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A Runtime System for
XML Transformations in Java

Aske Simon Christensen, Christian Kirkegaard, and Anders Mgller

BRICS Department of Computer Science
University of Aarhus, Denmark
{aske, ck,amoeller}@brics.dk

Abstract

We show that it is possible to extend a general-purpose programming language
with a convenient high-level data-type for manipulating XML documents while
permitting (1) precise static analysis for guaranteeing validity of the constructed
XML documents relative to the given DTD schemas, and (2) a runtime system
where the operations can be performed efficiently. The system, named, Xs
based on a notion of immutable XML templates and uses XPath for deconstructing
documents. A companion paper presents the program analysis; this paper focuses
on the efficient runtime representation.

1 Introduction

There exists a variety of approaches for programming transformations of XML [6] doc-
uments. Some work in the context of a general-purpose programming language; for
example, JIDOM[T4], which is a popular package for Java allowing XML documents
to be manipulated using a tree representation. A benefit of this approach is that the
full expressive power of the Java language is directly available for specifying the trans-
formations. Another approach is to use domain-specific languages, such as|XSLT [9],
which is based on notions of templates and pattern matching. This approach often al-
lows more concise programs that are easier to write and maintain, but it is difficult to
combine it with more general computations, access to databases, communication with
Web services, etc.

Our goal is to integrate XML into general-purpose programming languages to make
development of XML transformations easier and safer to construct. We propase X
which integrates XML into Java through a high-level data-type representing immutable
XML fragments, a runtime system that supports a number of primitive operations on

*Supported by the Carlsberg Foundation contract number ANS-1069/20.
Basic Research in Computer Sciengei.brics.dk),
funded by the Danish National Research Foundation.



such XML fragments, and a static analysis for detecting programming errors related to
the XML operations.

The main contribution of this paper is the description of threcX runtime system.
We present a suitable runtime representation for XML templates that efficiently sup-
ports the operations in theA&CT API. The companion papér [116] contains a description
of the static analysis of XCT programs.

We first, in Section ]2, describe the design of thecX language and motivate
our design choices. Sectigh 3 then gives a brief overview of the results [from [16]
about providing static guarantees for XML transformations writtenAcX Section ¥
presents our runtime system and discusses time and space complexity of the operations.

The most closely related work is that on XDuce and Xtatic by Hosoya, Pierce,
and Gapayev [13, 11], XQuery by Femmdez, Sireon, Wadler, and others![3], and
WASH/CGI by Thiemann([21]. XDuce is a functional language for defining XML
transformations based on regular expression types and a corresponding mechanism for
pattern matching. The Xtatic project aims to integrate the ideas from XDuce with
the object model of C#. XQuery is a functional language that can be viewed as a
generalization of SQL to the richer data model of XML. WASH/CGI models XML
transformations in Haskell by embedding DTD into Haskell's type system. The paper
[16] contains a comprehensive survey of the relation between these and other projects
and XACT.

2 The XACT Language

The XacT language introduces XML transformation facilities into the Java program-
ming language such that XML documents, from a programmer’s perspective, are first-
class values on equal terms with basic values, such as booleans, integers, and strings.
Programmers can thereby combine the flexibility and power of a general-purpose pro-
gramming language with the ability to express XML manipulations at a high level of
abstraction. This combination is convenient for many typical transformation tasks. Ex-
amples are transformations that rely on communication with databases and complex
transformation tasks, which may involve advanced control-flow depending on the doc-
ument structure. In these cases, one appliasXoperations while utilizing Java li-
braries, for example, the sorting facilities, string manipulations, HTTP communication,
etc. We choose to build upon Java because it is widely used and a good representative
for the capabilities of modern general-purpose programming languages.

We build XML documents frontemplatesas known from the JWIG languagdé [8].
This approach originates from MAWIL [17/ 1] antbigwig> [5], and was later re-
fined in JWIG, where it has shown to be a powerful formalism for XHTML document
construction in Web services. Our aim is to extend the formalism to general XML
transformations where both construction and deconstruction is supported.

A template is a well-formed XML fragment containing named gagsiplate gaps
occur in place of elements, aattribute gapccur in place of attributes. The notation
for templates is given byml in the following grammar:



xml = str (character data)
| <name atts>zmi</name> (element)
|  <[g]> (template gap)
| azmlzml
atts = name="value" (attribute)
|  name=I[g] (attribute gap)
| e
| atts atts

Here, str denotes a string of XML character datagme denotes a qualified XML
name,g denotes a gap name, andlue denotes an XML attribute value. Construction

of a larger template from a smaller one is accomplisheglbggingvalues into its

gaps. The result is the template with all gaps of a given name replaced by values. This
mechanism is flexible because complex templates can be built and reused many times.
Gaps can be plugged in any order; construction is not restricted to be bottom-up, in
contrast to traditional tree-like models, such as XDuce.

Deconstruction of XML data is also supported im&r. An off-the-shelf lan-
guage for addressing nodes within XML trees is available, namely W3C'’s XPath lan-
guage([10]. XPath is widely used and has despite its simplicity shown to be versatile
in existing technologies, such as XSLT and XQuery. ThecX deconstruction mech-
anism is also based on XPath. We have identified two basic deconstruction operations,
which are powerful in combination with plugging. The firssilect which returns the
subtemplates addressed by an XPath expression. The seqaqifis which replaces
the subtemplates addressed by an XPath expression with gaps. Select is convenient
because it permits us to pick subtemplates for further processing. Gapify permits us
to dynamically introduce gaps, which is important for a task such as performing minor
modifications in an XML tree. Altogether, this constitute an algebra over templates,
which allows typical XML manipulations to be expressed at a high level of abstraction.

We have chosen a value-based programming model as in functional languages. This
model is generally more “clean” since operations have no side-effects, and templates
are thought of as unchangeable values. A Java class that implements the value-based
model is said to bémmutable Such classes are favored because their instances are
safe to share, value-factories can be implemented, and tread-safety is guaranteed [2].
All Java value classes, suchhsteger andString, are for these reasons immutable.

Our templates inherit the properties and benefit by being easier to use and less prone to
error than mutable frameworks, such as JDOM and JAXP [20].

The Java classML, which represents templates, has the methods shown in[Table 1.
The class is immutable, so the value represented by a given template object is never
altered after instantiation. All parameters of tyfes, XPath andDTD are assumed to
be constants and may be written as strings.

The staticconstant method creates atML instance from a constant string argu-
ment, andtoString returns the string representation of &L instance. The syntax
for templates is the one given by the grammar above gklenethod constructs a tem-
plate from a non-constant string, typically originating from some external data source,
and checks the result for validity with respect to the given DTD schema. In addition,



static XML constant(String s) - creates a template from the constant string

String toString() - returns the textual representation of this template

boolean equals(Object o) - determines equality of this template amd

int hashCode() - returns the hash code of this template

XML plug(Gap g, XML z) - insertsz into all g gaps in this template

XML plug(Gap g, String s) - as the previous operation, but for string

XML plug(Gap g, XML[] xs) - inserts the entries ims into theg gaps in this template

XML plug(Gap g, Stringl] ss) - as the previous operation, but for string entries

XML[] select(XPath p) - returns the array of subtemplates hitzoy

XML[] cut(XPath p) - as the previous, but returns only maximal disjoint subtemplateg
XML gapify(XPath p, Gap g) - replaces all subtemplates hit pyoy g gaps

XML close() - returns this template with all gaps removed

String text() - returns the concatenation of top level chardata

XML cast(DTD d) - throws runtime exception if this template is invalid relativeito
XML analyze(DTD d) - instructs the analyzer to statically validate this template relativg to
static XML smash(XML[] zs) - merges the entries afs into a single template

static XML get(String s, DID d) - creates atemplate from the stringnd checks validity relative i@

Table 1: Methods in the immutabiIL class for performing basic XCT operations.

runtime validation of a template according to a given DTD schema is provided by the
cast method, which serves the same purpose as the usual cast operations in Java. Both
get andcast throw a runtime exception in case the given template is invalid.

Theequals method determines equality ¥ifil. instances, and theashCode method
returns a consistent hash code forxam. instance.

Template construction is provided by tpe@ug method, which is overloaded to
accept a template, a string, or arrays of these as second parameter. Invoking the non-
array variants will plug the given string or template into all occurrences of the given
gap name. The array variants will, in document order, plug all occurrences of the given
gap name with entries from the given array. If the array has superfluous entries these
will be ignored, and conversely, the empty string will be plugged into superfluous gaps.
An exception is thrown if one attempts to plug a template into an attribute gap.

Template deconstruction is provided by the€lect, cut, andgapify methods.

Each method takes an XPath expression as parameter, which on evaluation returns a
set of nodes within the given template. Invoking telect method gives an array
containing all the subtemplates rooted at nodes in the XPath evaluation resuitThe
method gives a similar array, but the entries are here required to be non-overlapping,
such that if one node in the XPath evaluation result is an ancestor of another, then
only the ancestor is considered. The returned subtemplatastcdre consequently
maximal and disjoint. Thgapify method returns a template where all subtemplates
rooted at nodes in the XPath evaluation result have been replaced by gaps of the given
name.

Extraction of character data from a template is provided by #xe method, which
returns the concatenation of top level character data as a stringclblse method
eliminates all gaps in a template, which is accomplished by removing template gaps
and for attribute gaps, the whole attribute is removed. The result will by construction
represent a well-formed XML document. Invoking the statiesh method concate-
nates the entries of the given template array into a single template.



Theanalyze method instructs the compile-time analyzer to check for validity rela-
tive to a given DTD, as described in Sectidn 3. This operation has no effects at runtime.
A complete XML transformation typically begins with a numbeget operations that
read the transformation input and endairalyze andtoString operations that pro-
duce the transformation output and checks that it is valid.

In order to integrate XcT tightly with the Java language, we provide special syn-
tax for template constants. This relieves programmers from tedious and error-prone
character escaping. A template:! may be written[ [zml]1], which after character
escaping is equivalent ®ML. constant ("zmi"). Transformations that use this syn-
tax are desugared by a simple preprocessor, which is bundled witttre packages.
Also, a number of useful macros for commonly occurring tasks are provided as meth-
ods of theXVML class. For example, thizlete macro effectively deletes the subtrees
selected by an XPath expression by performingpify operation with a fresh gap
name. The complete list of macros is presented.in [16].

We now consider an example, originating from[12], where an address book is
filtered in order to produce a phone list. An address book here consista@fiabhook
root element, containing a sequenceefson elements, each havinghame, anaddr,
and an optionatel element as children. The filtration outputphonelist root
element, containing a sequencepefrson elements, where only those having el
child remains, and with akhddr elements eliminated. The following method shows
how this is implemented with XcT:

XML phonelist (XML book) {

XML[] persons = book.select("/addrbook/person[tell");

XML list = XML.smash(persons).delete("//addr");

return [[<phonelist><[list]></phonelist>]].plug("list",list);
}

One may additionally wish to sort the phone list alphabetically by name. Java has built-
in sorting facilities for arrays, so this is accomplished by implementiogmparator
class, calle®ersonComparator, with the followingcompare method:

int compare(Object ol, Object 02) {
XML x1 = (XML) o1, x2 = (XML) o02;
String s1 = XML.smash(x1.select("/person/name/text()")).text();
String s2 = XML.smash(x2.select("/person/name/text()")).text();
return sl.compareTo(s2);

}

The phone list can then be sorted by inserting the following line intptwelist
method:

Arrays.sort(persons, new PersonComparator());

The example shows how a complex transformation task can be easy and intuitive to
express using the ACT language.



3 Static Guarantees

The design of YACT enables precise static analysis for guaranteeing absence of cer-
tain programming errors related to XML document manipulation. In the companion
paper|[16], we present a data-flow analysis that, at compile-time, checks the following
correctness properties of am&T program:

output validity — that eachanalyze operation is valid in the sense that the given
XML template is guaranteed to be valid relative to the given DTD schema; and

plug consistency— that eachplug operation is guaranteed to succeed, that is, tem-
plates are never plugged into attribute gaps.

Additionally, the analysis can detect and warn the programmer if the specified gap for
a plug operation is never present and if an XPath expressionsalact, cut, or
gapify operation will never select any nodes.

The crucial property of XcT that makes this analysis feasible is that the XML
templates are immutable. Analyzing programs that manipulate mutable data structures
is known to be difficult[19, 18]. The absence of side-effects means that we do not have
to model the complex aliasing relations that otherwise may arise.

Our analysis is an application of the standard data-flow analysis framewadrk [15],
but with a very specialized lattice structure consisting@inmary graphsoriginally
introduced in [[4] and later refined inl[7] and[16]. Informally, a summary graph is
a graph whose nodes represent elements, attributes, and gaps occurring in template
constants or in DTD schemas, and whose edges represent template or string plug oper-
ations. A subset of the nodes are designated as roots. Additionally, a summary graph
contains information about which template gaps and attribute gaps are present. Every
summary graph represents a set of concrete XML templates: the language of a sum-
mary graph is the set of XML templates that can be obtained by unfolding the graph,
starting from a root and plugging templates and strings into the gaps according to the
edges and the gap presence information.

The notion of summary graphs constitutes a suitable abstraction of the concrete
XML templates that appear at runtime. EachcX operation can be modeled pre-
cisely as a transformation of summary graphs. For example, a template plug operation
combines two summary graphs by adding appropriate edges; every template constant
and DTD schema occurring in the given program can be converted into a correspond-
ing summary graph; and XPath expressions can be modeled precisely by a process of
symbolic evaluation on the summary graphs.

The analysis is conservative in the sense that it never misses an error, but it might
report false errors. Our experimentsiinj[16] indicate that the analysis is both precise and
efficient enough to be practically useful, and that it produces helpful error messages if
potential errors are detected.

4 Runtime System

We have now presented a high-level language for expressing XML transformations
and briefly explained that the design permits precise static analysis. However, such a



framework would be of little practical value if the operations could not be performed
efficiently at runtime. In this section, we present a data structure addressing this issue.

4.1 Requirements

To qualify as a suitable representation for XML templates in tae Kframework, our
data structure must support the following operations:

e Creation Given the textual representation of an XML template, build the struc-
ture representing the template.

e Combination Thesmash, plug andclose operations operate directly on XML
templates and must be supported directly by the data structure.

e Navigation The tasks of converting a template to its textual representation,
checking the template for validity according to a given schema, or evaluating
an XPath expression on a template, all require means for traversing the XML
data in various ways. In general, we must have a mechanism for pointing at a
specific node in the XML tree. We call such an XML pointeravigator. It must
support operations for moving this pointer around the tree. To support all XPath
axis evaluations, we must be able to move toftrst child andfirst attribute of
an element node, thearentandnext/previous siblingf any tree node, and the
next/previous attributef an attribute node.

e Extraction The result of evaluating an XPath expression on the structure, using
its navigation mechanism, is a set of navigators. From this set of navigators, we
must be able to obtain the result of thelect, cut andgapify operations.

A naive data structure that trivially supports all of these operations is an explicit XML
tree withnext previous parentandfirstchild pointers in all nodes, similarly to a JDOM

tree. If such a data structure is used, we are forced to copy all parts of the operand struc-
tures that constitute parts of the result in order to adhere to the immutability constraint.
The doubly-linked nature of the structure prohibits any sharing between individual
XML values. The running times for theACT operations operating on such a structure
would thus be at least linear in the size of the result, which is certainly unsatisfactory.

4.2 The basic approach

The main problem with the doubly-linked tree structure is that it prevents sharing be-
tween templates. To enable sharing, we use a singly-linked tree, that is, a tree with only
firstchild andnextpointers but without thparentandpreviouspointers. This structure
permits sharing as follows: Whenever a subtree of an operand occurs as a subtree of
the result, the corresponding pointer in the result simply points to the original operand
subtree and thus avoids copying that subtree.

The smash operation is trivial in this representation. We simply point to the roots
of all operands. This takes time proportional to the number of templates.

To perform a non-arraplug operation,x.plug(g, y), we copy just the portion
of  that is not part of a subtree that will occur unmodified in the result. More precisely,
this is the tree consisting of the paths from the roat o6 all g gaps inz. Any pointer



(iii) (iv)

Figure 1: The effect of performing the non-ariglug operatione = a.plug(g, b).
Part (i) shows the two templatesandb, wherea contains twqy gaps. Part (ii) shows
the naive approach for representiagwhere everything has been copied. Part (iii)
shows the basic approach from Secfion 4.2 where only the pathhat lead toy gaps
are copied and new edges are added to the raatBéart (iv) shows the lazy approach
from Section 4.B where a plug context node is generated for recording the fachtsat
been plugged into the gaps ofa. If the structure in (iv) is later traversed completely,
the one in (iii) is obtained.

that branches out of these paths in the result points back to the corresponding subtree
of . The ends of the paths, that is, the places whergjthaps ofz are, point to

the root ofy. They structure is never copied. Note that, in general, this operation
will create a DAG rather than a tree, since multiple occurrencesiofz will result

in multiple pointers from the result to the root @f This operation is depicted in Part

(iii) of Figure[. The arrayplug operation is performed similarly, except that the path
end pointers point to distinct templates. T¢lse operation duplicates the paths to

all gaps and removes the gaps from the duplicate.

To be able to find the paths to thegaps efficiently, we must have additional infor-
mation in the tree. In each node, we keep a record of the number of occurrences of each
gap name in the subtree rooted at that node. Since the occurrence of gaps is usually
sparse, this gap presence information can be shared between many nodes and thus will
not constitute a large space overhead. Combining this information when constructing
new templates is also straightforward. Now, wheriag operation intq; traverses the
tree looking forg gaps, it simply skips all subtrees where the gap presence information
indicates that ng gaps exist. This narrows the search down to the paths from the root



to theg gaps. Thus, the execution time fopaug operation is proportional to the total
number of ancestor nodes of aljaps inz.

With no parentand previouspointers, navigation in the singly-linked structure is
not as straightforward as in the doubly-linked case. However, since all navigation starts
out at the root, we can simply let all navigators remember the traversed path, and then
backtrack along this path whenever a backward step is requested. In other words, we
let the navigators contain the backward pointers that the XML structure itself omits.
Since navigators are always specific to one XML value, we do not restrict sharing by
keeping these pointers while the navigator is used. Any navigator step is still performed
in constant time, so this additional bookkeeping does not impact the execution time of
the algorithm using the navigator.

Theselect operation now simply returns a set of pointers to the nodes pointed to
by the navigators resulting from the XPath evaluation. No copying is performed. The
total time for performing theelect operation is proportional to the XPath evaluation
time.

Thecut operation needs to filter out all hits that are descendants of other hits. This
can be accomplished by traversing all the navigator paths in parallel, from the bottom
up, merging paths as they coincide and throwing away any hit whose path hits the end
of another path. If we assume that the XPath evaluator returns its results in document
order, this process can be done in time proportional to the total number of ancestors of
the hits. Since the XPath evaluator has visited at least all of these nodes to reach the
hits, the time used by the XPath evaluation is at least proportional to this total number
of ancestors. Thus, the total time for performing the: operation is proportional to
the XPath evaluation time.

The gapify operation is performed in a manner similar tplug operation, ex-
cept that the ends of the paths are indicated by the XPath hits, rather than by gaps of
a specific name. Instead of navigating downward through the tree using the gap pres-
ence information, thgapify algorithm navigates upward using the navigator paths.
Again assuming that the XPath hits are sorted by document order, this can be done in
time proportional to the total number of ancestors of the hits. Thus, the total time for
performing thegapify operation is proportional to the XPath evaluation time.

So, to summarize, the execution times for the operations will be as follows:

e constructing a tree of size from its textual representation using tbénstant
operation:O(n + > #ancestor§y))

e smash of k templatesO(k)

e pluginto g: O(#ancestorg)))

e close: O(#ancestors of all gaps

e select, cut or gapify: O(XPath evaluation time

e converting a template of sizeto its textual representation using theString
operation:O(n)

Regarding memory usage, the operations add only minimally to the memory already
used to hold the constant and input templates, since the gap/hit paths that are recon-
structed are usually sparse compared to the complete XML trees.



These figures are satisfactory, but we can still do better in some cases, especially
when we do not need to traverse the whole result of an operation. This leads us to a
further refinement, as explained in the following.

4.3 A lazy data structure

Often, a complete XML transformation will contain several intermediate results that
will never be output in their entirety. It may be the case that only parts of these in-
termediate templates end up in the final result. Or they may even never be output but
simply used as operands for further XPath matchings whose results are used in the
decision logic of the transformation. For these reasons, the explicit tree construction
outlined above is often wasteful, even though it only reconstructs the parts of the result
that could not be shared with the operands. What we need is a structure that allows
the operations to be performed without any reconstruction taking place until the corre-
sponding parts of the tree are needed by a navigator.

To accomplish this, we introduce spequlig contexinodes in the XML tree, rep-
resenting glug or close operation performed on the subtree. A plug context node
has a sequence of children, which are the roots of the left-hand side of the operation.
Additionally, it contains glug functionwhich maps a gap name and an index into the
XML tree that is plugged into that particular gap. Specifically, if a plug context node
has the children; ...z, and the plug functiorf, then it represents the XML template
x1 ... x, Where theith g gap (in document order, counting from one) is replaced by
f(g,1). Part (iv) of Figuré1l illustrates the lazy variant of the plug operation.

The smash operation can be performed exactly as before. To perfogug or
close operation, we simply create a new plug context node and let it point to the roots
of the old tree. The plug function is then as follows:

x.plug(g, y): A(h,1).if h = g then yelse < [h]>
x.plug(g, y1...yx): A(h,i).if h = g thenifi < k theny;
else ""
else <[h]>
x.close(): A(h,i).€

Here,"" is the empty string, and is the empty XML sequence. This makes no
difference for template gaps, but for an attribute gap, plugging the empty string will
resultin an attribute whose value is the empty string, whereas the empty XML sequence
will remove the attribute gap, as required by tiese operation. Similarly, in this
formalism, plugging a template gap into an attribute gap of the same name will preserve
the attribute gap.

To iterate in this structure, we need to push the plug context nodes further down
the tree as we go, so that the node at which we want our navigator to point is always
represented directly by a concrete XML node, i.e. not a plug context node.

We refer to this process of pushing down plug context nodemasalization Let
x1 ...z, be a sequence of XML nodes. This sequence is said tmbmalizedif it is
either empty or; is a concrete node. Suppose we have a mechanism for transforming
an unnormalized sequence into a normalized one representing the same XML tree.
Then we can build a simple navigator (supporting justftre child, first attribute
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normiyy ... Ym) =€
NOrM({y1 ... Ym,C}x2...Tpn) = NOrM(Z2 ... Ty)

norm(ys ... Ym) = 2122. .. 2
NOrmM{y1 ... Ym,c}x2...2,) = NOrm@ppiyz1, c){zz ... z1,c\z1}z2 ... xy)
apply("text", c) = "text"
apply(<[gl>,c) = c(g,1)

apply(<e ay ...ap>x1 ... xo</e>,¢c) =<e {ay...ap,c}>{x1... 2p,c\a1 ... ar}</e>

apply(name="value", c¢) = name="value"

c(g,1) = "teat"
apply(name=_[g], c) = name="text"
g, 1) =€

apply(name=1[gl,c) =€

c(g,1) = <lgl>
apply(name=[g1, c¢) = name=[g]

Figure 2: The normalization procesgt; ... z,, ¢} denotes a plug context node with
childrenx; ...z, and plug functiore, and" tezt" denotes a chardata node with content
text.

next siblingandnext attributeoperations) on top of this mechanism by transforming
sequences of successor (or children) nodes into normalized sequences incrementally as
we traverse the tree. We can then build a full-featured navigator on top of this simple
navigator in the same manner as for the plain, singly-linked structure.s&hect,

cut andgapify operations can now be implemented exactly as before.

When the plug context nodes are pushed down the tree during the normalization
process, the plug functions contained in them change. Since the gap index given to a
plug function refers to a global position in the XML template, the plug context for a
portion of the template will need to account for all the gaps that precede this portion.
More precisely, if the plug context for a sequence of nages . z,, is ¢, then the plug
context for a subsequenge. . . z; will differ from ¢ in a way depending on the pres-
ence of gaps im; ... z;_1. This new context, which we will denote ;... z;_1,
is given by the function\(h, 7).c(h, i+9p(x1 . .. 21, h)), where gz ... 2,1, h) iS
the number of, gapsinz; ... x;_1. This number is available through the gap presence
information in the tree.

The normalization process is shown in Figlite 2. Normalization proceeds recur-
sively by applying the context to the first of its normalized children and putting the rest
of its children into a new plug context node. This application of the context is where
the actual context evaluation takes place. The key cases here are the application on
a template gaps [g]>, or attribute gapname=_[g], where the plug function is used.
Note also how the context update mechanism; . .. z,, is used to skip the gaps of
the first component in a sequence or the attributes in an element.

11



Normalization, as described in Figure 2, pushes all plug context nodes through
every branch of the tree. This is wasteful, since a plug context node will have no effect
if none of the gap names it covers (that is, those mapping to anything but the gap itself)
occur in the subtree covered by the plug context node. In the actual implementation, a
plug context node is only created if it has any effect. Otherwise, its contents are used
directly instead. This ensures that the part of the tree through which a particular plug
context node is pushed is exactly the ancestors of the involved gaps.

When a normalization has been performed, the internal state of the XML template
representation of the normalized template is updated to point to the normalized version.
Thus, any pushing down of a plug context node is done at most once. When a template
has been traversed completely, its representation has essentially changed into the plain
version.

In the plain singly-linked structure, computation of the gap presence information
is trivial. The gap presence of any node is simply the sum of the gap presences of
its children. This is not so when plug context nodes are present. Fortunately, the gap
presence of a context node can be calculated from the gap presences of its children and
the targets of its plug function, using the formula

gp(z1---Tn,g)

Op({rr - zachh) =D 3" gple(g.i),h)

The actual quantities in the gap presence do not have to be calculated for every opera-
tion. The gap presence is represented in a lazy manner, where the count for a particular
gap is not calculated until this count is specifically asked for by the navigation algo-
rithm.

Let us now compare the efficiency of this new representation to the plain one. The
constant andsmash operators are of course exactly as before. The non-afray
andclose operations take constant time. The arpayig operation takes time propor-
tional to the number of right-hand-side templates. The time used byehect, cut
andgapify operations are still proportional to the time used by the XPath evaluation.
Similarly, the time used byoString is proportional to the time used to traverse the
template. However, because of the plug context nodes that need to be pushed down
through the tree, the navigation steps can no longer be performed in constant time. In
the worst case, a plug context node will be pushed through all ancestors of the involved
gaps, but because of the internal updating, each push will be performed at most once.
Since a single push takes constant time, the extra time used by this pushing during
traversal is exactly the sum over all operations performed on the template of the time
used by that operation in the plain implementation. For this reason, the worst-case
amortized execution times for the lazy implementation are identical to the execution
times stated for the plain implementation. However, the lazy implementation has the
ability to perform its work on a demand basis, which can lead to great savings in prac-
tice.
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4.4 Javaissues

One of the prominent features of immutable, or functional-style, data manipulation is
that it works fluently in a multi-threaded environment. For this to work properly in
the Java implementation, care must be taken when the internal state of a representation
changes. This happens when the result of a normalization replaces the plug context
node, and when the gap presence for a particular gap is queried and calculated. These
situations are of course properly synchronized in the implementation so that no thread
will see the data structure in an inconsistent state.

A ubiquitous Java feature is the ability to compare objects usingghels method.
This is easily (albeit not very efficiently) done for XML templates by a simple, parallel,
recursive traversal. However, to conform to the Java guidelines, any implementation of
equals must be consistent with the corresponding implementation oh#ls&Code
method. Specifically, two identical objects (according to dheals method) must
have identical hash codes. A (hon-trivial) hash code for an XML template must thus
reflect the entire XML tree. It would seem that maintaining such a hash code for the re-
sult of aplug operation is a costly affair. However, if the hash function is chosen such
that it is associativand commutative with respect to concatenation of XML data, the
hash code for the result ofgdug operation can be calculated from just the hash codes
and gap presence information of its constituents. This also enables a more efficient
implementation okquals: Whenever two compared subtemplates have different hash
codes, their equality can be rejected right away. Furthermore, whenever two subtem-
plates originate from the same original subtemplate unmodified, their object identity
verifies their equality.

5 Conclusion

We have presented an overview of thec{ language, focusing on the runtime system.
The design of XAcT provides high-level primitives for programming XML transfor-
mations in the context of a general-purpose language, and, as shown in [16], it permits
a precise static analysis. A special feature of the design is that the data-type is im-
mutable, which at the same time is convenient to the programmer and a necessity for
precise analysis. However, it also makes it nontrivial to construct a runtime system that
efficiently supports all the XcT operations, which is the problem being attacked in
this paper.

Our prototype implementation, which consists of the runtime system and the static
analyzer supporting the full Java language, is available on theTXhome page:
http://wuw.brics.dk/Xact/. Our future work will involve experiments with the
prototype implementation to investigate our conjecture that the data structure is suffi-
ciently efficient to be useful in practice.

Also, we plan to integrate XCT into the JWIG system for developing Web ser-
vices [8]. In such services, XML transformations occur frequently both in the underly-
ing XML databases and in the communication with other programs, such as browsers
or other Web services. High-level and efficient approaches for developing Web ser-
vices together with the ability of obtaining static guarantees of validity of the output
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are becoming increasingly important.
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