
B
R

IC
S

R
S

-03-22
D

am
g̊ard

&
Jurik:

S
calable

K
ey-E

scrow

BRICS
Basic Research in Computer Science

Scalable Key-Escrow

Ivan B. Damgård
Mads J. Jurik

BRICS Report Series RS-03-22

ISSN 0909-0878 May 2003

Copyright c© 2003, Ivan B. Damg̊ard & Mads J. Jurik.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/03/22/

Scalable Key-Escrow

Ivan Damg̊ard and Mads Jurik

Aarhus University, Dept. of Computer Science, BRICS?

Abstract. We propose a cryptosystem that has an inherent key escrow
mechanism. This leads us to propose a session based public verifiable
key escrow system that greatly improves the amount of key material the
escrow servers has to keep in order to decrypt an encryption. In our
scheme the servers will only have a single secret sharing, as opposed to
a single key from every escrowed player. This is done while still having
the properties: 1) public verifiable: the user proves to everyone that the
encryption can indeed be escrowed, and 2) no secret leakage: no mat-
ter how many decryptions a law enforcement agency is presented, it will
gain no more information on the users private key, than it couldn’t have
calculated itself.

Keywords: verifiable, partial, key-escrow, early recovery, cryptosystem.

1 Introduction

1.1 Background

During the last decade there have been a large growth in communi-
cation over the Internet. There have also been an increased focus on
privacy and sending messages encrypted. This however poses a prob-
lem for law enforcement agencies (LEAs) which have relied on their
ability to make wiretaps and get search warrants to solve crimes.
With encrypted communication and storage both these advantages
disappear and the law enforcement agencies are unable to monitor
communication.

This has lead to several Key Escrow proposals in where the per-
sons communicating will reveal their keys (or part of these) to the
LEAs. This enables the LEA to decrypt messages, but poses the
problem that it can also encrypt messages that it is not supposed.
Two ways have been proposed to combat this problem: 1) partial
key escrow where the LEA only receives part of the key and has

? Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

to do an exhaustive search to find the rest, and 2) introducing a
Key Escrow Agency (KEA) that handles the secret keys and helps
the LEAs in the case of a lawful request. Partial key escrow relies
on the assumption that the LEA cannot do a massive decryption
of messages because of the work involved in find the last portion of
the key. This however doesn’t prevent a LEA to pick a few number
of persons that it is not entitled to monitor and decrypt their com-
munication. In both cases there is the problem that if the escrowed
keys are reused the LEA agency will be able to keep monitoring the
communication after the duration of their permission have expired.
However, this can be fixed by only escrowing session keys which are
typically short lived.

In [4], Shamir proposed a scheme with partial key escrow. The
idea behind partial key escrow is that the user escrows (reveals)
for instance 8 bit of a DES key to the Law Enforcement Agency
(LEA). If the LEA at some point want to wiretap the user they
will have to do an exhaustive search on the last 48 bits. This means
that recovering a single key is cumbersome, but definitely possible,
whereas recovering a lot of keys at the same time is hard due to the
work load.

Concurrently to this result Micali proposed a similar idea of par-
tial key escrow for public keys in [5]. The schemes [4] and [5] were
later merged into a joint paper [6].

In [7] Bellare and Goldwasser proposed a verifiable partial key es-
crow scheme that makes it possible for the receiver to check that the
sender has escrowed the correct bits and not some random garbage.
This would have made it impossible for the LEA to recover the key
and might implicate an innocent receiver. They also address prob-
lems from [5] with early recovery, which means that the LEA is able
to do the computation before receiving the key escrow information
and thus get the key quickly upon receiving the escrow information.

Mao introduced a scheme in [8] where escrowed values could be
publicly verified. This has the advantage that the escrowing authori-
ties, the senders, and other interested parties can verify that encryp-
tions are indeed subject to escrow. This is especially useful in settings
where persons can be subject to fines/jail time for communicating
without escrow.

2

A scheme proposed by Shaoquan and Yufeng [13] used a different
setup in which the LEA doesn’t hold the escrow values. Instead a Key
Escrow Authority (KEA) holds shares of the escrowed values and
discloses these to the LEA upon request. This setup is more like the
existing power structures, where the different LEAs are independent
from the judiciary system. The usual way to get a search warrant,
is that the LEA presents its case to a judge, which then makes the
decision whether to allow the search or not. It seems logical that the
same should hold for electronic information, in which case the KEA
should be a separate unit under e.g. the department of justice.

In [14], Damg̊ard and Jurik proposed a public key cryptosystem,
that used a combination of the Paillier cryptosystem [9] in a general-
ized form [11] and the El-Gamal cryptosystem [2]. This scheme has
an El-Gamal like encryption and decryption, but a part of the en-
cryption is a normal Paillier encryption. This allows someone with
knowledge of the factorization or some derived information to de-
crypt all messages encrypted under any key made in the El-Gamal
variant.

1.2 Our Contribution

We introduce a new cryptosystem that has two kind of secret keys.
First there are several normal keys as introduced in [14]. Secondly
there is a global master key that is able to decrypt any message
encrypted with the normal keys. This is done without revealing any
information on the specific private key.

This can be used to make key escrow by having the global master
key shared between the escrow servers in a threshold fashion. Note
that since there is just one master key the escrow servers don’t have
to keep a secret sharing of the secret keys of all the different users,
as opposed to all other schemes to date.

The setup used in this paper is a setup similar to [13], since we
have: 1) some users sending encrypted messages to each other, 2) a
Key Escrow Agency (KEA) holding the escrow key(s), and 3) the
Law Enforcement Agencies (LEAs) being agencies like FBI, CIA,
county sheriff department, etc.

For a LEA to decrypt a message it will ask the KEA servers to
provide a decryption value. The KEA generates the random value

3

used in the encryption and sends it privately to the LEA. The LEA
can then remove the random part of then encryption and decrypt
the resulting value.

The system has the added advantage over existing protocols, that
the users don’t have to perform an expensive key escrow protocol
with the KEA (or LEA) when setting up the system. The KEA
simply generates some global parameters, and all the users generate
a key pair in this global setup. This allows the KEA to “decrypt”
without even knowing the public key of the user.

2 Preliminaries

2.1 Model

The model consists of 3 kinds of players: 1) the users, 2) the Key
Escrow Agency (KEA) servers and 3) the Law Enforcement Agencies
(LEAs).

The adversary model is 2-sided. The players want to try and cheat
the LEA so they’re not able to decrypt their messages, and the LEAs
try to decrypt messages they’re not supposed to. The KEA works as
a buffer between the 2 by providing decryptions to the LEA when it
gets a valid request, and refuse when the LEA is trying to cheat.

The users are assumed to be able to mount several attacks,
namely: 1) flooding: the user floods the channels with a lot of il-
legal encryptions and one legal encryption to make the LEA waste a
lot of resources, trying to find the single legal encryption, 2) collude
with some of the KEA servers to make the LEA unable to decrypt,
and 3) decrypt messages of other users by colluding with some KEA
servers.

The LEAs are unable to break the semantic security of the cryp-
tosystem and corrupting up to t KEAs won’t help because the secret
is shared among these. We’ll assume an even more powerful LEA ad-
versary that can control up to t KEA servers and a number of users
(informants) and has three attacks: 1) find the decryption of a ci-
phertext, 2) find the private key of a user, and 3) find the secret
shared between the KEA servers. The third attack is the most dan-
gerous attack, since it will enable the LEA to decrypt all messages,
without help from the KEA servers at all.

4

To make the threshold version we’ll assume, that the KEAs have
a bulletin board they can access to make decryptions. This is used
for distributing their decryption values during decryption.

2.2 Assumptions

Since we use the cryptosystem of [14] and we need the semantic
security, the same 2 assumptions apply to this scheme:

Conjecture 1 (The Decisional Composite Residuosity Assumption).
Let A be any probabilistic polynomial time algorithm, and assume
A gets n, x as input. Here n = pq is an admissible RSA modulus of
length k bits, and x is either random in Z

∗
n2 or it is a random n’th

power in Z
∗
n2 . A outputs a bit b. Let p0(A, k) be the probability that

b = 1 if x is random in Z
∗
n2 , and p1(A, k) the probability that b = 1

if x is a random n’th power. Then |p0(A, k) − p1(A, k)| is negligible
in k.

Conjecture 2 (The Decisional Diffie-Hellman). Let A be any proba-
bilistic polynomial time algorithm, and assume A gets (n, g, ga mod
n, gb mod n, y) as input. Here n = pq is an admissible RSA modulus
of length k bits and g is an element of Qn, the group of squares in Z

∗
n.

The values a and b are chosen uniformly random in Zφ(n)/4 and the
value y is either random in Qn or satisfies y = gab mod n. A outputs
a bit b. Let p0(A, k) be the probability that b = 1 if y is random in
Qn, and p1(A, k) the probability that b = 1 if y = gab mod n. Then
|p0(A, k) − p1(A, k)| is negligible in k.

Some of the protocols also rely on the Strong RSA assumption,
namely the key escrow exponentiation, and the distributed setup
protocol so for the security of these we need:

Conjecture 3 (The Strong RSA Assumption). Let A be any prob-
abilistic polynomial time algorithm, and assume A gets (n, g) as
input. Here n = pq is an admissible RSA modulus of length k bits
and g is an element of a subgroup G of Z

∗
n, which is chosen efficiently

in polynomial time. Then the adversary A has to output 2 values y
and e such that ye = g mod n. The chance that A outputs 2 such
values should be negligible in k.

5

3 A Simple Key Escrow System

The system in this section is the proof friendly variant from [14],
where the setup phase has been taken over by the escrow authority.
The system here has two extra phases compared to the system from
[14], namely the key escrow and the escrowed decryption phase. The
system only have one KEA server that provides the escrow value to
the LEA directly without proof of correct behavior.

Since the order of the generated groups are unknown we pick
exponents from the group ZN . For a more detailed explanation of
how to chose a suitable N the reader is referred to [14]. We also use
a function for computing discrete logs with base (n + 1), which is
referred to as dLogs(). For the algorithm to compute this function
the reader is referred to [11].

In section 4, the simple system is extended to have several KEAs
and verification between the KEA servers and the LEA. The prob-
lems of users trying to flood LEA are addressed in section 5 by adding
proofs of legal encryption to the encryption step. In most cases s = 1
will be sufficient for the key escrow scenario, but for completeness
we will describe it with the general s, and in section 7 we’ll address
some of the efficiency issues arising from using larger s values.

Global Setup (KEA):

1. Pick 2 primes p, q of size k/2 bits each, where k is the security
parameter. They should also satisfy that p = 2p′ + 1 and
q = 2q′ + 1 for primes p′, q′ (i.e. p and q are safe primes).

2. Set n = pq and τ = p′q′.
3. Pick g ∈ Qn, the group of squares.

4. Release the parameters: (n, g).

5. Store the escrow key: d = n−1 mod τ .

Key Generation (user i):

1. Pick αi ∈ ZN .

2. Set hi = gαi mod n.

3. Release the public key: hi.

4. Store the secret key: αi.

6

Encryption (to user i):
To encrypt message m ∈ Zns , choose r ∈ ZN and b0, b1 ∈ {0, 1}:

Es(m, r, b0, b1) = (G, H)

= ((−1)b0gr mod n,

(−1)b1(hr
i mod n)ns

(n + 1)m mod ns+1

Decryption (user i):
To decrypt (G, H):

m = dLogs((G
αi mod n)−2ns

H2 mod ns+1)/2 mod ns

Key Escrow (KEA):
Given (G, H):
1. Abort if either G or H is malformed (i.e. gcd(G, n) 6= 1,

gcd(H, n) 6= 1 or either G or H has Jacobi symbol −1 wrt. n.
2. Compute: xs = H mod n = ±(hr

i)
ns

mod n
3. Compute x0 using s repetitions of:

xi−1 = (xi)
d = (±(hr

i)
ni

)n−1

= ±(hr
i)

nin−1

= ±(hr
i)

ni−1

mod n

4. Send x0 securely to the LEA.
Escrowed Decryption (LEA):

Given (G, H) and x0, compute:

m = dLog((x0)
−2ns

H2 mod ns+1)/2 mod ns

The work of the KEA server is of the order O(sk3), where k is the
security parameter (size) of the modulus n, and the work of the LEA
is O((sk)3).

Also note that the key generation of the users can be made in
a threshold way to create a threshold decryption key. The escrow
decryption will still work, even if the cryptosystem is changed slightly
to accommodate the threshold version as is done in [14].

The above scheme, however only works in the passive case. In
the active case there are a lot of problems. When the LEA cannot
decrypt (that is (x0)

−2ns
H2 mod ns+1 is not a power of (n+1)) there

is no way to tell if it is because the user submitted a bad encryption
(see 5) or if the KEA gave it a wrong value.

7

4 Threshold Key Escrow

To make the system threshold, we have to share the decryption value
d and set up some verification values. Furthermore, the decryption
phase has to provide verification proofs, so that KEAs can’t cheat
the LEA and ruin the decryption at some point.

The protocol uses a trusted third party (TTP) to setup the pro-
tocol, but in section 4.1 we show a brief sketch of how to get rid of
this assumption.

Global Setup (TTP):

1. Pick 2 primes p, q, such that p = 2p′ + 1 and q = 2q′ + 1 for
primes p′, q′ (ie. p and q are safe primes).

2. Set n = pq and τ = p′q′.
3. Pick g, v ∈ Qn, the group of squares.
4. Compute: d = (4∆2n)−1 mod τ , where ∆ = w! for w KEA

servers.
5. Pick random ai ∈ Zτ for i ∈ {1, · · · , t}, where t < w/2 is the

threshold of the system.
6. Set a0 = d and create the polynomial f(x) =

∑t
i=0 aix

i mod τ
(Shamir secret sharing [1]).

7. Release the parameters: (n, g).
8. Send dj = f(j) to the j’th KEA server.
9. Calculate: vj = vdj mod n, for j ∈ {1, · · · , w}.

10. Release the verification values: (v, v1, · · · , vw).

Key Generation (user i): As above.
Encryption (to user i): As above.
Decryption (user i): As above.
Key Escrow (KEAs):

Given (G, H) we do as above, except the method for calculating
xi−1 is now a distributed protocol:

1. Given xi, server j computes: xj
i = x

2∆dj

i .
2. Server j makes a proof that:

logx4∆
i

((xj
i)

2) = logv vi

which can be done exactly as described in [10].
3. Server j sends xj

i and the proof to the KEA bulletin board.

8

4. The servers check the proofs of the submitted values and picks
a qualified set S with legal proofs and computes:

xi−1 =
∏

j∈S

(xj
i)

2λS
j mod n

where λS
j is the slightly modified Lagrange coefficient:

λS
j = ∆

∏

i∈S\{j}

−i

j − i

This means that:

xi−1 =
∏

j∈S

(xi)
4∆djλS

j = (xi)
4∆2f(0) = (xi)

n−1 mod τ mod n

which is what we want.
The decryption share xj

1, and the proof is not posted to the bul-
letin board by server j, but is sent directly to the LEA using a
secure authenticated channel.

Escrowed Decryption (LEA):
The LEA checks the proofs on the bulletin board, and checks the
proofs of the shares xj

1, which were sent to it, and picks a set S
with correct proofs. It performs the Lagrange combination as in
step 4 of the key escrow to get x0 and m is computed using x0 as
it was done in section 3.

4.1 Removing the Trusted Third Party

In the protocol above we made use of a trusted third party to setup
the global values, the secret sharing of d and the verification values.
This can be done in a distributed fashion, so that the KEA servers
can perform the setup them self, without affecting the security of
the system.

To generate a product of safe primes the technique from [12] can
be used. This generates an additive sharing of p and p′ and tests for
primality test on both (and likewise for q and q′). A secret sharing
of the modulus n is then created from the sharing of p and q and
then opened. To get a sharing of τ the sharing of p′ and q′ can be
combined in the same way.

9

To generate the random values ai the servers can simply chose
sufficiently large random numbers (about k + k2 bits, where k2 is
e.g. 160 bits) using the technique for creating the prime candidates
p′, q′. Then the modulo protocol can be used to create a value in
{0, · · · , τ} which will be statistically close to a uniform value.

The values g and v can be generated by generating two random
elements y, y′ ∈ Z∗

n, using e.g. commitments. The values can then be
set to g = y2 mod n and v = y′2 mod n, which are both in Qn.

Now all values used in the setup phase are either public or secret
shared and we can compute the rest using the general computation
framework of [12].

5 Encryption Verification

The escrowed decryption cannot distinguish legal encryptions from
illegal encryptions, since it computes the randomness used for the
second part of the encryption. This means that a malicious sender
could generate a lot of encryptions on the form:

(G, H) = (r1, (r2)
ns

(n + 1)m∗
mod ns+1)

The values r2, m
∗ might not be know by the adversary, but 2 such

values exists. The decryption by a user will show that it is a illegal
encryption and it will be discarded, whereas the escrow decryption
will result in the value r2 being passed to LEA and the message m∗

being output. The above encryption cannot be distinguished from
a normal encryption (by conjecture 2). So the KEA servers or the
LEA servers can be overloaded by sending just 1 correct encryption
and a lot of illegal encryptions as above. The receiver will discard
all the illegal encryptions and accept the single correct encryption,
whereas the LEA will have a lot of plaintexts of which only one is
actually received.

To take care of this problem a non-interactive ZK-proof very
similar to the one in [14], can be used by the sender to prove that
the sent message is really a legal encryption. The proof is shown in
section 6. The receiver checks this proof before decrypting, so that it
knows it have received an escrowed encryption. If a bad ciphertext
is constructed as above the sender will be unable to create a valid

10

proof, which will make the flooding attack impossible. This means
that the LEA can discard the encryptions with illegal proofs and
thus the sender cannot flood the LEAs.

6 Auxiliary Protocols

Protocol for legal encryption
Input: n, g, h, c = (G, H)
Private input for P : r ∈ ZN and m ∈ Zns , such that c = Es(m, r, b0,
b1) for some b0 and b1.

1. P chooses at random r′ in {0, ..., 2|N |+2k2} and m′ ∈ Zns , where
k2 is a secondary security parameter (e.g. 160 bits). P sends c′ =
(G′, H ′) = Es(m

′, r′, 0, 0) to V .
2. V chooses e, a random k2 bit number, and sends e to P .
3. P sends r̂ = r′ + er and m̂ = m′ + em mod ns to V .
4. V checks that G, H, G′, H ′ are prime to n, have Jacobi symbol 1

and that Es(2m̂, 2r̂, 0, 0) = (G′2G2e mod n, H ′2H2e mod ns+1) =
c′2c2e, and accepts if and only if this is the case.

The protocol above can be proven to be sound and complete
honest verifier zero-knowledge. This is enough for the correctness
proof of encryption, since it will be used in a non-interactive setting
using the Fiat-Shamir Heuristic. To get the challenge the sender P
uses the hash function H to calculate the challenge:

e = H(IDS, IDR, G, H, G′, H ′)

Here IDS and IDR is some information identifying respectively the
sender and the receiver.

Note that the above protocol also works if the encryption function
E is changed to the more general function:

Es(m, r, b0, b1) = (G, H) = ((−1)b0gr mod n,

(−1)b1(hβr
i mod n)ns

(n + 1)m mod ns+1

where β is a fixed value. This is the case for the threshold version
of the encryption system in [14], where β = 4w!, where w were the
number of servers in that threshold setting.

11

7 Improving Performance for s > 1

The calculation of x0 requires s rounds of exponentiation in the
previous schemes. In the case where there are many messages using
s > 1 it might be an advantage to decrease the number of needed
exponentiations in the escrow part of the protocol. To do this extra
decryption values can be computed:

ds := 4∆2n−s mod τ

this will allow the servers to remove s powers of n in a single ex-
ponentiation step. To be able to verify correctness this requires an
extra set of verification values which this exponentiation is verified
up against.

When there are only a few number of s’s that are frequently
used these values can be computed in advance together with the
verification values. If the KEA servers keep the sharing of τ they
can compute new values after the setup phase is done.

If s is arbitrary in general, there are different strategies that
can be used to reduce space (number of values kept by the KEAs
and size of all verification values), time and communication (num-
ber of rounds of exponentiation to compute x0). In figure 1 are
three different approaches given some upper bound s′: 1) only d1

used, 2) use all the d1, d2, · · · , ds′, and 3) use only the powers of 2:

d20
, d21

, · · · , d2log2(s′/2)
.

Scheme]d] verification] exponentiations] exponentiations
values when s ≤ s′ when s > s′

Only 1 1 w + 1 s s
All s′ s′w + 1 1 s/s′

Logarithmic log2(s
′) log2(s

′)w + 1 ∼ log2(s)/2 ∼ s/s′ + log2(s
′)

Fig. 1. Different values when using upper bound s′ to setup system, assuming s′ is a
power of 2

8 Security of the System

Theorem 1. The system defined in section 3 is semantically secure.

12

Proof. The proof follow directly from [14], since the only thing chan-
ged is the addition of decryption key, which does not affect the se-
curity of the system except for the KEAs that have a new trapdoor.

Now we can define some lemmas about the combined cryptosystem
as defined in 4 with the user proof shown in 5:

Lemma 1. Senders cannot flood any LEAs.

Proof. This follows from the correctness of the proof of correct en-
cryption. Since the sender has to create a correct proof it will be
unable to fool a LEA into decryption bad messages.

Lemma 2. Users cannot prevent decryption when controlling less
than w/2 servers.

Proof. The exponentiation of the KEA servers uses proof of correct
behavior, which means that the user cannot inject bad values without
being noticed with all but a negligible chance.

The secret d is shared between w servers with a threshold of
t < w/2. If the user controls less than w/2 servers there will be
at least t + 1 honest servers left which is enough to perform the
exponentiation. This means that the servers will be able to finish
the protocol and give the correct value to the LEA.

Lemma 3. A user cannot decrypt messages from other users when
t or less KEA servers are helping

Proof. This follows directly from the semantic security of the cryp-
tosystem and the fact that t or less KEAs have no information on
the shared secret.

Lemma 4. The LEA cannot decrypt messages encrypted by users,
without getting the decryption value from KEA.

Proof. This is the same as for lemma 3, except that LEAs can ask
for getting messages decrypted. There are 2 reasons for granting
such a decryption, namely either if sender or if receiver is considered
suspicious. Now if the original sender/receiver pair is not considered
suspicious the LEA will have to create a related ciphertext where
either the sender or receiver is a suspicious person.

13

However, if the sender or receiver is changed the input to the
hash function is changed and another challenge will be used for the
proof of a legal encryption. This means that the message cannot be
changed to look like it is to/from some suspicious person.

Lemma 5. A LEA learns no non-trivial information on the private
key of the user during decryption.

Proof. The signature scheme in [10] by Shoup is proven secure in
the random oracle model. This means that since each exponentiation
step in the escrow protocol are exactly the same as a Shoup threshold
signature computation they’re by themselves secure.

The different results after each exponentiation offer no infor-
mation either since such tuples can be generated by the adver-
sary himself. This can be done by picking r and then compute
(gr, hr, (hr)n, · · · , (hr)ns

).

Lemma 6. Users, LEAs and t or less KEA servers cooperating are
unable to calculate d.

Proof. Firstly t or less KEA servers has no information on d, since
it is secret shared with a threshold of t.

Users can only get correctly constructed ciphertexts decrypted.
This means that the values the KEA servers are raising to the secret
exponent dj is on the form:

(hr)βns

mod n

which is in Qn. But this is the exact same type of values that are
exponentiated in [10]. If an adversary exists against this step then
an adversary exist against Shoup’s scheme, which was proven secure
in the random oracle model.

The rest follows from the proof of lemma 5, namely that the rest
of the values can be simulated by the LEAs themselves, without help
from the KEA servers.

References

1. A. Shamir: How to Share a Secret, Communications of the ACM, vol. 22, no. 11,
pp. 612-613, 1979.

14

2. T. ElGamal: A public-key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Transactions on Information Theory. IT-31(4), pp 469-472, July
1985.

3. R. Cramer, I. Damg̊ard and B. Schoenmakers: Proofs of Partial Knowledge
and Simplified Design of Witness Hiding Protocols, Proceedings of Crypto ’94,
Springer-Verlag LNCS 839, pp. 174-187.

4. A. Shamir: Partial Key Escrow: A New Approach to Software Key Escrow, NIST
FIPS Key Escrow Workshop, National Institute of Standards and Technology,
Gaithersburg, Md., September 15, 1995.

5. S. Micali: Guaranteed Partial Key Escrow, MIT laboratory of computer science,
Technical Memo 537, September 1995.

6. S. Micali and A. Shamir: Partial Key Escrow, Manuscript, February 1996.
7. M. Bellare and S. Goldwasser: Verifiable Partial Key Escrow, Proceedings of ACM

Conference on Computer and Communications Security, 1997, pp 78-91.
8. W. Mao: Publicly Verifiable Partial Key Escrow, Proceedings of ICICS’97, Springer

Verlag LNCS series 1334, pp. 409-413.
9. P. Paillier: Public-Key Cryptosystems based on Composite Degree Residue Classes,

Proceedings of EuroCrypt ’99, Springer Verlag LNCS series 1592, pp. 223-238.
10. V. Shoup: Practical Threshold Signatures, Proceedings of EuroCrypt ’00, Springer

Verlag LNCS 1807, pp. 207-220.
11. I. Damg̊ard and M. Jurik: A Generalisation, a Simplification and some Appli-

cations of Paillier’s Probabilistic Public-Key System, Proceedings of Public Key
Cryptography 2001, Springer Verlag LNCS series 1992, pp. 119-136.

12. J. Algesheimer, J. Camenisch and V. Shoup: Efficient Computation Modulo a
Shared Secret with Application to the Generation of Shared Safe-Prime Products,
Cryptology ePrint Archive, Report 2002/029, http://eprint.iacr.org/, March
2002.

13. J. Shaoquan and Z. Yufeng: Partial Key Escrow Monitoring Scheme, Cryptology
ePrint Archive, Record 2002/039, http://eprint.iacr.org/, March 2002.

14. I. Damg̊ard and M. Jurik: A Length-Flexible Threshold Cryptosystem with Appli-
cations, BRICS Report Series, RS-03-16, http://www.brics.dk/Publications/,
March 2003.

15

Recent BRICS Report Series Publications

RS-03-22 Ivan B. Damg̊ard and Mads J. Jurik. Scalable Key-Escrow.
May 2003. 15 pp.

RS-03-21 Ulrich Kohlenbach.Some Logical Metatheorems with Applica-
tions in Functional Analysis. May 2003. 55 pp.

RS-03-20 Mads Sig Ager, Olivier Danvy, and Henning Korsholm Ro-
hde. Fast Partial Evaluation of Pattern Matching in Strings.
May 2003. 16 pp. Final version to appear in Leuschel, editor,
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation, PEPM ’03 Proceedings, 2003.
This report supersedes the earlier BRICS report RS-03-11.

RS-03-19 Christian Kirkegaard, Anders Møller, and Michael I.
Schwartzbach.Static Analysis of XML Transformations in Java.
May 2003. 29 pp.

RS-03-18 Bartek Klin and Paweł Sobocínski. Syntactic Formats for Free:
An Abstract Approach to Process Equivalence. April 2003.
41 pp.

RS-03-17 Luca Aceto, Jens Alsted Hansen, Anna Ingólfsdóttir, Jacob
Johnsen, and John Knudsen.The Complexity of Checking Con-
sistency of Pedigree Information and Related Problems. March
2003. 31 pp. This paper supersedes BRICS Report RS-02-42.

RS-03-16 Ivan B. Damg̊ard and Mads J. Jurik. A Length-Flexible
Threshold Cryptosystem with Applications. March 2003. 19 pp.

RS-03-15 Anna Inǵolfsdóttir. A Semantic Theory for Value–Passing Pro-
cesses Based on the Late Approach. March 2003. 48 pp.

RS-03-14 Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan
Midtgaard. From Interpreter to Compiler and Virtual Machine:
A Functional Derivation. March 2003. 36 pp.

RS-03-13 Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan
Midtgaard. A Functional Correspondence between Evaluators
and Abstract Machines. March 2003. 28 pp.

RS-03-12 Mircea-Dan Hernest and Ulrich Kohlenbach. A Complexity
Analysis of Functional Interpretations. February 2003. 70 pp.

