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Online On-the-Fly Testing of Real-time Systems∗

Marius Mikucionis Kim G. Larsen Brian Nielsen
{marius,kgl,bnielsen }@cs.auc.dk

Department of Computer Science, Aalborg University

Fredrik Bajers Vej 7B, 9220 Aalborg Øst, Denmark

Abstract

In this paper we present a framework, an algorithm and a new tool for online testing of real-time
systems based on symbolic techniques used in UPPAAL model checker. We extend the UPPAAL

timed automata network model to a test specification which is used to generate test primitives
and to check the correctness of system responses including the timing aspects. We use timed trace
inclusion as a conformance relation between system and specification to draw a test verdict. The test
generation and execution algorithm is implemented as an extension to UPPAAL and experiments
carried out to examine the correctness and performance of the tool. The experiment results are
promising.

1 Introduction

The goal of testing is to gain confidence in a physical computer based system by means of
executing it. More than one third of typical project resources is spent on testing embed-
ded and real-time systems, but still it remains ad-hoc, based on heuristics, and error-prone.
Moreover, it is estimated that 99% of processors produced today are targeted for embed-
ded applications. Real-time and embedded systems require a special attention be given
to timing where the moment of input and output event appearance is as important as the
event itself. Therefore special attention must be paid to timing during testing. The goal of
conformance testing is to check whether the behavior of the system under test (IUT) is cor-
rect (conforming) to that of its specification. We follow a model driven approach where a
formal model (or specification) defines the required (real-time) observable behavior of the
IUT, and from this we automatically derive and execute real-time test cases to determine
whether the IUT is conforming.

Test cases can be generatedofflinewhere the complete test scenarios and verdicts are
computed a-priori and before execution. The offline test generation is often based on a
coverage criterion of the model like in [11, 5], on a test purpose as e.g. [12], or a fault-
model as [10].

∗Funded by Basic Research in Computer Science URL:http://www.brics.dk/ .
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A new approach to model based test generation isonline testing that combines test
generation and execution: only a single test primitive is generated from the model at a time
which is then immediately executed on the IUT. Then the output produced by the IUT as
well as its time of occurrence is checked against the specification, a new test primitive is
produced and so forth until it is decided to end the test. An observed test run is a timed
trace consisting of an alternating sequence of (input or output) actions and time delays. We
use the termon-the-flyto describe a test generation and execution algorithm that computes
a set of states and stimuli incrementally as needed and directed by the test execution.

There are several advantages of online on-the-fly testing. First, testing may potentially
continue for a long time. A single test run may take hours or even weeks), and therefore
very long, intricate, and stressful test cases may be executed. Second, the state-space-
explosion problem experienced by many offline test generation tools is reduced because
only a very limited part of the state-space need to be stored at any point in time. Third,
offline test generators often limit the expressiveness and amount of non-determinism of the
specification language. This has been a particular problem for offline test generation from
timed automata specifications, see e.g. [6, 7].

On-the-fly testing from Promela [3] and LOTOS specifications for non-timed systems
have been implemented in the TORX [2] tool, and practical application to real case studies
show promising results [13, 2, 9]. However, TORX provides no support for real-time
constraints.

In this paper we describe a technique for online testing of real-time systems, which
consists of the following main contributions:

Real-time testing framework: We present the framework for automatic online testing of
real-time systems from a densely timed automata model of the system under test and
its environment.

Online Testing algorithms: We propose a set of algorithms for on-the-fly testing which
ensure that the IUT is subjected to relevant tests and that verdicts are given accord-
ing the specification. The algorithms use symbolic techniques derived from model-
checking to efficiently represent and operate on infinite state-sets.

Tool implementation: We have implemented the algorithms by extending the UPPAAL

tool. UPPAAL is a timed automata model checker developed jointly by a group of re-
searches at Uppsala University and Aalborg University. We adopt the UPPAAL timed
automata specification language and extend the verification engine for the on-the-fly
testing. The most important feature of UPPAAL is the use of symbolic algorithms and
data structures to represent and manipulate the real-valued clocks of timed automata.

Example: We demonstrate the applicability of our technique using a small case.

Experiments: We have conducted an experiment using our tool and technique to test an
emulated IUT against non-trivial model of a train controller. We examine both the
error detection capability and its performance. The results are promising.
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2 Real-time Testing Framework

First we present the concept of timed I/O automaton as theoretical background used in
model checking for reasoning about the real-time systems. We proceed with test setup and
discuss how timed automata model is extended for test specification. In the last subsection
we define what IUTs we consider to be conforming to specification and give an intuition
for the test verdict.

2.1 Timed Automata

LetX be a set of non-negative real-valued variables calledclocks, andAct = I∪O∪{τ} a
set of input actionsI and output-actionsO, (denoteda? anda!), and the non-synchronizing
action (denotedτ ). Let G(X) denote the set ofguardson clocks being conjunctions of
simple constraints of the formx ./ c, and letU(X) denote the set ofupdatesof clocks
corresponding to sequences of statements of the formx := c, wherex ∈ X, c ∈ N,
and./ ∈ {≤, <,=,≥}. A timed automaton(timed automata) over(Act,X) is a tuple
(L, `0, I, E), whereL is a set of locations,̀0 ∈ L is an initial location,I : L → G(X)
assigns invariants to locations, andE is a set of edges such thatE ⊆ L× G(X) × Act×
U(X)× L. We write`

g,α,u−−−−→ `′ iff (`, g, α, u, `′) ∈ E.
The semantics of a timed automata is defined in terms of a timed transition system

over states of the formp = (`, σ), where` is a location andσ ∈ R
X
≥0 is a clock valuation

satisfying the invariant of̀. Intuitively, there are two kinds of transitions: delay transitions

and discrete transitions. In delay transitions,(`, σ) d−→ (`, σ + d), the values of all clocks
of the automaton are incremented with the amount of the delay,d. Discrete transitions
(`, σ) α−→ (`′, σ′) correspond to execution of edges(`, g, α, u, `′) for which the guardg
is satisfied byσ. The clock valuationσ′ of the target state is obtained by modifyingσ
according to updatesu. We writep

γ−→ as a short for∃p′. p
γ−→ p′, γ ∈ Act∪R≥0. A timed

trace is a sequence of alternating time delays and actions inAct.
A network of timed automataA1 ‖ · · · ‖ An over (Act,X) is defined as the parallel

composition ofn timed automata over(Act,X). Semantically, a network again describes
a timed transition system obtained from those of the components by requiring synchrony
on delay transitions and requiring discrete transitions to synchronize on complementary
actions (i.e.a? is complementary toa!).

2.2 Test Specifications

The test framework consists of the IUT and its environment that is to be simulated by the
tester. In our case the tester is a test computer equipped with atest specification, an online
testing engine, and anadapter, see Figure 1.

An IUT usually operates in a particular environment – a collection of conditions and
assumptions that the IUT is used under. Not every environment is realistic or reasonable
and therefore only tests relevant to this environment should be executed. Moreover we may
want to test how the system would behave under very specific conditions, e.g. try some test
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Figure 1: Framework of online testing using on-the-fly verification techniques.

purpose which leads to a failure. Also, by controlling the behavior and the amount of non-
determinism in the environment model the user can guide or tune the test generation to run
more efficiently. Therefore the test specification is allowed to be a parallel composition of
a model of the implementation and a model of environment. A small example of a coffee
machine model with its environment (one scientist) model is presented in Figure 2.
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Figure 2: Timed system model for famous coffee machine.

The adapter component translates the abstract input and output representation (abs in,
abs out) into real actions (in, out) applied to and received from the IUT. We assume that the
IUT and its model are input enabled to be able to accept any input offered at any moment
in time. The tester is allowed to offer any input allowed by the environment from the test
specification.

The test specification is given as a closed network of timed automata that can be par-
titioned into one subnetwork modeling the behavior of the IUT, and one modeling the
behavior of its environment (ENV). The environment model can be replaced with a com-
pletely unconstrained one that allows all possible interaction sequences. We assume that
the tester can take the place of the environment and control the IUT via a distinguished set
observable input and output actions. We allow the full UPPAAL timed automata language,
including non-deterministic (both w.r.t. actions and timing) specifications.

2.3 Conformance Relation.

A conformance relation defines what IUT behaviors are considered correct compared to
its specification. In the non-timed setting the formal conformance relationioco [3] has

4



proved suitable in practice and is used in many model based testing tools. Informally, the
ioco-relation requires that the implementation never produces an output that is not allowed
by the specification, and that the implementation is quiescent (eternally unable to produce
outputs) only when the specification may also be.

A natural extension of ioco to real-time systems is obtained by usingtimed trace inclu-
sionas a conformance relation meaning that the timed traces of the IUT must be included
in the timed traces of specification. Likeioco, this relation ensures that the implementation
has no behavior that is not allowed by the specification. In particular, the implementation
may stay quiet as time passes only if the same time passage is possible in the specifi-
cation without an output. Thus, timed trace inclusion offers the notion of time-bounded
quiescence that—in contrast to ioco’s eternal quiescence—can be observed in a real-time
system.

The conformance relation forms the basis for a test verdict –pass, fail or inconclusive.
Consider that we know the current state the implementation is in, then the intuition of a
verdict is as follows:

fail is given if some output or time delay observed is not permitted by the specification,
i.e. the output is not defined in the model of IUT for the current state, or the delay is
not allowed by an invariant on the state;

inconclusive is given if some output observed was not expected by the model of environ-
ment, i.e. an unpredicted event happened which prevents reaching the goal of the test
purpose. Such events may happen for example if you consider testing a communica-
tion protocol and the connection was lost;

pass is given if all outputs observed are allowed by the specification also with respect to
the time instances at which the outputs occur. The passage of time implies that the
IUT may stay quiet (not produce any output) only if the specification allows.

However, we can hardly be sure what state our black-box IUT is in. We use the reach-
ability algorithms from model checking to track the current state as described in the next
section.

3 Test Generation and Execution

Our testing method consists of the main test generation and execution algorithm described
below which controls the test process as described in Section 3.1. The main algorithm uses
the adopted version of UPPAAL reachability algorithms to track the state of the IUT as
described Section 3.2.

3.1 The Main Algorithm

The test generation and execution algorithm is based on maintaining the current reachable
state setZ representing all states that the test specification can possibly occupy after the
timed trace observed so far. Knowing this state estimate allows us to choose appropri-
ate test primitives and to validate IUT outputs. InitiallyZ contains the initial state〈l̄0, 0̄〉
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wherel̄0 is the initial location vector of timed automata network and0̄ is the initial clock
assignment where all clocks are zero. The process of the testing tool is described in Algo-
rithm 1.

The tester can perform two actions: either send an input to the IUT, or wait for an
output for some time. The choice of input is based on the current symbolic state set and
the system model. If the output or time delay is observed then the tester checks whether it is
legal according the specification at that moment. The current symbolic state set is updated
each time the input is offered or the output or delay is observed. Illegal occurrence or
absence of the output is detected if the current symbolic state set update leads to an empty
set which is the result if the observed trace is not in the specification.

Algorithm 1 Test generation and execution. InitiallyZ := {〈l̄0, 0̄〉}.
while (more time for testing) ∧ (Z 6= ∅) do switch(action, delay) randomly:

action: // offer an input
a := ChooseAction(EnvOutput(Z))
senda to implementation
Z := After(Z, a)

delay: // wait for an output
δ := ChooseDelay (Z)
sleep forδ time units and wake up on outputo
if o occurs atδ′ ≤ δ then

Z := After(Z, δ′)
if o /∈ ImpOutput(Z) then return fail
else ifo /∈ EnvInput(Z) then return inconclusive
elseZ := After(Z, o)

else // no output within δ delay
Z := After(Z, δ)

if Z = ∅ then return fail
else return pass

The functions used in Algorithm 1 are:
• The functionAfter computes a closure of states reachable after performing all poten-

tial internal (unobservable) transitions and one observable input, output or delay. Due
to non-determinism in the specification this requires a representation of a set of states
as opposed to a single state.After returns an empty set if the action or delay was not
allowed by the specification. The underlying algorithms are described in Section 3.2.

• TheEnvInput, EnvOutputandImpOutputfunctions compute the applicable input and
output actions for the model of respectively the environment and the model of imple-
mentation:

EnvInput(Z) = {a ∈ Aout | 〈l̄, z〉 ∈ Z, 〈l̄, z〉 a?−→} (1)

EnvOutput(Z) = {a ∈ Ain | 〈l̄, z〉 ∈ Z, 〈l̄, z〉 a!−→} (2)

ImpOutput(Z) = {a ∈ Aout | 〈l̄, z〉 ∈ Z, 〈l̄, z〉 a!−→} (3)
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• The functionsChooseDelayand ChooseActionrespectively selects a delay and an
action applicable to IUT when expected to occupy some state mentioned inZ. The
ChooseActionandChooseDelayfunctions currently selects actions or delays at ran-
dom.

Different strategies can be applied to guide the test generation to “interesting” or un-
covered states by changing the model of environment, “choose” functions and adopting
them to a particular test purposes. The best results are expected in symbiosis with [5], [7]
and other future works in this area.

3.2 Symbolic State-set Computation

We use symbolic constraint solving techniques to represent sets of clock valuations com-
pactly. In particular, since we use real-valued clocks they cannot be represented explicitly.
A symbolic stateis a pair〈l̄, z〉 consisting of a location vector̄l and the clock constraint
systemz denoting a set of clock valuations, i.e. a symbolic state represents a set of concrete
states:〈l̄, z〉 = {(l̄, v̄) | v̄ ∈ z}.

We assume the following operations on clock constraints systems: conjunctionz ∧ z′,
futurez↑ = {v̄ + δ | v̄ ∈ z, δ ∈ R≥0}, clockx assignment toc valuezx:=c, containment
checkz ⊆ z′. The symbolic transition relation� between symbolic states denotes the
possibility of taking a transition from a (concrete) state in the source symbolic state to a
one in the destination. It is computed as follows:

〈l̄, z〉 γ
� 〈l̄′, (z ∧ g)r ∧ I(l̄′)〉 if l̄

g,γ,r−−−→ l̄′ is an (internal or synchronized)γ-action
transition.

The required reachability algorithms for on-the-fly testing are similar to those used for
model checking[8] except that only states up to a certain time limit needs to be computed.
This is most easily accomplished by introducing an auxiliary clockt that is set to zero
whenever an observable action occurs. Again due to non-determinism it is necessary to
represent the state-set as a setZ of symbolic states.

Algorithm 2 computes theClosureδτ (Z, d) function collecting the reachable symbolic
state set within a delay from0 to d. The predicateContains(Z, 〈l̄, z〉) tests whether a
symbolic statez is included in the state setZ.

Algorithm 2 Closureδτ (Z, d) passed := ∅, waiting := Z..

while waiting 6= ∅ do
waiting := waiting\{〈l̄, z〉} // pick a symbolic state
z := z↑ ∧ (t ≤ d) ∧ I(l̄) // limited delay
passed := passed ∪ {〈l̄, z〉}
for each symbolic transition〈l̄, z〉 τ� 〈l̄′, z′〉 where τ /∈ I ∪ O

if notContains(passed , 〈l̄′, z′〉) then waiting := waiting ∪ {〈l̄′, z′〉}
return passed.

The algorithm for theClosureτ (Z) function computing the reachable symbolic state
set after making all possible internal transitions in zero delay is similar to Algorithm 2.

7



Given the closure functions, the actual algorithms for computingAfter(Z, δ) and
After(Z, a) functions become trivial:

After(Z, a) = Closureτ

(
{〈l̄′, z′〉 | 〈l̄, z〉 ∈ Closureτ (Z), 〈l̄, z〉 a� 〈l̄′, z′〉}

)
(4)

After(Z, δ) =
{
〈l̄, z′〉 ∣∣ 〈l̄, z〉 ∈ Closureδτ (Z, δ), z′ =

(
z ∧ (t == δ)

)
t:=0

}
(5)

Note that the outerClosureτ operation is redundant if we useAfter(Z, a) only in a
context of Algorithm 1 and is omitted in actual computations. We may also consider not to
reset the clockt and count the absolute testing time with some minor adjustments which
in turn would even more lessen the amount of expensive computations.

3.3 Implementation

We have implemented our algorithms in a prototype tool by extending the UPPAAL model-
checker tool. UPPAAL, besides a graphical editor for timed automata, provides an efficient
implementation of the needed symbolic constraint solving operations, and symbolic state
successor computation. Unlike UPPAAL, our implementation does not store the reached
state space, but only the current symbolic state set.

4 Experiments

This section presents the results of a first set of experiments using our prototype imple-
mentation to test an implementation. The purpose of the experiments is to give some first
indications of the feasibility of our technique in terms of applicability, error detection ca-
pability, and performance in terms of state-set size and computation time.

4.1 Test Specification

The experiment is based on a non-trivial version of a rail-road intersection controller that
controls trains on a set of rail-road tracks with a shared track segment, e.g. a train-station.
The main objective of the controller is to ensure that only one train occupies the shared
segment at a time, and that they are granted access in arrival order.

Throughout the paper we use UPPAAL syntax to illustrate timed automata, and the
figures are direct exports from UPPAAL. Initial locations are marked using a double cir-
cle. Edges are by convention labeled by the triple: guard, action, and assignment in that
order. The internalτ -action is indicated by an absent action-label. Committed locations
are indicated by a location with an encircled “C”. A committed location must be left im-
mediately as the next transition taken by the system. Finally, bold-faced clock conditions
placed under locations are location invariants.

In the concrete setup we assume 4 tracks, and for simplicity 1 train per track at a time.
Trains on tracki signals the controller when they approach and leave the station using
signalsappri and leavei respectively. When traini approaches an occupied station the
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Figure 3: Test specification for train controller: trains as environment, controller and queue
as implementation.

controller is required to issues astopi signal within 5 time units, and is similarly required
issue agoi signals within 5 time units after the station becomes free.

The environment assumption model consists of 4 concurrent timed automata each mod-
eling the assumed behavior a train. The model for train 1 is shown in Figure 3(a); the
remaining trains are identical except for the train-id. In locationsafe the train is outside
the area of the controller. After signalingappr1 it is in location inAppr . If it then receives
a stop1 signal before 10 time units has elapsed it stops and enters locationStop; after 10
time units the train may enter the station and thus change to location Station, and it may
be too late to stop it (perhaps depending on the speed and weight of the train). A stopped
train that has been resumed (thus in locationStart ) takes at least 7 time units to start and
enter the station. It takes a train at least 3 time units to clear the station.

The model of the IUT requirements consists of 4 concurrent train control automata
tracking the position of each potential train, and one queue automaton tracking their arrival
order. Train id’s are added and removed from the queue using signalsadd andrem and
a shared integer variablee. Signal release is issued by the queue to indicate the front
of the queue. The shared integer variablelen contains the number of elements stored in
the queue. An approaching train (locationApproach) is first enqueued, but immediately
allowed to enter the station if no other trains are waiting (len== 0). The controller keeps
the train in locationWaitForLeave until it is signaled that the train has left the station after
which the controller dequeues it. If other trains were waiting, the controller issues astop
signal within 5 time units as ensured by the invariant in locationSignalRed , maintains and
then holds the train in locationHoldingTrain until the front of the queue indicates that this
is the next train to be granted access. Once release, the train is given thego signal within
5 time units.

Figure 3(b) depicts the control automaton for train 1, and Figure 3(c) depicts the queue
automaton (list is an array of integers, andi is an index into the array).

The complete test specification is reasonably large and nontrivial for a first experiment:
it consist of 9 concurrent timed automata, 8 clocks, and a sequential queue data structure.
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4.2 Implementation Under Test

The system under test is implemented as an approximately 100 line C++ program following
the basic structure of the specification. It uses POSIX Threads and POSIX locks and
condition variables for multi-threading and synchronization. It consists of one thread per
train, and queue data structure whose access is guarded by mutual exclusion and condition
variables. In the experiment, the IUT runs in the same address space as the T-UPPAAL

tool, and input and output actions are communicated to and from the driver/adapter via
two single place bounded buffers.

In addition we have created a number of erroneous mutations based on the assumed
correct implementation (M0):

M1: Thestop3 signal is issued 1 time unit too late.

M2: The controller issuesstop1 instead ofstop3 .

M3: The controller never issuesstop3

M4: The controller uses a bounded queue limited to 3 trains. Thus, the fourth train over-
writes the third train in the queue.

M5: The controller uses LIFO queue instead of FIFO.

M6: The controller ignoresappr3 signals if a train arrives before 2 time units after enter-
ing the locationFree .

4.3 Error Detection Capability

The purpose of this experiment is to determine that our technique can in fact detect basic
timing and implementations errors, and to determine how fast this can be done.

The experiments are run on a 8x900 MHZ Sun Sparc Fire v880R workstation with 32
GB memory running Sun Solaris 9 (SunOS 5.9). T-UPPAAL runs on one CPU whereas the
IUT may run on one or more of the remaining. T-UPPAAL it self does not require these
extreme amount of resources, and it runs well on a standard PC, but the fact a multipro-
cessor is used in the experiment allows T-UPPAAL and the IUT to run in parallel as they
would normally do in a black-box system level test.

To allow for faster and more experiments and reduce potential problems with real-
time clock synchronization between the engine and IUT, the experiments are run using a
simulated clock. Preliminary experiements with testing in real-time (with one model time
unit corresponding to 10 ms on a single CPU linux host) we observe in about 5% of the
(especially longer) runs that the clocks become unsynchronized.

The experiment is conducted by testing each mutant 1100 times. For each test run
the number of communicated observable actions and total running time until the error is
found is recorded. An upper bound of 10.000 time units is placed on each experiment. The
number of pass, fail, and inconclusive verdicts together with the minimum, maximum, and
average running time and number of used input actions are summarized in Table 4.

The results show that all erroneous mutants are killed surprisingly quickly using less
than 22 input actions and less than 700 (model) time units. The assumed correct implemen-
tation is not killed in the available 10.000 time units using in average 377 input actions,
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Table 4: Error Detection Capability:

Mu- Number of verdicts Input actions Duration (time units)
tant Pass Fail Incon Crash Min Avg Max Min Avg Max
M1 0 1100 0 0 2 5.0 18 6 72.7 359
M2 0 1099 0 1 2 4.6 12 3 66.7 370
M3 0 1100 0 0 2 4.8 12 6 80.2 389
M4 0 1100 0 0 6 8.6 22 37 163.4 641
M5 0 1099 0 1 4 5.7 14 17 92.0 435
M6 0 1100 0 0 2 3.9 14 6 62.8 349
M0 1077 3 10 10 99 376.0 442 2408 9951.1 10000

except 23 cases. In 3 cases T-UPPAAL wrongly gives a fail verdict. In the remaining 20
cases the our prototype produced wrongly an inconclusive verdict (meaning that the envi-
ronment model received an unexpected output) or it crashed (segmentation fault). We do
not know the exact reason for these problems, but they typically occur after long sequences
of events on the correct IUT, and we believe that they are caused by a bug in our proto-
type implementation. Running this part of the experiment on a single CPU Linux host we
neither observed the false negatives nor the crashes.

In conclusion, the results indicate that real-time on-the-fly testing may be a very effec-
tive technique, but that are memory leaks or thread synchronization bugs in T-UPPAAL that
sometimes prevent very long test runs. Also the real-time clock synchronization between
IUT and tester implemented in the prototype should be improved.

4.4 Performance

The purpose of this experiment is to evaluate the performance of the symbolic state-set
exploration technique. Two metrics are important: the number of symbolic states (size)
of the state-sets measured, and the amount of computation time to compute the state-set
successors after a delay ran observable action.

Based on the same experimental setup as described in Section 4.3 we instrumented the
T-UPPAAL tool to record the size of the symbolic state-set (i.e. the number of symbolic
states in the state-set) as the test was executed, and to record the amount of CPU time
used to compute the next state-set after a delay and an observable action. Because the test
generation algorithm is randomized and because its behavior depends on the responses of
the IUT, we made a total of 1100 test runs against each mutantM0 resulting in more than
2 million data points forAfter(delay) and 1.5 millionAfter(action).

Table 5 summarizes the results. The state-set size is in average only 2-3 symbolic states
per state-set, but it varies a lot, up to 36 states. The state-set sizes reached after performing
an action appear slightly larger than after a delay.

In average it costs 2.7 ms to compute the successor state-set after a delay, but less that
0.2 ms after an action. TheAfter(delay) algorithm is the most complex and computational
demanding of the two, and it is not surprising that it cost an order of magnitude more.
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Table 5: Execution Performance

Execution time,µs State-set size,
Mu- After(delay) After(action) After(delay) After(action)
tant Avg Max Avg Max Avg Max Avg Max

M1 2720.8 6739.3 123.3 762.2 2.31 17 2.65 34
M2 2783.9 6744.6 131.0 759.9 2.38 19 2.76 30
M3 2770.9 6640.2 125.9 755.5 2.38 20 2.68 30
M4 2696.1 6666.1 106.5 750.2 2.91 31 3.04 36
M5 2771.0 6830.4 129.6 731.2 2.94 31 3.26 32
M6 2814.6 6660.7 130.2 810.3 2.07 16 2.50 32
M0 2573.8 7066.6 78.0 722.4 2.91 32 2.83 44

Again observe that the computation time varies a lot, e.g. between 2 ms and up to 7 ms for
After(delay).

To examine these variations in greater detail and the dependency of computation time
on state-set size, we created the scatter plot in Figure 4.4, also including the regression
line of the mean. The figure shows the distribution ofAfter(delay) successor computation
time of as function of state-set size. The figure shows graphically by far that most of the
population of state-set sizes are concentrated below 5 symbolic states, and that very few are
larger than 25. We found a similar, but less dispersed, pattern forAfter(action) successor
computation time.

Figure 7 plots the average successor state computation time as function of the state-set
size. TheAfter(delay) computation time appear to depend linearly on the state-set size,
where asAfter(action) appear even sub-linear. But this conclusion is uncertain because
only few measurements points are available for large state-set sizes.

In conclusion, based on this fairly large example, the performance of our technique
looks very promising and appear to be fast enough for many real-time systems. Obviously,
many more experiments with different model of varying size and complexity are needed to
obtain firm conclusions.

5 Conclusions and Future Work

The current work on the on-the-fly test generator has resulted in the first prototype of T-
UPPAAL (Testing-UPPAAL) [1], which show promising results in generating and executing
test from non-trivial system models, such as the train-gate controller [4]. The concept is
realizable, functional and the performance of the symbolic state set computation algorithms
appear fast enough for many realistic real-time systems. However, further work is needed
to evaluate the behavior and performance of the algorithms in details.

The future T-UPPAAL prototype development includes enhanced test generation and
execution algorithm with further test event selection strategies. We also aim at improving
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Figure 6: Distribution ofAfter(delay) state-set successor computation on state-set size.
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Figure 7: The scatter plots of average CPU time per state-set size with regression line.

clock synchronization and time-stamp the events observed by an interval rather than by
specific time points, and use absolute time measurements of events avoiding resets of the
auxiliary t-clock in the algorithms.

The data value passingprotocol described in [1] must be implemented to enable the
data value communication between the tool and the IUT. Also it should be applied to
realistic embedded and real-time systems and protocols.
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