer model.

We call this model a type-1 model, but when a user writes and executes a
program that computes with reals, and ends up with one or several real numbers as
results, their program will still be at least a type-2 program in order to successfully

available ahttp://www.brics.dk/ ~barnie/RealLib

13

extract any property they need (instead of getting it if the current approximation
allows). Where is the difference then?

With the classical ideas, implementations (SuctX&s?, ICReals [4], CORE
[14]) first run through the program to build expression trees, lambda terms or other
descriptions of the computation, and start computing only after a request for a
property is given, using these descriptions.

But isn't the description of the computation already present? That is, isn't the
program code already enough description? Why do we need to build hingse
expression trees or lambda terms when we already have a compact description of
the solution in an elaborate language sucli-asor ML? Moreover, why should we
lose the information that the programmer or compiler is giving us abootmon
subexpressionfleading to efficiency problems like the one in the introduction),
objects’ lifetime and localit§leading to higher memory requirements and need for
garbage collection) angreferred orderingof the operations (leading to complica-
tions to both former points)?

In order to put this to practice, one has to be able to allow real functions defined
on the type-1 level, and a means to do this is exactly what this model provides.
Before that, an implementation of this idea was useRAM [11], but the ideas
in this work could not be placed in any theoretical framework. One of our model's
objectives was to fit this system.

The problem with a type-1 implementation is that it is not very easy for the
user to request specific properties of a real number which is the result of a com-
putation, and the behaviour of the implementations regarding control flow make
it very complicated talisplayor presentthe information gatheredRRAM, which
has previously proved to be the most efficient implementation of real number arith-
metic, displays both the pros and cons of the type-1 approach. Our implementation,
RealLib, aims to diminish the ill effects and preserve the advantages.

This is done by a hybrid approach in which the user’s access to real numbers
is implemented on two levels, one that works on partial approximations in order
to compute and one that deals with descriptions of expression terms as full type-
1 information of real numbers and is meantextract and usethe results. The
execution at the type-2 level is normal and programming for it is easy. There is
no history maintenance at the partial approximation level and the computations are
fast, especially in the lower precisions where history maintenance dominates the
execution time in type-2 approaches. It is the programmer’s choice which part of
their application should run where; the system is offering redundant definitions of
primitives on both levels to make this possible, and the translation from one to the
other is easy, amounting simply to a change of the variable types in many cases.

2K. Briggs, http://members.lycos.co.uk/keithmbriggs/XR.html

14

More detailed information about our implementation can be found in [10].

6 Future work

A generalization of the ideas presented here to non-locally compact Polish spaces
is to be derived. It will possibly provide insight to the still open problem of the
right notion of feasibility in the general type-2 setting.

Another interesting question is how to allow intensionality in the type-1 model.
The constructions we use in this paper to prove equivalences all break down in the
case of intensionally-defined real functions. Figuring whether and how this can
be accommodated would help to avoid holes in the domains of functions such as
atan2, sqrt on complex numbers, etc.

The implementation has room for improvements, most importantly aiming at
making the switch from machine-type precision to exact real numbers as painless as
possible, i.e. to reduce the performance gap even more, well beyond the boundary
that history maintenance sets for type-2-only systems.

References

[1] Cook, S., Urquart, A., Functional interpretations of feasibly constructive
arithmetic. Ann. Pure Applied Logi63, pp. 103-200 (1993).

[2] Cook, Stephen A. Computability and complexity of higher type functions.
Logic from computer science (Berkeley, CA, 1989), 51-72, Math. Sci. Res.
Inst. Publ. 21, Springer, New York, 1992.

[3] Edalat, Abbas; 8riderhauf, Philipp A domain-theoretic approach to com-
putability on the real line. Theoret. Comput. S21.0(1999), no. 1, 73-98.

[4] Edalat, A., Exact Real Number Computation Using Linear Fractional
Transformations,
available ahttp://www.doc.ic.ac.uk/ ~ae/exact-computation/

[5] Howard, W.A., Hereditarily majorizable functionals of finite type. In: Troel-
stra (ed.), Metamathematical investigation of intuitionistic arithmetic and
analysis, pp. 454-461. Springer LN844(1973).

[6] Kapron, B. M.; Cook, S. A. A new characterization of type-2 feasibility.
SIAM J. Comput25 (1996), no. 1, 117-132.

15

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

Kearfott, Baker R. Interval computations: introduction, uses, and resources.
Euromath Bull.2 (1996), no. 1, 95-112.

Ko, K.-l., Complexity theory of real functions. Birkdhiser, Boston-Basel-
Berlin, x+309 pp., 1991.

Kohlenbach, U. Lecture Notes: Proof Interpretations and the Computational
Content of Proofs (Draft, May 2003, ii+165pp.)
available ahttp://www.brics.dk/ ~kohlenb/

Lambov, B., A two-layer approach to the computability and complexity of
real functions. Computability and complexity in analysis (Cincinnati, 2003),
279-302, Informatik Berichte302(8/2003), Fernuniversit'Hagen, 2003

see alsdnttp://www.brics.dk/ ~barnie/

Muller, N., The iRRAM: Exact arithmetic in C++. in Computability and com-
plexity in analysis. (Swansea, 2000). Lecture Notes in Computer Science,
2064 Springer-Verlag, Berlin, 2001. viii+395 pp.

see alsdnttp://www.informatik.uni-trier.de/iRRAM/

Skordev, D., Characterization of the computable real humbers by means
of primitive recursive functions. Computability and complexity in analy-
sis (Swansea, 2000), 296-309, Lecture Notes in Computer Sci2d6d,
Springer-Verlag, Berlin, 2001. viii+395 pp.

Weihrauch, K., Computable Analysis. Springer, Berlin 2000.

Yap, Chee, Towards Exact Geometric Computation. Computational Geome-
try : Theory and applicatior8-23 Sep 1997.
see alsdnttp://www.cs.nyu.edu/exact/core/

16

Recent BRICS Report Series Publications

RS-03-50 Branimir Lambov. A Two-Layer Approach to the Computability
and Complexity of Real NumberdDecember 2003. 16 pp.

RS-03-49 Marius Mikucionis, Kim G. Larsen, and Brian Nielsen. On-
line On-the-Fly Testing of Real-time System®ecember 2003.

14 pp.

RS-03-48 Kim G. Larsen, Ulrik Larsen, Brian Nielsen, Arne Skou, and
Andrzej Wasowski. Danfoss EKC Trial Project Deliverables
December 2003. 53 pp.

RS-03-47 Hans Hittel and Jifi Srba. Recursive Ping-Pong ProtocolPe-
cember 2003. To appear in the proceedings of 2004 IFIP WG
1.7, ACM SIGPLAN and Gl FOMSESS Workshop on Issues in
the Theory of Security (WITS'04).

RS-03-46 Philipp Gerhardy. The Role of Quantifier Alternations in Cut
Elimination. December 2003. 10 pp. Extends paper appear-
ing in Baaz and Makowsky, editors,European Association for
Computer Science Logic: 17th International Worksho@SL '03
Proceedings, LNCS 2803, 2003, pages 212-225.

RS-03-45 Peter Bro Miltersen, Jaikumar Radhakrishnan, and Ingo We-
gener. On converting CNF to DNE December 2003. 11 pp.
A preliminary version appeared in Rovan and Vojtas, editors,
Mathematical Foundations of Computer Science: 28th Interna-
tional Symposium MFCS '03 Proceedings, LNCS 2747, 2003,
pages 612—-621.

RS-03-44 Anna @l and Peter Bro Miltersen. The Cell Probe Complex-
ity of Succinct Data Structures December 2003. 17 pp. An
early version of this paper appeared in Baeten, Lenstra, Par-
row and Woeginger, editors,30th International Colloquium on
Automata, Languages, and Programmin¢CALP '03 Proceed-
ings, LNCS 2719, 2003, pages 332-344.

RS-03-43 Mikkel Nygaard and Glynn Winskel. Domain Theory for Con-
currency. December 2003. 45 pp. To appear in &heoretical
Computer Sciencspecial issue on Domain Theory.

