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Abstract

Firewalls are one of the key technologies used to control the tra�c go-
ing in and out of a network. A central feature of the �rewall is the packet
�lter. In this paper, we propose a complete framework for packet classi�-
cation. Through two applications we demonstrate that both performance
and security can be improved.

We show that a traditional ordered rule set can always be expressed
as a �rst-order logic formula on integer variables. Moreover, we empha-
size that, with such speci�cation, the packet �ltering problem is known
to be constant time (O(1)). We propose to represent the �rst-order logic
formula as Interval Decision Diagrams [ST98]. This structure has several
advantages. First, the algorithm for removing redundancy and unneces-
sary tests is very simple. Secondly, it allows us to handle integer variables
which makes it e�cient on a generic CPUs. And, �nally, we introduce
an extension of IDDs called Multi-Terminal Interval Decision Diagrams

in order to deal with any number of policies.
In matter of e�ciency, we evaluate the performance our framework

through a prototype toolkit composed by a compiler and a packet �lter.
The results of the experiments shows that this method is e�cient in terms
of CPU usage and has a low storage requirements.

Finally, we outline a tool, called Network Access Veri�er. This tool
demonstrates how the IDD representation can be used for verifying access
properties of a network. In total, potentially improving the security of a
network.

∗Basic Research in Computer Science (www.brics.dk)
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1 Introduction

The Internet �rewall is one of the key technologies used by network adminis-

trators for controlling access to an organizations network. The main reason

for the success is that the �rewall allows centralized �ltering of tra�c enter-

ing and exiting the protected network. The central �ltering mechanism of the

�rewall is the packet �lter. It operates by identifying a policy by comparing

the protocol header �elds of a packet with a �lter speci�cation. In this paper

we focus on the packet �ltering mechanism, and in particular on how packet

�lters can be improved both in terms of security and performance.

The primary aspect of packet �ltering is the issue of packet classi�cation.

Packet classi�cation has been subject of much study in recent time, for example

see [LS98, GM99, FM00]. The reason being that the ability to classify packets

plays a central role in routing and in the Di�erentiated Services Architecture.

However, the requirements to the packet classi�cation scheme may be quite

di�erent from one application to the other. One example is routing on the

Internet, where the classi�er is used for choosing an interface based on a routing

table. Here the classi�cation only uses one or two of the address �elds in the

packet header determine route, where a �rewall may classify packets based

on any number of packet header �elds TCP and/or IP. An related example

is whether the classi�cation algorithms should support dynamic updates of

the speci�cation or not. This is, for instance, the case with dynamic routing.

Firewalls, on the other hand, uses more static speci�cations. An �nal di�erence

may be the option to use dedicated hardware or not.

Given these di�erences, common performance measures of packet classi�ca-

tion algorithms still remain. This includes classi�cation time, space complexity,

and performance of the optimization phase. Often worst case complexities are

given in along with empirical measurements.

An other aspect of packet �ltering is ability to analyze and check the �lter

speci�cation before taking it into use. Current security audits rely on perform-

ing tests on the actual network by using port scanning or more advanced tools

such as Nessus [nes]. Performing o�-line security audits allow administrators

to perform complete tests of their networks and minimize the requirement to

perform test on the actual networks. However, a central issue for tool design

is that the tool is based on a strong foundation, which in the case of packet

�ltering means a sound and complete representation of �lter speci�cations.

In this paper we present a packet classi�cation scheme that is well suited

for packet �ltering and can be summarized as follows:

• Sound representation of packet �lters that is compatible with the tradi-

tional representation, e.g. ordered rule based �lter description.

• Scalable in terms of the number of header �elds, policies used in the
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speci�cation.

• E�ciently classi�cation complexity (O(1)), assuming that the number of

bounded �elds.

• Compact and static representation of �lter speci�cation using decision

diagrams.

• Access to techniques for verifying properties of �lter speci�cations.

The key idea in the packet classi�cation scheme it to transform a tra-

ditional rule based representation of a packet �lter into a boolean expres-

sion represented as a decision diagram, similar to the approach presented

in [Haz99]. However rather then using the widely known Boolean Decision Di-

agrams (BDDs) [Bry86] as in [Haz99] we use the less explored Interval Decision

Diagrams (IDDs) [ST98]. IDDs operate on integer ranges rather then booleans

thus providing the access to e�cient classi�cation of packets on generic CPUs.

However IDDs can only be used for classifying between two policies. To

alleviate this problem we introduce the concept of Multi Terminal Interval

Decision Diagrams (MTIDDs), that provide access to using any number of

policies. This extension is similar to the MTBDD extension of BDDs described

in [Bry86] which is suggested for packet classi�cation in [AH02].

To demonstrate the potential of using IDDs for representing �lter spec-

i�cations, we outline a tool called Network Access Veri�er (NAV). The key

concept of the veri�er is the ability perform a reachability of analysis of an

entire network, for instance proving whether the network is vulnerable to IP

spoo�ng.

In the following sections we �rst describe background and related work.

Then in Section 3 we describe our model of packet �ltering. Section 4 con-

tinues by introducing IDDs and show how we represent �lter speci�cations

using IDDs. In section 5 we describe the �rst of two applications which takes

advantage of the packet classi�cation scheme. This �rst application is a high

performance packet classi�er that provides empirical evidence showing that the

performance of the scheme corresponds to expectations. In Section 6 we out-

line the second application which is NAV, through which we demonstrate the

strength of using the IDD representation of packet �lters. Finally in Section 7

we state conclusions and describe future work.

2 Related Work

In [Haz99] Hazelhurst presents the idea of transforming �rewall packet �lters

into boolean expressions that are represented as BDDs. The paper describes

an algorithm for transforming a Cisco �rewall �lter into a BDD, including the

3



handling of issues with overlapping rules. The main use of BDDs in this paper

is for a tool that can be used analyzing and test �lters. A later paper by Hazel-

hurst et. al [HAS00] focus on using using the BDD structures for performing

packet classi�cation. The conclusion is that BDDs can improve the lookup

latency on systems using dedicated hardware such as FPGAs, while they do

not perform well on generic CPUs. In [AH02] Attar and Hazelhurst use N-ary

decision diagrams for improving the lookup performance. The experimental

results show that the lookup time can be signi�cantly improved by using this

method, however at the price of increased memory usage. Furthermore the idea

of using MTBDDs to handle the more general packet classi�cation is suggested.

Several papers propose algorithms for packets classi�cation on multiple

�elds for generic CPUs [BMG99, FM00, Sri01, BV01].

Begel et. al [BMG99] proposes a fully general packet �lter framework. Fil-

ters are speci�ed in a declarative predicate language, that are compiled into

a �ow graph, and then optimized before being executed on a virtual machine

model. Optimization is performed on the �ow-graph by using redundant pred-

icate elimination for removing redundancies and rearranging non-optimal code

sequences. An interesting point is the introduction of a safety veri�er that

checks the validity of the programs before they are executed on the virtual

machine. This prevents the user from running programs with in�nite loops or

memory faults. The evaluation of the tool shows good performance. However

only with small test cases are applied.

In [BV01] Baboescu and Varghese describe a scheme called Aggregate Bit

Vector (ABV). The aim of the scheme is to provide scalable packet classi�cation

(100,000 rules) to handle large �lters while also providing e�cient classi�cation

times on generic CPUs. The scheme is an extension of the bit vector search

algorithm (BV) described in [LS98]. The �rst optimization of the BV scheme

consists of minimizing the number of unused bits in the bit vectors, by taking

advantage of the observation that the number of rules overlapping in a �lter is

likely to be small. This is technique referred to as aggregation. Secondly, to

take full advantage of using aggregation the order of the rules is rearranged.

However, again due to the issues of overlapping rules, it is not possible. But

by modifying the BV scheme to �rst �nd all matches and then computing the

lowest cost match this is made possible.

In comparison with the approach presented in this paper, both the BV

scheme and the ABV scheme solve a more general packet classi�cation problem

the we do. The reason being that in BV and ABV issues of overlapping rules

are handled in the classi�cation algorithm while we remove the overlap between

rules when building the decision diagram structure.

An other active area for research is on tools for managing and analyzing

�lters. An example is the tool presented in [HSP00] which can be used for

detecting an resolving packet con�icts in packet �lters. Here a scheme is in-
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troduced to resolve packet con�icts by adding resolve �lters. An other tool,

presented in a paper by Eronen and Zitting [EZ01], presents a tool that uses

constraint logic programming for analyzing packet �lters. Similar to the work

presented in [Haz99] this tool transforms packet �lters to boolean expressions

before performing the analysis.

3 Packet Filtering

The problem of packet �ltering is to match a packet header with a policy. This

decision is based only on the header of the current examined packet and a set

of rules, also called '�lter '.

The �lters are de�ned as an ordered list of independent rules. Each rule

specify both a set of headers and what policy to apply to the packet. For ex-

ample, in Cisco-like syntax, one can de�ne the rule set represented on Figure 1.

access-list 108 permit tcp any any eq www

access-list 108 deny tcp any any

access-list 108 deny ip any any

Figure 1: Example of a �lter in a Cisco-like syntax.

The �rst rule applies the policy "permit" to any TCP packet when the

destination port is equal to "www". if the incoming packet is not matching the

�rst rule, it is compared to the second one, which states that the �lter apply

the policy "deny" to any TCP packet. If, again, the incoming packet is not

matched with this rule, it is compared to the last one which apply the policy

"deny" to all IP packets.

A naive approach would be to use this �lter speci�cation strait forward.

But, this way of specifying a �lter is strongly dependent of the order of the

rules in the list. Keeping this order prevent a lot of possible optimizations both

in space storage for the rules set and in speed to perform the classi�cation of

each packet.

The worst case complexity of such naive algorithm is O(n ·m), with n the

number of rules, m the number of �elds to check in the header. If we assume

the number of �elds as constant (as we are dealing only with known protocols

with a known number of �elds), we have a linear complexity in the number

of rules (O(n)). This complexity analysis show that the number of rules has

great impact on the performance of the packet �lter.

In this section we propose to consider a �lter as a �rst-order logic formula

on integers. We show that not only we have the same expressive power than

the ordered rule-set representation, but also that this way of specifying a �lter
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allow us to deal with a constant time complexity O(1) concerning the packet

classi�cation problem.

3.1 Specifying Filters as First-Order Logic Formula

Specifying �lters as �rst-order logic formula on integer variables is immediate.

In order to do it right we introduce a formal framework of the problem in order

to be able to prove formally the properties we are interested in.

Let H be the �nite set of all the possible headers, and Π = (π1, π2, . . . , πp)
the set of all the policies. A rule is given by a set of headers (η ∈ P(H)1) and
a policy (π ∈ Π):

r = (η, π), with η ∈ P(H) and π ∈ Π. (1)

For example, a rule which drops the packets that have the �eld 'source IP'

set to 192.134.*.* and use the protocol TCP would be written:

r = ((sip = 192.134. ∗ .∗) ∧ (proto = TCP ), DROP) (2)

We de�ne a �lter as a set of rules over P(H) × Π:

ϕ = ((η1, πk1), (η2, πk2), . . . , (ηn, πkn)), with πki
∈ Π, ∀i ≤ n. (3)

By extension, we de�ne a �lter ϕ = (ηi, πki
)i≤n as a function that maps

one header to a set of policies. Formally, the function ϕ : H → P(Π) is de�ned
such that:

ϕ(h) = {πki
∈ Π/h ∈ ηi} (4)

We say that two �lters ϕ and ϕ′ are equivalent i� for all h ∈ H we have

ϕ(h) = ϕ′(h). And we note ϕ ≡ ϕ′

We de�ne a normal form �lter as a �lter with no duplicate policy in the

rule set. And, �nally, we call a valid �lter, a �lter in which the set of headers

(ηi)i≤n are a partition of H. Formally a partition is de�ned as:

De�nition 1 Let H be a set and (ηi)i≤n such that, for all i ≤ n, ηi ∈ P(H).
Then, (ηi)i≤n is a partition of H i�:

1.
⋃

i≤n ηi = H,

2. ηi ∩ ηj = ∅, ∀i, j ≤ n with i 6= j.

1Where P(A) is the powerset of A.
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3.2 Ordered Filters vs First-Order Logic Filters

A �lter has to be valid in order to avoid any ambiguity while the classi�cation

of a given header. The ambiguity was previously avoided by ordering rules in

the list. This order was intended to prioritize a rule over the others, as we had

illustrated it in our �rst example.

In order to prove the equivalence between an ordered �lter and a �rst-order

logic only �lter, we have �rst to de�ne formally what is an ordered �lter.

Lets call ψ an ordered �lter i� ψ = (ηi, πki
)i≤n with ηi ∈ P(H), πki

∈ Π
for all i ≤ n and we de�ne an implicit order � on the rules such that:

(ηi, πi) � (ηj , πj) ⇔ i > j (5)

By extension, we call an ordered �lter ψ = (ηi, πki
)i≤n a function that maps

one header to one policy. Formally, the function ψ : H → Π is de�ned such

that:

ψ(h) = {πki
∈ Π/h ∈ ηi and h 6∈ ηj, ∀j < i} (6)

We will now state that for any ordered �lter ψ we can build an equivalent

valid �lter ϕ′.

Proposition 1 For any ordered �lter ψ = (ηi, πki
)i≤n, we can build a �lter

ϕ = (η′i, π
′
ki

)i≤n such that ψ and ϕ are equivalent.

Proof 1 The proof is strait forward from the de�nitions and the following

construction of ϕ:

• π′ki
= πki

, ∀i ≤ n,

• η′i = ηi \
⋃

j<i ηj , ∀i ≤ n.

So, ϕ′ is given by:

ϕ = ((η1, πi1),
(η2 \ {η1}, πi2),
(η3 \ {η1 ∪ η2}, πi3),
. . . ,

(ηk \ {η1 ∪ · · · ∪ ηk−1}, πik))

By construction of ϕ, this �lter is valid and equivalent to ψ.

Therefore, from the proposition 1 we can deduce that our formalism is, at

least, as expressive than the current method.
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3.3 Complexity of Packet Classi�cation

Actually, removing the need of the order in the de�nition of a �lter has some

important consequences on the complexity of the packet classi�cation problem.

Indeed, if we consider a normal valid �lter, classifying a packet is equivalent

to evaluate a �rst-order logic formula on integer variables. This operation is

known to be linear in the number of variables, or in other words in the number

of �elds (m) and logarithmic in the domain of the greatest �eld2 (log(w), with
w the wider ranger of the �elds). Therefore, the complexity of such operation

would be O(m · log(w)). Finally, if we consider that the number of �elds in

the header and the domain of each �eld are bounded, then we have a constant

time complexity (O(1)).

Proposition 2 Given a normal valid �lter, and a bounded number of bounded

�elds, the problem of packet classi�cation is O(1).

In conclusion, we proved that specifying a rule-set as an ordered-list or

a �rst-order formula is equivalent, we even exhibit an algorithm to derive a

�rst-order logic speci�cation from any ordered list. We also shown that the

complexity of classifying a packet with a normal and valid �rst-order logic

speci�cation is constant time (O(1)). In the next section we will describe an

e�cient data-structure for handling �rst-order logic formula.

4 Decision Diagrams

As we pointed out in the previous section, the packet �ltering problem is equiv-

alent to evaluate a �rst-order logic formula. Indeed, one of the most e�cient

data-structure, both in space storage and computational time, are the deci-

sion diagrams. The most famous of those are binary decision diagrams (BDD,

[And97]). Using such data-structure to represent �lters have been already

investigated by S. Hazelhurst in [AH02, Haz99]. But, one main problem in

such approach is that BDD are based on boolean variables only. Therefore,

it is mandatory to consider one bit after one. As a generic CPU is used to

consider one word of several bits in one operation, there is an overhead on

extracting bits from words. In order to avoid this drawback, we chose to focus

on another decision diagram structure called interval decision diagram (IDD,

[ST98]). This structure allows us to perform classi�cation on integer numbers

within a domain (�nite of in�nite).

2Worst case of number of tests to perform in order to �nd the position of an integer

variable on a partition
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4.1 Interval Decision Diagrams

An IDD is a DAG structure in which each node correspond to a test on an

integer variable. Each out going edge from a node is associated to an interval

within the domain of the variable attached to the node. Finally, the edge is

linked either to another node either to a boolean terminal (True or False).
More formally, the de�nition of an IDD node is given by:

De�nition 2 Let x be an integer variable de�ned on the domain Dx ⊆ N and

t a �rst-order logic formula on integer variables. We call t an IDD node i�

one of the following hold:

• t ∈ {True, False},
• t = (x ∈ I0 ∧ t0) ∨ (x ∈ I1 ∧ t1) ∨ . . . (x ∈ Ik ∧ tk).

With (Ii)i≤k a partition of Dx and (ti)i≤k a set of IDD nodes. We note: t =
x→ (I0, t0)(I1, t1) . . . (In, tk).

We call an IDD root, an IDD node without predecessor. We say that a set

of IDD nodes (ti)i≤n is consistent if there is only one root. Moreover, if t is an
IDD node, let var(t) be the function which give the integer variable tested on

this node. More formally:

var(t) =
{
x, if t = x→ (I0, t0)(I1, t1) . . . (Ik, tk)
t, if t ∈ {True, False}

Finally, we call I = ((ti)i≤n,�) an IDD i� (ti)i≤n is a consistent set of IDD

nodes and � is an order on the integer variables such that for all t ∈ (ti)i≤n

with t = x→ (I0, t′0)(I1, t′1) . . . (Ik, t′k), we have x � var(t′i) for each i ≤ k.
For example, if we consider the logic formula:

(x = 0 ∧ y ≤ 3) ∨ (1 ≤ x ≤ 6 ∧ z ≤ 6) ∨ (x = 7 ∧ y = 1)

The corresponding IDD would be (see Figure 2):

t0 = x→ ({0}, t00) ([1, 6], t000) ({7}, t01)
t00 = y → ([0, 3], T ) ([4, 7], F )
t01 = y → ({0}, F ) ({1}, T ) ([2, 7], F )
t000 = z → ([0, 6], T ) ({7}, F )

IDD structures can easily be used for describing a �lter. On Figure 3, we

represent a very simple �lter as an IDD. This example is testing the 'source

IP' variable that we splitted into four sub-variables (sipi) which are easier to

test. It can be noticed that all non-relevant tests have been removed from the

IDD structure.

On the Figure 3 the terminal DROP is assumed to be ¬ACCEPT , as we
handle only boolean terminals. We did not represent it, because it is assumed

that an edge which is not represented just leads by default to DROP .
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x

y y
z

T F

{0} {7}
[1, 6]

[0, 3]

[4, 7] {1}

{0}

[2, 7]

[0, 6] {7}

t0

t00 t01

t000

Figure 2: Example of an Interval Decision Diagram (IDD).

sip1

sip2

sip3 sip3

ACCEPT

{192}

{132} {164}

[133,163]

[13,255] [0,156]

Ruleset

ACCEPT: 192.132.13.*�192.164.156.*

DROP: others

Figure 3: IDD representing a �ltering rule.
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4.2 Boolean Operations on Interval Decision Diagrams

As IDD are representing �rst-order logic formulas on integer variables, we can

perform all the usual logical operations as negation (¬), and (∧), or (∨), and
so on. Some examples are given on Figures 4 and 5. Figure 4 represent two

formulas ϕ1 and ϕ2. Figure 5 represent the result of ¬ϕ1, ϕ1 ∧ϕ2 and ϕ1 ∨ϕ2.

The edges labeled by ∗ are denoting the complement of all the other edges.

For example, if a node has four edges labeled by [0, 2], {9},[12, 15] and ∗ and

has a range of [0, 15], then ∗ stand for [3, 8] and [10, 11].

x

y

F T

x

z

F T

[10, 15]
*

* [0, 9]

*

[0, 11]

* {4}

ϕ1 = (x > 9) ∧ (y < 10) ϕ2 = (x < 12) ∨ (z = 4)

Figure 4: Examples of Interval Decision Diagrams.

x

y y

z

T

x

y y

z

T

x

y

T F

[10, 11] [12, 15]

[0, 9]

[0, 9]

{4}

[12, 15]

[0, 9]

[10, 11]

[0, 9]

*

[0, 9]
{4}

[10, 15]
*

*
[0, 9]

ϕ1 ∧ ϕ2 ϕ1 ∨ ϕ2

¬ϕ1

Figure 5: Examples of boolean operations on IDDs.
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4.3 Optimization of Interval Decision Diagrams

As you can see on Figure 5, the result of ∧ and ∨ operations is not a direct

combination of ϕ1 and ϕ2. Indeed, some optimizations have been performed

on the structure in order to prune redundant nodes and sub-trees.

Optimization process is very simple. It is performed by listing all the node

of the IDD and applying the following optimization rules:

1. If a non-terminal node only has one outgoing edge, it must be pruned.

2. If two nodes have the same outgoing edges and represent the same vari-

able, they must be merged into one.

3. If two edges of a node, with consecutive intervals, refer to the same child,

they must be merged.

When all the nodes have been processed, the input IDD to the optimization

function is compared to the resulting IDD. If they are equal a �x-point have

been reached and the optimization terminates. If not, it takes the resulting

IDD as the input and it performs the optimization function again.

This optimization algorithm is proved to always terminate (as all the rules

are pruning nodes and none is adding one). It also guaranty, both, that the

number of nodes will be minimal and that the depth of the IDD, for this given

order3, will be minimal [ST98].

4.4 Multi-Terminal Decision Diagrams

Unfortunately, in real life examples, you often have more than two policies.

One good reason could be because the �rewall allow the user to create his own

policies. As IDDs are representing boolean formulas, they cannot provide more

than two terminals and therefore they can't give an e�cient way of dealing

with more than two policies. The idea is now to extend the IDD structure

with multiple terminals (MTIDD). This is directly derived from the multiple

terminal binary decision diagrams (MTBDD, [And97]).

Figure 6 represent a �lter which have more than two policies (ALLOW ,

RESET , DROP ). As previously, one terminal is not represented. TheDROP
policy has been chosen as the default. The precise semantic is that all the edges

which are not represented on the �gure leads to the default policy.

More formally, the de�nition is very similar to the interval decision dia-

gram's de�nition, except that we allow more than two terminals. In place of

boolean as terminal we de�ne a �nite set T of terminals (T1, T2, . . . ). Lets

�rst de�ne a MTIDD node:

3Choosing a di�erent order can sometimes leads to some gain
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sip1

sip2

sip3
sip3

sip3

ACCEPT REJECT

{192}

{132}

{164}

{250}

[1
33
,1
63
] [165,249]

[13,255]
[0,156] [157,255]

[0,156]

Ruleset

ACCEPT: 192.132.13.*�192.164.156.*

REJECT: 192.140.*.*�255.250.156.*

DROP: others

Figure 6: MTIDD representing a �ltering rule.

De�nition 3 Let x be an integer variable de�ned on the domain Dx ⊆ N and

t a �rst-order logic formula on integer variables. We call t an MTIDD node

i� one of the following hold:

• t ∈ T,

• t = x→ (I0, t0)(I1, t1) . . . (Ik, tk).

With (Ii)i≤k a partition of Dx and (ti)i≤k a set of MTIDD nodes.

The notion of root node and consistency are the same, but we have to

extend slightly the function var:

var(t) =
{
x, if t = x→ (I0, t0)(I1, t1) . . . (Ik, tk)
t, if t ∈ T

Finally, we call I = ((ti)i≤n,�) a MTIDD i� (ti)i≤n is a consistent set

of MTIDD nodes and � is an order on the integer variables such that for all

t ∈ (ti)i≤n such that t = x→ (I0, t0)(I1, t1) . . . (Ik, tk), we have x � var(ti) for
each i ≤ k. For example (see Figure 7):

t0 = x→ ([0, 4], t00) ([5, 7], t000)
t00 = y → ([0, 3], T1) ([4, 15], T2)
t000 = z → ([0, 1], T2) ([2,+∞[, T3)

Performing packet classi�cation on MTIDD in place of IDD does not imply

any complexity overhead and can be see as a strait extension of a regular

IDD. But, MTIDD are no more boolean formulas. In a matter of fact, we are

computing MTIDD by combining non-overlapping IDDs (one by policy).
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Figure 7: Multiple-Terminal Interval Decision Diagram (MTIDD).

In conclusion, we have presented an e�cient data-structure to handle with

�rst-order logic on integer variables (IDD), we described an algorithm to opti-

mize in size and depth such data-structures. And, we proposed an extension of

IDD in order to deal easily with several terminals (MTIDD). In the two next

sections we will present the general architecture of a tool using such framework

to classify packets and the basic algorithm of a network access veri�er tool.

5 High Performance Packet Filtering

In the previous sections we described the IDD and MTIDD data-structures

that we propose to use when performing packet �ltering. This section focuses

on evaluating the performance of the data-structure by describing a prototype

tool that performs packet �ltering using MTIDDs. In the following sections we

�rst describe the architecture of the packet �ltering toolkit and then evaluate

the performance of the tool based an number of simple experiments.

5.1 Architecture

The architecture of the packet �ltering toolkit is shown in Figure 8. The main

components are the compiler, the packet classi�er, and the NAV tool that

we describe in Section 6. In the following we focus on describing the �ow of

data through the architecture and then the issues related to the design of the

compiler and the packet classi�er.

Figure 8 shows the overall architecture of the packet classi�cation tool.

The �ow of data begins with a �lter speci�cation in a high level language.

In our particular case we have simply chosen to use a Cisco-like access list

language that supports overlapping rules and logging. Using a compiler the

high-level speci�cation is transformed into an MTIDD that has been optimized

thus ensuring near optimum performance. After the compilation there are two

directions for the data. Either the MTIDD can be used in a tool such as NAV,

or it can be loaded into the packet classi�er.
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Figure 8: Packet Filter Architecture.

The compiler performs the transformation from the high-level �lter speci-

�cation into a MTIDD structure as we described it in Section 3.2. The overall

approach consists of building an IDD for each of the policies used in the �lter

speci�cation. These IDDs are then merged into an MTIDD representing the

entire �lter in a single decision diagram. An example is the result of compiling

the �lter speci�cation in Figure 1. This results in an MTIDD built from two

disjoint IDDs representing the policies: PERMIT and DENY . At a more

detailed level, the compiler operates by building an IDD for each of the rules

in the order they are stated in the speci�cation. Then, before adding an rule

to the IDD with the corresponding policy, any overlap with previous rules is

removed. This is done by removing any overlap between the current rule and

the IDDs representing various policies used in the �lter. This corresponds to

the equivalence proof given in Section 3.2. For instance, from the example of

Figure 1, when adding the second rule to the IDD representing DENY , we
remove the part of the rule which overlaps with the IDD of the PERMIT
policy.

Having described the main idea of the compiler we move on and look closer

at the design of the packet classi�er. As shown on Figure 8 an actual im-

plementation packet classi�er will run in kernel space and serve as the core

classi�cation mechanism in a packet �lter, however, in the prototype we chose

only to do a user space implementation. The majority of code consists of

initializing the MTIDD data-structure describing the �ltering policy. To rep-

resent the MTIDD we used a structure fairly similar to the a adjacency-list

representation of directed acyclic graphs described in [Sed02], with the excep-

tion that adjacency-lists are arrays, thus allowing fast search of the partitions.

Figure 10 illustrates the organization of this structure based on the example
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IDD shown in Figure 9. To limit the processing overhead, each node is ini-

tialized to have a pointer to a comparison function which is used to perform a

binary search for the matching partition entry. This allows us to use di�erent

functions based on the size of the header �eld without any processing over-

head. The worst case number of comparisons necessary to classify a packet is:

m · log(w)) where m is the number of �elds and w is the maximum number

of intervals in the largest �eld. The actual search function simply consists of

traversing the DAG, performing a binary search at each non-terminal until a

leaf is reached.

Field0

Field1 Field1

DENY PERMIT

[0, 1] [2, 3]

{0}
[1, 3] {3}

[0, 2]

2

0 1

3 4

Figure 9: Filter example.

0
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1

Field1

2

Field0

3

DENY

4

PERMIT

{0}, 3 [1, 3], 4

[0, 2], 4 {3}, 3

[0, 1], 0 [2, 3], 1

{

{Nodes

Terminals

Figure 10: Organization of an IDD structure in the packet classi�er.

The main strength of this architecture is that the whole complexity of

packet �ltering lies is in the compiler that runs in user-space while packet clas-

si�er, that run in kernel space, is very simple. A consequence of this design is

that the �ltering policy is more static since any change requires recompilation

of the �lter speci�cation. On the other hand compiling that �lter speci�cation

before actually loading it to the �rewall allows an administrator to have the �l-
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ter checked before it is taken into production. This process could be supported

by a tool such as NAV (see Section 6) or similar.

5.2 Performance

The relevance of proposing the use of the MTIDD structure for packet classi�-

cation is highly dependent on whether performance is competitive with other

algorithms for packet classi�cation that performs well on generic CPUs. How-

ever, we should emphasize that the possibilities of optimizing time and space

requirements when using MTIDD structures are many and not fully explored

in the work presented here. In the following we �rst focus on the space re-

quirements of the packet classi�er, then we look brie�y at the performance of

the compilation from �lter speci�cation to MTIDD.

The memory requirements of using MTIDDs are di�cult to reason about

due to the nature of decision diagrams. The worst case memory requirement

of an MTIDD is exponential in the depth of the MTIDD. However the advan-

tage of decision diagrams, in general, is that they remove any redundancy of

boolean expressions hereby minimizing the memory requirements. Secondly,

the strength of IDDs, in particular, is that boolean expressions over intervals

or ranges can be described in a very compact manner.

Indeed, ranges and intervals often occur in �lter speci�cations. For instance

if we brie�y look a �lter on TCP/IP protocol �elds then we can easily identify

often occurring intervals. For instance it is common to only allow inbound

tra�c on a few port numbers, so the range from 1024-65535 could for instance

be an often occurring interval to specify the range of closed ports. An other

example is the IP-address �elds where we often group networks by subnet mask,

which in itself describes a grouping of addresses. A �nal example is the protocol

�eld in the IP header, where only a few di�erent values are used for specifying

protocols such as TCP, UDP, ICMP, and IGMP. Thus we can conclude that it

is unlikely to see exponential memory requirements for representing �lters.

To provide empirical evidence of the memory requirements needed for rep-

resenting packet �lters as MTIDDs we performed two experiments. The �rst

experiment consists of analyzing the memory requirements of a set of real-life

�lters speci�cations from production networks. The second experiment aims at

studying the scalability of the memory requirements by exploring the memory

requirements of a �lter that speci�es the tra�c of a backbone header trace.

For the �rst experiment we studied a set of six real-life �lters. The �lters are

all used on production networks and manually written by professional network

administrators (e.g. no automatic rule generation is used). The �lters Ax

are access �lters from the University routers while �lters Bx are �lters from a

commercial organization.

Table 1 shows the summary of the memory requirements for each of the
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Filter #Rules #Nodes #Edges Size Time

B1 132 142 771 16.5 KB 4.8 s

A1 129 164 1255 24.8 KB 7.7 s

B3 90 53 274 6.00 KB 0.31 s

A2 71 97 605 12.5 KB 2.8 s

A3 39 18 109 2.33 KB 0.16 s

B2 18 62 259 6.05 KB 0.19 s

Table 1: MTIDD resource requirements of real-life �lters.

�lters. The �rst column two describes the number of rules in the original �lter

speci�cation. Columns three and four summarizes size of resulting MTIDD,

and column �ve shows the memory usage of the MTIDD structure when has

been loaded into the packet classi�cation prototype. It should be mentioned

that in this study we chose to split the representation of IP addresses into four

variables, each representing a byte of the address separately. This may mean

fewer edges but more nodes.

To some degree we see a correspondence between the number of rules in

the order rule set speci�cation and the memory requirements of the MTIDD

representation. However in the case of B3 a �lter of 90 rules is represented with

less memory than �lter B2 which only has 18 rules. The reason is that �lter B3

has many very similar rules. Another interesting remark is that �lter A1 uses

signi�cantly more memory than �lter B1, even though the number of rules are

nearly identical. Indeed, the author of �lter A1 uses overlapping rules which

causes a higher degree of fragmentation of intervals in the resulting MTIDD.

In total, these results are promising due to the small memory requirements.

The second experiment explores the scalability of the MTIDD representa-

tion of �lter speci�cation. Due to the lack of real-life �lters for this experiment,

we chose a di�erent approach, where the idea is to extract a �lter describing the

tra�c of a network backbone. An alternative approach is to generate random

rules. However, since the MTIDD data-structure relies on �nding intervals in

the address range, then rules with random values will not give fair picture of

the scalability issue.

In practice the rules are generated using a packet header trace of backbone

tra�c4. Each header in the trace is described by a rule. The rule permits

packets with similar headers �elds to pass through the �lter. The set of header

�elds considered are source and destination address, IP protocol �eld, and

source and destination port numbers if applicable. Any duplicate rules are

removed from the �nal �lter.

4IP addresses were mangled to ensure privacy, but it such a way that the o�set between

addresses in the trace remained present
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Figure 11: Memory requirements with large packet �lters.

Figure 11 shows the result of the scalability experiments by showing the

size of the MTIDD when loaded by the packet classi�cation prototype as a

function of the number of rules in the �lters. Overall we see a logarithmic

growth rate. Initially growth rate is rather large, but as the �lters increase in

size the more e�cient the MTIDD data-structure becomes at representing the

�lters. An important point to these experiments is that the generated �lters

only represent MTIDDs with the policies permit and deny. If more policies are

added, then the size of the MTIDDs will increase. The worst-case situation,

when adding more policies, is that each new policy introduced is represented

entirely by it's own subtree, thus causing linear increase of memory usage as a

function of the number of policies in the MTIDD.

Before concluding, we brie�y discuss the compilation times for transforming

an rule-based �lter to an MTIDD. The compile times, measured on a 1.1GHz

AMD AthlonTM, are shown in rightmost column of Table 1. From these we see

acceptable compilation times for our real-life �lters, however, compiling larger

�lters such as those shown in Figure 11 takes unacceptably long. For instance,

the largest �lter (50.000 rules) took several days to compile. Thus we conclude

that to make our scheme truly scalable, techniques for improving the compile

time needs to be developed.

In this limited evaluation of the packet classi�cation prototype, the empir-

ical evidence shows that:
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• The memory requirements of MTIDDs for representing real-life packet �l-

ters has proven to be quite small. Our largest example used only 24.8KB

when loaded.

• When using MTIDDs for describing the headers of backbone tra�c, we

found that the space requirements were logarithmic in the number of

rules of the �lter.

• Compilation time is acceptable with real-life �lters, but di�erent opti-

mization possibilities need to be explored for making the compilation

time acceptable with larger �lters.

In total, our evaluation suggests that the use of MTIDDs for representing

packet �lters is e�ective and competitive. However, it should be noted that

the evaluation is not complete in any way. For instance, we have not explored

the potential gain of variable reordering our IDD structures, such as described

in [And97]. Neither have we made attempts to measure the speed of the

classi�cation algorithm when �ltering tra�c.

6 Network Access Veri�er

A problem when working with �lters speci�cations such as those used on �re-

walls is to ensure that the policy implemented in the speci�cation corresponds

to the intended policy. An even more di�cult problem is to understand the

cumulative e�ect of two �lters separated onto di�erent routers or �rewalls.

In this section we outline a tool called a Network Access Veri�er (NAV) that

can be used to explore the access properties of a complex network by taking

advantage of the �lter speci�cations as being �rst-order logic expressions. As

previously, the �rst-order logic formulas are represented as IDDs.

To illustrate the idea, consider the model of a network as a bidirectional

graph as shown in Figure 12. The network consists of a set of computers,

denoted from A to E, that have one or more interfaces that connects the

computer to one or more of its neighbors. Network access is controlled through

in inbound and an outbound �lter for each interface. The �lters are a boolean

expressions that either permit (True) or deny (False) packets to pass through
based on values in the header �elds. To include aspects of routing in the model

we transform the routing table into a set of boolean expressions, one for each

�lter. Each boolean expression is given by the routing table entries for that

particular interface, thus the boolean expression describes the set of headers

that are forwarded on that interface.

Using this model we derive a matrix describing the �lter between any of

pair of computers in the network. As an illustration of this principle Table 2

shows the �lters in the example network. Each of the �lters in the matrix is
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Figure 12: Example of a Network Graph Representation.

found by combining the �lters on each link between the source and destination.

A sequence of �lters are combined by conjunction, and if alternative paths exist

then the �lters for each path are combined with a disjunction. For instance

the �lter for any packets passing from computer A to computer B is given by

IAB = IA,outB∧IB,inA
thus combining the outbound �lter from A to destination

computer B and Bs inbound �lter for tra�c from A. An other example it the

�lter between the two hosts A and E. Here tra�c can pass through either C
or D, so using disjunction we get IAE = IAB ∧ (IBC ∧ ICE ∨ IBD ∧ IED).

Destination

A B C D E

A × IAB IAC IAD IAE

B IBA × IBC IBD IBE

S
o
u
rc
e

C ICA ICB × ICD ICE

D IDA IDB IDC × IDE

E IEA IEB IEC IED ×
Table 2: Matrix of �lters in example network.

The matrix immediately give the reachability analysis of the network. In

fact, if an element IST of this matrix is the IDD node False, the source node S
cannot send any packet to the target node T without being �ltered out. This

reachability test is really wide. Indeed it cover also IP-spoofed packets.

A more reasonable query would be to ask if the machine S can reach the

machine T with packets such that the source-IP is set to the IP of S. This

operation is, actually, very easy to perform. It is enough to compute the

conjunction of IST and the IDD describing the set of headers such that the

source-IP �eld is equal to the IP address of S.
More generally, the user can specify a set of headers (Iquery) and check if
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some of them (Iresult) can be sent from S to T (IST ):

Iquery ∧ IST = Iresult (7)

If Iresult is equal to False, none of the headers described in Iquery can reach T
from S.

In this section we have brie�y described a tool for network access veri�ca-

tion which test for packet reachability into a, possibly, complex network. The

overall strength the tool lies in the fact that the tests are exhaustive. Mean-

ing that all cases are covered by the computation, thus improving the overall

security of the network being analyzed. Moreover, the computational power

needed to perform such veri�cation is really low and can be performed on any

personal computer.

7 Conclusion

In this paper we have focused on packet �ltering on Internet �rewalls, and

especially on improving both aspects of performance and security. As a result

we have proposed a formalized framework for packet classi�cation and through

two applications we demonstrate that both performance and security can be

improved.

The central idea of this paper consists of transforming the traditional or-

dered rule based �lter speci�cations into �rst order logic formulas on integer

variables, and representing these using a Multi Terminal Interval Decision Di-

agrams (MTIDDs). Performing this transformation results in several advan-

tages. First of all, the representation is sound and complete essentially pro-

viding a strong platform for building tools for testing and verifying properties

of �lter speci�cations. Secondly, the worst case classi�cation time when using

MTIDDs is O(1) making the classi�cation time independent of the size of the

�lter speci�cation. Thirdly, the concept of Interval Decision Diagrams is easy

to understand and provides a natural representation of �lter speci�cations.

Finally the algorithms for optimizing and manipulating IDDs are simple.

For purposes of demonstrating the strength of the framework, we have

described two applications: a packet �ltering prototype and a network access

veri�er (NAV).

The purpose of the packet �ltering prototype is to demonstrate the perfor-

mance issues related to using a decision diagram representation of packet �lters

and suggesting an architecture for a packet �ltering toolkit. The main bene�ts

of the suggested architecture is that, when using this framework, the majority

of the complexity runs in user space, while the packet classi�er, running in

kernel space, is very simple. In terms of performance we have presented a pre-

liminary study space-usage issues. Most interesting is the empirical evidence

showing that the memory requirements for representing �lters as MTIDDs are
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very promising. In the set of real-life �lter speci�cations tested the largest

used only 25KB. In a test of large packet �lters we saw logarithmic space

usage as a function of the number of rules, where the largest �lter required

3.1MB of memory for 50.000 rules. A second study focused on the packet �l-

ter compilation time. Here we found acceptable compilation times for real-life

�lters, however with larger �lters compilation times are quite long. Several

issues remains open for further study, this includes measurements of actual

classi�cation times, and exploring ways to minimize the size of the MTIDD

structures.

The second application, which is only outlined, demonstrates a potential

use of our framework for improving network security. The idea is to model

a network and all the �lters. Then by issuing queries we can explore the

access properties of the network. For instance, exploring the reachability of

IP spoofed packets from one hosts to any of the destinations. The strength of

such a tool is that the tests are exhaustive and performed o�-line. Moreover,

the computational complexity of exploring the network is quite low.

In total, this paper demonstrates that the use of IDDs for packet �ltering

can both improve performance and security of Internet �rewalls.

The most immediate extension to this work is a more elaborate analysis of

the performance issues related to using this framework for packet classi�cation.

Especially exploring possibilities of minimizing packet classi�cation time and

space requirements. Long term extensions includes using the framework on an

actual �rewall, and implementing the Network Access Veri�er. More gener-

ally, an interesting aspect is to study the possibilities of using the framework

in context of related application areas. For instance, routing and Di�erenti-

ated services. However this may involve extending the framework to support

dynamic updates.
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Note on an Expressiveness Hierarchy for Multi-exit Iteration.
September 2002. 8 pp.

RS-02-39 Stephen L. Bloom and Zolt́an Ésik. Some Remarks on Regular
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