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CPS Transformation of Flow Information,

Part II: Administrative Reductions ∗

Daniel Damian† and Olivier Danvy

BRICS‡

Department of Computer Science
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August 13, 2000 (updated: August 9, 2001 and August 6, 2002)

Abstract

We characterize the impact of a linear β-reduction on the result of a control-
flow analysis. (By “a linear β-reduction” we mean the β-reduction of a linear
λ-abstraction, i.e., of a λ-abstraction whose parameter occurs exactly once in
its body.)

As a corollary, we consider the administrative reductions of a Plotkin-style
transformation into continuation-passing style (CPS), and how they affect the
result of a constraint-based control-flow analysis and, in particular, the least
element in the space of solutions. We show that administrative reductions pre-
serve the least solution. Preservation of least solutions solves a problem that
was left open in Palsberg and Wand’s article “CPS Transformation of Flow
Information.”

Together, Palsberg and Wand’s article and the present article show how to
map in linear time the least solution of the flow constraints of a program into
the least solution of the flow constraints of the CPS counterpart of this program,
after administrative reductions. Furthermore, we show how to CPS transform
control-flow information in one pass.

∗To appear in the Journal of Functional Programming.
†Current affiliation: LION Bioscience Ltd., Compass House, 80-82 Newmarket Road,
Cambridge CB5 8DZ, UK.

‡Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.
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1 Background and introduction

Since their inception, over thirty years ago [13], continuations and the transformation
into continuation-passing style (CPS) have been the topic of much study, ranging from
semantics and logic to implementations of sequential, concurrent, and distributed
programming languages and systems. Fifteen years ago [9, 16], Meyer and Wand
noticed that the CPS transformation preserves types and they constructed a CPS
transformation of types.

type CPS transformation
of types

//_______________ type

direct-style program

type
inference

OO

CPS transformation
of terms

// CPS program

type
inference

OO

Over the last couple of years, Palsberg and Wand have extended this observation to
flow types and the flow information gathered by a control-flow analysis [11], designing
a CPS transformation of flow information.

flow
information

CPS transformation
of flow

//____________ flow
information

direct-style program

flow
analysis

OO

CPS transformation
of terms

// CPS program

flow
analysis

OO

Independently, and with a different motivation, we have also designed a CPS trans-
formation of flow information for control flow and binding times [1–3]. The two CPS
transformations of flow information correspond to two different takes on the CPS
transformation of λ-terms:

CPS with
administrative redexes administrative

reductions
**TTTTTTTTTT

direct style

CPS
transformation

55lllllllllll

transformation into
monadic style

))RRRRRRRRRRR
CPS without

administrative redexes

monadic
normal form

introduction of
continuations

44jjjjjjjjjjjj

The CPS transformation is Plotkin’s [12]. It is a first-order, compositional rewrit-
ing system generating numerous administrative redexes that need to be post-reduced
in practice [15]. Alternatively [5, 14], the CPS transformation can be staged into a
transformation into monadic normal form followed by an introduction of continua-
tions.

2



The two CPS transformations of flow information can be depicted as follows.

CPS with
administrative redexes

this work
**TTTTTTTTTT

direct style

Palsberg & Wand,
JFP’02

55lllllllllll

Damian & Danvy,
JFP’02

))RRRRRRRRRRR
CPS without

administrative redexes

monadic
normal form

Damian & Danvy,
ICFP’00

44jjjjjjjjjjjj

Palsberg and Wand show how to construct in linear time the flow information
corresponding to a CPS program obtained through a Plotkin-style CPS transforma-
tion [11, 12]. The resulting programs contain all administrative redexes induced by
Plotkin’s transformation. Therefore, the corresponding CPS information of flow also
contains spurious information which accounts for the extraneous λ-abstractions and
their flow. The problem of eliminating this spurious information is open.

Damian and Danvy show how to construct in linear time the flow information
corresponding to the introduction of continuations, starting from monadic normal
forms [2, 5]. They also show how to construct in linear time the flow information
corresponding to the transformation into monadic normal forms [1, 3].

In this work, we complete the picture above by showing how to perform in linear
time administrative reductions on CPS-transformed programs (Section 4). Our result
hinges on linear reductions (Section 3). But first, we present the source language and
a constraint-based control-flow analysis (Section 2).

2 Preliminaries

2.1 The source language

Input terms are given by the grammar in Figure 1. Terms are annotated with distinct
labels taken from a countable set Lab. Each λ-abstraction is annotated with a distinct
label π from a set Lam , and we assume that there exists a bijection between λ-
abstractions and their labels.

e ∈ Exp ::= x | n | e`1
1 e`2

2 | if0 e` e`0
0 e`1

1 | λπx.e`

π ∈ Lam (λ-abstraction labels)
` ∈ Lab (term labels)
n ∈ Lit (integer literals)

Figure 1: The language of labeled λ-terms

The language has a standard call-by-value semantics, which we leave unspecified.
A program p is a closed labeled expression e` .
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Definition 2.1. A properly labeled expression is a labeled expression in which all
labels are distinct and all variables are distinct.

2.2 Control-flow analysis

We consider a constraint-based control-flow analysis. We use the same notations and
definitions as in Nielson, Nielson and Hankin’s recent textbook on program analy-
sis [10].

Given a program p, the control-flow analysis is defined as a relation �p whose
functionality is displayed in Figure 2.

Lamp The set of λ-abstraction labels in p
Varp The set of identifiers in p
Labp The set of term labels in p

Valp = P(Lamp) Abstract values
Ĉ ∈ Cachep = Labp → Valp Abstract cache
ρ̂ ∈ Envp = Varp → Valp Abstract environment

�p ⊆ (Cachep × Envp) × Labp

Figure 2: Control-flow analysis relation for a program p: functionality

A solution of the analysis of p is a pair (Ĉ, ρ̂) such that (Ĉ, ρ̂) � p. The set of
solutions of the analysis is ordered by the natural pointwise ordering of functions,
and has a least element. This property ensures the existence of a least solution of the
analysis of p. The analysis relation is defined inductively on the syntax as defined in
Figure 3.

(Ĉ, ρ̂) �p n` ⇐⇒ true
(Ĉ, ρ̂) �p x` ⇐⇒ ρ̂(x) v Ĉ(`)
(Ĉ, ρ̂) �p (λπx.e`)`1 ⇐⇒ π ∈ Ĉ(`1) ∧ (Ĉ, ρ̂) �p e`

(Ĉ, ρ̂) �p (e`1
1 e`2

2 )` ⇐⇒ (Ĉ, ρ̂) �p e`1
1 ∧ (Ĉ, ρ̂) �p e`2

2 ∧
∀λπx.e`0

0 ∈ Ĉ(`1).Ĉ(`2) ⊆ ρ̂(x) ∧
Ĉ(`0) ⊆ Ĉ(`)

(Ĉ, ρ̂) �p (if0 e` e`0
0 e`1

1 )`2 ⇐⇒ (Ĉ, ρ̂) �p e` ∧ (Ĉ, ρ̂) �p e`0
0 ∧ (Ĉ, ρ̂) �p e`1

1 ∧
Ĉ(`0) ⊆ Ĉ(`2) ∧ Ĉ(`1) ⊆ Ĉ(`2)

Figure 3: Control-flow analysis relation for a program p: definition
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3 Linear reductions

We observe that linear reductions preserve flow information. A linear reduction is
a β-reduction in which the λ-abstraction in the function position is linear, i.e., such
that it uses its argument once and only once. Let us formalize the notion of linear
reduction using linear contexts.

Definition 3.1. A linear context is a labeled expression with a unique hole [·]. Linear
contexts are defined by the grammar:

E ::= [·] | x` | n` | (E e`2
2 )` | (e`1

1 E)` |
(if0 E e`0

0 e`1
1 )` | (if0 e` E e`1

1 )`0 | (if0 e` e`0
0 E)`1 |

(λπx.E)`

Given a linear context E and a labeled expression e` , we use E[e` ] to denote
the context E with the hole [·] replaced with e` . It is trivial to see that E[e` ] is
a well-formed expression. Note that pluging as defined here does not avoid variable
capturing. We use plugging however only in the context of properly-labeled programs,
where there is no danger of variable capture.

We also use FV (e) to denote the set of free variables of the expression e. This
notation naturally extends to contexts: given the context E, by definition FV (E) =
FV (E[n]), where n is an arbitrary literal. We use L as the function extracting the
label of an expression. By definition, for any labeled expression e` , L(e`) = `.

Definition 3.2. A labeled λ-abstraction (λπx.e`1)`2 is linear if and only if is properly
labeled and e`1 contains a unique occurrence of x, i.e., if there exists a linear context
E such that x 6∈ FV (E) and e = E[x` ] for some label `.

Definition 3.3. A linear redex is a β-redex (λx.e1) e2 such that λx.e1 is a linear
λ-abstraction.

Definition 3.4. A linear reduction is the β-reduction of a linear redex.

Example:
((λπx.E[x` ])`1 e`2)`3 → E[e`2 ]

where E is a linear context where x does not occur free. Note that such a reduction
might not necessarily be sound wrt. call-by-value semantics. Nevertheless, we show
that it does not affect the result of control-flow analysis. In any case, we treat linear
reductions in CPS, which is evaluation-order independent [12].

4 Control-flow analysis and linear reduction

We show that performing a linear reduction does not alter the results of the anal-
ysis of a properly labeled program. More precisely, we show that, given a properly
labeled program which contains a linear β-redex, control-flow analysis yields strictly
equivalent results before and after performing a linear β-reduction.

We are given a program that contains a linear redex and the least solution of its
analysis. The goal of this section is to construct the least solution of the analysis of
this program after a linear β-reduction.
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Let p be a properly labeled program containing a linear β-redex. Therefore there
exist two linear contexts E and E1, an expression e, a fresh variable x, and labels
π, `0, `1, `2 and `3 such that

p = E[((λπx.E1[x`0 ])`1 e`2)`3 ]

and x 6∈ FV (E). Let then
p′ = E[E1[e`2 ]]

be the program p with the linear redex above reduced. It is immediate to see that p′

is also a properly labeled program.
In the rest of this section, we define a monotone function Fp which, given a solution

of the analysis of p, constructs a solution of the analysis of p′. We then define a reverse
function Gp, monotone as well, which, given a solution of the analysis of p′, constructs
a solution of the analysis of p. Using the two functions and their monotonicity, we
show that the best solution for p is transformed into the best solution for p′. We then
show how to construct in linear time the least solution of the analysis of p′ from the
least solution of the analysis of p.

4.1 Flow constructions

For the programs p and p′ defined as above, by construction,

• Labp = Labp′ ∪ {`0, `1, `3},
• Lamp = Lamp′ ∪ {π}, and

• Varp = Varp′ ∪ {x}.
We define a function Fp : (Cachep × Envp) → (Cachep′ × Envp′) as Fp(Ĉ, ρ̂) =

(Ĉ|Lamp′ , ρ̂|Lamp′ ). Obviously, Fp is a projection function and it is monotone with
respect to the ordering of solutions.

We define a reverse function Gp : (Cachep′ ×Envp′) → (Cachep×Envp) as follows.
Gp(Ĉ′, ρ̂′) = (Ĉ, ρ̂) such that:

• for all ` ∈ Labp′
, Ĉ(`) = Ĉ′(`); Ĉ(`3) = Ĉ′(L(E1[e`2 ])); Ĉ(`0) = ρ̂(x) = Ĉ′(`2);

Ĉ(`1) = {π}; and

• for all y ∈ Varp′
, ρ̂(y) = ρ̂′(y).

Obviously, Gp is an embedding function and it is monotone as well.

Lemma 4.1. Let (Ĉ, ρ̂) ∈ (Cachep ×Envp) such that (Ĉ, ρ̂) �p p. Then Fp(Ĉ, ρ̂) �p′

p′.

Proof. Let (Ĉ′, ρ̂′) = Fp(Ĉ, ρ̂). We show that (Ĉ′, ρ̂′) �p′ p′. The proof has two steps:

i) A proof of the fact that (Ĉ′, ρ̂′) �p′ E1[e`2 ]. The proof is by structural induction
on the context E1, using the assumption that (Ĉ′, ρ̂′) �p′ E1[x`0 ].

ii) A proof of the fact that (Ĉ′, ρ̂′) �p′ E[E1[e`2 ]]. The proof is by structural
induction on the context E.
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Lemma 4.2. Let (Ĉ′, ρ̂′) ∈ (Cachep′ × Envp′) such that (Ĉ′, ρ̂′) �p′ p′. Then
Gp(Ĉ′, ρ̂′) �p p.

Proof. Let (Ĉ, ρ̂) = Gp(Ĉ′, ρ̂′). We show that (Ĉ, ρ̂) �p p. The proof has three steps:

i) A proof of the fact that (Ĉ, ρ̂) �p E1[x`0 ]. The proof is by structural induction
on the context E1, using the assumption that (Ĉ′, ρ̂′) �p′ E1[e`2 ].

ii) A proof of the fact that (Ĉ, ρ̂) �p ((λπx.E1[x`0 ])`1 e`2)`3 . Using i), the proof
amounts to showing that a small set of constraints are satisfied.

iii) A proof of the fact that (Ĉ, ρ̂) �p E[((λπx.E1[x`0 ])`1 e`2)`3 ]. The proof is by
structural induction on the context E.

Lemma 4.3. Let (Ĉ, ρ̂) be the least solution of the analysis of p. Let (Ĉ′, ρ̂′) be the
least solution of the analysis of p′. Then Fp(Ĉ, ρ̂) = (Ĉ′, ρ̂′) and Gp(Ĉ′, ρ̂′) = (Ĉ, ρ̂).

Proof. We can immediately see that Fp(Gp(Ĉ′, ρ̂′)) = (Ĉ′, ρ̂′) and that Gp(Fp(Ĉ, ρ̂))
v (Ĉ, ρ̂). Therefore, Gp and Fp form an embedding/projection pair.

Since (Ĉ, ρ̂) is the least solution, then (Ĉ, ρ̂) v Gp(Ĉ′, ρ̂′). Using the monotonicity
of Gp, we obtain that Fp(Ĉ, ρ̂) v Fp(Gp(Ĉ′, ρ̂′)) = (Ĉ′, ρ̂′). Since Fp(Ĉ, ρ̂) is a solution
and (Ĉ ′, ρ̂′) is the least solution, we obtain that Fp(Ĉ, ρ̂) = (Ĉ′, ρ̂′) and then that
Gp(Ĉ′, ρ̂′) = (Ĉ, ρ̂).

4.2 The CPS transformation of flow information and admin-
istrative reductions

Lemma 4.3 says that the least analysis after a linear β-reduction is a restriction of the
least analysis of the initial term. From this, we can infer that any linear β-reduction
does not alter the results of the CFA. We use this result to show that administrative
reductions after Plotkin’s CPS transformation do not change the result of the flow
analysis.

Theorem 4.4. Let p be a program, p1 be its CPS counterpart without administrative
reductions, and p2 be its CPS counterpart after administrative reduction. Let (Ĉ1, ρ̂1)
be the least solution of the analysis of p1. The least solution (Ĉ2, ρ̂2) of the analysis of
p2 can be obtained in linear time from (Ĉ1, ρ̂1), by restricting (Ĉ1, ρ̂1) to the program
points preserved by the administrative reductions.

Proof. All administrative reductions are linear, and furthermore, administrative re-
duction is known to terminate [4]. We apply Lemma 4.3.

Corollary 4.5. Let p be a program, p1 be its CPS counterpart without administrative
reductions, and p2 be its CPS counterpart after administrative reduction. Let (Ĉ, ρ̂)
be the least solution of the analysis of p. The least solution (Ĉ2, ρ̂2) of the analysis of
p2 can be obtained in linear time from (Ĉ, ρ̂).
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Proof. We compose the construction given by Theorem 4.4 with Palsberg and Wand’s
CPS transformation of flow information [11], which also works in linear time.

5 Related work

Our key observation is that linear β-reduction preserves leastness. This property
is a corollary of Henglein’s subject invariance property of linear β-reductions for
monomorphic program analyses [6–8]. Non-linear β-reductions, while they do pre-
serve correctness of an analysis [17], are known not to preserve leastness.

6 Conclusion and issues

We have shown how to complement Palsberg and Wand’s CPS transformation of flow
information with administrative reductions, while preserving its linear-time complex-
ity. Our extension hinges on the linearity of administrative redexes.

Let us now show how to integrate administrative reductions in Palsberg and
Wand’s CPS transformation, therefore making it operate in one pass, still in lin-
ear time. As shown in “Representing Control” [4], at CPS-transformation time, one
can segregate the administrative lambdas and applications and the residual ones.
(The residual lambdas and applications are the ones preserved by the administrative
reductions.) Therefore, in Palsberg and Wand’s CPS transformation of flow informa-
tion, we can segregate the labels of the administrative lambdas and applications and
the labels of the residual ones as well. In practice, the solution after administrative
reduction is thus obtained simply by restricting Palsberg and Wand’s solution to the
residual labels. In the overall process of (1) CPS transformation and (2) administra-
tive reduction, the administrative labels are used transitorily, just as in the one-pass
CPS transformation, which is conceptually fitting.
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