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Abstract

We present a translation from the call-by-value λ-calculus to monadic
normal forms that includes short-cut boolean evaluation. The translation
is higher-order, operates in one pass, duplicates no code, generates no
chains of thunks, and is properly tail recursive. It makes a crucial use of
symbolic computation at translation time.
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1 Introduction

Program transformation and code generators offer typical situations where sym-
bolic computation makes it possible to merge several passes into one. The CPS
transformation is a canonical example: it transforms a term in direct style into
one in continuation-passing style (CPS) [39, 43]. It appears in several Scheme
compilers, including the first one [30, 33, 42], where it is used in two passes:
one for the transformation proper and one for the simplifications entailed by
the transformation (the so-called “administrative redexes”). One-pass versions
have been developed that perform administrative reductions at transformation
time [2, 15, 48]. They form one of the first, if not the first, instances of higher-
order and natively executable two-level specifications.

The notion of binding times was discovered early by Jones and Muchnick [27]
in the context of programming languages. Later it proved instrumental for
partial evaluation [28], for program analysis [37], and for code generation [50]. It
was then soon noticed that two-level specifications (i.e., ‘staged’ [29], or ‘binding-
time separated’ [35], or again ‘binding-time analyzed’ [25] specifications) were
directly expressible in languages such as Lisp and Scheme that offer quasiquote
and unquote—a metalinguistic capability that has since been rediscovered in
‘C [19], cast in a typed setting in MetaML [45], and connected both to modal
logic [18] and to temporal logic [17]. In Lisp, quasiquote and unquote are used
chiefly to write macros [5], an early example of symbolic computation during
code generation [32]. In partial evaluation [10, 26], two-level specifications are
called ‘generating extensions’. Nesting quasiquote and unquote yields macros
that generate macros and multi-level generating extensions.

The goal of this article is to present a one-pass transformer into monadic
normal forms [23,36] that performs short-cut boolean evaluation, duplicates no
code, generates no chains of thunks, and is properly tail recursive. We consider
the following source language:

ΛE 3 e ::= ` | x | λx.e | e e | if b then e else e

ΛB 3 b ::= e | b ∧ b | b ∨ b | ¬b | if b then b else b

We translate programs in this source language into programs in the following
target language:

ΛC
ml 3 c ::= return v |

let x = v v in c | v v |
if v then c else c |
let x = λ().c in c | x ()

ΛV
ml 3 v ::= ` | x | λx.c

The source language is that of the call-by-value λ-calculus with literals, con-
ditional expressions, and computational effects. The target language is that
of monadic normal forms (sometimes called A-normal forms [21]), with a syn-
tactic separation between computations (c, the serious expressions) and values
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(v, the trivial expressions), as traditional since Reynolds and Moggi [36, 41].
The return production is the unit and the first let production is the bind of
monadic style [47]. Computations are carried out by applications, which can
either be named with a let expression or occur in tail position. Conditional
expressions exclusively occur in tail position. The last two productions specify
the declaration and activation of thunks, which are used to ensure that no code
is duplicated.

For example, a source term such as

λx.g0 (h0 (if (g1 (h1 x)) ∨ x then g2 (h2 x) else x))

is translated into the following target term (automatically pretty printed in
Standard ML for clarity), in one pass.

return (fn x => let val k0 = fn w1 => let val w2 = h0 w1

in g0 w2

end

val t5 = fn () => let val w3 = h2 x

val w4 = g2 w3

in k0 w4

end

val w6 = h1 x

val w7 = g1 w6

in if w7

then t5 ()

else if x

then t5 ()

else k0 x

end)

In this target term, the source context g0 (h0 [·]) is translated into the function
k0, where the outside call occurs tail recursively. Because of the disjunction in
the test, a thunk t5 is created for the then branch. In this thunk, the outside
call occurs tail recursively. The composition of g1 and h1 is sequentialized and
its result is tested. If it holds true, t5 is activated; otherwise, the second half
of the disjunction is tested. If it holds true, t5 is activated (the code for t5 is
shared). Otherwise, the value of x is passed to the (sequentialized) composition
of g0 and h0. Free variables (i.e., g0, h0, g1, h1, g2, and h2) have been translated
to themselves (i.e., g0, h0, g1, h1, g2, and h2, respectively).

Monadic normal forms offer the main advantages of CPS (i.e., all intermedi-
ate results are named and their computation is sequentialized),1 and they have
been used in compilers for functional languages [6,7,21–23,38,40,46]. Therefore,
a one-pass transformation into monadic normal form with short-cut boolean
evaluation could well be of practical use (i.e., outside academia).

The rest of this article is organized as follows. We present a standard, two-
pass translation from the source language to the target language (Section 2),

1The jury is still out about the other advantages of CPS [40].
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and then its one-pass counterpart (Section 3). We then illustrate it (Section 4),
assess it (Section 5), and then review related work and conclude (Section 6).

2 A Standard, Two-Pass Translation

The first part of the translation is simple enough: it is the standard encoding
of the call-by-value λ-calculus into the computational metalanguage, straight-
forwardly extended to handle conditional expressions.

Ev[[`]] = return `

Ev[[x]] = return x

Ev[[λx.e]] = return λx.Ev[[e]]
Ev[[e0 e1]] = let w0 = Ev[[e0]] in let w1 = Ev[[e1]] in w0 w1

Ev[[if b then e1 else e0]] = if Bv[[b]] then Ev[[e1]] else Ev[[e0]]

Bv[[e]] = Ev[[e]]
Bv[[b1 ∧ b2]] = if Bv[[b1]] then Bv[[b2]] else false
Bv[[b1 ∨ b2]] = if Bv[[b1]] then true else Bv[[b2]]

Bv[[¬b]] = if Bv[[b]] then false else true
Bv[[if b2 then b1 else b0]] = if Bv[[b2]] then Bv[[b1]] else Bv[[b0]]

The second pass of the translation consists in performing monadic simplifi-
cations [24] and in unnesting conditional expressions until the simplified term
belongs to ΛC

ml .

3 A One-Pass Translation

In this section, we build on the full one-pass transformation into monadic normal
form for the call-by-value λ-calculus:

E : ΛE → ΛC
ml

E [[`]] = return `

E [[x]] = return x

E [[λx.e]] = return λx.E [[e]]
E [[e0 e1]] = Ec[[e0]] λv0.Ec[[e1]] λv1.v0 @ v1

Ec : ΛE → (ΛV
ml → ΛC

ml) → ΛC
ml

Ec[[`]] κ = κ @ `

Ec[[x]] κ = κ @ x

Ec[[λx.e]] κ = κ @ λx.E [[e]]
Ec[[e0 e1]] κ = Ec[[e0]] λv0.Ec[[e1]] λv1.let w = v0 @ v1 in κ @ w
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The function E is applied to subterms occurring in tail position, and the function
Ec to the other subterms; it is indexed with a functional accumulator κ.2 This
transformation is higher-order (witness the type of Ec) and it is also two level:
the underlined terms are hygienic syntax constructors and the overlined terms
are reduced at transformation time (@ denotes infix application). We show in
appendix how to program it in ML. This transformation is similar to a higher-
order one-pass CPS transformation, which can be transformationally derived
from a two-pass specification [16].

The question now is to generalize this one-pass transformation to the full
ΛE and ΛB from Section 1. Our insight is to index the translation of each
boolean expression with the translation of the corresponding consequent and
alternative. Each of them can be the name of a thunk, which we can use non-
linearly, or a thunk, which we should only use linearly since we want to avoid
code duplication. Enumerating, we define four translation functions for boolean
expressions:

Bcc : ΛB → (1 → ΛC
ml) × (1 → ΛC

ml) → ΛC
ml

Bvv : ΛB → ΛV
ml × ΛV

ml → ΛC
ml

Bcv : ΛB → (1 → ΛC
ml) × ΛV

ml → ΛC
ml

Bvc : ΛB → ΛV
ml × (1 → ΛC

ml) → ΛC
ml

The problem then reduces to following the structure of the boolean expressions
and introducing residual let expressions to name computations if their result
needs to be used more than once.

Bcc : ΛB → (1 → ΛC
ml) × (1 → ΛC

ml) → ΛC
ml

Bcc[[b1 ∧ b2]] 〈κ1, κ0〉 = let t0 = λ().κ0 @ ()
in Bcv [[b1]] 〈λ().Bcv [[b2]] 〈κ1, t0〉, t0〉

Bcc[[b1 ∨ b2]] 〈κ1, κ0〉 = let t1 = λ().κ1 @ ()
in Bvc[[b1]] 〈t1, λ().Bvc[[b2]] 〈t1, κ0〉〉

Bcc[[¬b]] 〈κ1, κ0〉 = Bcc[[b]] 〈κ0, κ1〉
Bcc[[if b2 then b1 else b0]] 〈κ1, κ0〉 = let t1 = λ().κ1 @ ()

in let t0 = λ().κ0 @ ()
in Bcc[[b2]] 〈λ().Bvv [[b1]] 〈t1, t0〉,

λ().Bvv [[b0]] 〈t1, t0〉〉

For example, let us consider Bcc[[b1 ∧ b2]] 〈κ1, κ0〉, i.e., the translation of a
conjunction in the presence of two thunks κ1 and κ0. The activation of κ1 and
κ0 will yield the translation of the consequent and of the alternative of this

2We refrain from referring to κ as a continuation since it is not applied tail recursively.
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conjunction. Naively, we could want to define the translation as follows:

Bcc[[b1]] 〈λ().Bcc[[b2]] 〈κ1, κ0〉, κ0〉

Doing so, however, would duplicate κ0, i.e., the translation of the alternative
of the conjunction. Therefore we name its result with a let. The rest of the
translation follows the same spirit.

Bvv : ΛB → ΛV
ml × ΛV

ml → ΛC
ml

Bvv [[b1 ∧ b2]] 〈v1, v0〉 = Bcv [[b1]] 〈λ().Bvv [[b2]] 〈v1, v0〉, v0〉
Bvv [[b1 ∨ b2]] 〈v1, v0〉 = Bvc[[b1]] 〈v1, λ().Bvv [[b2]] 〈v1, v0〉〉

Bvv [[¬b]] 〈v1, v0〉 = Bvv [[b]] 〈v0, v1〉
Bvv [[if b2 then b1 else b0]] 〈v1, v0〉 = Bcc[[b2]] 〈λ().Bvv [[b1]] 〈v1, v0〉,

λ().Bvv [[b0]] 〈v1, v0〉〉
Bcv : ΛB → (1 → ΛC

ml) × ΛV
ml → ΛC

ml

Bcv [[b1 ∧ b2]] 〈κ1, v0〉 = Bcv [[b1]] 〈λ().Bcv [[b2]] 〈κ1, v0〉, v0〉
Bcv [[b1 ∨ b2]] 〈κ1, v0〉 = let t1 = λ().κ1 @ ()

in Bvc[[b1]] 〈t1, λ().Bvv [[b2]] 〈t1, v0〉〉
Bcv [[¬b]] 〈κ1, v0〉 = Bvc[[b]] 〈v0, κ1〉

Bcv [[if b2 then b1 else b0]] 〈κ1, v0〉 = let t1 = λ().κ1 @ ()
in Bcc[[b2]] 〈λ().Bvv [[b1]] 〈t1, v0〉,

λ().Bvv [[b0]] 〈t1, v0〉〉
Bvc : ΛB → ΛV

ml × (1 → ΛC
ml) → ΛC

ml

Bvc[[b1 ∧ b2]] 〈v1, κ0〉 = let t0 = λ().κ0 @ ()
in Bcv [[b1]] 〈λ().Bvv [[b2]] 〈v1, t0〉, t0〉

Bvc[[b1 ∨ b2]] 〈v1, κ0〉 = Bvc[[b1]] 〈v1, λ().Bvc[[b2]] 〈v1, κ0〉〉
Bvc[[¬b]] 〈v1, κ0〉 = Bcv [[b]] 〈κ0, v1〉

Bvc[[if b2 then b1 else b0]] 〈v1, κ0〉 = let t0 = λ().κ0 @ ()
in Bcc[[b2]] 〈λ().Bvv [[b1]] 〈v1, t0〉,

λ().Bvv [[b0]] 〈v1, t0〉〉

As for the connection between translating a boolean expression and translat-
ing an expression, we make it using a functional accumulator that will generate
a conditional expression when it is applied.
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Bcc[[e]] 〈κ1, κ0〉 = Ec[[e]] λv.if v then κ1 @ () else κ0 @ ()
Bvv [[e]] 〈v1, v0〉 = Ec[[e]] λv.if v then v1 @ () else v0 @ ()
Bcv [[e]] 〈κ1, v0〉 = Ec[[e]] λv.if v then κ1 @ () else v0 @ ()
Bvc[[e]] 〈v1, κ0〉 = Ec[[e]] λv.if v then v1 @ () else κ0 @ ()

Finally we connect translating an expression and translating a boolean ex-
pression as follows.

E [[if b then e1 else e0]] = Bcc[[b]] 〈λ().E [[e1]], λ().E [[e0]]〉
Ec[[if b then e1 else e0]] κ = let k = λw.κ @ w

in Bcc[[b]] 〈λ().Ev[[e1]] k, λ().Ev[[e0]] k〉

Ev : ΛE → ΛV
ml → ΛC

ml

Ev[[`]] k = k @ `

Ev[[x]] k = k @ x

Ev[[λx.e]] k = k @ λx.E [[e]]
Ev[[e0 e1]] k = Ec[[e0]] λv0.Ec[[e1]] λv1.let w = v0 @ v1 in k @ w

Ev[[if b then e1 else e0]] k = Bcc[[b]] 〈λ().Ev[[e1]] k, λ().Ev[[e0]] k〉

In the second equation, a let expression is inserted to name the context (and
to avoid its duplication). Ev is there to avoid generating chains of thunks when
translating nested conditional expressions.

The result can be directly coded in ML (see appendix): the source and target
languages are implemented as data types and the translation as a function. A
side benefit of using ML is that its type inferencer acts as a theorem prover to
tell us that the translation maps terms from the source language into terms in
the target language (a bit more reasoning, however, is necessary to show that
the translation generates no chains of thunks). Finally, since the translation is
specified compositionally, it does operate in one pass.
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4 Two Examples

4.1 No chains of thunks

The term λx.g (h (if a then if b2 then b1 else b0 else x)) is translated into the fol-
lowing target term in one pass.

return (fn x => let val k0 = fn v1 => let val v2 = h v1

in g v2

end

in if a

then if b2

then k0 b1

else k0 b0

else k0 x

end)

Each conditional branch directly calls k0.

4.2 Short-cut boolean evaluation

The term λx.if a1 ∧ a2 ∧ a3 ∧ a4 then x else g (h x) is translated into the follow-
ing target term in one pass.

return (fn x => let val f1 = fn () => let val v0 = h x

in g v0

end

in if a1

then if a2

then if a3

then if a4

then return x

else f1 ()

else f1 ()

else f1 ()

else f1 ()

end)

All the else branches directly call f1.

5 Assessment

A similar development yields, mutatis mutandis, a CPS transformation that is
higher-order, operates in one pass, duplicates no code, generates no chain of
thunks, and is properly tail recursive.

The author has implemented both transformations in his academic Scheme
compiler. Their net effect is to fuse two compiler passes into one and to avoid, in
effect, an entire copy of the source program. In particular, an escape analysis of
the transformations themselves shows that all of their higher-order functions are
stack-allocatable [4]. The transformations therefore have a minimal footprint in
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that they only allocate heap space to construct their result, making them well
suited in a JIT situation.

6 Related Work, Conclusion, and Future Work

We have presented a two-level program transformation that encodes call-by-
value λ-terms into monadic normal form and achieves short-cut boolean evalua-
tion. The transformation operates in one pass in that it directly constructs the
normal form without intermediate representations that need further processing.
As usual with two-level specifications, erasing all overlines and underlines yields
something meaningful—here an interpreter for the call-by-value λ-calculus in
the monadic metalanguage.

The program transformation can be easily adapted to other evaluation or-
ders.

Short-cut evaluation is a standard topic in compiling [1,9,34]. The author is
not aware of any treatment of it in one-pass CPS transformations or in one-pass
transformations into monadic normal form.

Our use of higher-order functions and of an underlying evaluator to fuse a
transformation and a form of normalization is strongly reminiscent of the notion
of normalization by evaluation [8,11,13,20]. And indeed the author is convinced
that the present one-pass transformation could be specified as a formal instance
of normalization by evaluation—a future work.

Monadic normal forms and CPS terms are in one-to-one correspondence [12],
and Kelsey and Appel have noticed the correspondence between continuation-
passing style and static single assignment form (SSA) [3, 31]. Therefore, the
one-pass transformation with short-cut boolean evaluation should apply directly
to the SSA transformation [49]—another future work.

Acknowledgments: Thanks are due to Mads Sig Ager, Jacques Carette,
Samuel Lindley, and the anonymous reviewers for comments.

This work is supported by the ESPRIT Working Group APPSEM II
(http://www.tcs.informatik.uni-muenchen.de/~mhofmann/appsem2/).

A Two-Level Programming in ML

We briefly outline how to program the one-pass translation of Section 2 [14].
First, we assume a type for identifiers as well as a module generating fresh

identifiers in the target abstract syntax:

type ide = string

signature GENSYM = sig

val init : unit -> unit

val new : string -> ide

end

10



Given this type, the source and the target abstract syntax (without condi-
tional expressions) are defined with two data types:

structure Source = struct

datatype e = VAR of ide

| LAM of ide * e

| APP of e * e

end

structure Target = struct

datatype e = RETURN of t

| TAIL_APP of t * t

| LET_APP of ide * (t * t) * e

and t = VAR of ide

| LAM of ide * e

end

Given a structure Gensym : GENSYM, the two translation functions E and Ec

are recursively defined as two ML functions trans0 and trans1. In particular,
trans1 is uncurried and higher order. For readability of the output, the main
translation function trans initializes the generator of fresh identifiers before
calling trans0:

(* trans0 : Source.e -> Target.e *)

(* trans1 : Source.e * (Target.t -> Target.e) -> Target.e *)

fun trans0 (Source.VAR x)

= Target.RETURN (Target.VAR x)

| trans0 (Source.LAM (x, e))

= Target.RETURN (Target.LAM (x, trans0 e))

| trans0 (Source.APP (e0, e1))

= trans1 (e0,

fn v0 => trans1 (e1,

fn v1 => Target.TAIL_APP (v0, v1)))

and trans1 (Source.VAR x, k)

= k (Target.VAR x)

| trans1 (Source.LAM (x, e), k)

= k (Target.LAM (x, trans0 e))

| trans1 (Source.APP (e0, e1), k)

= trans1 (e0,

fn v0 => trans1 (e1,

fn v1 => let val v = Gensym.new "v"

in Target.LET_APP

(v,

(v0, v1),

k (Target.VAR v))

end))

(* trans : Source.e -> Target.e *)

fun trans e

= (Gensym.init (); trans0 e)
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