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Abstract

We derive an abstract machine that corresponds to a definitional inter-
preter for the control operators shift and reset. Based on this abstract
machine, we construct a syntactic theory of delimited continuations.

Both the derivation and the construction scale to the family of control
operators shiftn and resetn. The definitional interpreter for shiftn and
resetn has n + 1 layers of continuations, the corresponding abstract ma-
chine has n + 1 layers of control stacks, and the corresponding syntactic
theory has n + 1 layers of evaluation contexts.
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1 Introduction

The studies of delimited continuations can be classified in two groups: those
that use continuation-passing style (CPS) and those that rely on operational
intuitions about control instead. Of the latter, there is a large number [17, 20,
22,26,28,29,35,39,42,43], with relatively few applications. Of the former, there
is the work revolving around the control operators shift and reset [10, 11], with
relatively many applications.

The original motivation for shift and reset was a continuation-based pro-
gramming pattern involving several layers of continuations. The original spec-
ification relied both on a repeated CPS transformation and on a definitional
interpreter with several levels of continuations (as is obtained by repeatedly
transforming a direct-style interpreter into continuation-passing style). Only
subsequently have shift and reset been specified operationally, by developing op-
erational analogues of continuation semantics and of CPS transformations [15].
Beyond their original publication, shift and reset have been studied separately
by Danvy and by Filinski [7, 15, 23, 24, 33], and independently by others [4, 25,
31, 36, 46, 47].

The goal of our work is to establish an operational foundation for delimited
continuations by using CPS as a guideline. To this end, we start with the original
definitional interpreter for shift and reset. This interpreter uses two layers of
continuations: a continuation and a meta-continuation. We then defunctionalize
it into an abstract machine [1] and we construct the corresponding syntactic
theory [16], as pioneered by Felleisen and Friedman [19]. The construction
scales to shiftn and resetn.

This article is structured as follows. We first review the enabling technology
of our work: Reynolds’s defunctionalization, the observation that a defunc-
tionalized CPS program implements an abstract machine, and the observation
that Felleisen’s evaluation contexts are the defunctionalized continuations of a
continuation-passing evaluator; we also review related work (Section 2). We
then defunctionalize the original definitional interpreter for shift and reset into
an abstract machine. This abstract machine is environment-based, and we re-
state it as an abstract machine based on substitutions (Section 3). We analyze
this abstract machine and construct the corresponding syntactic theory (Sec-
tions 4 and 5). We also present the abstract machine corresponding to the
second level of the CPS hierarchy (Section 6), and we outline how the overall
approach scales to higher levels (Section 7).

2 Background and related work

2.1 Defunctionalization

In his seminal work on definitional interpreters [40], Reynolds presented a gen-
eralization of closure conversion [32]: defunctionalization. This transformation
amounts to representing a functional value not as a function, but as a first-order
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sum where each summand corresponds to a lambda-abstraction in a source pro-
gram. Function introduction is thus represented as an injection, and function
elimination as a case dispatch. Therefore, before defunctionalization, functional
values are inhabitants of a function space and they are instances of anonymous
lambda-abstractions, and after defunctionalization, functional values are inhab-
itants of a sum. In ML, sums are represented as a data type and injections as
data-type constructors.

As a concrete example, let us consider the Fibonacci function in continuation-
passing style:

(* fib : int * (int -> int) -> int *)

fun fib (0, k)

= k 0

| fib (1, k)

= k 1

| fib (n, k)

= fib (n-1,

fn v1 => fib (n-2,

fn v2 => k (v1+v2)))

(* main : int -> int *)

fun main n

= fib (n, fn v => v)

We defunctionalize this program by representing the continuation as a data
structure. All three source lambda-abstractions give rise to inhabitants of the
function space int -> int. We specify the data structure representing the con-
tinuation as an ML data type, and we add an apply function to interpret ele-
ments of this data type:

datatype cont = CONT0

| CONT1 of int * cont

| CONT2 of int * cont

(* apply_cont : cont * int -> int *)

fun apply_cont (CONT0, v)

= v

| apply_cont (CONT1 (n, k), v1)

= fib (n-2, CONT2 (v1, k))

| apply_cont (CONT2 (v1, k), v2)

= apply_cont (k, v1+v2)

(* fib : int * cont -> int *)

and fib (0, k)

= apply_cont (k, 0)

| fib (1, k)

= apply_cont (k, 1)

| fib (n, k)

= fib (n-1, CONT1 (n, k))
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(* main : int -> int *)

fun main n

= fib (n, CONT0)

The constructor CONT0 is constant because the initial continuation has no free
variables. The constructor CONT1 holds the values of the two free variables of the
outer lambda-abstraction in the induction case, i.e., n and k, and the constructor
CONT2 holds the values of the two free variables of the inner lambda-abstraction
in the induction case, i.e., v1 and k. (One could have chosen to hoist the
computation n-2 from the definition of apply cont to the definition of fib. This
choice can make a difference in practice [12, 13].)

2.2 This work

The present work builds on two recent observations:

1. a defunctionalized CPS program implements an abstract machine [1, 8];
and

2. Felleisen’s evaluation contexts are defunctionalized continuations [12].

Let us describe each of these observations in more detail.

2.2.1 Abstract machines as defunctionalized CPS programs

Plotkin’s Indifference Theorem [37] states that CPS programs are independent
of their evaluation order. In Reynolds’s words [40], all the subterms in applica-
tions are ‘trivial’; and in Moggi’s words [34], these subterms are values and not
computations. Furthermore, CPS programs are tail recursive [44]. Therefore,
a defunctionalized CPS program implements the transition functions of an ab-
stract machine. Each configuration is the name of a function together with its
arguments.

Getting back to the example above, the defunctionalized definition of the
Fibonacci function can be reformatted as the following abstract machine:

• Expressible values (integers):

v ::= n

• Evaluation contexts:

C ::= CONT0 | CONT1 (n, C) | CONT2 (v, C)
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• Initial transition, transition rules, and final transition:

n ⇒ 〈n, CONT0〉fib

〈0, k〉fib ⇒ 〈k, 0〉app
〈1, k〉fib ⇒ 〈k, 1〉app
〈n, k〉fib ⇒ 〈n− 1, CONT1 (n, k)〉fib

〈CONT1 (n, k), v1〉app ⇒ 〈n− 2, CONT2 (v1, k)〉fib

〈CONT2 (v1, k), v2〉app ⇒ 〈k, v1 + v2〉app
〈CONT0, v〉app ⇒ v

Ager, Biernacki, Danvy, and Midtgaard have built on this observation to es-
tablish a functional correspondence between evaluators and abstract machines
by relating them using closure conversion, CPS transformation, and defunc-
tionalization [1, 8]. For example, Krivine’s abstract machine corresponds to
an ordinary call-by-name evaluator and Felleisen et al.’s CEK machine to an
ordinary call-by-value evaluator. (In fact, these two machines can be derived
from the same vanilla evaluator, resp. using a call-by-name CPS transforma-
tion and a call-by-value CPS transformation [9].) The correspondence makes
it possible to exhibit the evaluators corresponding to the SECD machine [32],
the CLS machine [27], and the Categorical Abstract Machine [6], and it also
holds for call-by-need evaluators and lazy abstract machines [2], for computa-
tional effects [3], and for logic programming [5]. We apply it here to delimited
continuations.

2.2.2 Evaluation contexts as defunctionalized continuations

The realization that Felleisen et al.’s evaluation contexts are defunctionalized
continuations makes it possible to mechanically construct evaluation contexts.
This mechanical construction contrasts with having to define evaluation contexts
on a case-by-case basis [18]. Also, the ubiquitous unique-decomposition lemma
follows as a corollary when one starts from a compositional evaluator [9].

2.3 Control operators for delimited continuations

The continuation-based programming pattern that motivated shift and reset
has since been found to coincide with layered computational monads [24]. Sev-
eral implementations have been developed: a definitional interpreter [10], a CPS
transformation [11], two embeddings in Standard ML of New Jersey using call/cc
and state [15, 23], and native run-time support in a Scheme system [25]. Sus-
tained efforts have also been made to establish an equational theory of delimited
continuations [30, 31] with the goal of studying their logical content.
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A specificity of our work is that we use CPS as a guideline. For example, pure
contexts and general evaluation contexts have long been distinguished [21,41]. In
their work [31], Kameyama and Hasegawa required this distinction. In contrast,
the distinction between contexts and meta-contexts was imposed on us by CPS.

A forerunner of our work is Murthy’s presentation at CW’92 [36], where he
designed an abstract machine for the CPS hierarchy that actually coincides with
ours. Murthy also introduced a typing system, proved it correct with respect to
the CPS translation, and used it to state local reduction rules. In contrast, we
mechanically derived our abstract machine using defunctionalization, and we
systematically derived a syntactic theory.

3 From interpreter to abstract machine for shift

and reset

We start with defining the language of the first level of the CPS hierarchy of
control operators [10].

Source terms consist of integer literals, variables, λ-abstractions, function
applications, applications of the successor function, shift expressions, and reset
expressions:

t ::= pnq | x | λx.t | t0 t1 | succ t | ξ k.t | <t>

In a shift expression ξ k.t, the variable k is bound in t.
Programs are closed terms.

3.1 An environment-based definitional interpreter

Figure 1 displays an interpreter for the language of the first level of the CPS
hierarchy. The syntax of terms is implemented in the ML structure Syntax as a
data type:

structure Syntax

= struct

type ide = string

datatype term = INT of int

| VAR of ide

| LAM of ide * term

| APP of term * term

| SUCC of term

| SHIFT of ide * term

| RESET of term

end

We implement the interpreter as an ML functor parameterized by the rep-
resentation of an environment instantiating the following signature:
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functor Definitional_Interpreter (structure Env : ENV)

= struct

datatype value = INT of int

| FUNC of cont0

withtype answer = value

and cont2 = value -> answer

and cont1 = value * cont2 -> answer

and cont0 = value * cont1 * cont2 -> answer

(* eval : Syntax.term * value Env.env * cont1 * cont2

-> answer *)

fun eval (Syntax.INT n, e, k1, k2)

= k1 (INT n, k2)

| eval (Syntax.VAR x, e, k1, k2)

= k1 (Env.lookup (x, e), k2)

| eval (Syntax.LAM (x, t), e, k1, k2)

= k1 (FUNC (fn (v, k1, k2)

=> eval (t, Env.extend (x, v, e), k1, k2)),

k2)

| eval (Syntax.APP (t0, t1), e, k1, k2)

= eval (t0, e, fn (v0, k2)

=> eval (t1, e, fn (v1, k2)

=> let val (FUNC f) = v0

in f (v1, k1, k2)

end))

| eval (Syntax.SUCC t, e, k1, k2)

= eval (t, e, fn (INT n, k2) => k1 (INT (n + 1), k2), k2)

| eval (Syntax.SHIFT (k, t), e, k1, k2)

= eval (t,

Env.extend (k,

FUNC (fn (v, k1’, k2’)

=> k1 (v, fn v’

=> k1’ (v’, k2’))),

e),

fn (v, k2) => k2 v,

k2)

| eval (Syntax.RESET t, e, k1, k2)

= eval (t, e, fn (v, k2) => k2 v, fn v => k1 (v, k2))

(* main : Syntax.term -> value *)

fun main t

= eval (t, Env.empty, fn (v, k2) => k2 v, fn v => v)

end

Figure 1: A definitional interpreter for the first level
of the CPS hierarchy
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signature ENV

= sig

type ’a env

val empty : ’a env

val extend : Syntax.ide * ’a * ’a env -> ’a env

val lookup : Syntax.ide * ’a env -> ’a

end

The evaluation function is defined by structural induction over the syntax of
terms, and uses both a continuation k1 and a meta-continuation k2. The meta-
continuation intervenes to interpret reset expressions and to apply captured
continuations. Otherwise, it is passively threaded to interpret literals, variables,
λ-abstractions, function applications, and applications of the successor function.
(If it were not for shift and reset, and if eval were curried, k2 could be eta-
reduced and the interpreter would be in ordinary continuation-passing style.)
Stuck (i.e., ill-typed) programs raise an ML pattern-matching error.

The reset control operator is used to delimit control. A reset expression
Syntax.RESET t is interpreted by interpreting t with the identity continuation
and a meta-continuation on which the current continuation has been “pushed”.
(Indeed defunctionalizing the meta-continuation yields the data type of a stack
[12].)

The shift control operator is used to abstract (delimited) control. A shift
expression Syntax.SHIFT (k, t) is superficially similar to Reynolds’s escape ex-
pression [40]: the current (delimited) continuation is captured in k, and is reset
to the identity continuation.

Applying a captured continuation is achieved by “pushing” the current con-
tinuation on the meta-continuation and applying the captured continuation to
the new meta-continuation.

Resuming a continuation is achieved by reactivating the “pushed” continu-
ation with the corresponding meta-continuation.

3.2 An environment-based abstract machine

The definitional interpreter of Figure 1 is already in continuation-passing style.
Therefore, we only need to defunctionalize its expressible values and its contin-
uations to obtain an abstract machine. This abstract machine is displayed in
Figure 2.

3.3 A substitution-based abstract machine

We go from the environment-based abstract machine of Figure 2 to a substitution-
based abstract machine displayed in Figure 3. The equivalence of these two
machines is established with a substitution lemma [45]. The substitution-based
abstract machine operates on terms where “quoted” (in the sense of Lisp) con-
texts can occur.
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• Expressible values (integers, closures and captured continuations):

v ::= pnq | [x, t, e] | C1

• Environments:

e ::= eempty | e[x 7→ v] | e[k 7→ C1]

• Evaluation contexts and meta-contexts:

C1 ::= • | C1 (t, e) | v C1 | succ C1

C2 ::= • | C2 · C1

• Initial transition, transition rules, and final transition:

t ⇒ 〈t, eempty , •, •〉eval
〈pnq, e, C1, C2〉eval ⇒ 〈C1, pnq, C2〉cont1

〈x, e, C1, C2〉eval ⇒ 〈C1, e (x), C2〉cont1

〈λx.t, e, C1, C2〉eval ⇒ 〈C1, [x, t, e], C2〉cont1

〈t0 t1, e, C1, C2〉eval ⇒ 〈t0, e, C1 (t1, e), C2〉eval
〈succ t, e, C1, C2〉eval ⇒ 〈t, e, succ C1, C2〉eval
〈ξ k.t, e, C1, C2〉eval ⇒ 〈t, e[k 7→ C1], •, C2〉eval
〈<t>, e, C1, C2〉eval ⇒ 〈t, e, •, C2 · C1〉eval

〈•, v, C2〉cont1 ⇒ 〈C2, v〉cont2

〈C1 (t, e), v, C2〉cont1 ⇒ 〈t, e, v C1, C2〉eval
〈[x, t, e] C1, v, C2〉cont1 ⇒ 〈t, e[x 7→ v], C1, C2〉eval

〈C′
1 C1, v, C2〉cont1 ⇒ 〈C′

1, v, C2 · C1〉cont1

〈succ C1, pnq, C2〉cont1 ⇒ 〈C1, pn + 1q, C2〉cont1

〈C2 · C1, v〉cont2 ⇒ 〈C1, v, C2〉cont1

〈•, v〉cont2 ⇒ v

Figure 2: An environment-based abstract machine for the first level
of the CPS hierarchy
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• Source syntax, including values:

t ::= v | x | t0 t1 | succ t | ξ k.t | <t>
v ::= pnq | λx.t | C1

• Evaluation contexts and meta-contexts:

C1 ::= • | C1 t | v C1 | succ C1

C2 ::= • | C2 · C1

• Initial transition, transition rules, and final transition:

t ⇒ 〈t, •, •〉eval
〈pnq, C1, C2〉eval ⇒ 〈C1, pnq, C2〉cont1

〈λx.t, C1, C2〉eval ⇒ 〈C1, λx.t, C2〉cont1

〈C′
1, C1, C2〉eval ⇒ 〈C1, C′

1, C2〉cont1

〈t0 t1, C1, C2〉eval ⇒ 〈t0, C1 t1, C2〉eval
〈succ t, C1, C2〉eval ⇒ 〈t, succ C1, C2〉eval
〈ξ k.t, C1, C2〉eval ⇒ 〈t{C1/k}, •, C2〉eval
〈<t>, C1, C2〉eval ⇒ 〈t, •, C2 · C1〉eval
〈•, v, C2〉cont1 ⇒ 〈C2, v〉cont2

〈C1 t, v, C2〉cont1 ⇒ 〈t, v C1, C2〉eval
〈(λx.t) C1, v, C2〉cont1 ⇒ 〈t{v/x}, C1, C2〉eval

〈C′
1 C1, v, C2〉cont1 ⇒ 〈C′

1, v, C2 · C1〉cont1

〈succ C1, pnq, C2〉cont1 ⇒ 〈C1, pn + 1q, C2〉cont1

〈C2 · C1, v〉cont2 ⇒ 〈C1, v, C2〉cont1

〈•, v〉cont2 ⇒ v

Figure 3: A substitution-based abstract machine for the first level
of the CPS hierarchy
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4 Analysis

In this section we analyze the transitions of the substitution-based abstract
machine and we identify the ones that correspond to reduction rules in the
language.

The abstract machine from Figure 3 is a small-step operational semantics
of the language [38]. We can think of a configuration 〈t, C1, C2〉eval of the
machine as the following decomposition of the initial term into a meta-context
C2, a context C1, and an intermediate term t:

C2 # C1[t]

where # separates the context and the meta-context. Notice that in most
transitions the meta-context component is not used. (Similarly, most occur-
rences of the meta-continuation could be eta-reduced in a curried version of the
interpreter, in Figure 1.)

Next, we observe that the eval-transitions correspond to decomposing a
term: depending on its structure, a subpart of the term is chosen to be evaluated
next, and the contexts are updated accordingly. Each of the cont1- and cont2-
transitions handles a situation when a value is reached. In this case either a
reduction is performed or further decomposition takes place.

Based on the distinction between decomposition and reduction, we single
out the following reduction rules from the transitions of the machine:

(succ) C2 # C1[succ pnq] → C2 # C1[pn + 1q]
(βλ) C2 # C1[(λx.t) v] → C2 # C1[t{v/x}]
(ξλ) C2 # C1[ξ k.t] → C2 # •[t{C1/k}]
(βctx ) C2 # C1[C′

1 v] → C2 · C1 # C′
1[v]

(val) C2 · C1 # •[v] → C2 # C1[v]
(val′) • # •[v] → v

Note that (βλ) is the usual call-by-value β-reduction. We renamed it to indicate
that the applied term is a λ-abstraction, since we can also apply a captured
context, as in (βctx ). The (ξλ) rule can be considered as applying an abstraction
λk.t to the current context. Moreover, the (βctx ) rule can be seen as performing
both a reduction and a decomposition. It is a reduction because an application
of a context with a hole to a value is reduced to the value plugged into the
hole; and it is a decomposition because it changes the meta-context, as if the
application were enclosed in a reset. Finally, the (val) rule allows us to pass the
boundary of a context, when the term inside it has been reduced to a value.

The (βctx ) rule and the (ξλ) rule give a justification for representing a cap-
tured context C1 as a term λx.<C1[x]>, as found in other work on shift and
reset [31, 36]. In particular, the need for delimiting the captured context is a
consequence of the (βctx ) rule.

What is more, the (βctx ) rule captures the set of extra reduction rules needed
by Murthy to prove the representation theorem [36].
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5 A syntactic theory

A syntactic theory provides a reduction relation on expressions by defining val-
ues, evaluation contexts, and redexes [16, 18, 19, 49]. In the present case,

• the values are already specified in the (substitution-based) abstract ma-
chine;

• the evaluation contexts are already specified in the abstract machine, as
the data-type part of defunctionalized continuations; and

• we can read the redexes off the transitions of the abstract machine, as
done in Section 4.

Furthermore, we can read the decomposition function off the eval-transitions
of the abstract machine:

decompose(t) = decompose′ (t, •, •)
decompose′ (t0 t1, C1, C2) = decompose′ (t0, C1 t1, C2)

decompose′ (succ t, C1, C2) = decompose′ (t, succ C1, C2)
decompose′ (<t>, C1, C2) = decompose′ (t, •, C2 · C1)
decompose′ (v, C1 t, C2) = decompose′ (t, v C1, C2)

The plug function is immediate to write:

plug (t, •, •) = t
plug (t, •, C2 · C1) = plug (<t>, C1, C2)
plug (t, C1 t′, C2) = plug (t t′, C1, C2)
plug (t, v C1, C2) = plug (v t, C1, C2)

plug (t, succ C1, C2) = plug (succ t, C1, C2)

As a side benefit of starting from a compositional evaluator, the unique-
decomposition lemma holds as a corollary.

All the points of this section were already made in Felleisen and Friedman’s
original article on control operators and abstract machines [19], except for the
last one, which is new. We are currently studying how to mechanize the con-
struction of syntactic theories from abstract machines, based on Danvy and
Nielsen’s converse mechanical construction [14].

6 The second level of the CPS hierarchy

We can easily generalize the results from the previous sections to an arbitrary
level of the CPS hierarchy. Let us consider the second level. Starting from
the standard definitional interpreter with three layers of continuations [10], we
derive the corresponding environment-based abstract machine, using the same
method as in Section 3.3. The equivalent substitution-based machine is pre-
sented in Figure 4. The configurations of the machine are extended with one
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• Source syntax, including values:
t ::= v | x | t0 t1 | succ t | ξ k.t | <t> | ξ2 k.t | <t>2

v ::= pnq | λx.t | C1 | C2

• Evaluation contexts, meta-contexts and meta-meta-contexts:
C1 ::= • | C1 t | v C1 | succ C1

C2 ::= • | C2 · C1

C3 ::= • | C3 · (C2 · C1)

• Initial transition, transition rules, and final transition:

t ⇒ 〈t, •, •, •〉eval
〈pnq, C1, C2, C3〉eval ⇒ 〈C1, pnq, C2, C3〉cont1

〈λx.t, C1, C2, C3〉eval ⇒ 〈C1, λx.t, C2, C3〉cont1

〈C′
1, C1, C2, C3〉eval ⇒ 〈C1, C′

1, C2, C3〉cont1

〈t0 t1, C1, C2, C3〉eval ⇒ 〈t0, C1 t1, C2, C3〉eval
〈succ t, C1, C2, C3〉eval ⇒ 〈t, succ C1, C2, C3〉eval
〈ξ k.t, C1, C2, C3〉eval ⇒ 〈t{C1/k}, •, C2, C3〉eval
〈<t>, C1, C2, C3〉eval ⇒ 〈t, •, C2 · C1, C3〉eval

〈ξ2 k.t, C1, C2, C3〉eval ⇒ 〈t{C2 · C1/k}, •, •, C3〉eval
〈<t>2, C1, C2, C3〉eval ⇒ 〈t, •, •, C3 · (C2 · C1)〉eval

〈•, v, C2, C3〉cont1 ⇒ 〈C2, v, C3〉cont2

〈C1 t, v, C2, C3〉cont1 ⇒ 〈t, v C1, C2, C3〉eval
〈(λx.t) C1, v, C2, C3〉cont1 ⇒ 〈t{v/x}, C1, C2, C3〉eval

〈C′
1 C1, v, C2, C3〉cont1 ⇒ 〈C′

1, v, C2 · C1, C3〉cont1

〈(C′
2 · C′

1) C1, v, C2, C3〉cont1 ⇒ 〈C′
1, v, C′

2, C3 · (C2 · C1)〉cont1

〈succ C1, pnq, C2, C3〉cont1 ⇒ 〈C1, pn + 1q, C2, C3〉cont1

〈C2 · C1, v, C3〉cont2 ⇒ 〈C1, v, C2, C3〉cont1

〈•, v, C3〉cont2 ⇒ 〈C3, v〉cont3

〈C3 · (C2 · C1), v〉cont3 ⇒ 〈C1, v, C2, C3〉cont1

〈•, v〉cont3 ⇒ v

Figure 4: A substitution-based abstract machine for the second level
of the CPS hierarchy
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component corresponding to the additional continuation of the interpreter. Ob-
serve that the transitions of the machine for Level 1 are “embedded” in the
machine for Level 2—the extra component is threaded but not used.

Just as for the first level, the configuration of the machine 〈t, C1, C2, C3〉eval

corresponds to the following decomposition of the initial term:

C3 #2 C2 #1 C1[t]

where the additional context C3 represents the rest of the term outside the
innermost reset2.

Again, we can read the set of reduction rules off the transitions of the ma-
chine. The embedding of the transitions of the previous machine in the current
one is materialized in the fact that all the reduction rules for Level 1 are pre-
served (the first five rules below), and they do not interact with the extra layer
of contexts:

(succ) C3 #2 C2 #1 C1[succ pnq] → C3 #2 C2 #1 C1[pn + 1q]
(βλ) C3 #2 C2 #1 C1[(λx.t) v] → C3 #2 C2 #1 C1[t{v/x}]
(ξλ) C3 #2 C2 #1 C1[ξ k.t] → C3 #2 C2 #1 •[t{C1/k}]
(βctx ) C3 #2 C2 #1 C1[C′

1 v] → C3 #2 C2 · C1 #1 C′
1[v]

(val) C3 #2 C2 · C1 #1 •[v] → C3 #2 C2 #1 C1[v]
(ξ2λ) C3 #2 C2 #1 C1[ξ2 k.t] → C3 #2 • #1 •[t{C2 · C1/k}]
(βctx2 ) C3 #2 C2 #1 C1[C′

2 · C′
1 v] → C3 · (C2 · C1) #2 C′

2 #1 C′
1[v]

(val2) C3 · (C2 · C1) #2 • #1 •[v] → C3 #2 C2 #1 C1[v]
(val′2) • #2 • #1 •[v] → v

The three new rules (ξ2λ), (βctx2 ), and (val2) are straightforward generaliza-
tions of their counterparts for shift and reset. Shift2 captures not one, but two
contexts (up to the nearest enclosing reset2), and reset2 pushes the first two con-
texts onto the third one. Finally, the (val2) rule allows us to pass the boundary
of a context, when the term inside it has been reduced to a value.

7 Going up in the CPS hierarchy

Having seen that much, one can write reduction rules for an arbitrary level of
the hierarchy, or reconstruct the corresponding abstract machine even without
repeating the whole procedure.

At the nth level of the hierarchy, all the operators shift1, reset1, . . . , shiftn,
and resetn are available. The nth level contains n + 1 evaluation contexts and
each context Ci can be viewed as a stack of nonempty contexts Ci−1. The terms
are decomposed as

Cn+1 #n Cn #n−1 Cn−1 #n−2 · · · #2 C2 #1 C1[t],

where each #i represents a delimited context up to Level i. All the control
operators that occur already at the kth level (with k < n) of the hierarchy do
not use the contexts k + 2, . . . , n.
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The transitions of the machine for Level k are “embedded” in the machine
for Level k+1—the extra components are threaded but not used. The 0th level
corresponds to the CEK machine and the ordinary lambda-calculus under call
by value.

8 Conclusion and issues

We have used CPS as a guideline to establish an operational foundation for
delimited continuations. Starting from a call-by-value evaluator for λ-terms
with shift and reset, we have mechanically constructed the corresponding ab-
stract machine. From this abstract machine, it is straightforward to construct
a syntactic theory of delimited control that, by construction, is compatible with
CPS—both for one-step reduction and for evaluation.

The whole approach scales seamlessly to account for the shiftn and resetn

family of delimited-control operators.
Defunctionalization provided a key to connect CPS and operational intu-

itions about control. Indeed most of the time, control stacks are defunctional-
ized continuations. We do not know whether CPS is the ultimate answer, but
the present work shows yet another example of its usefulness. It is like nothing
can go wrong with CPS.

Acknowledgments: We are grateful to Mads Sig Ager, Julia Lawall, Jan
Midtgaard, and the anonymous referees for their comments. This work is sup-
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