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Equational Axioms for Probabilistic Bisimilarity

(Preliminary Report)

Luca Aceto, Zoltán Ésik?, and Anna Ingólfsdóttir

BRICS??

Department of Computer Science
University of Aalborg
Fredrik Bajers Vej 7E
DK-9220 Aalborg Ø

Abstract. This paper gives an equational axiomatization of probabilis-
tic bisimulation equivalence for a class of finite-state agents previously
studied by Stark and Smolka ((2000) Proof, Language, and Interaction:
Essays in Honour of Robin Milner, pp. 571–595). The axiomatization is
obtained by extending the general axioms of iteration theories (or itera-
tion algebras), which characterize the equational properties of the fixed
point operator on (ω-)continuous or monotonic functions, with three ax-
iom schemas that express laws that are specific to probabilistic bisim-
ilarity. Hence probabilistic bisimilarity (over finite-state agents) has an
equational axiomatization relative to iteration algebras.

1 Introduction

Probabilistic variations on process algebras have been extensively studied in the
literature, and concepts from concurrency theory have been extended to these
languages and their underlying probabilistic models—see, e.g., [19] for a survey
and many references to the original literature. As part of this research effort
to lift process algebraic results to the probabilistic setting, several notions of
probabilistic behavioural equivalences and preorders have been proposed in the
literature over various models of probabilistic processes, and have been axioma-
tized over fragments of probabilistic process algebras. Works presenting complete
axiomatizations of probabilistic semantic theories for processes are, e.g., [2, 4, 18,
20, 21, 25, 29]. Amongst the aforementioned references, the studies [18, 20, 21, 29]
consider languages with finite-state recursive definitions, and offer implicational
proof systems for probabilistic bisimulation equivalence. (Indeed, the language
TPCCS studied by Hansson in [18] involves a combination of time and proba-
bilities.)
? Permanent address: Dept. of Computer Science, University of Szeged, P.O.B. 652,
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In this paper, we contribute to the quest for complete axiomatizations of be-
havioural equivalences for probabilistic processes by offering a purely equational
axiomatization of probabilistic bisimulation equivalence for a class of finite-state
agents previously studied by, e.g., Stark and Smolka in [29]. The axiomatization
is obtained by extending the general axioms of iteration theories (or iteration
algebras) [6, 14], which characterize, among others, the equational properties of
the fixed point operator on (ω-)continuous or monotonic functions, with three
axiom schemas that express laws that are specific to probabilistic bisimilarity.
Hence probabilistic bisimilarity (over finite-state agents) has an equational ax-
iomatization relative to iteration algebras; this axiomatization is finite relative
to iteration algebras if we allow for the use of equation schemas.

Historically, an implicational axiom system for probabilistic bisimilarity over
finite-state processes was first proposed in [21], where its soundness and com-
pleteness were announced for a class of finite-state probabilistic agents with
rational probabilities. The unpublished dissertation [20] offered a proof of the
soundness and completeness result announced in [21], showing that the assump-
tion of rational probabilities could be dropped. However, according to Stark and
Smolka [29], some of the soundness proofs in [20] were flawed, and [29] is appar-
ently the first study which gave a full proof of the soundness and completeness of
the axiom system from [21] for a CCS-like language with (possibly unguarded)
finite-state recursive definitions. In the meantime, Hansson [18] offered an impli-
cational proof system for bisimilarity over the fragment of his language TPCCS
with guarded finite-state recursion. Amongst all these original references, our
technical developments in this paper have mostly been influenced by those in
[29].

We believe that the results presented in this paper improve upon those pre-
vious axiomatizations of probabilistic bisimilarity for the language we consider.
First of all, in light of the simplicity and foundational role played by equational
logic, it is natural to look for purely equational axiomatizations of algebras of
processes—as done, for instance, in the ACP family of process algebras (see, e.g.,
[16] for a textbook presentation). Moreover, whenever finite-state processes are
concerned, implicational axiom systems based on variants on the unique fixed
point induction rule for guarded terms, like those presented in the classic paper
[26] and the aforementioned references, are somewhat unsatisfactory as they af-
ford very few models. A classic example of this phenomenon is present in the
long history of the quest for equational axiomatizations of the algebra of regular
languages. Salomaa gave two complete axiomatizations of the algebra of regular
languages in [28]. However, one of them contains an infinitary rule, and, as ar-
gued by Kozen in [22], the other is not sound in most common interpretations
of regular expressions (such as binary relations) because it uses a version of the
unique fixed point rule. Implicational axiomatizations for the equational theory
of regular languages that are sound over a wealth of important nonstandard in-
terpretations that arise in computer science have been given by Krob in [23] and
Kozen in [22]. A purely equational axiomatization of regular languages has been
offered by Krob in [23].
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Giving a relative axiomatization of probabilistic bisimilarity with respect to
iteration algebras has also the benefit of separating the general (embodied by
the equations of iteration theories) from the specific (expressed by the equations
that describe properties of probabilistic bisimilarity proper). This separation of
concerns has at least two benefits. First of all, as a relative axiomatization of
probabilistic bisimilarity can be given by adding three axiom schemas to those
of iteration algebras, it follows that the nonfinite axiomatizability of the equa-
tional theory of probabilistic bisimilarity is due to that of iteration algebras (see,
e.g., [12]). Secondly, any advance in the equational axiomatization of iteration
algebras would yield an improved equational axiomatization for probabilistic
bisimilarity.

That standard bisimulation equivalence is finitely axiomatizable relative to
iteration algebras was shown in [6, Chapter 13].

2 Preliminaries

In order to make the paper self-contained, we now briefly review the basic notions
from [29] and of iteration algebras that will be needed in this study. Moreover, we
extend the operational semantics from op. cit. and the definition of probabilistic
bisimilarity so that they apply to the whole language of probabilistic terms
directly.

2.1 Probabilistic Finite-State Terms and Probabilistic Bisimilarity

We begin by presenting the syntax and the operational semantics of the language
of finite-state probabilistic terms that will be studied in the remainder of the
paper. Our presentation is based on that in [29], to which the reader is referred
for more details and background information.

We use Var to stand for a countably infinite set of agent variables, ranged
over by x, y, w, z possibly subscripted and/or superscripted, and Act to denote
a nonempty collection of atomic actions, ranged over by a. The meta-variable α
stands for an element of the set Act ∪ Var.

The syntax of probabilistic terms (over Var and Act) is defined as follows:

t ::= x | at | t p+ t | µx.t ,

where x ∈ Var, a ∈ Act and p is a real number in the open interval (0, 1). The
notions of free and bound variables are defined in the standard way—with µx.
as a binding construct—, and a variable x is guarded in term t if every free
occurrence of x in t occurs within a subterm of the form at′. If x = (x1, . . . , xn)
is a vector of distinct variables, we shall sometimes write t(x) to denote the fact
that every free variable of t is in x. (As usual, the free variables of t need not
contain all of the variables in x.) A term is closed if it does not contain any free
variable. Throughout the paper, we consider two terms as syntactically identical
if they are equal up to renaming of their bound variables. If x = (x1, . . . , xn) is
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a vector of distinct variables, t = (t1, . . . , tn) is a a vector of terms, and t is a
term, then t[t/x] denotes the term that results by substituting each occurrence
of xi in t with ti. The definition of substitution in the presence of binders like µ
is standard, and is therefore omitted. When writing terms, we assume that the
scope of a µx. extends to the right as far as possible. In the remainder of the
paper, we use ⊥ as an abbreviation for the closed term µx.x.

t
α→ t′

t p+ u
α→ t′

u
α→ u′

t p+ u
α→ u′ at

a→ t x
x→ ⊥ t[µx.t/x] α→ t′

µx.t
α→ t′

Table 1. Transition rules for terms (α ∈ Act ∪ Var)

Following the approach adopted by Stark and Smolka in [29], we define the
operational semantics for probabilistic terms in two steps. First, we give the tran-
sitions of terms using standard structural operational semantics [27]. (Cf. Table 1
for the rules. Note that, in our formulation of the operational semantics for terms,
the statement t

x→ ⊥ means that the variable x occurs unguarded in the term
t—see, e.g., [1, 17] for similar semantics for fragments of regular CCS.) Next, we
incorporate information about the probability of occurrence of transitions into
the operational semantics by associating, with each triple (t, α, u) consisting of
terms t, u and α ∈ Act ∪ Var, a transition probability prob(t, α, u) ∈ [0, 1]. Fol-
lowing Stark and Smolka, we shall use the more suggestive notation prob(t α→ u)
in lieu of prob(t, α, u). For the sake of completeness, we recall that the function
prob is defined as the least solution (over the complete partial order of the set
of all functions mapping triples (t, α, u) to the real numbers in the interval [0, 1],
ordered pointwise) of the recursive equation

prob = P(prob) ,

where P is given by:

P(prob)(at
α→ u) =

{
1 if a = α and t = u
0 otherwise

P(prob)(x α→ u) =
{

1 if x = α and ⊥ = u
0 otherwise

P(prob)(t1 p+ t2
α→ u) = p · prob(t1

α→ u) + (1− p) · prob(t2
α→ u)

P(prob)(µx.t
α→ u) = prob(t[µx.t/x] α→ u) .

For example, we have that, for every p ∈ (0, 1),

prob(µx.a⊥ p+ x
a→ ⊥) = 1 = prob(µx.x p+ y

y→ ⊥) .
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We refer the interested reader to [29] for more information on the definition of
the probability assigning function prob, and on its connections with the struc-
tural operational semantics in Table 1. Here we limit ourselves to recalling that
prob(t α→ u) is positive if, and only if, t

α→ u can be inferred from the rules
in Table 1 (cf. [29, Lem. 2.1]), and that, for every term t, set S of terms and
α ∈ Act ∪ Var, the summation

∑
u∈S

prob(t α→ u)

converges to a value between 0 and 1 (cf. [29, Propn. 2.2]). Following Stark and
Smolka, we use prob(t α→ S) to denote this value.

Remark 1. Unlike Stark and Smolka in the developments in [29], we have pre-
sented the operational semantics for terms, possibly containing free variables, in
the language we study. In our operational semantics, prob(t x→ ⊥) measures the
“probability of unguardedness” of variable x in term t. Note that prob(t x→ ⊥)
does not coincide with unguardt(x), a measure of the total probability assigned
to unguarded occurrences of variable x in term t defined by Stark and Smolka
in [29, Page 587]. For example, if t is the term µx.x p+ y, with p ∈ (0, 1), then

unguardt(y) = (1 − p) 6= 1 = prob(t
y→ ⊥) .

The reason for using the definition given here instead of the one by Stark and
Smolka is that, unlike the one given in op. cit., the probability of unguardedness
of variables it gives is stable under behavioural equivalence.

In what follows, when we refer to the probabilistic labelled transition system
determined by a term, we mean the fragment of the transition system generated
by the aforementioned operational semantics that can be reached from it.

Notation 1 In what follows, we shall sometimes use the suggestive notation
t

p,α→ u to denote the fact that prob(t α→ u) = p and p > 0, i.e., that t can
perform α with positive probability p, and become u in doing so.

The notion of behavioural equivalence we shall consider in this paper is proba-
bilistic bisimilarity. This we now proceed to present, extended to the whole set
of terms.

Definition 1. A probabilistic bisimulation is an equivalence relation R over
terms that satisfies the following condition:

Whenever tRu, then for all α ∈ Act ∪ Var and all equivalence classes S
of R we have that

prob(t α→ S) = prob(u α→ S) .

Two terms t and u are probabilistically bisimilar, written t
pr∼ u, iff there is a

probabilistic bisimulation that relates them.
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The relation
pr∼ will henceforth be referred to as probabilistic bisimilarity.

Example 1. It is not hard to see that the least equivalence relation containing
all the pairs of the form (µx.x p+ y, y), with p ∈ (0, 1), is a probabilistic bisim-
ulation. Thus, for every p ∈ (0, 1), it holds that

µx.x p+ y
pr∼ y .

Remark 2. The definition of probabilistic bisimilarity given above is an extension
to the whole set of terms of the original one by Larsen and Skou in [24]. The
definitions of this relation given in, e.g., [4, 19] are based on an extension of
equivalence relations to probability distributions. The two definitions coincide.

The import of the following theorem is that the explicit definition of probabilistic
bisimilarity for the whole language of probabilistic terms we have presented
coincides with the one given by Stark and Smolka in [29].

Theorem 1. Let t(x) and u(x) be terms. Then t(x)
pr∼ u(x) iff for all vectors of

closed terms t, it holds that t[t/x]
pr∼ u[t/x].

A proof of the following result, due to Stark and Smolka, may be found in [29,
Sect. 4].

Proposition 1. The relation of probabilistic bisimilarity is a congruence over
the language of finite-state probabilistic terms. Thus, whenever t and u are prob-
abilistically bisimilar, so are the terms

– at and au, for every action a;
– t p+ t′ and u p+ t′, for every term t′;
– t′ p+ t and t′ p+ u, for every term t′; and
– µx.t and µx.u, for every variable x.

2.2 Axioms of Iteration Algebras

The axioms of iteration algebras (or iteration theories) [6] capture the equational
properties of the fixed point operation (be it least, unique, initial, etc.). Several
(conditional) equational bases of identities for iteration algebras have been stud-
ied in the literature (cf., e.g., op. cit. and the references [7, 13, 15]). In this study,
we shall specifically consider an equational axiomatization of iteration algebras
obtained by the second author in [14]. This equational basis for iteration algebras
consists of the so-called Conway equations [6, 7]

µx.t[t′/x] = t[µx.t′[t/x]/x] (1)
µx.t[x/y] = µx.µy.t , (2)

and of a set of equations containing one equation for each finite (simple) group.
(Group equations for the language of µ-terms were introduced in [14] as a gen-
eralization of Conway’s group equations for regular languages, cf. [8]. The com-
pleteness of the Conway equations and the group equations for iteration algebras
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extends Krob’s result in [23], where he confirmed a long standing conjecture of
Conway [8] about the axiomatization of the equational theory of regular sets.)

In the setting of monotonic and continuous functions, equations (1)–(2) above
were established by de Bakker, Bekič, Scott and others (see, e.g., [3, 5]), and are
sometimes referred to as the composition identity (also known as the rolling
identity) and the diagonal identity (also known as the double-dagger identity),
respectively. Note that the classic fixed point equation, viz.

µx.t = t[µx.t/x] , (3)

is the instance of the composition identity obtained by taking t′ to be the variable
x.

To define the group equations, we need to extend the µ-notation to term
vectors t = (t1, . . . , tn). (Henceforth, we shall consider term vectors as ordinary
terms.) Let x = (x1, . . . , xn) be a vector of distinct variables. When n = 1, we
use µx.t to denote the term vector of dimension one whose unique component
is µx1.t1. (We identify any term vector of dimension one with its component.)
If n > 1, let x′ = (x1, . . . , xn−1), t

′ = (t1, . . . , tn−1) and s = t
′[µxn.tn/xn].

(Substitution into a term vector is defined componentwise.) We define

µx.t
def= (µx′.s, (µxn.tn)[µx′.s/x′]) .

The definition is motivated by the Bekič-de Bakker-Scott rule [3, 5].
Suppose now that (G, ·) is a finite group of order n, whose elements are the

integers in the set [n] = {1, . . . , n}. Given a vector x = (x1, . . . , xn) of distinct
variables and an integer i ∈ [n], define i·x = (xi·1, . . . , xi·n). Thus, i·x is obtained
by permuting the components of x according to the ith row of the multiplication
table of G. The group equation associated with G is

(µx.(t[1 · x/x], . . . , t[n · x/x]))1 = µy.t[y/x1, . . . , y/xn] , (4)

where t is any µ-term, y is a variable, and where

(µx.(t[1 · x/x], . . . , t[n · x/x]))1

is the first component of the term vector µx.(t[1 · x/x], . . . , t[n · x/x]).
The group equations are a special case of the commutative identity, which

is entailed by the weak functorial implication (see, e.g., [6, Chapter 6, Sect. 4]).
The weak functorial implication can be stated as follows:

For terms ti(x1, . . . , xn, y) (i ∈ [n]) and t(x, y), if ti(x, . . . , x, y) = t(x, y)
for every i ∈ [n], then

(µ(x1, . . . , xn).(t1, . . . , tn))1 = µx.t(x, y) .

The above implication will play an important role in the technical developments
to follow (see the appendix).
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S1 x p+ y = y 1−p+ x
S2 x p+ (y q+ z) = (x r+ y) s+ z if C(p, q, r, s) holds
S3 x p+ x = x
R2 µx.t p+ x = µx.t

Table 2. Stark and Smolka’s Equational Axioms for Probabilistic Bisimilarity

3 An Equational Axiomatization of Probabilistic
Bisimilarity

The main result of [29] is a complete implicational axiomatization for probabilis-
tic bisimilarity over probabilistic finite-state terms. The axiomatization offered
by Stark and Smolka in op. cit. consists of the fixed point equation (3) (axiom R1
in op. cit.), the unique fixed point rule for guarded terms and of the equations in
Table 2. In equation S2, the condition C(p, q, r, s) holds true whenever p = rs,
(1− p)q = (1− r)s and (1− s) = (1− p)(1− q). We recall that the unique fixed
point rule for guarded terms, axiom R3 in [29], states that:

From t = u[t/x], where all occurrences of x in u are guarded, infer that
t = µx.u.

The main aim of this study is to show that the equational laws of probabilistic
bisimilarity over finite-state probabilistic terms have a natural axiomatization
over the equations of iteration algebras. To this end, we shall consider the purely
equational axiom system Ax obtained by extending the equational basis of iter-
ation algebras consisting of (1), (2) and the group equations (4) with axioms S1
and S2 from Table 2, and the following equation

µx.(x p+ y) = y . (5)

The above equation expresses a strengthened form of idempotence of the p+
operation. In fact, equation S3 in Table 2 follows from it and the fixed point
equation (3) thus:

y = µx.x p+ y = (µx.x p+ y) p+ y = y p+ y .

Moreover, in the presence of axiom S1 and of the diagonal equation, (5) proves
equation R2 in Table 2. Indeed:

µx.t p+ x = µx.µz.t p+ z (z fresh)
= µx.((µz.y p+ z)[t/y]) (y fresh)
= µx.(y[t/y])
= µx.t .

The remainder of this paper will be devoted to a proof of the following soundness
and completeness theorem:
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Theorem 2. The axiom system Ax completely axiomatizes probabilistic bisimi-
larity over the language of finite-state probabilistic terms, i.e., for all terms t, u,
the equivalence t

pr∼ u holds iff the equality t = u is provable using the equations
in Ax.

4 Soundness

Our first step towards a proof of Theorem 2 will be to show the following theorem,
to the effect that the axiom system Ax is sound with respect to probabilistic
bisimilarity.

Theorem 3 (Soundness). For all terms t and u, if Ax proves that t = u then
t

pr∼ u.

Since Stark and Smolka have proven in [29, Sect. 4] that their axiom system is
sound with respect to

pr∼, the above theorem follows from the following result to
the effect that the implicational axiom system due to Stark and Smolka entails
Ax:

Theorem 4. Every equation in Ax can be proven from the axiom system for
probabilistic bisimilarity due to Stark and Smolka.

Remark 3. Another, possibly more standard, approach to showing the sound-
ness of Ax with respect to probabilistic bisimilarity is to identify the probabilis-
tic transition systems associated with the left- and right-hand sides of all of the
equations in Ax, and to exhibit appropriate probabilistic bisimulations between
them—as we did for axiom (5) in Example 1. We have, however, plumped for
an equational approach to such a proof because it can be better formalized for
complex equations like the Conway and group equations. Moreover, Theorem 4
gives more information than the mere soundness of Ax with respect to proba-
bilistic bisimilarity. For example, it entails that the models of the axiom system
by Stark and Smolka are also models of Ax.

It is clear that axiom (5) is derivable from the axiom system by Stark and Smolka
by using axioms S1 and R2 in Table 2, and the fixed point equation. It is much
less clear that so are the Conway and group equations. The interested reader
may find the details of the non-trivial equational arguments used in the proofs
of these equations from the axiom system by Stark and Smolka in the appendix.

5 Normal Forms

The next step in the proof of our main result is the isolation of a suitable notion
of normal form for finite-state probabilistic terms. Normal forms have a direct
interpretation as finite-state probabilistic transition systems, and this will be
crucial in establishing the completeness of our axiom system. We prove that,
modulo Ax, every term is provably equal to one in normal form (Theorem 5).
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We begin by introducing a useful notation that will help clarify the connection
between terms in normal form, and the probabilistic transition systems they
denote. In this notation, we use the notion of stochastic vector, which is a vector
of real numbers in the interval [0, 1] that sum up to 1.

Notation 2 Let {(pi, ti) | i ∈ [k]} be a nonempty set of pairs, where each ti is
a term, and (p1, . . . , pk) is a stochastic vector. The notation

∑
i∈[k]

pi · ti

is defined recursively as follows:

∑
i∈[k]

pi · ti def
=




tk if pk = 1∑
i∈[k−1] pi · ti if pk = 0

(
∑

i∈[k−1](pi/(1− pk)) · ti) 1−pk
+ tk if pk ∈ (0, 1) .

In what follows, we shall often write

p1 · t1 + · · ·+ pk · tk
in lieu of

∑
i∈[k] pi · ti, and t instead of 1 · t. The ·’s will often be omitted in

equational derivations.

For example, we write
1
4
· a⊥+

1
2
· x +

1
4
· ⊥

for the term
(a⊥ 1/3+ x) 3/4+ ⊥ .

Definition 2. A simple term in the variables x = (x1, . . . , xn) and parameters
y = (y1, . . . , ym) is a term of the form

p1 · t1 + · · ·+ pk · tk + q1 · y1 + · · ·+ qm · ym + q · ⊥ , (6)

where:

– k, m ≥ 0,
– (p1, . . . , pk, q1, . . . , qm, q) is a stochastic vector,
– for every i ∈ [k], the term ti is of the form ax` for some action a and variable

x` ∈ {x1, . . . , xn}, and
– for every i1, i2 ∈ [k], if i1 6= i2 then ti1 6= ti2 .

(If k or m are 0, then the corresponding part of a simple term is missing.)
A summand of a simple term of the form (6) is a subterm of the form p · t,

where p is positive.
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Note that, in light of the last condition above on simple terms, modulo S1 and
S2, axiom S3 in Table 2 cannot be applied to a simple term when used as a
rewrite rule from left to right. For example, the term

2
3
· ax +

1
3
· ax

is not simple, but using S3 from left to right it can be proven equal to the simple
term 1 · ax, that is to ax.

Definition 3 (Normal Form Terms). A normal form term in the parameters
y = (y1, . . . , ym) is a term

µx.t = µ(x1, . . . , xn).(t1, . . . , tn) ,

where each ti (i ∈ [n]) is a simple term in the variables x = (x1, . . . , xn) and
parameters y = (y1, . . . , ym).

Intuitively, the ith component of a term vector µ(x1, . . . , xn).(t1, . . . , tn) is the
ith component of a distinguished solution of the list of equations

x1 = t1
...

xn = tn .

We shall sometimes identify a normal form term with its corresponding list of
equations. The main reason for doing so is that the list of equations associated
with a normal form term can be naturally viewed as a kind of probabilistic
transition system. Indeed, the set of states of such a probabilistic transition
system may be taken to be the integers in the set [n]—here, integer i stands
for the ith component of the term vector determined by the list of equations—
plus a distinguished ⊥ state. If the simple term ti has the form (6), the set of
transitions out of state i ∈ [n] is defined as follows:

– for every j ∈ [n], there is a transition i
p,a→ j if, and only if, p · axj is a

summand of the simple term ti—that is, when ti
p,a→ xj holds; and

– for every variable x, there is a transition i
p,x→ ⊥ if, and only if, p · x is a

summand of the simple term ti—that is, when ti
p,x→ ⊥ holds.

We use ts(t(x, y)) to denote this probabilistic transition system, and say that a
normal form µx.t(x, y) is accessible if every state of ts(t(x, y)) is reachable from
state 1.

Proposition 2. The transition system ts(t(x, y)) is probabilistically bisimilar to
µx.t(x, y), for every normal form µx.t(x, y).

Remark 4. Actually, the transition systems ts(t(x, y)) and µx.t(x, y) are not just
probabilistically bisimilar, but also strongly equivalent—in the sense that the two
transition systems “unfold to the same tree” (cf. [11]).
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The following normal form theorem is a version of Milner’s equational char-
acterization of regular CCS process, cf. [26]. A version of Milner’s equational
characterization theorem for the finite-state probabilistic terms we consider has
been given by Stark and Smolka in [29, Thm. 2].

Theorem 5. For every term t(y), there is an accessible normal form term
µx.t(x, y) such that the equality t(y) = (µx.t(x, y))1 is provable from the ax-
ioms in Ax.

Proof. The proof follows the lines of similar arguments in, e.g., [6], and uses the
Conway equations (1)–(2) and their vector forms, axioms S1 and S2 from Table 2
and equation (5). Related arguments may be found in, e.g., [10, 26, 28, 29]. �

¿From now on, we shall assume that terms in normal form are accessible. More-
over, we equip the transition system ts(t(x, y)) with the initial state 1. Proba-
bilistic bisimulations between two such transition systems will relate their initial
states.

6 Completeness

In Sect. 4, we established the soundness of our axiom system Ax with respect to
probabilistic bisimilarity by showing that the axiom system proposed by Stark
and Smolka in [29] entails it. We now aim at proving that, like the one by
Stark and Smolka, our axiom system is complete with respect to probabilistic
bisimilarity. This is the import of the following theorem:

Theorem 6 (Completeness). For all terms t and u, if t
pr∼ u then Ax proves

that t = u.

The remainder of this section will be devoted to a proof of the above result.
Apart from the normal form theorem (Theorem 5), our proof of the completeness
theorem consists of two main ingredients.

– First we shall show that, in a suitable technical sense, two probabilistically
bisimilar normal forms are structurally related.

– Next, we use the structural relationship between probabilistically bisimilar
normal forms to show that two equivalent normal forms are provably equal
using Ax. It is this final step of the proof that relies upon the group equations
and the full power of the axioms of iteration theories.

We now proceed to study the structural relation that exists between probabilis-
tically bisimilar normal forms. In the remainder of this section, equality of terms
is modulo the axioms S1–S3 in Table 2.

Definition 4. Let x = (x1, . . . , xn) and z = (z1, . . . , zk) be two vectors, each
consisting of distinct variables. Let, furthermore, ρ be a function mapping [n] to
[k]. For every term t(x, y), we define the term t ◦ ρ thus:

t ◦ ρ
def
= t[zρ(1)/x1, . . . , zρ(n)/xn] .

12



If t = (t1, . . . , tn) is a vector of terms over variables x = (x1, . . . , xn), then we
write t ◦ ρ for the vector of terms (t1 ◦ ρ, . . . , tn ◦ ρ).

If u = (u1, . . . , uk) is a vector of terms, then we write ρ ◦ u for the vector of
terms (uρ(1), . . . , uρ(n)).

Note that when the components of t are simple, then, modulo S1–S3, so are the
components of t ◦ ρ.

Example 2. Consider the vectors of simple terms t = (t1, t2, t3) and u = (u1, u2)
over variables x = (x1, x2, x3), where

t1 =
1
3
· ax2 +

2
3
· ax3

t2 = ax2

t3 =
1
2
· ax2 +

1
2
· ax3

u1 = ax1 and
u2 = an arbitrary simple term .

Let ρ map each i ∈ [3] to 1. Then, modulo the axioms S1–S3 in Table 2,

t ◦ ρ = (ax1, ax1, ax1) = ρ ◦ u .

Whenever µx.t(x, y) and µz.u(z, y) are two terms in normal form over variables
x = (x1, . . . , xn) and z = (z1, . . . , zk), respectively, we say that a function ρ :
[n]→ [k] determines a probabilistic bisimulation from the probabilistic transition
system ts(t(x, y)) to ts(u(z, y)) if, and only if, the least equivalence relation over
the disjoint union of [n] and [k] containing the graph of ρ is a probabilistic
bisimulation.

Proposition 3. Let µx.t(x, y) and µz.u(z, y) be two terms in normal form over
variables x = (x1, . . . , xn) and z = (z1, . . . , zk), respectively. A function ρ : [n]→
[k] determines a probabilistic bisimulation from ts(t(x, y)) to ts(u(z, y)) if, and
only if, the following two conditions hold:

1. ρ(1) = 1, and
2. t ◦ ρ = ρ ◦ u modulo axioms S1–S3 in Table 2.

Notation 3 In what follows, we shall write t(x, y)→
ρ

u(z, y) when ρ determines

a probabilistic bisimulation from ts(t(x, y)) to ts(u(z, y)).

Proposition 4. Let µx.t(x, y) and µz.u(z, y) be two terms in normal form over
variables x = (x1, . . . , xn) and z = (z1, . . . , zk) respectively. Then the probabilis-
tic transition system ts(t(x, y)) is probabilistically bisimilar to ts(u(x, y)) if, and
only if, there are a normal form µw.r(w, y) (over variables w = (w1, . . . , w`)),
and functions ρ : [`]→ [n] and τ : [`]→ [k] such that

t(x, y)←
ρ

r(w, y)→
τ

u(z, y) .
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In light of Propositions 2–4, in order to prove the completeness of our axiom
system with respect to probabilistic bisimilarity it would be sufficient to show
that:

Proposition 5. Whenever µx.t(x, y) and µz.u(z, y) are two terms in normal
form over variables x = (x1, . . . , xn) and z = (z1, . . . , zk), respectively, and ρ :
[n]→ [k] is a function meeting the constraints in the statement of Proposition 3,
then the axiom system Ax proves that

(µx.t)1 = (µz.u)1 .

Indeed, using the above statement, we can prove Theorem 6 thus:

Proof of Theorem 6: Let t and u be two probabilistically bisimilar terms. By
Theorem 5, there are normal forms µx.t(x, y) and µz.u(z, y) such that Ax proves
that

t = (µx.t(x, y))1 and u = (µz.u(z, y))1 .

By Proposition 2 and the soundness of the axiom system Ax with respect to prob-
abilistic bisimilarity, we have that the probabilistic transition system ts(t(x, y))
is probabilistically bisimilar to ts(u(z, y)). By Proposition 4, it follows that there
are a normal form µw.r(w, y), and functions ρ and τ such that

t(x, y)←
ρ

r(w, y)→
τ

u(z, y) .

By Proposition 5, Ax proves that

(µx.t(x, y))1 = (µw.r(w, y))1 = (µz.u)1 .

By transitivity, we thus obtain t = u, which was to be shown. �
Our order of business is now to prove Proposition 5. In fact, we establish the
following strengthening of that statement:

Proposition 6. Let µx.t(x, y) and µz.u(z, y) be two terms in normal form over
variables x = (x1, . . . , xn) and z = (z1, . . . , zk), respectively. Assume that ρ :
[n]→ [k] is a function meeting the constraints in the statement of Proposition 3.
Then Ax proves that

µx.t = ρ ◦ (µz.u) . (7)

To prove the above result, we rely on the fact that (7) is implied by the identities
of iteration algebras if the term vectors t(x, y) and u(z, y) satisfy the follow-
ing condition: There exist a vector w = (w1, . . . , w`) of variables, term vectors
rj(w, y), j ∈ ρ([n]), and functions ρi : [`]→ [n], i ∈ [n], such that for all i ∈ [n]
and j ∈ [k] with ρ(i) = j it holds that

rj ◦ ρi = ti

modulo axioms S1–S3 in Table 2, where rj and ti denote the jth component of
r and the ith component of t, respectively. (See the generalized commutative
identity on p. 138 in [6].) We establish this condition by using:
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Lemma 1. Let c be a positive real number. Suppose furthermore that ci =
(ci1, . . . , ciki) (i ∈ [n]) are nonempty sequences of positive real numbers all sum-
ming up to c. Then there is a sequence (d1, . . . , d`) of positive real numbers such
that, for every i ∈ [n], there are positive integers `1 < `2 < · · · < `ki−1 < ` with

ci1 = d1 + · · ·+ d`1

ci2 = d`1+1 + · · ·+ d`2

...
ciki = d(`ki−1+1) + · · ·+ d` .
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A Proof of the Soundness Theorem

For use in the technical developments to follow, we begin by noting that the
set obtained by adding ∞ to the collection of nonnegative real numbers is a
complete semiring in the sense of [9]. In such a semiring, there is a canonical
∗-operation defined by

p∗ def=
∞∑

i=0

pi .

In our setting, this operation becomes

p∗ =
{ 1

1−p if 0 ≤ p < 1,

∞ otherwise.

¿From this definition we derive easily that:

1. p∗(1− p) = 1, for all p ∈ [0, 1),
2. p∗ = 1 + pp∗,
3. (pq)∗p = p(qp)∗, and
4. (p∗q)∗p∗ = (p + q)∗.

Note that, for every stochastic vector (p, q) whose components are both positive,
term t and variable x, we have that:

µx.px + qt = µx.(p∗q)t . (8)

(In the above equation, and in the remainder of this appendix, we use the no-
tation introduced in Notation 2 in the main body of the paper. Note, moreover,
that this equation remains valid also for q = 0, if we agree that 0t = ⊥.) Indeed,
using axiom R2 in Table 2, the left-hand side of the above equation reduces to
µx.t, which is equal to the right-hand side because p∗q = 1.

Furthermore for all terms t, s and variable x, we define:

t ·x s
def= t[s/x] .

We use · instead of ·x if the meaning is clear from the context. Then we have
that the following syntactic equalities hold:

1. (t · s) · u = t · (s · u),
2. x · s = s · x = s, and
3. (t + u) · s = t · s + u · s.

If we express the fixed point identities (1)–(3) in this formalism we get:

1. Fixed point identity: µx.f(x) = f(x) · (µx.f(x)).
2. Diagonal identity: µx.f(x, x) = µy.µx.f(x, y).
3. Rolling identity: µx.(f(x) · g(x)) = f(x) · µx.(g(x) · f(x)).
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Note that all the terms mentioned in the above equations, and in the proofs to
follow, may contain any number of parameters apart from the explicitly men-
tioned recursion variables. We shall henceforth omit these parameters from terms
for the sake of readability.

The following result will be used in the proofs of Propositions 7 and 9.

Lemma 2. Let t be a term containing unguarded occurrences of the variables
x1, . . . , xn. Then, using axioms S1–S3, R2 and the fixed point equation, t can be
written in the form

p1x1 + · · ·+ pnxn + pu ,

where (p1, . . . , pn, p) is a stochastic vector, all of the pi’s (i ∈ [n]) are positive,
and u is a term in which all of the variables x1, . . . , xn are guarded.

Proposition 7. The diagonal and the rolling identities are derivable from the
implicational axiom system by Stark and Smolka presented in Sect. 3.

Proof. If the variables only occur guarded in the terms, the result follows from
the developments in [6, Chapter 6, Sect. 4]. For the general case we proceed as
follows.

Diagonal identity: We want to prove the equation

µx.g(x, x) = µy.µx.g(x, y) ,

where
g(x, y) = px + qy + rf(x, y) ,

(p, q, r) is a stochastic vector, and the variables x and y are guarded in
f(x, y). In what follows, we focus on the case in which all of the components
of (p, q, r) are positive. All of the remaining cases can be dealt with in similar
or simpler fashion.
We begin by noting that

µx.g(x, x) = µx.f(x, x) . (9)

Indeed, by (8) we have:

µx.g(x, x) = µx.px + qx + rf(x, x) = µx.(p + q)∗rf(x, x) = µx.f(x, x) .

As x is guarded in f(x, x), it is therefore sufficient to prove that µy.µx.g(x, y)
is a fixed point of f(x, x) as, by (9) and the unique fixed point rule for guarded
terms (axiom R3 in [29]) that would imply that

µy.µx.g(x, y) = µx.f(x, x) = µx.g(x, x) .

Thus we aim at proving that

f(x, x) ·x (µy.µx.g(x, y)) = µy.µx.g(x, y) .
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We have that

µx.g(x, y) = µx.px + qy + rf(x, y)
= µx.p∗qy + p∗rf(x, y)
= p∗qy + (p∗rf(x, y) ·x (µx.(p∗qy + p∗rf(x, y))))
= p∗qy + (p∗rf(x, y) ·x (µx.g(x, y))) .

It now follows that:

µy.µx.g(x, y) = µy.f(x, y) ·x µx.g(x, y) . (10)

Indeed, this equality can be proven thus:

µy.µx.g(x, y) = µy.p∗qy + (p∗rf(x, y) ·x µx.g(x, y))
= µy.(p∗q)∗p∗(rf(x, y) ·x µx.g(x, y))
= µy.(p + q)∗r(f(x, y) ·x µx.g(x, y))
= µy.f(x, y) ·x µx.g(x, y) .

We note that if ξ and η are fresh variables then
1. f(x, x) ·x t = (f(ξ, η) ·ξ t) ·η t and
2. (f(x, y) ·x t) ·y u = (f(ξ, η) ·ξ (t ·y u)) ·η u.

These equalities, together with the fixed point equation and (10), imply

f(x, x) ·x µy.µx.g(x, y) =
(f(ξ, η) ·ξ [µy.µx.g(x, y)]) ·η {µy.µx.g(x, y)}

= (f(ξ, η) ·ξ [µx.g(x, y) ·y µy.µx.g(x, y)]) ·η {µy.µx.g(x, y)}
= (f(x, y) ·x [µx.g(x, y)]) ·y {µy.µx.g(x, y)}
= (f(x, y) ·x µx.g(x, y)) ·y {µy.(f(x, y) ·x µx.g(x, y))}
= µy.(f(x, y) ·x µx.g(x, y))
= µy.µx.g(x, y)

as we wanted to prove.
Rolling identity: We want to show that

µx.[(p1x + p2f(x)) · (q1x + q2g(x))] =
(p1x + p2f(x)) · µx.[(q1x + q2g(x)) · (p1x + p2f(x))] , (11)

where (p1, p2) and (q1, q2) are stochastic vectors and the variable x is guarded
in both f(x) and g(x). Again, in what follows, we focus on the case in which
all components of (p1, p2) and (q1, q2) are positive. All of the remaining cases
can be dealt with in similar or simpler fashion.
The left-hand side of (11) can be rewritten as a fixed point of a guarded
term as follows:

µx.(p1x + p2f(x)) · (q1x + q2g(x)) =
µx.p1q1x + p1q2g(x) + p2[f(x) · (q1x + q2g(x))] =
µx.(p1q1)∗(p1q2g(x) + p2[f(x) · (q1x + q2g(x))]) .
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Therefore it is sufficient to prove that the right-hand side of (11) is a fixed
point of the term

(p1q1)∗(p1q2g(x) + p2f(x) · (q1x + q2g(x))) .

To obtain this we proceed as follows:

(p1q1)∗(p1q2g(x) + p2f(x) · (q1x + q2g(x)))
·(p1x + p2f(x)) · µx.[(q1x + q2g(x)) · (p1x + p2f(x))] =

(p1q1)∗p1q2g(x) · (p1x + p2f(x)) · µx.[(q1x + q2g(x)) · (p1x + p2f(x))]+
(p1q1)∗p2f(x) · [(q1x + q2g(x)) · (p1x + p2f(x))]·

µx.[(q1x + q2g(x)) · (p1x + p2f(x))] =

(p1q1)∗p1q2g(x) · (p1x + p2f(x)) · µx.[(q1x + q2g(x)) · (p1x + p2f(x))]+
(p1q1)∗p2f(x) · µx.[(q1x + q2g(x)) · (p1x + p2f(x))] =

p1(p1q1)∗q2g(x) · (p1x + p2f(x)) · µx.[(q1x + q2g(x)) · (p1x + p2f(x))]+
(p1(p1q1)∗q1 + 1)p2)f(x) · µx.[(q1x + q2g(x)) · (p1x + p2f(x))] =

p1(p1q1)∗q2g(x) · (p1x + p2f(x)) · µx.[(q1x + q2g(x)) · (p1x + p2f(x))]+
p1(p1q1)∗q1p2f(x) · µx.[(q1x + q2g(x)) · (p1x + p2f(x))]+
p2f(x) · µx.[(q1x + q2g(x)) · (p1x + p2f(x))] =

p1(p1q1)∗{q2g(x) · (p1x + p2f(x)) + q1p2f(x)}
·µx.[(q1x + q2g(x)) · (p1x + p2f(x))]+

p2f(x) · µx.[(q1x + q2g(x)) · (p1x + p2f(x))] =

p1[(p1q1)∗{q1p2f(x) + q2g(x) · (p1x + p2f(x))}
·µx.[(p1q1)∗{q1p2f(x) + q2g(x) · (p1x + p2f(x))}+

p2f(x) · µx.[(q1x + q2g(x)) · (p1x + p2f(x))] =

p1µx.[(p1q1)∗{q1p2f(x) + q2g(x) · (p1x + p2f(x))}]+
p2f(x) · µx.[(q1x + q2g(x)) · (p1x + p2f(x))] =

p1µx.[(q1x + q2g(x)) · (p1x + p2f(x))]+
p2f(x) · µx.[(q1x + q2g(x)) · (p1x + p2f(x))] =

(p1x + p2f(x)) · µx.[(q1x + q2g(x)) · (p1x + p2f(x))]

which was to be shown. �

We are now left to prove that the group equations mentioned in Sect. 2.2 are
provable from the axiom system proposed by Stark and Smolka in [29]. In fact,
since the group equations are a special case of the commutative identity, which
is entailed by the weak functorial implication, we shall show that the weak func-
torial implication is derivable from the implicational axiom system by Stark and
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Smolka presented in Sect. 3. In the proof of this result, it will be convenient
to have the generalization of (8) presented in the following proposition. In stat-
ing this generalization of (8), we use the fact that the semiring of all matrices
whose entries are either nonnegative reals or∞ is also complete, and thus comes
equipped with its ∗-operation.

Proposition 8. Let x be n-dimensional vector of distinct variables, and t be an
n-dimensional vector of terms. Assume that [A, E] is a stochastic matrix (i.e.,
a matrix all of whose rows are stochastic vectors), where A is an n× n matrix,
and E is an n-dimensional vector. Then the implicational axiom system by Stark
and Smolka presented in Sect. 3 proves that

µx.Ax + Et = µx.(A∗E)t . (12)

Recall from Sect. 2.2 that the weak functorial implication can be stated as fol-
lows:

For terms ti(x1, . . . , xn, y) (i ∈ [n]) and t(x, y), if ti(x, . . . , x, y) = t(x, y)
for every i ∈ [n], then

(µ(x1, . . . , xn).(t1, . . . , tn))1 = µx.t(x, y) .

Proposition 9. The weak functorial implication is derivable from the implica-
tional axiom system by Stark and Smolka presented in Sect. 3.

Proof. Throughout the proof, we shall write ρ for the unique mapping from [n]
to [1], and t† for µx.t. Following Defn. 4, we also use the following abbreviations:

t ◦ ρ
def= (t1(x, . . . , x, y), . . . , tn(x, . . . , x, y)) and

ρ ◦ t
def= (t(x, y), . . . , t(x, y)︸ ︷︷ ︸

n-times

) .

Using these notations, assume that

t ◦ ρ = ρ ◦ t . (13)

We aim at proving that
µx.t = ρ ◦ t†

is derivable from the implicational axiom system by Stark and Smolka presented
in Sect. 3.

First of all, note that, if t is guarded, then so is t, and the implication follows
from the unique fixed point induction rule for guarded terms. Indeed, we have
that

t[(t†, . . . , t†︸ ︷︷ ︸
n-times

)/(x1, . . . , xn)] = (t ◦ ρ)[t†/x]

= (ρ ◦ t)[t†/x] (By (13))
= ρ ◦ (t[t†/x])
= ρ ◦ t† (By the fixed point equation) .
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Thus, ρ ◦ t† is a fixed point of the vector of guarded terms t, and the unique
fixed point induction rule for guarded term vectors yields the claim (see, e.g.,
[29, Theorem 1]).

Suppose now that t is not guarded. Write

t = Ax + Eu ,

where [A, E] is an n × (n + 1) stochastic matrix, and each of the terms in the
vector u is guarded. Then, by (13), we have that

t = px + qs ,

where p is the sum of the entries of each row of A. Moreover, each component of
E is equal to q = (1− p). Note that, since x is not guarded in t, the real number
p is positive. In what follows we focus on the case in which q is also positive.
(The case in which q is zero is entailed by (12) taking E to be a vector whose
entries are all 0.) In this case, we have that

A ◦ ρ = ρ ◦ p and
E ◦ ρ = ρ ◦ q .

Moreover, by (13),
u ◦ ρ = ρ ◦ s . (14)

Using (8) and (12), it now follows that:

µx.t = µx.(A∗E)u and
µx.t = µx.(p∗q)s .

Note now that s = (p∗q)s is guarded, and so is each component of (A∗E)u. Thus,
by the previous analysis for the guarded case, we are done if we can show that

((A∗E)u) ◦ ρ = ρ ◦ ((p∗q)s) .

The above equality, however, can be proven as follows:

((A∗E)u) ◦ ρ = (A∗E)(u ◦ ρ)
= (A∗E)(ρ ◦ s) (By (14))
= A∗(ρ ◦ (qs))
= ρ ◦ ((p∗q)s) .

The last equality in the above derivation follows from the fact that, since each
row of A has sum p,

A∗ρ = (
∞∑

i=0

Ai)ρ =
∞∑

i=0

(Aiρ) =
∞∑

i=0

(ρ ◦ pi) = ρ ◦ (
∞∑

i=0

pi) = ρ ◦ p∗ . �
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