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Abstract

Extending previous results from the author’s master’s thesis, sub-
sequently published in the proceedings of CSL 2003, on the complexity
of cut elimination for the sequent calculus LK, we discuss the role of
quantifier alternations and develope a measure to describe the com-
plexity of cut elimination in terms of quantifier alternations in cut
formulas and contractions on such formulas.

1 Introduction

In this note we will present an extension of results on the complexity of
cut elimination in the sequent calculus LK, first developed in [1] and sub-
sequently published in [2]. There it is shown how the complexity of cut
elimination primarily depends on the nesting of quantifiers in cut formulas
and contractions on ancestors of such cut formulas. A more complicated
proof of the role of quantifier nestings was first given by Zhang in [4].

In this note we extend the analysis and develope a measure that describes
with sufficient accuracy the role of quantifier alternations in cut elimination.
The measure will be slightly more complicated than the notion of nested
quantifier depth, nqf , described in [2], but will generalize with similar ease to
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incorporate the role of contractions. An earlier, more complicated treatment
of the role of quantifier alternations by Zhang can be found in [5]. Though
leading to comparable results, in particular the measure of the cut complexity
described in [5] is far more complicated than the one presented in this note.
For another attempt at defining a measure capturing quantifier alternations,
albeit without accompanying proof of cut elimination, see Visser[3]. Neither
Zhang nor Visser treat the role of contractions in the complexity of cut
elimination.

2 Previous results

Let LK be the sequent calculus as defined in [2], i.e. with multiplicative
rules and with no implicit contractions. Let | · | denote the depth and || · ||
the size of formulas and proofs, in the latter case not counting weakenings
and contractions. Let nqf(·), dqf(·) and cnqf(·) denote the nested quanti-
fier depth, the deepest quantified formula (informally, the largest number of
propositional connectives one has to “peel off” to get to a quantifier) and the
contracted nested quantifier depth respectively, as defined in [2].

In [2] the following results are proved:

Refined Reduction Lemma. Let φ be an LK-proof of a sequent Γ ` ∆
with the final inference a cut with cut formula A. Then if for all other cut
formulas B

(i) nqf(A) ≥ nqf(B) and dqf(φ) = dqf(A) > dqf(B), then there exists a
proof φ′ of the same sequent with dqf(φ′) ≤ dqf(φ)− 1 and |φ′| ≤ |φ|+ 1.

(ii) nqf(φ) = nqf(A) > nqf(B) and dqf(A) = 0, then there exists a proof
φ′ of the same sequent with nqf(φ′) ≤ nqf(φ)− 1 and |φ′| < 2 · |φ|.
If the cut formula A is atomic and both subproofs are cut free, then there is
a cut free proof φ′ with |φ′| < 2 · |φ|.
Lemma 1. Let φ be an LK-proof of a sequent Γ ` ∆. If dqf(φ) = d > 0,
then there is a proof φ′ of the same sequent with dqf(φ′) = 0 and |φ′| ≤ 2d·|φ|.
Lemma 2. Let φ be an LK-proof of a sequent Γ ` ∆. If dqf(φ) = 0
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and nqf(φ) = d > 0, then there is a proof φ′ of the same sequent with
nqf(φ′) ≤ d− 1 and |φ′| < 2|φ|.

First Refined Cut Elimination Theorem. Let φ be an LK-proof of a
sequent Γ ` ∆. If nqf(φ) = d > 0, then there is a proof φ′ of the same
sequent and a constant c, depending only on the propositional nesting of the
cut formulas, so that nqf(φ′) ≤ d− 1 and |φ′| ≤ 2c·|φ|.

Corollary 3. Let φ be an LK-proof of a sequent Γ ` ∆ and let nqf(φ) = d.
Then there is a constant c, depending only on the propositional nesting of
the cut formulas, and a proof φ′ of the same sequent where φ′ is cut free and
|φ′| ≤ 2

c·|φ|
d+1.

Contraction Lemma. Let φ be an LK-proof of a sequent Γ ` ∆, with
nqf(φ) > cnqf(φ) then there is proof φ′ of the same sequent with nqf(φ′)
= cnqf(φ′) and ||φ′|| ≤ ||φ||. As a consequence also |φ′| ≤ 2|φ|

Second Refined Cut Elimination Theorem. Let φ be an LK-proof of a
sequent Γ ` ∆. Then there is a constant c depending only on the propositional
nesting of the cut formulas and a cut free proof φ′ of the same sequent where
|φ′| ≤ 2

c·|φ|
cnqf(φ)+2.

The main work is to prove the Refined Reduction Lemma and the Contraction
Lemma from which the remaining results follow easily.

To sum up, first it is shown that the complexity of cut elimination primarily
depends on the nesting of quantifiers in cut formulas, while the elimination of
the propositional connectives has a negligible contribution to the complexity
of cut elimination. As mentioned above this result was also shown by Zhang
in [4]. Moreover, if for a cut formula none of the direct ancestors have been
contracted, then the cut can be eliminated with low complexity by a mere
rearrangement of the proof that does not increase the size of the proof. Thus
the non-elementary complexity of cut elimination was shown to depend only
on the nested quantifier depth of cut formulas whose ancestors, of sufficient
quantifier depth, also have been contracted.
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3 Quantifier alternations

In section 3.4 of [2] it is discussed that blocks of ∀,∧-connectives, respectively
∃,∨, can be eliminated together, and it is shown that eliminating such a block
from a cut formula at most doubles the depth of the proof. In [2] the following
lemma is proved:

Lemma 4. Let φ be a proof of a sequent Γ ` ∆ with the last inference
a cut. Let the cut formula be constructed from formulas B1, . . . Bn by the
connectives ∀ and ∧ only (resp. ∃ and ∨). Then we can replace that cut by
a number of smaller cuts with cut formulas Bi. For the resulting proof φ′ we
have |φ′| < 2 · |φ|.

This lemma immediately suggests a bound on cut elimination based on the
number of alternations between such blocks. We propose the following cut
elimination strategy : first we eliminate as many outermost propositional
connectives as possible, next we eliminate all outermost ∀,∧ and ∃,∨ blocks.
Repeating this we eventually arrive at a cut free proof. By the Refined
Reduction Lemma and subsequently Lemma 1, both of which can easily be
adapted to some measure of number of quantifier alternations instead of nqf ,
we see that the first step, eliminating propositional connectives, is not critical
for the complexity of cut elimination. However, defining a new appropriate
complexity measure for this cut elimination strategy is not trivial, as can also
be seen by the complicated measure defined by Zhang[5] in order to prove a
comparable result.

We want to define a measure aqf , the alternating quantifier depth. First
consider the following very naive approach: Let us restrict the logical con-
nectives to ∀, ∃,∧ and ∨ and let us count the propositional connectives ∧,∨ as
the quantifiers ∀, ∃. Defining the aqf as the number of alternations between
quantifier blocks in cut formulas would not give the desired result. Alterna-
tions between propositional connectives ∧,∨, which can be eliminated easily,
would be perceived as alternations between quantifiers ∀, ∃, which are expen-
sive to eliminate. Thus this definition of aqf would lead to a bound on cut
elimination much worse in such situations than the bound already achieved
via the nested quantifier depth nqf .

In general it turns out to be difficult to define, inductively on the formula,
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a measure of cut complexity that correctly captures the role of quantifier
alternations. The difficulty is to decide when to increase the alternating
quantifier depth.

For example, when facing a formula composed of two subformulas and one
of the propositional connectives, e.g. the connective ∨, it is non-trivial to
decide or predict whether the connective is part of a block of propositional
connectives, and hence relatively harmless with respect to the alternations
already present in the two subformulas, or it marks the beginning of an ∃,∨
block which should mark an increase in the number of alternations.

Consider the formula A :≡ B ∨C, where the subformula C is assumed to be
purely ∀,∧:

• if B is purely ∃,∨ then

– aqf(A) should be 0 - eliminate the ∨ (simple), then two blocks
each without alternations remain

– aqf(∃xA) should be 1 - all the ∃,∨ constitute one block, the ∀,∧
block below constitutes the alternation

– aqf(∀xA) should be 1 - eliminate the ∀(expensive), eliminate the
∨(simple), eliminate the two alternation free blocks

• if B has an outermost ∃,∨ block and one ∀,∧ block below

– aqf(A) should be 1 - eliminate the ∨(simple) then one alternation
remains

– aqf(∃xA) should be 1 - all the ∃,∨ constitute one block, the ∀,∧
blocks below constitute the alternation

– aqf(∀xA) should be 2 - eliminate the ∀(expensive), eliminate the
∨(simple) and still one alternation remains in the subformula B

The example demonstrates the problem of deciding inductively on the for-
mula when to increase the alternating quantifier depth. At the point of the
propositional connective we might not yet have sufficient information to de-
cide whether to increase or not. On the other hand postponing the decision
until we meet the next quantifier requires information on the exact structure
of the subformulas that may no longer be available.
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The solution is to let the complexity measure mirror the intended cut elimina-
tion strategy. This leads to defining the measure aqf for the cut complexity
recursively on the cut formula instead of inductively:

• if A is atomic, purely ∃,∨ or purely ∀,∧ then aqf(A) = 0

• if A is composed of formulas B1, . . . , Bn (each with outermost con-
nective a quantifier) by propositional connectives only then aqf(A) =
max{aqf(Bi)}

• if A(:= ∀xC for some C) is composed of connectives ∀,∧ and formu-
las B1, . . . , Bn (each with outermost connective ∃,∨) then aqf(A) =
max{aqf(Bi)}+ 1

• if A(:= ∃xC for some C) is composed of connectives ∃,∨ and formu-
las B1, . . . , Bn (each with outermost connective ∀,∧) then aqf(A) =
max{aqf(Bi)}+ 1

Moreover we treat implication B → C as ¬B ∨ C, and negation ¬B simply
flips the polarity of other connectives below, i.e. ∃,∨ 7→ ∀,∧ and vice versa.
With this definition of aqf for formulas, we define aqf for proofs:

Definition 5. aqf(φ) := sup{aqf(A) : A is a cut formula in φ}

Also the notion of deepest quantified formula dqf defined in [2] can be
adapted to aqf , yielding a version of the Refined Reduction Lemma with
aqf instead of nqf . Now it is easy to show the following theorem:

Theorem 6. Let φ be an LK-proof of a sequent Γ ` ∆ and let aqf(φ) = d.
Then there is a constant c, depending only on the propositional blocks of the
cut formulas, and a proof φ′ of the same sequent where φ′ is cut free and
|φ′| ≤ 2

c·|φ|
d+1.

Proof: The theorem follows from the cut elimination strategy described
above, and adaptions of Lemma 1 and Lemma 2 to the measure aqf instead
of nqf . These adaptions follow from an adaption of the Refined Reduction
Lemma to the measure aqf as discussed above.

6



The definition of caqf , the contracted alternating quantifier depth, is defined
from aqf in the same way cnqf is defined from nqf (see [2]). Thus also taking
the role of contractions into account we get:

Theorem 7. Let φ be an LK-proof of a sequent Γ ` ∆. Then there is a
constant c depending only on the propositional blocks of the cut formulas and
a cut free proof φ′ of the same sequent where |φ′| ≤ 2

c·|φ|
caqf(φ)+2.

In conclusion both theorems follow easily from the analysis of cut elimination
presented in [2], in particular Lemma 4, and the cut elimination strategy
described above. As mentioned above a comparable result is proved in [5]
but with a far more complicated complexity measure and a more complicated
proof.

Furthermore, as with the upper bounds on cut elimination presented in [2],
the bounds aqf and caqf are optimal with regards to Statman’s lower bound
example, i.e. the upper and the lower bound coincide. Conversely, one can
say that every proof that yields an example of non-elementary cut elimination
must use cut formulas with alternating quantifiers and contractions in a way
similar to Statman’s lower bound example.

Finally, the exponential bound on cut elimination in the case of pure ∀,∧-
cuts, respectively ∃,∨-cuts, that is stated in [2], follows as a special case from
these bounds.

4 Comparison with the literature

In this section we will briefly discuss the measures for the number of quantifier
alternations proposed by resp. Zhang[5] and Visser[3].

The measure defined by Zhang uses two formula classes δ and δ′:

Definition 8. (Zhang[5]) A formula B is in δ(A) iff

• A = B, or

• A = C ∧D and B ∈ δ(C) ∪ δ(D), or
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• A = ∀xC(x) and B ∈ δ(C(t)) for any term t.

Definition 9. (Zhang[5]) A formula B is in δ′(A) iff

• B ∈ δ(A), and

• B is either a disjunction of two formulas, or

• B is an ∃-formula s.t. all terms occurring in B also occur in A

Definition 10. (Zhang[5]) The cut complexity ρ(A) of a formula A is de-
fined as a polynomial in w as follows:

• if δ′(A) is empty, then ρ(A) := w,

• if δ′(A) = {Bi|1 ≤ i ≤ n} and there is a formula C s.t. ∀xC(x) ∈ δ(A)
and nqf(C) ≥ nqf(Bi) for 1 ≤ i ≤ n, then ρ(A) := (ρ(B1) ⊕ . . . ⊕
ρ(Bn)) · w,

• if A = B ∧ C, δ′(A) = {Bi|1 ≤ i ≤ n} and there is no formula C
s.t. ∀xC(x) ∈ δ(A) and nqf(C) ≥ nqf(Bi) for 1 ≤ i ≤ n, then
ρ(A) := (ρ(B)⊕ ρ(C)) + 1,

• if δ′(A) = {A}, then ρ(A) := ρ(¬A)

where ⊕ is the operation of summing two polynomials by raising them to the
same degree and then taking the pointwise maximum over their coefficients.

The definition is somewhat similar to the definition of the alternating quan-
tifier depth aqf presented in this note, as the degree of the cut complexity
polynomial corresponds to our notion of aqf .

In detail, the first item in the definition covers the case when the formula
is atomic, purely ∀,∧ or (via the fourth item) purely ∃,∨. The second item
corresponds to eliminating a ∀,∧ block (or via the fourth item an ∃,∨ block),
and hence here the degree of the polynomial is increased. The third item
corresponds to eliminating in-between propositional connectives, which only
adds a constant to the polynomial.
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The proof of cut elimination given the cut complexity polynomial above
proceeds via several rather technical lemmas and uses an additional formula
class δ∗.

Visser defines a measure “depth of quantifierchanges” via a three place func-
tion % (p.281, [3]), where the first parameter is 0 when the formula under
consideration occurs positively and 1 if it occurs negatively, the second pa-
rameter is 0 when we are in existential mode and 1 when we are in universal
mode, while the last parameter is the formula under consideration.

The definition of % is as follows:

Definition 11. (Visser[3]) Let %(A) of a formula A be %(0, 0, A) and let

• %(i, j, A) := 0 of A is atomic,

• %(i, j, B ∧ C) = %(i, j, B ∨ C) := max{%(i, j, B), %(i, j, C)}
• %(i, j,¬B) := %(1− i, 1− j, B)

• %(0, j, B → C) := max{%(1, 1− j, B), %(0, j, C)}
• %(1, j, B → C) := max{%(0, j, B), %(1, 1− j, C)}
• %(i, 0, ∃xB) := %(i, 0, B)

• %(i, 1, ∃xB) := %(i, 0, B) + 1

• %(i, 0, ∀xB) := %(i, 1, B) + 1

• %(i, 1, ∀xB) := %(i, 1, B)

The merit of the measure defined by Visser is that it treats negation and
implication directly. Contrary to the measure defined by Zhang and the
measure aqf defined in this note, Visser’s % makes no distinctions for the
propositional connectives as to whether they appear in existential or universal
mode, i.e. below an existential or a universal quantifier. Thus the measure
% assigns the same “depth of quantifierchanges” to the formulas

∀x(∀yP (x, y) ∨ ∀zQ(x, z))
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and
∀x(∀yP (x, y) ∧ ∀zQ(x, z)).

However, one can show that the complexity of cut elimination for the two
(cut) formulas is not the same, i.e. cut elimination for the second formula,
which is purely ∀,∧, is simpler than cut elimination for the first formula
∀x(∀yP (x, y) ∨ ∀zQ(x, z)), which contains a disjunction.

Thus, although capturing the main ideas, namely that cut elimination mainly
depends on quantifier alternations, the measure as it is defined in [3], is not
optimal in all cases to estimate the complexity of cut elimination.
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RS-03-44 Anna Ǵal and Peter Bro Miltersen. The Cell Probe Complex-
ity of Succinct Data Structures. December 2003. 17 pp. An
early version of this paper appeared in Baeten, Lenstra, Par-
row and Woeginger, editors,30th International Colloquium on
Automata, Languages, and Programming, ICALP ’03 Proceed-
ings, LNCS 2719, 2003, pages 332–344.

RS-03-43 Mikkel Nygaard and Glynn Winskel. Domain Theory for Con-
currency. December 2003. 45 pp. To appear in aTheoretical
Computer Sciencespecial issue on Domain Theory.

RS-03-42 Mikkel Nygaard and Glynn Winskel. Full Abstraction for HO-
PLA. December 2003. 25 pp. Appears in Amadio and Lugiez,
editors, Concurrency Theory: 14th International Conference,
CONCUR ’03 Proceedings, LNCS 2761, 2003, pages 383–398.

RS-03-41 Malgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy.
An Operational Foundation for Delimited Continuations. De-
cember 2003. 21 pp.

RS-03-40 Andrzej Filinski and Henning Korsholm Rohde. A Denota-
tional Account of Untyped Normalization by Evaluation. De-
cember 2003. 29 pp.

RS-03-39 J̈org Abendroth. Applyingπ-Calculus to Practice: An Example
of a Unified Security Mechanism. November 2003. 35 pp.


