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Composing strand spaces

Federico Crazzolara∗ Glynn Winskel

{fc232, gw104}@cl.cam.ac.uk

Computer Laboratory
University of Cambridge

Abstract

The strand space model for the analysis of security protocols
is known to have some limitations in the patterns of nondeter-
minism it allows and in the ways in which strand spaces can be
composed. Its successful application to a broad range of secu-
rity protocols may therefore seem surprising. This paper gives
a formal explanation of the wide applicability of strand spaces.
We start with an extension of strand spaces which permits sev-
eral operations to be defined in a compositional way, forming a
process language for building up strand spaces. We then show,
under reasonable conditions how to reduce the extended strand
spaces to ones of a traditional kind. For security protocols we
are mainly interested in their safety properties. This suggests a
strand-space equivalence: two strand spaces are equivalent if and
only if they have essentially the same sets of bundles. However
this equivalence is not a congruence with respect to the strand-
space operations. By extending the notion of bundle we show how
to define the strand-space operations directly on “bundle spaces”.
This leads to a characterisation of the largest congruence within
the strand-space equivalence. Finally, we relate strand spaces to
event structures, a well known model for concurrency.

∗BRICS Basic Research in Computer Science, Centre of the Danish National
Research Foundation
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1 Introduction

Security protocols describe a way of exchanging data over an untrusted
medium so that, for example, data is not leaked and authentication
between the participants in the protocol is guaranteed. The last few
years have seen the emergence of successful intensional, event-based, ap-
proaches to reasoning about security protocols. The methods are con-
cerned with reasoning about the events that a security protocol can per-
form, and make use of a causal dependency that exists between events.
Typically, a secrecy property (or some strengthening of it) is established
by showing that there cannot be an earliest event in the causal depen-
dency which violates the property, while authentication is often estab-
lished by showing certain events of one agent depend on certain events
of another. The method of strand spaces [THG98b, THG98a, TG00] has
been designed to support such an intensional, event-based, style of rea-
soning and has successfully been applied to a broad number of security
protocols.

Security properties such as secrecy and authentication or even anony-
mity can be expressed as safety properties, properties which stand or fall
according to whether they hold for all finite behaviours. The results in
this paper express the adequacy of strand spaces and relate strand spaces
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to event structures only with respect to the languages i.e. sets of finite
behaviours, they generate. This is not unduly restrictive however as in
security protocols we are mainly interested in safety properties.

When we were relating strand spaces to a Petri-net semantics for
a process language designed to describe security protocols [CW01], we
had to face the fact that strand spaces don’t compose readily, not using
traditional process operations at least. Their form doesn’t allow prefixing
by a single event. Nondeterminism only arises through the choice as to
where input comes from, and there is not a recognisable nondeterministic
sum of strand spaces. Even an easy definition of parallel composition by
juxtaposition is thwarted if “unique origination” is handled as a global
condition on the entire strand space. That strand spaces are able to
tackle a broad class of security protocols may therefore seem surprising.
A reason for the adequacy of strand spaces lies in the fact that they can
sidestep conflict if there are enough replicated strands available, which
is the case for a broad range of security protocols.

This paper has four main objectives. Firstly it extends the strand
space formalism to allow several operations on strand spaces to be de-
fined. The operations form a strand-space language. Secondly the wide
applicability of strand spaces to numerous security protocols and prop-
erties is backed up formally. The paper documents part of the work done
in proving the relation between nets and strand spaces we reported in
[CW01]. Thirdly we address another issue of compositionality. Because
we are only interested in safety properties we can make do with languages
of strand-space bundles as models of process behaviour. We show how
to compose such languages so that they may be used directly in giving
the semantics of security protocols. Strand spaces that have substantially
the same bundles can be regarded as equivalent and are congruent if they
exhibit substantially the same open bundles. This congruence lays the
ground for equational reasoning between strand spaces. Finally we show
how strand spaces relate to event structures.

In Section 2 we briefly introduce the strand space formalism in its
traditional form and discuss some limitations. Section 3 shows how to
extend strand spaces in order to compose them, chiefly with conflict to
permit their nondeterministic sum. A treatment of “unique origination”
on the bundle rather than on the strand space allows us to define parallel
composition of strand spaces by juxtaposition. The operations of prefix-
ing, parallel composition and nondeterministic sum of strand spaces are
illustrated in Section 5 and form a language for strand spaces. In Sec-
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tion 7 we give a congruence relation between terms of the strand-space
language based on the underlying bundle languages studied in Section 6.
In Section 8 we show that conflict can be eliminated, without upsetting
the strand-space behaviour if enough “replication” is introduced. Section
9 describes how strand spaces relate to event structures.

2 Strand spaces

We briefly introduce the strand space formalism of [THG98b] and discuss
some apparent limitations.

A strand spaces consists of 〈si〉i∈I , an indexed set of strands. An
individual strand si, where i ∈ I, is a finite sequence of output or input
events carrying output or input actions of the kind outM or inM respec-
tively with M a message built up by encryption and pairing from a set
of values (here names) and keys. In the rest of this paper we use n, n0 to
indicate names, A, B, A0, B0 to indicate special names which are agent
identifiers, and k standing for a cryptographic key. A name whose first
appearance in a strand is on an output message, is said to be originating
on that strand. A value is said to be uniquely originating on a strand
space if it is originating on only one of its strands.

A strand space has an associated graph whose nodes identify an event
of a strand by strand index and position of the event in that strand. Edges
are between output and input events concerning the same message and
between consecutive events on a same strand. Bundles model protocol
runs. A bundle selects from the events of a strand space those that occur
in a run of the protocol and shows the causal dependencies among them
which determine the partial order of the events in the run. A bundle is a
finite and acyclic subgraph of the strand space graph. Each node in the
bundle requires all events that precede it on the same strand (together
with the edges that denote the strand precedence). Moreover each input
node in the bundle has exactly one incoming edge from an output node.

As an example consider a simplified version of the ISO symmetric key
two-pass unilateral authentication protocol (see [CJ97]):

A→ B : n
B → A : {n, A}k

Agents can engage in a protocol exchange under two different roles. The
initiator, here A and the responder, here B. In a protocol round the
initiator A chooses a fresh name n and sends it to the responder B. After
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out n0
//

��

in n0

��
in {n0, A0}k out {n0, A0}koo

. . . out ni
//

��

in ni

��
in {ni, A0}k out {ni, A0}koo

. . .

Figure 1: ISO protocol

getting the value, B encrypts it together with the initiator’s identifier
using a common shared key k. After getting the answer to her challenge,
A can decrypt using the shared key and check whether the value sent
matches the value received. In that case A can conclude that B is in fact
operational. The strand space graph in Figure 1 describes the simple
case of only two agents, A0 and B0, acting as initiator and responder
respectively. For simplicity the graph has been drawn using the actions
labelling the events in place of the events themselves. In this simple case
the strand space itself forms a bundle. All the names ni are uniquely
originating on that strand space.

Unique origination intends to describe a name as fresh, perhaps cho-
sen at random, and under the assumptions of Dolev and Yao [DY83],
unguessable. For a construction of parallel composition of strand spaces
it is therefore reasonable to require that names uniquely originating on
components remain so on the composed strand space. Simple juxtaposi-
tion of strand spaces does not ensure this. For example consider a strand
space for the ISO protocol which allows both agents A0 and B0 to engage
in the protocol in any of the two possible roles. In Figure 2 the strand
space formed out of two copies of the one in Figure 1. Figure 3 shows a
possible bundle on such strand space. It describes a protocol run with
two complete rounds. One in which A0 is initiator and B0 responder and
another where the roles are inverted. Though the name n0 is no longer
uniquely originating on that strand space. A name’s freshness is with
respect to a run of a protocol more than to the whole set of possible
executions. A notion of unique origination “on the bundle” seems more
appropriate.

Nondeterminism in strand spaces arises only through the choice in
a bundle of where input comes from. There is no recognisable way of
modelling situations in which bundles may be taken either only over one
strand space or over another. Juxtaposing strands as we did for example
in Figure 2 allows bundles to include events of both components as is the
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out n0
//

��

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
in n0

��
in {n0, A0}k out {n0, A0}koo

out n0
//

=={{{{{{{{{{{{{{{{{{{{{

��

in n0

��
in {n0, B0}k out {n0, B0}koo

. . . out ni
//

��

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

C in ni

��
in {ni, A0}k out {ni, A0}koo

out ni
//

=={{{{{{{{{{{{{{{{{{{{

��

in ni

��
in {ni, B0}k out {ni, B0}koo

Figure 2: ISO protocol - symmetric roles

out n0

��

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
// in n0

��
in {n0, A0}k out {n0, A0}koo

out n0

��

in n0

��
in {n0, B0}k out {n0, B0}koo

Figure 3: A possible bundle

case for the bundle in Figure 3.
One seems to encounter even more difficulties in the attempt to define

a construction of prefixing a strand space with an action. Strands can’t
branch to parallel sub-strands and prefixing each strand of the space
with an action would cause as many repetitions of that action as there
are strands participating in a bundle.

3 Strand spaces with conflict

In this section we extend the definition of strand space, introducing a no-
tion of conflict, which we adapt from event structures (see e.g.[Win88]).
We differ from the original definition of strand spaces in the treatment
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of unique origination which is taken care of in the definition of bundle
rather than being a condition on the entire strand space – the “para-
metric strand spaces” of [CDL+00] achieve a similar effect as to unique
origination and are related.

As mentioned in the previous section, the strands of a strand space
consist of sequences of output and input actions. Actions are

Act = {out new ~n M | M msg, ~n distinct names} ∪ {in M | M msg}.
In out new ~nM , the list ~n contains distinct names that are intended to
be fresh (“uniquely originating”) at the event.

Definition 3.1 A strand space with conflict (〈si〉i∈I , #) consists of:

(i) 〈si〉i∈I an indexed set of strands. An individual stand si, where
i ∈ I, is a finite sequence of output or input actions in Act.

(ii) # ⊆ I×I a symmetric, irreflexive binary conflict relation on strand
indexes.

Strand spaces with an empty conflict relation correspond to those of
the standard definition of [THG98b]. We denote by ε the empty strand
space with no strands and with an empty conflict relation. 1 If λ stands
for an empty sequence of actions then the empty strand space is different
to a strand space where each strand is the empty sequence of actions
(〈λ〉i∈I , #). We write |s| for the length of the sequence s. Given a strand
space (〈si〉i∈I , #), given an index j ∈ I, and given l such that 1 ≤ l ≤ |sj|
we write act(j, l) for the action at position l in sj .

Given a strand space (〈si〉i∈I , #), we can find a strand-space graph

(E,⇒,→)

associated with it as usual (see [THG98b]). The graph has nodes (events)

E = {(i, l) | i ∈ I , 1 ≤ l ≤ |si|}
and edges

• (i, l)⇒ (i, l + 1) iff (i, l), (i, l + 1) ∈ E,

• (i, l)→ (j, h) iff act(i, l) = out new ~n M and act(j, h) = in M .

1We won’t make much use of this particular strand space; it is however the identity
for the operations of parallel composition and nondeterministic sum of strand spaces.
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For the components of G strand-space graph or subgraph of the strand-
space graph we often write EG, ⇒G, and →G, and we write

≤G= (⇒G ∪ →G)∗

for the reflexive and transitive closure of the relation ⇒G ∪ →G. We
refer to→G as the communication edges of G. The names of a node e are
all the names appearing on the action associated with e – the ones that
are marked as “new” together with those in the message of the action.
Write names(e) for the names of node e. We say that an event is an
input event if the action associated with it is an input action and we say
an event is an output event if its action is an output.

Bundles of a strand space describe runs in a computation.

Definition 3.2 A bundle b of a strand space (〈si〉i∈I , #) is a finite,
acyclic subgraph of G the graph of (〈si〉i∈I , #) such that:

(i) if e⇒G e′ and e′ ∈ Eb then e⇒b e′, (control precedence)

(ii) if e ∈ Eb and act(e) = in M then there exists a unique e′ ∈ Eb such
that e′ →b e, (output-input precedence)

(iii) if e, e′ ∈ Eb such that act(e) = out new ~n M and n ∈ ~v ∩ names(e′)
then either e ⇒∗

b e′ or there exists an input event e′′ such that
n ∈ names(e′′) and e′′ ⇒∗

b e′, (freshness)

(iv) if (i, h), (j, k) ∈ Eb then ¬(i # j). (conflict freeness)

The empty graph, denoted by λ, is a bundle. It will be clear from the
context whether λ stands for the empty bundle or whether it denotes the
empty sequence of actions. The empty strand space has only one bundle,
the empty bundle.

The first two points of the definition of bundle for a strand space with
conflict match with the standard definition of [THG98b]. There are two
additional requirements. Point (iii) ensures freshness of “new” values
in a bundle. Point (iv) doesn’t allow events from conflicting strands to
appear in a bundle.

Proposition 3.3 If b is a bundle then ≤b is a partial order on Eb.

Proof. A bundle is an acyclic subgraph of the strand-space graph. 2
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The relation ≤b determines the partial order that events respect when
occurring in a computation described by the bundle. As one would ex-
pect, names that are introduced as “new” don’t appear on events pre-
ceding their introduction and are never introduced as “new” more than
once.

Proposition 3.4 Let b be a bundle of a strand space. If e, e′ ∈ Eb such
that act(e) = out new ~n M and n ∈ ~v ∩ names(e′) then e ≤b e′ and if
act(e′) = out new ~m M ′ then n 6∈ ~m.

Proof. Suppose that e 6≤b e′ and therefore e 6⇒∗ e′. There exists an input
event e′′ ∈ b such that n ∈ names(e′′) and e′′ ⇒∗

b e′ (freshness). The
bundle b is acyclic and each input event in b is preceded by a matching
output event (output-input precedence). Therefore there exists an output
event e1 ∈ Eb such that n ∈ names(e1) and such that for every input
event e2 if e2 ⇒∗

b e1 then n 6∈ names(e2). The event e can’t precede e1

on the same strand (e 6⇒∗
b e1), otherwise e ≤b e′. The events e and e1 are

both in b thus contradicting the freshness property of b.
If act(e′) = out new ~m M ′ and n ∈ ~m then e ≤b e′ and e′ ≤b e, and

therefore e = e′. 2

There are other possible choices for the freshness condition (iii). A
weaker condition could be the following:

if e, e′ ∈ Eb such that act(e) = out new ~n M and such that
n ∈ ~v ∩ names(e′) then e ≤b e′.

This condition however would allow bundles of the kind

out new n M

��

in m

��
out m

88rrrrrrrrrr
out n

If the two strands are distinct processes, the second strand is not sup-
posed to send the name n without receiving it first from somewhere.
Graphs like that are not considered bundles in the original treatment
of strand spaces [THG98b] and are also excluded by the slightly more
involved freshness condition of Definition 3.2.

We regard two strand spaces as equivalent if they differ only on the
indexes of their strands and therefore one strand space can be obtained
from the other by a simple “re-indexing” operation. 2

2If the indexes carry structure (some might involve agent names for example) we
might refine the permissible re-indexings.
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Definition 3.5 Given (〈si〉i∈I , #) and (〈tj〉j∈J , #′) two strand spaces
write (〈si〉i∈I , #) ∼= (〈tj〉j∈J , #′) if there exists a bijection σ : I → J
such that:

(i) ∀i ∈ I . si = tσ(i) and

(ii) ∀i, j ∈ I . i # j ⇔ σ(i) #′ σ(j).

The relation ∼= is an equivalence relation on strand spaces. A bijection
σ which establishes such equivalence is called a re-indexing of strand
spaces. Moreover take (〈si〉i∈I , #) a strand space, J a set, and σ : I → J
a bijection. We define the strand space (〈tj〉j∈J , σ(#)) where

• ∀j ∈ J . tj = sσ−1(j) and

• ∀j, j′ ∈ J . j σ(#) j′ iff σ−1(j) # σ−1(j′).

The relation σ(#) is irreflexive and symmetric and establishes the equiv-
alence (〈sσ(i)〉i∈I , σ(#)) ∼= (〈si〉i∈I , #).

Proposition 3.6 Let (〈si〉i∈I , #) and (〈tj〉j∈J , #′) be two strand spaces
such that (〈si〉i∈I , #) ∼= (〈tj〉j∈J , #′) for a bijection σ : I → J . Given b
a bundle of (〈si〉i∈I , #) then σ(b) obtained from b by changing all strand
indexes according to σ is a bundle of (〈tj〉j∈J , #′).

Proof. Follows from the assumption that b is a bundle and from the def-
inition of re-indexing on bundles. 2

4 Constructions on strand spaces

The extension of the strand-space formalism with a conflict relation and
the different treatment of unique origination as illustrated in the previous
section allow operations such as prefixing, parallel composition, and sum
of strand spaces to be defined in terms of traditional process operations.

The operation of prefixing a strand space with an action is compli-
cated by the strand-space formalism not permitting strands to branch.
Only if the strand space to be prefixed is such that every two different
strands are in conflict can each strand be prefixed with the action. The
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conflict relation in this case doesn’t allow repetitions of the prefixing ac-
tion in bundles. Given α an action and given a strand space (〈si〉i∈I , #)
such that for all i, j ∈ I if i 6= j then i#j, define

α.(〈si〉i∈I , #)
def
= (〈αsi〉i∈I , #) .

We understand the special case of prefixing the empty strand space with
an action, to yield the empty strand space:

α.ε = ε .

For example, when prefixing a strand space consisting of only empty
strands one obtains a strand space with the same number of strands
each one with only one action, the prefixing action. More precisely

α.(〈λ〉i∈I , #) = (〈α〉i∈I , #) .

The operation of parallel composition of two strand spaces is the
disjoint union of their sets of strands and conflict relations. Disjoint
union is achieved by tagging the first space with index 0 and the second
with index 1. Given strand spaces (〈s0

i 〉i∈I , #
0) and (〈s1

j〉j∈J , #1) define

(〈s0
i 〉i∈I , #

0) || (〈s1
j〉j∈J , #1)

def
= (〈sh〉h∈H , #)

where H = ({0}× I)∪ ({1}× J), s(0,i) = s0
i and s(1,i) = s1

i . Two strands
are in conflict only if they belong to the same component of the parallel
composition and are in conflict within that component. More precisely
for k either 0 or 1 define h # h′ if h = (k, i), h′ = (k, j) and i #k j.

The operation of nondeterministic sum of two strand spaces con-
structs the same indexed set of strands as the operation of parallel com-
position. The conflict relation of a summed space however, in addition
to the existing conflicts, imposes conflict between every two strands that
belong to different components. Given strand spaces (〈s0

i 〉i∈I , #
0) and

(〈s1
j〉j∈J , #1) define

(〈s0
i 〉i∈I , #

0) + (〈s1
j〉j∈J , #1)

def
= (〈sh〉h∈H, #)

where H = ({0}× I)∪ ({1}× J), s(0,i) = s0
i and s(1,i) = s1

i . Two strands
are in conflict only if they belong to different components or are already
in conflict within a component. More precisely for k and k′ either 0 or 1
define (k, i) # (k′, j) if k 6= k′ or if k = k′ and i #k j.

11



In both operations of strand-space composition the relation # is ir-
reflexive and symmetric.

The operations of parallel composition and nondeterministic sum sat-
isfy some desired properties with respect to the equivalence ∼= of strand
spaces:

Proposition 4.1 Let S0 , S1, and S2 be strand spaces.

1. S0||ε ∼= S0

2. S0||(S1||S2) ∼= (S0||S1)||S2

3. S0||S1
∼= S1||S2

and similarly for +.

Proof. Let S0 = (〈s0
i 〉i∈I , #

0), S1 = (〈s1
j〉j∈J , #1), and S2 = (〈s2

k〉k∈K , #2).

1. The strand space S0||ε has the same strands as S0, but indexing
set {0} × I. Take σ : {0} × I → I to be the projection to the
second component which, in this case, is a bijection. It gives an
equivalence between the two strand spaces. Every strand s(0,i) in
S0||ε is equal to si, therefore s(0,i) = sσ(0,i). Let # be the conflict
relation of S||ε. If (0, i) # (0, i′) then by definition of # there is
conflict i #0 i′, therefore σ(0, i) #0 σ(0, i′).

2. Both spaces have the same strands but the first has indexing set

H = ({0} × I) ∪ ({1} × (({0} × J) ∪ ({1} ×K)))

while the second has indexing set

H ′ = ({0} × (({0} × I) ∪ ({1} × J))) ∪ ({1} ×K).

Consider the following function σ : H → H ′

σ(h) =




(0, (0, i)) if h = (0, i)
(0, (1, j)) if h = (1, (0, j))
(1, k) if h = (1, (1, k))

which is a bijection and establishes the desired equivalence.

3. Straightforward.

2

12



The equivalence S + S ∼= S does not always hold. For example con-
sider the strand space S composed out of one single strand with index i.
The indexing set of S +S is {(0, i), (1, i)}. There is no bijection between
a set of one element and a set of two elements.

Strands are not permitted to branch and the prefixing operation pre-
fixes each single strand of the space. The following proposition holds:

Proposition 4.2 Let S0 and S1 be strand spaces and α an action. Then

α.(S0 + S1) = α.S1 + α.S0.

Proof. Follows from the definition of prefixing operation and sum. 2

We can extend the definition of binary parallel composition and non-
deterministic sum of strand spaces to operations indexed over a set.
Given a collection of strand spaces (〈sk

i 〉i∈Ik
, #k) indexed by k in a set

K, define

||k∈K(〈sk
i 〉i∈Ik

, #k)
def
= (〈sh〉h∈H , #),

where H =
∑

k∈K Ik, s(k,i) = sk
i , and where (k, i) # (k′, i′) iff k = k′ and

i #k i′. In particular if K is the empty set then the parallel composition
yields the empty strand space.

As a special case of parallel composition of strand spaces consider the
strand space obtained by composing infinitely many but equal strand
spaces. Abbreviate

||k∈ω(〈si〉i∈I , #)
def
= ! (〈si〉i∈I , #).

One easily observes that

! (〈si〉i∈I , #) = (〈s(n,i)〉(n,i)∈ω×I , !#)

where !# is the binary relation over ω × I such that (n, i) !# (m, i′) iff
n = m and i # i′.

We define the sum of strand spaces over a set of indexes K in a similar
way as we did for the parallel composition of strand spaces over K. The
indexing set H and the strands remain the same. Define

∑
k∈K

Sk
def
= (〈sh〉h∈H , #)

where (k, i) # (k′, i′) iff either k 6= k′ or (k = k′ and i #k i′).

13



5 A process language for strand spaces

The constructions we have shown in the previous section form a language
S of strand spaces with the following grammar:

S ::= ε | L |
∑
j∈J

Sj | ||j∈JSj

where L ∈ L, the language of “sequential strand spaces” given by

L ::= 〈λ〉 | α.L |
∑
j∈J

Lj .

The strand space 〈λ〉 has only one strand which is the empty sequence
of actions and with the empty conflict relation.3 The bundles of strand
spaces in L form linearly ordered sets of events, and therefore can be
thought of as runs of a sequential process.

A strand-space term of language S is a “par” process in the sense
that parallel composition is only at the top level and therefore consists
of a parallel composition and sum of sequential processes. Of particular
interest are “!-par” processes which are those terms of S of the form !S.
As shown in Section 8 conflict can be eliminated from such strand spaces.

It will be useful to weaken the definition of bundle to the one of open
bundle, so that bundles can be composed. An open bundle is a graph
with the same structure of a bundle, but where input events need not
necessarily be related to output events. In this sense the open bundle is
“open” to the environment for communication on input events that are
not already linked to output events.

Definition 5.1 An open bundle b of a strand space (〈si〉i∈I , #) is a finite,
acyclic subgraph of G graph of (〈si〉i∈I , #) such that:

(i) if e⇒G e′ and e′ ∈ Eb then e⇒b e′, (control precedence)

(ii) if e′ →b e and e′′ →b e then e′ = e′′, (output-input correspondence)

(iii) if e, e′ ∈ Eb s.t. act(e) = out new~nM and n ∈ ~n ∩ names(e′) then
either e ⇒∗

b e′ or there exists an input event e′′ ∈ Eb such that
n ∈ names(e′′), e′′ 6≤b e and e′′ ⇒∗

b e′, (open freshness)

(iv) if (i, h), (j, k) ∈ Eb then ¬(i # j). (conflict freeness)

3Let the index of the empty strand in 〈λ〉 be a distinguished index ∗.
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Proposition 3.4 does not necessarily hold for open bundles. Input
events are open to communication from the environment and therefore
not necessarily linked to any output event. The additional requirement
e′′ 6≤b e in point (iii) ensures that e′ 6≤b e; so an open bundle can be
transformed into a bundle by composition with other open bundles and
addition of communication edges.

Proposition 5.2 If b is open bundle of a strand space in L then all
events in Eb have the same index and ⇒b is a linear order on Eb.

Proof. A strand space (〈si〉i∈I , #) denoted by a term in L is such that
for all indexes i, j ∈ I if i 6= j then i # j. Open bundles are conflict free,
therefore all events in Eb have the same index. Let i be the index of the
events in Eb and let (i, h) be the event in Eb with greatest position index
h. The control precedence of b determines its events to be

Eb = {(i, l) | 1 ≤ l ≤ h} .

The events in Eb are linearly ordered by ⇒G and therefore linearly or-
dered by ⇒b (control precedence). 2

6 Bundle spaces

The usual semantics of a strand space is in terms of its set of bundles.
In this section we show how, by broadening to open bundles, the bundle
space can be constructed in a compositional way from bundle spaces.
As shown in Section 7 an interesting congruence relation between strand
spaces is based on open bundles rather than bundles and the composi-
tional account of the bundle space presented here is useful in showing
that such relation is indeed a congruence.

First we introduce two simple operations on open bundles. The first
operation takes an open bundle of a strand space and transforms it into
an open bundle of that space prefixed by an action. This operation simply
adds an initial node and leaves all the remaining graph structure of the
original open bundle intact. More precisely let α.S be a strand space in
L and b open bundle of S with at least one event. All events of b share
the same index i and are linearly ordered (Proposition 5.2). Control
precedence and the shape of the strand space graph of S determines the
events of b to be the set

Eb = {(i, h) | 1 ≤ h ≤ k}
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and determines ⇒b to be the smallest binary relation on Eb such that

(i, h)⇒b (i, h + 1) for 1 ≤ h < k

for some k ≥ 1. Consider the graph

b+ = (E+
b ,⇒+

b ,→+
b )

where

• E+
b = {(i, h) | h ≤ k + 1},

• (i, h)⇒+
b (i, h + 1) for h ≤ k and e 6⇒+

b e′, otherwise

• (i, h + 1)→+
b (i, k + 1) iff (i, h)→b (i, k).

Proposition 6.1 The graph b+ is an open bundle of α.S.

Proof. Straightforward. 2

The second operation that we introduce shows how to juxtapose open
bundles of strand spaces to get an open bundle of the composed space.
Take the strand space ||j∈JSj and a finite subset I of J . For every i ∈ I
let bi be an open bundle of Si. Define

||i∈Ibi = (
⋃
i∈I

Ei,
⋃
i∈I

⇒i,
⋃
i∈I

→i)

where for each i ∈ I

• Ei = {i : e | e ∈ Ebi
},

• i : e ⇒i i : e′ iff e⇒bi
e′,

• i : e →i i : e′ iff e→bi
e′.

Tagging an event e with an index i is denoted by i : e and is the event
with index the pair consisting of i and the index of e.

Proposition 6.2 The graph ||i∈Ibi is an open bundle of ||j∈JSj.
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Proof. Straightforward. 2

Let b and d be two open bundles of the same strand space. We write
b � d if d can be obtained from b by adding more communication edges.
More precisely define

b � d iff Eb = Ed, ⇒b =⇒d, and →b⊆→d ,

and abbreviate b ↑ = {d | b � d}. In the following definition we make
use of a further shorthand notation j : B which stands for {j : b | b ∈ B}
where j is an index, B a set of bundles and j : b is the bundle obtained by
tagging all events of b with j and extending the bundle-edges accordingly.

Definition 6.3 (Bundle space) Let S be a term from the language of
strand spaces denoting the strand space (〈si〉i∈I , ]). The language B(S)
is defined on the structure of S as follows:

B(ε) = {λ}
B(〈λ〉) = {λ}
B(α.S) = {λ} ∪ {({(i, 1)}, ∅, ∅) | i ∈ I} ∪

⋃
b∈B(S)\{λ}

b+ ↑

B(
∑
j∈J

Sj) =
⋃
j∈J

j : B(Sj)

B(||j∈JSj) =
⋃

I⊆f J

bi∈B(Si)

(||i∈Ibi)↑

Theorem 6.4 If S is a strand-space term in S then the elements of B(S)
are exactly the open bundles of the strand space denoted by S.

Proof. Let S be the strand-space term. The proof has two parts:

1. If b is an open bundle of S then b ∈ B(S). By induction on the
structure of S:

If S = ε or S = 〈λ〉 then b = λ and obviously λ ∈ B(S).

If S = α.S′ then by Proposition 5.2 all events in b share the same
index and are linearly ordered. By control precedence and the
shape of the strand-space graph of S the events of b are either
the empty set or are Eb = {(i, h) | h ≤ k} for some k ≥ 1 with
common index i. If the set of events of b is empty then b = λ and
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λ ∈ B(α.S ′). The same holds for open bundles with only one node
(when k = 1). Suppose that k > 1 and let G′ be the strand-space
graph of S ′. Consider the graph b′ with components

– Eb′ = {(i, h) | h ≤ k − 1},
– ⇒b′ = ⇒G′ ∩ (Eb′ ×Eb′),

– →b′ such that →+
b′ = →b ∩ (E+

b′ × E+
b′ ).

This graph is an open bundle of S ′. In fact b′ is a finite and acyclic
subgraph of G′ satisfying all requirements of Definition 5.1. In par-
ticular open freshness follows from that of b and from the linear
ordering of the events in b′. Output-input correspondence and con-
flict freeness hold since b′ is a subgraph of b and control precedence
follows easily from the shape of Eb′ and ⇒b′. By the induction hy-
pothesis b′ ∈ B(S ′) and from b ∈ b′+ ↑ it follows that b ∈ B(α.S ′).

If S =
∑

j∈J Sj then by conflict freeness b has the form j : b′ for
some index j ∈ J and open bundle b′ of Sj . From the induction hy-
pothesis it follows that b′ ∈ B(Sj) and therefore j : b′ ∈ B(

∑
j∈J Sj).

Let S = ||j∈JSj and for every j ∈ J let Gj be the strand-space graph
of j : Sj (obtained via a re-indexing that adds j to each index of
Sj) and let j : bj be the graph with components

– Ej = Eb ∩EGj
,

– ⇒j = ⇒b ∩ ⇒Gj
,

– →j = →b ∩ →Gj
.

The graph bj is an open bundle of Sj ; it is a finite and acyclic
subgraph of Gj satisfying all requirements of Definition 5.1. In
particular open freshness of bj follows from that of b since j : bj is a
subgraph of b which satisfies control precedence. By the induction
hypothesis bj ∈ B(Sj) for all j ∈ J and from b ∈ (||j∈Jbj) ↑ it
follows that b ∈ B(||j∈JSj).

2. Every b ∈ B(S) is an open bundle of the strand space denoted by
S. By induction on the structure of S:

If S = ε or S = 〈λ〉 then b = λ. The empty graph λ is an open
bundle of every strand space.
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If S = α.S ′ then either b = λ or it has only one node, therefore b
is an open bundle of the strand space α.S ′, or instead b ∈ b′+ ↑ for
some b′ ∈ B(S ′). In this last case from the induction hypothesis it
follows that b′ is an open bundle of S ′ and by Proposition 6.1 that
b′+ is an open bundle of α.S ′. From b ∈ b′+ ↑ it follows that b′+ � b
and therefore b is an open bundle of α.S ′.

If S =
∑

j∈J Sj then there exist j ∈ J and b′ ∈ B(Sj) such that
b = j : b′. By the induction hypothesis b′ is an open bundle of Sj

and therefore j : b′ is an open bundle of
∑

j∈J Sj .

If S = ||j∈JSj then b ∈ (||i∈Ibi) ↑ such that bi ∈ B(Si) for every
i ∈ I. By the induction hypothesis for every i ∈ I the graph bi is
an open bundle of Si. Thus by Proposition 6.2 the graph ||i∈Ibi is
an open bundle of ||j∈JSi. From ||i∈Ibi � b it follows that b is an
open bundle of ||i∈ISi.

2

7 A strand space congruence

We have seen an equivalence relation that relates two strand spaces if,
via re-indexing, they become the same space. It is easy to check that
this relation is a congruence with respect to the operations of the strand-
space language we introduced in this paper. It is however a very concrete
relation and too discriminating for a model in which security properties
are expressed as safety properties on the language of bundles of a strand
space. One doesn’t want to distinguish between strand spaces that have
isomorphic bundle languages. Unfortunately the equivalence relation ≈
on strand space terms, obtained by taking term equivalence iff they de-
note strand spaces with essentially the same bundles, is not a congruence.
In this section we study a finer equivalence that takes account of the open
bundles of a strand space rather than bundles. This relation turns out
to be an interesting congruence, in fact the largest congruence within ≈.

Two bundles and more generally two open bundles are isomorphic if
they are isomorphic graphs:

Definition 7.1 Given b an open bundle of a strand space S and given
b′ an open bundle of a strand space S ′ define b ∼= b′ iff there exists a
bijection φ : Eb → Eb′ such that
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(i) if e→b e′ then φ(e)→b′ φ(e′),

(ii) if e⇒b e′ then φ(e)⇒b′ φ(e′),

(iii) actS(e) = actS′(φ(e)).

Sometimes we write φ(b) for the open bundle obtained from b through φ.
This open bundle has events φ(Eb) and edges

• φ(e)→φ(b) φ(e′) iff e→b e′,

• φ(e)⇒φ(b) φ(e′) iff e⇒b e′.

Definition 7.2 Let S and S ′ be two strand-space terms in S. Define ≈
the symmetric relation such that S ≈ S ′ iff for every bundle b of S there
exists a bundle b′ of S ′ such that b ∼= b′.

Proposition 7.3 The relation ≈ is an equivalence relation.

Proof. Straightforward. 2

The equivalence relation ≈ is not a congruence relation. Consider, for
example, the strand-space terms in M.ε and in N.ε where N and M are
two different messages. These two strand-space terms are in the relation
≈ – they both have only one bundle, the empty bundle and they can be
easily distinguished in a simple context when, for example, composed in
parallel with out M.ε. Then

in M.ε || out M.ε 6≈ in N.ε || out M.ε .

The parallel composition on the left hand side has a bundle of the form

in M ←− out M

(for convenience in the previous bundle we show the action associated to
the nodes instead of the nodes themselves). The parallel composition on
the right hand side only allows the empty bundle.

A context for a strand-space term in the language S is defined as
follows:

C ::= [ ] | α.C | ||i∈ITi | Σi∈ITi

where for each context of the form ||i∈ITi or Σi∈ITi there is exactly one
i ∈ I such that Ti is a context C and Ti ∈ S for all i ∈ I \ {i}. The
context [ ] is a placeholder for a strand-space term. We write C[S] for
the term obtained by replacing the strand-space term S for [ ] in context
C in the obvious way. An equivalence relation on strand-space terms is
a congruence if it respects all contexts.
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Definition 7.4 Let S and S ′ be two strand-space terms in S. Define
≈B to be the symmetric relation such that S ≈B S ′ iff for every open
bundle b of S there exists an open bundle b′ of S ′ such that b ∼= b′.

Proposition 7.5 The relation ≈B is a congruence.

Proof. The relation ≈B is obviously an equivalence relation. We show by
induction on the structure of contexts that if S ≈B S ′ then C[S] ≈B C[S ′]
for every context C.

Obvious for the context [ ].
Consider the context α.C and let b ∈ B(α.C[S]). From Definition 6.3

of bundle space it follows that b is one of the following graphs:

• λ and therefore belongs to B(α.C[S ′]).

• ({(i, 1)}, ∅, ∅) with i index of α.C[S]. Then b ∼= ({(j, 1)}, ∅, ∅) and
({(j, 1)}, ∅, ∅) ∈ B(α.C[S ′]) for any j index of α.C[S ′].

• b ∈ b+
1 ↑ for some b1 ∈ B(C[S]). By the induction hypothesis there

exists b2 ∈ B(C[S ′]) such that b1
∼= b2 and therefore b+

1
∼= b+

2 . If
φ : Eb+1

→ Eb+2
is a bijection such that φ(b+

1 ) = b+
2 then φ(b) ∈ b+

2 ↑.
Consider the context Σi∈ITi such that the term Ti0 is a context C

for the index i0 in I. Let b ∈ B(Σi∈ITi[S]). By Definition 6.3 of bundle
space the open bundle b is of the form i : bi for some i ∈ I and for some
bi ∈ B(Ti[S]). If i 6= i0 then i : bi ∈ B(Σi∈ITi[S

′]). If instead i = i0 then
by the induction hypothesis there exists b′i ∈ B(C[S ′]) such that bi

∼= b′i
and therefore i : b′i ∈ B(Σi∈ITi[S

′]) and i : bi
∼= i : b′i.

Consider the context ||i∈ITi such that the term Ti0 is a context C
for the index i0 in I. If b ∈ B(||i∈ITi[S]) then b ∈ (||j∈Jj : bj) ↑ where
bj ∈ B(Tj) when j 6= i0 and bj ∈ B(C[S]) for j = i0. By the induction
hypothesis there exists b′i0 ∈ B(C[S ′]) such that bi0

∼= b′i0 . Let b′j = bj for
all j 6= i0. It follows that ||j∈Jb′j ∈ B(||i∈ITi[S

′]) and ||j∈Jbj
∼= ||j∈Jb′j . If

φ is the bijection such that φ(||j∈Jbj) = ||j∈Jb
′
j then φ(b) ∈ B(||j∈Jb′j). 2

Theorem 7.6 The relation ≈B is the largest congruence relation in-
side ≈.

Proof. Consider the set

D = {R | R congruence relation and R ⊆≈}

21



Clearly
⋃

D is a congruence relation and the largest congruence inside ≈.
It remains to show that ≈B=

⋃
D. By Proposition 7.5 the relation ≈B is

a congruence and since ≈B⊂≈ it follows that ≈B⊆
⋃

D. Let S and S ′ be
two strand-space terms and let b be an open bundle of S such that b 6∼= b′

for all open bundles b′ of S ′. If no congruence relation in D contains the
pair (S, S ′) then

⋃
D ⊆≈B. Let R ∈ D and suppose (S, S ′) ∈ R. We

find a context C such that (C[S], C[S ′]) 6∈ R and therefore R is not a
congruence relation. Consider the strand space T composed of a single
strand whose only events are those output events that correspond exactly
to the open input events of b. The strand space T itself forms a bundle
that we denote by t. Consider the context T || [ ]. Let b1 ∈ (t||b) ↑ be
the graph that has no open inputs – it is a bundle of T || S. If there is
a bundle b2 of T || S ′ such that b1

∼= b2 then b2 ∈ (t′||b′)↑ for some open
bundles b′ and t′ such that b ∼= b′ and t ∼= t′. By control precedence either
t′ is a bundle of T , therefore b′ is an open bundle of S ′ contradicting our
assumptions, or b2 is a bundle of S ′, therefore b′ is an open bundle of S ′

and we reach a contradiction again. 2

8 Eliminating conflict

An agent that participates in a security protocol is often thought of
as executing a sequential program during which it sends messages and
chooses from a number of available messages which one to input. If one
doesn’t restrict the number of rounds of the protocol an agent can do one
can hope to model the protocol with a strand space with conflict of the
form ! (〈si〉i∈I , #). In this section we show that under these conditions
a simpler model, obtained by dropping the conflict relation, exhibits
substantially the same behaviour as the more complex strand space with
conflict.

Consider a conflict relation # on a set I and consider the relation !#
on ω × I such that (n, i) !# (m, j) iff n = m and i # j. The form of the
!# conflict relation suggests the following lemma:

Lemma 8.1 Given I a set of indexes, a finite set A ⊆ ω × I, and # a
conflict relation over I. There exists a bijection σ : ω × I → ω × I such
that

∀(n, i) ∈ ω × I . ∃m ∈ ω . σ(n, i) = (m, i)
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and such that the set A is conflict free with respect to σ−1(!#), meaning
¬(σ(u) !# σ(v)) for all u, v ∈ A.

Proof. By induction on the size of the set A.
The basic case A = ∅: take σ for example to be the identity function.
The induction step: Given a set A suppose there is a bijection σ satis-

fying the desired property and such that A is conflict free with respect to
σ−1(!#). Take A′ = A∪{(n′, i′)} with (n′, i′) 6∈ A. Let σ(n′, i′) = (m′, i′)
and distinguish two cases:

If m 6= m′ for all (m, j) ∈ σ(A) then A′ is conflict free with respect
to σ−1(!#). Suppose the contrary. Suppose there is (n, i) ∈ A such that
σ(n, i) !# σ(n′, i′). If σ(n, i) = (m, i) then m = m′ by definition of !#.

If there exists (m, j) ∈ σ(A) such that m = m′, then consider the
following function:

σ′(n, i) =




(m′′, i′) if (n, i) = (n′, i′)
(m′, i′) if (n, i) = σ−1(m′′, i′)
σ(n, i) otherwise

where m′′ ∈ ω such that m 6= m′′ for all (m, j) ∈ σ(A). Since A is a finite
set, such m′′ exists. This function is as σ but swaps the new element
(n′, i′), that could introduce conflict, with one that doesn’t. It is easy to
check that σ′ is a bijection and that it satisfies the required property. It
remains to check that A′ is conflict free with respect to σ′−1(!#). First
observe that σ′(A) = σ(A) because (n′, i′) 6∈ A and σ−1(m′′, i′) 6∈ A
(we chose m′′ so that (m′′, i′) 6∈ σ(A)). It follows that A is conflict free
with respect to σ′−1(!#). Since σ′−1(!#) is irreflexive and symmetric we
require:

∀(n, i) ∈ A .¬(σ′(n, i) !# σ′(n′, i′)).

Suppose instead that there exists (n, i) ∈ A such that σ(n, i) !# σ(n′, i′).
Let σ(n, i) = (m, i), then (m, i) !# (m′′, i′). From the conflict relation !#
it follows that m = m′′. On the other hand (m, i) ∈ σ(A). Therefore
m 6= m′′.

2

Together with the previous lemma, the observation that two different
copies of the same strand space have same strands at same corresponding
positions, yields the following theorem:

Theorem 8.2 Consider strand spaces ! (〈si〉i∈I , ∅) and ! (〈si〉i∈I , #). Let
b be a bundle of ! (〈si〉i∈I , ∅). There exists a strand space S such that b is
a bundle of S and S ∼= ! (〈si〉i∈I , #).
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Proof. Given b a bundle of ! (〈si〉i∈I , ∅) take A the set of indexes of strands
participating with nodes in b. The set A is finite because so is b and
A ⊆ ω × I. By Lemma 8.1 there is a bijection σ : ω × I → ω × I such
that

∀(n, i) ∈ ω × I . σ(n, i) = (n′, i)

for some n′ ∈ ω and A is conflict free with respect to σ−1(!#). Consider
the strand space with conflict

S = (〈t(m,i)〉(m,i)∈ω×I , σ
−1(!#))

where t(m,i) = si for all m ∈ ω. The equivalence S ∼=!(〈si〉i∈I , #) stands.
In fact σ is a bijection such that

(i) t(m,i) = sσ(m,i) since sσ(m,i) = s(n′,i) = si = t(m,i)

(ii) (m, i) σ−1(!#) (u, j) iff σ(m, i) !# σ(u, j).

The two strand spaces ! (〈si〉i∈I , ∅) and S have the same strand-space
graph, therefore since b is a bundle over !(〈si〉i∈I , ∅), and since A is con-
flict free with respect to σ−1(!#) follows b bundle of S. 2

To summarise, the behaviour in terms of bundles of a replicated
strand space with conflict corresponds, modulo re-indexing, to that of
the strand space we obtain dropping the conflict relation.

Corollary 8.3 Consider strand spaces !(〈si〉i∈I , ∅) and !(〈si〉i∈I , #) strand
spaces.

1. If b is bundle of ! (〈si〉i∈I , #) then b is bundle of ! (〈si〉i∈I , ∅).
2. If b is bundle of ! (〈si〉i∈I , ∅) then there exists a re-indexing π such

that π(b) is a bundle of ! (〈si〉i∈I , #).

Proof. The first point is obvious, the second point follows directly form
Theorem 8.2 and Proposition 3.6. 2

Consequently, the strand space with conflict denoted by a “!-par”
process has the same bundles up to re-indexing as a strand space without
conflict.
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9 Event structures from strand spaces

In this section we show how strand spaces relate to event structures.
Recall that a bundle of a strand space is a graph and therefore a set
of edges and nodes. It turns out that the bundles of a strand space
ordered by inclusion correspond to the finite configurations of a prime
event structure. Prime event structures are a particularly simple kind
of event structure where the enabling of events can be expressed as a
global partial order of causal dependency. Event structures as a model
of concurrent processes were introduced in [NPW81, Win80] – see also
[Win82, Win87, Win88, WN95].

Definition 9.1 A prime event structure (E, #,≤) consists of a set E
of events partially ordered by the causal dependency relation ≤ and a
binary, symmetric, irreflexive conflict relation # ⊆ E ×E, which satisfy

(i) {e′ | e′ ≤ e} is finite for all e ∈ E, and

(ii) if e # e′ ≤ e′′ then e # e′′ for all e, e′, e′′ ∈ E.

Definition 9.2 The configurations of an event structure E = (E, #,≤)
consist of those subsets x ⊆ E which are

(i) conflict free: ∀e, e′ ∈ x .¬(e # e′) and

(ii) left closed: ∀e, e′.e′ ≤ e ∈ x⇒ e′ ∈ x.

Write F(E) for the set of configurations of an event structure and F fin(E)
for its finite configurations.

For a strand space S write B for the set of bundles of S. Consider
the partial order (B,⊆). Say a subset X of B is compatible iff

∃b ∈ B . ∀b′ ∈ X . b ⊆ b′ .

Proposition 9.3 Let S be a strand space and B the set of bundles of S.
The partial order (B,⊆) satisfies the following properties:

1. if X ⊆ B, X is finite and pairwise compatible, then
⋃

X ∈ B.
(coherence )

2. if X ⊆ B and X is compatible, then
⋂

X ∈ B. (stability)
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Proof. Let G be the strand space graph of S.

1. The graph
⋃

X is obviously a finite subgraph of G since X is finite
and each element in X is finite. Let e be an event in

⋃
X. The

set X is pairwise compatible therefore there exists b ∈ X with
e ∈ b and such that if e′ →⋃

X e then e′ →b e. Since b is a
bundle if e′ ⇒⋃

X e then e′ ⇒b e (control precedence). Therefore
{e′ | e′ ≤⋃

X e} = {e′ |e′ ≤b e} and it follows that
⋃

X is acyclic.
We check the requirements of Definition 3.2:

(i) Consider an event e ∈ ⋃
X. There is a bundle b ∈ X with

e ∈ b. By control precedence if e′ ⇒G e then e′ ⇒b e. From
b ⊆ ⋃

X it follows that e′ ⇒⋃
X e.

(ii) Output-input precedence stands for the set
⋃

X. Let e be an
input event in

⋃
X. There is a bundle b ∈ ⋃

X with e ∈ b.
An output event e′ exists such that e′ →b e (output-input
precedence of b) and therefore e′ →⋃

X e. We require that
there is a unique such output event. Suppose the contrary.
Suppose there are two output events e′, e′′ such that e′ →⋃

X e
and e′′ →⋃

X e. Then two distinct bundles b, b′ ∈ X exist such
that e′ →b e and e′′ →b′ e. However X is pairwise compatible.
Therefore there is a bundle in X containing both b and b′.
This can’t be the case and we reach a contradiction.

(iii) Let e, e′ be two events in
⋃

X such that act(e) = out new ~n M
and n ∈ ~n∩ names(e′). Since X is pairwise compatible, there
exists a bundle b′ in X which contains both e and e′. The
bundle b′ respects freshness. Thus either e ⇒∗

b′ e′ or there
exists an input event e′′ such that n ∈ names(e′′) and e′′ ⇒∗

b′

e′. Consequently freshness holds for
⋃

X.

(vi) That the graph
⋃

X does not contain conflicting events follows
easily from the pairwise compatibility of X.

Therefore
⋃

X is a bundle in B.

2. Every element of X is a bundle in B. Therefore
⋂

X forms a finite
and acyclic subgraph of G. Following Definition 3.2 we check all
requirements and thus show that

⋂
X ∈ B:

(i) Consider an event e ∈ ⋂
X. Every bundle b ∈ X is such

that e ∈ b. For each b ∈ X if e′ ⇒G e then e′ ⇒b e (control
precedence). From this it follows that e′ ⇒⋂

X e.
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(ii) If e is an input event in
⋂

X then every bundle b ∈ ⋂
X

contains the event e and contains an output event eb such
that eb →b e. The set X is compatible. Let b′ ∈ B be an
upper bound. Therefore there exists a unique e′ such that
e′ = eb for all bundles b ∈ X and e′ →b e. The event e′ is the
unique event such that e′ →⋂

X e.

(iii) Let e, e′ be two events in
⋂

X such that act(e) = out new ~n M
and n ∈ ~n ∩ names(e′). The events e, e′ belong to every bun-
dle in X. Freshness holds for each bundle b in X. Thus
either e ⇒∗

b e′ or there exists an input event e′′ such that
n ∈ names(e′′) and e′′ ⇒∗

b e′. If e ⇒∗
b′ e′ for some bundle b′

in X then e ⇒∗
G e and therefore e ⇒∗

b e′ for every bundle b
in X. The case of a bundle b′ such that e′′ ⇒∗

b e′ is similar.
Freshness of

⋂
X follows.

(vi) The elements of X are bundles and therefore conflict free.
Consequently

⋂
X is conflict free.

2

Given a bundle b ∈ B and an event e ∈ Eb define

deeb def
=

⋂
{b′ ∈ B | e ∈ b′ ∧ b′ ⊆ b} .

Proposition 9.4 Let B be the bundles of a strand space. For every
bundle b ∈ B and every event e ∈ Eb the set deeb is a bundle in B. For
every finite and compatible subset X ⊆ B

if deeb ⊆
⋃

X then ∃b′ ∈ X . deeb ⊆ b′

We call a bundle deeb a prime of (B,⊆).

Proof. That the elements deeb are bundles in B follows from the stability
property of (B,⊆) (Proposition 9.3). The set {b′ ∈ B | e ∈ b′ ∧ b′ ⊆ b}
is in fact compatible.

Let X ⊆ B be finite and compatible. If deeb ⊆
⋃

X then e ∈ b′ for
some b′ ∈ X. The two bundles b′ and deeb in B are compatible (they are
both included in

⋃
X), therefore from the stability property of (B,⊆) it

follows that b′ ∩ deeb ∈ B. We know that e ∈ b′ and that b′ ∩ deeb ⊆ b.
Therefore deeb ⊆ b′ ∩ deeb ⊆ b′. 2

The primes form a basis for the partial order (B,⊆) as the following
proposition shows.
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Proposition 9.5 Let S be a strand space and B its bundles. Every bun-
dle b ∈ B can be obtained as the union of the primes included in b

b =
⋃
{p | p ⊆ b, p prime}.

Proof. Obviously
⋃{p | p ⊆ b, p prime} ⊆ b. On the other hand,

if e ∈ b then e ∈ deeb. The prime deeb is a bundle included in b and
therefore if e′ ⇒b e then e′ ⇒deeb

e, and if e′ →b e then e′ →deeb
e. Thus

b ⊆ ⋃{deeb | e ∈ b}. 2

Let B the set of bundles of a strand space S. Consider the following
structure

Pr(B)
def
= (P, #,⊆)

where P is the set of primes of B and where p # p′ iff the two primes p
and p′ are not compatible.

Theorem 9.6 The structure Pr(B) is a prime event structure. The map
φ : (B,⊆) ∼= (F finPr(B),⊆) such that φ(b) = {p | p ⊆ b, p prime} is
an isomorphism of partial orders with inverse map θ : F finPr(B) → B
given by θ(x) =

⋃
x.

Proof. It is easy to check that Pr(B) is a prime event structure. The
relation ⊆ is a partial order of primes. Bundles and in particular primes
are finite sets. Thus for each prime p the set {p′ | p′ ⊆ p} is finite. More-
over if p, p′, p′′ are primes such that p # p′ ⊆ p′′ then p # p′′ – otherwise p
and p′′ would be compatible and therefore p and p′ would be compatible
too.

The map φ is obviously well-defined and so is θ. In fact x is a finite
configuration of Pr(B) thus a finite set of bundles in B which is conflict
free and left closed. Since it is conflict free it is pairwise compatible and
therefore from the coherence property of Proposition 9.3 it follows that⋃

x ∈ B.
It is clear that both maps φ and θ are order preserving. We show

that they are mutual inverses and therefore give the required isomor-
phism. From Proposition 9.5 it follows that θ(φ(b)) = b for all b ∈ B.
Let x be a finite configuration of Pr(B). We require that φ(θ(x)) = x,
i.e., {p | p ⊆ ⋃

x, p prime} = x. If p is a prime such that p ⊆ ⋃
x, then

there exists a bundle p′ in x (another prime) such that p ⊆ p′ (Propo-
sition 9.4). The configuration x is left-closed, thus p ∈ x. On the other
hand, x is a set of primes and therefore x ⊆ {p | p ⊆ ⋃

x, p prime}. 2
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Observation 9.7 Since Pr(B) is a prime event structure the partial
order (FPr(B),⊆) is a Scott domain of information, in particular a prime
algebraic domain (see [NPW81, Win87, Win88]). This domain however
can include configurations which are infinite and therefore are not bundles
in the usual sense.

The prime event structure Pr(B) underlies the strand space semantics
Syverson gave to the BAN logic [Syv99].
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