
B
R

IC
S

R
S

-02-3
D

anvy
&

N
ielsen:

O
n

O
ne-P

ass
C

P
S

Transform
ations

BRICS
Basic Research in Computer Science

On One-Pass CPS Transformations

Olivier Danvy
Lasse R. Nielsen

BRICS Report Series RS-02-3

ISSN 0909-0878 January 2002

Copyright c© 2002, Olivier Danvy & Lasse R. Nielsen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/02/3/

On One-Pass CPS Transformations

Olivier Danvy and Lasse R. Nielsen

BRICS ∗

Department of Computer Science
University of Aarhus †

January 17, 2001

Abstract

We bridge two distinct approaches to one-pass CPS transformations,
i.e., CPS transformations that reduce administrative redexes at trans-
formation time instead of in a post-processing phase. One approach is
compositional and higher-order, and is due to Appel, Danvy and Filin-
ski, and Wand, building on Plotkin’s seminal work. The other is non-
compositional and based on a syntactic theory of the λ-calculus, and is
due to Sabry and Felleisen. To relate the two approaches, we use Church
encoding, Reynolds’s defunctionalization, and an implementation tech-
nique for syntactic theories, refocusing, developed in the second author’s
PhD thesis.

This work is directly applicable to transforming programs into monadic
normal form.

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

†Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
E-mail: {danvy,lrn}@brics.dk

1

Contents

1 Introduction 3

2 Standard CPS transformation 4
2.1 From context-based to higher-order 4
2.2 From higher-order to context-based 8
2.3 Summary and conclusion . 9

3 Tail-conscious CPS transformation 10
3.1 Making a context-based CPS transformation tail-conscious 10
3.2 Making a higher-order CPS transformation tail-conscious 10

4 Continuations first or continuations last? 11

5 CPS transformation with generalized reduction 12
5.1 Generalized reduction . 12
5.2 Administrative generalized reduction 12

6 Tail-conscious CPS transformation à la Fischer with adminis-
trative eta-reductions and generalized reduction 13

7 Conclusions and issues 13

2

1 Introduction

Transforming functional programs into continuation-passing style (CPS) is a
classical topic, with a long publication history [2, 4, 8, 9, 11, 15, 17, 18, 20,
23, 24, 25, 26, 29, 30, 31, 32, 33, 35, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 52],1 including chapters in programming-languages textbooks [1, 21, 40],
and many applications. Yet no standard algorithm for CPS transformation
has emerged, and this lack contributes to maintaining continuations, CPS, and
CPS transformations as mystifying artefacts in the land of programming and
programming languages.

In this article, we bridge the two methodologically distinct CPS transfor-
mations described in the textbooks mentioned above. The first one, presented
by Appel [1] and by Queinnec [40], is higher-order, and proceeds by recursive
descent over the source program, compositionally. The other one, presented by
Friedman, Wand, and Haynes [21], is context-based, and rewrites the source pro-
gram incrementally, non-compositionally. Both transformations yield compact
programs, i.e., without administrative redexes [11, 38, 46, 47]. The transforma-
tions reduce administrative redexes at transformation time and thus operate in
one pass.

In the following sections, we inter-derive the higher-order transformation
and the context-based transformation. The higher-order transformation is in-
spired by denotational semantics. It is compositional and uses a functional
accumulator. The context-based transformation is inspired by syntactic theo-
ries, a variant of Plotkin’s structured operational semantics [39] introduced in
Felleisen’s PhD thesis [16] and based on the notion of evaluation contexts.

In a syntactic theory for the call-by-value λ-calculus, terms, values, and
evaluation contexts are defined as follows.

e ∈ Exp e ::= v | e e
v ∈ Val v ::= x | λx.e

x, k, w ∈ Var
E ∈ EvCont E ::= [] | E[v []] | E[[] e]

In essence, the context-based CPS transformation decomposes a source term
into a context and an application of two values, CPS transforms the application,
plugs a fresh variable in the context, and iterates. That is our starting point
in Section 2.1. We then massage this transformation until we obtain the usual
higher-order one-pass CPS transformation. In Section 2.2, we start from this
higher-order one-pass CPS transformation and we walk back to the context-
based CPS transformation.

The rest of the article builds on Section 2. In Section 3, we refine the CPS
transformation to make it tail-conscious, to avoid spurious administrative eta-
redexes in the CPS counterpart of source tail-calls. Section 4 compares and
contrasts the two standard variants of continuation-passing style, i.e., with con-
tinuations first or last. We review the administrative eta-reductions enabled

1Among many others.

3

by each variant. Section 5 addresses generalized reduction and how to inte-
grate it in both the context-based and the higher-order one-pass CPS trans-
formations. Finally, in Section 6, we put everything together and assemble a
tail-conscious CPS transformation with administrative eta-reductions and that
integrates generalized reduction. The continuations-first variant of the result is
the CPS transformation designed by Sabry and Felleisen for reasoning about
programs in continuation-passing style [46].

Prerequisites: We assume a basic familiarity with the λ-calculus [3], with
syntactic theories [14, 16, 51], and with the notion of one-pass CPS transfor-
mation [11, 46]. We also make use of Church encoding, i.e., the higher-order
representation of data structures [7], and of Reynolds’s defunctionalization, i.e.,
the data-structure representation of higher-order functions [13, 43].

2 Standard CPS transformation

2.1 From context-based to higher-order

The following CPS transformation repeatedly decomposes a source term into a
context and the application of one value to another value, CPS transforms the
application, and plugs a fresh variable in the context. This process continues
until the source term is a value.

Definition 1 (Context-based CPS transformation)

E : Exp × Var → Exp
E [[v]] k = k V [[v]]

E [[E[v0 v1]]] k = V [[v0]] V [[v1]] (C[[E]] k)

V : Val → Val
V [[x]] = x

V [[λx.e]] = λx.λk.E [[e]] k
where k is fresh

C : EvCont × Var → Val
C[[E]] k = λw.E [[E[w]]] k

where w is fresh

The CPS transformation of a complete program e is λk.E [[e]] k, where k is fresh.
�

Implicit in Definition 1 are the decomposition of a non-value source expres-
sion into a context and an application of a value to another value (third line
of the definition of E , in the left-hand side) and the plugging of an expression
in a context (second line of the definition of C, in the right-hand side). If they

4

are implemented literally, decomposition and plugging entail a time factor for
each transformation step that is linear in the size of the source program, in the
worst case. Overall, the worst-case time complexity of the CPS transformation
is quadratic in the size of the source program.

In another work [14, 36], we have shown that the composition of plugging and
decomposition can be simplified into a refocus function that make the resulting
CPS transformation operate in time linear in the size of the source program—
or more precisely, in one pass. Intuitively, refocus maps an expression and a
context into the next context and application of one value to another value, if
there is any.

We take this one-pass CPS transformation as the starting point of our deriva-
tion.

Definition 2 (Context-based CPS transformation, refocused)

refocus : Exp × EvCont → Val + (EvCont × Exp)
refocus [[v, E]] = refocus ′[[E, v]]

refocus [[e0 e1, E]] = refocus [[e0, E[[] e1]]]

refocus ′ : EvCont × Val → Val + (EvCont × Exp)
refocus ′[[[], v]] = [[v]]

refocus ′[[E[[] e1], v0]] = refocus [[e1, E[v0 []]]]
refocus ′[[E[v0 []], v1]] = [[E, v0 v1]]

E : (Val + (EvCont × Exp)) × Var → Exp
E [[v]] k = k V [[v]]

E [[E, v0 v1]] k = V [[v0]] V [[v1]] (C[[E]] k)

V : Val → Val
V [[x]] = x

V [[λx.e]] = λx.λk.E(refocus [[e, []]]) k

where k is fresh

C : EvCont × Var → Val
C[[E]] k = λw.E(refocus [[w, E]]) k

where w is fresh

The CPS transformation of a complete program e is λk.E(refocus [[e, []]]) k, where
k is fresh. �

Let us now fuse E and refocus into one function refocusE in such a way that

∀e, E, k . E(refocus [[e, E]]) k = refocusE [[e, E]] k.

A simple fold/unfold calculation yields the following CPS transformation.

5

Definition 3 (Context-based CPS transformation, fused)

refocusE : (Exp × EvCont) × Var → Exp
refocusE [[v, E]] k = refocus ′E [[E, v]] k

refocusE [[e0 e1, E]] k = refocusE [[e0, E[[] e1]]] k

refocus ′E : (EvCont × Val) × Var → Exp
refocus ′E [[[], v]] k = k V [[v]]

refocus ′E [[E[[] e1], v0]] k = refocusE [[e1, E[v0 []]]] k
refocus ′E [[E[v0 []], v1]] k = V [[v0]] V [[v1]] (C[[E]] k)

V : Val → Val
V [[x]] = x

V [[λx.e]] = λx.λk.refocusE [[e, []]] k
where k is fresh

C : EvCont × Var → Val
C[[E]] k = λw.refocusE [[w, E]] k

where w is fresh

The CPS transformation of a complete program e is λk.refocusE [[[], e]] k, where
k is fresh. �

As the last step of the derivation, let us Church-encode the contexts, which
are constructed in the calls to refocusE and consumed in each of the rules defining
refocus ′E .

Under the assumption that E is Church-encoded as Ẽ, and for any e and k,
we define refocus Ẽ [[Ẽ, e]] k to equal refocusE [[E, e]] k. We write Ṽ and C̃ to denote
the counterparts of V and C on Church-encoded contexts, and we overline λ and
the infix operator @ for the static abstractions and applications corresponding
to Church encoding; we also write u for the corresponding static variables. Sym-
metrically, we underline λ and @ for the dynamic abstractions and applications
constructing the residual CPS program, and we write w for the corresponding
dynamic variables.

• [] is Church-encoded as
λk.λu.k @ Ṽ [[u]],

corresponding to the first rule of refocus ′E in Definition 3;

• if E is Church-encoded as Ẽ then E[v0 []] is Church-encoded as

λk.λu1.Ṽ [[v0]] @ Ṽ[[u1]] @ (C̃[[Ẽ]] k),

corresponding to the third rule of refocus ′E ; and

6

• if E is Church-encoded as Ẽ then E[[] e1] is Church-encoded as

λk.λu0.refocus Ẽ [[e1, λk.λu1.Ṽ[[u0]] @ Ṽ [[u1]] @ (C̃[[Ẽ]] k)]] k.

corresponding to the second rule of refocus ′E .

The interpretation of contexts performed by refocus ′E is now part of the Church
encoding. There is thus no need for the definition of refocus ′E and we omit it.

In the definition below, instead of refocus Ẽ that operates on e, Ẽ, and k,
we define a function E operating on e and on Ẽ @ k, so that refocus Ẽ [[e, Ẽ]] k =
E [[e]] (Ẽ @ k). The result is a higher-order CPS transformation.

Definition 4 (Context-based CPS transformation, Church-encoded)

E : Exp × (Val → Exp) → Exp
E [[v]] κ = κ @ v

E [[e0 e1]] κ = E [[e0]] λu0.E [[e1]] λu1.V [[u0]] @V [[u1]] @ C(κ)

V : Val → Val
V [[x]] = x

V [[λx.e]] = λx.λk.E [[e]] λu.k @V [[u]]
where k is fresh

C : (Val → Exp) → Val
C(κ) = λw.κ @ w

where w is fresh

The CPS transformation of a complete program e is λk.E [[e]] λu.k @V [[u]], where
k is fresh. �

This CPS transformation is very close to the usual higher-order one-pass
CPS transformation. It is manifestly not compositional, witness the Church-
encodings that λ-abstract the contents of the double brackets. This non-compo-
sitionality is directly inherited from the initial context-based CPS transforma-
tion, which is also non-compositional.

The non-compositionality can be read off the types if we write DExp and
DVal for the syntactic domains of source, direct-style expressions and values
and CExp and CVal for the syntactic domains of target, CPS expressions and
values. The types of E , V , and C are then as follows:

E : DExp × (DVal → CExp) → CExp
V : DVal → CVal

C : (DVal → CExp) → CVal

7

We can easily make this CPS transformation compositional by applying V
prior to applying κ instead of afterwards. The types of E and C then read as
follows:

E : DExp × (CVal → CExp) → CExp
C : (CVal → CExp) → CVal

The result is then the usual higher-order one-pass CPS transformation, which
is our starting point in Section 2.2.

2.2 From higher-order to context-based

Appel [1], Danvy and Filinski [10, 11], and Wand [50] each discovered the fol-
lowing higher-order one-pass CPS transformation.

Definition 5 (Higher-order CPS transformation)

E : DExp × (CVal → CExp) → CExp
E [[v]] κ = κ @V [[v]]

E [[e0 e1]] κ = E [[e0]] λu0.E [[e1]] λu1.u0 @ u1 @ C(κ)

V : DVal → CVal
V [[x]] = x

V [[λx.e]] = λx.λk.E [[e]] λu.k @ u

where k is fresh

C : (CVal → CExp) → CVal
C(κ) = λw.κ @ w

where w is fresh

The CPS transformation of a complete program e is λk.E [[e]] λu.k @ u, where k
is fresh. �

Let us defunctionalize this higher-order transformation [13, 43]. The type
CVal → CExp is inhabited by instances of three λ-abstractions (the overlined
λ-abstractions in Definition 5). It therefore gives rise to a data type with three
constructors (written below as in ML) and its associated apply function.

The corresponding defunctionalized CPS transformation reads as follows.

Definition 6 (Higher-order CPS transformation, defunctionalized)

datatype Fun = F0 of Var
| F1 of Fun × DExp
| F2 of Fun × CVal

8

apply : Fun × CVal → CExp
apply(F0(k), u) = k @u

apply(F1(f, e1), u0) = E [[e1]] (F2(f, u0))
apply(F2(f, u0), u1) = u0 @u1 @ C(f)

E : DExp × Fun → CExp
E [[v]] f = apply(f, V [[v]])

E [[e0 e1]] f = E [[e0]] (F1(f, e1))

V : DVal → CVal
V [[x]] = x

V [[λx.e]] = λx.λk.E [[e]] (F0(k))
where k is fresh

C : Fun → CVal
C(f) = λw.apply (f, w)

where w is fresh

The CPS transformation of a complete program e is λk.E [[e]] (F0(k)), where k is
fresh. �

We recognize the result as a refocused context-based CPS transformation
where the contexts hold elements of CVal instead of elements of DVal . The
data type Fun plays the role of the evaluation contexts (indexing each empty
context with a continuation identifier), apply plays the role of refocus ′Ẽ , and E
plays the role of refocus Ẽ .

Alternatively, we can defunctionalize the CPS transformation of Definition 5
so that the data type and the type of its apply function read as follows.2

datatype Fun = F0 of Var
| F1 of Fun × DExp
| F2 of Fun × DVal

apply : Fun × DVal → CExp

We then obtain the CPS transformation of Definition 3.

2.3 Summary and conclusion

We have bridged two approaches to one-pass CPS transformations, one that is
context-based and non-compositional, and the other that is higher-order and
compositional. This bridge is significant because even though they share the

2This latitude in defining a data type is similar to the latitude of choosing maximally vs.
minimally free expressions in super-combinator conversion [37, Section 15.2].

9

same goal, the two approaches have been developed independently and have
always been reported separately in the literature.

The tools we have used to bridge the two CPS transformations are refocusing,
unfolding and folding, Church encoding, and defunctionalization. Refocusing is
the key tool to make the context-based CPS transformation operate in one
pass. Unfolding and folding are a basic method for semantics-based program
manipulation. Church encoding and defunctionalization are essentially inverse
changes of representation between the first-order world and the higher-order
world.

3 Tail-conscious CPS transformation

The CPS transformations of Section 2 generate one eta-redex for each source
tail-call. For example, they map a term such as λx.f (g x) into the following
one:

λk.k (λx.λk.g x (λw.f w (λw′.k w′)))

In this CPS term, the continuation of the (tail) call to f is λw′.k w′.
In contrast, a tail-conscious CPS transformation would yield the following

eta-reduced term:

λk.k (λx.λk.g x (λw.f w k))

Tail-consciousness matters for readability and in CPS-based compilers.

3.1 Making a context-based CPS transformation tail-conscious

The specification of C in Definition 1 can be refined as follows to make it tail-
conscious:

C : EvCont × Var → Val
C[[[]]] k = k

C[[E]] k = λw.E [[E[w]]] k if E 6= []
where w is fresh

One can then take the same steps as in Section 2.1 to obtain a tail-conscious
higher-order CPS transformation similar to Danvy and Filinski’s [11].

3.2 Making a higher-order CPS transformation tail-conscious

The specification in Definition 5 can be refined to make it tail-conscious. The
idea is to make the second parameter of E a sum, i.e., either the continuation
identifier (in case of source tail call), or a function.

E : DExp × (Var + (CVal → CExp)) → CExp
C : Var + (CVal → CExp) → CVal

10

(Alternatively, the definition of E can be split into two, one for each summand.)
One can then take the same steps as in Section 2.2 to obtain a tail-conscious
context-based CPS transformation similar to the one of Section 3.1.

4 Continuations first or continuations last?

When writing a continuation-passing λ-abstraction, should one write λx.λk.e
or λk.λx.e? Since Plotkin [38] and Steele [47], tradition has it to do the for-
mer, but the latter makes curried continuation-passing functions continuation
transformers [22]. Because this order was first promoted in Fischer’s work [18],3

putting continuations first is said to be “à la Fischer” and is used, e.g., by
Fradet and Le Métayer [20], by Reppy [41], and by Sabry and Felleisen [46].
Conversely, putting continuations last is said to be “à la Plotkin” and is used
more frequently.

Sections 2 and 3 are concerned with CPS à la Plotkin, but their content
can be adapted mutatis mutandis to CPS à la Fischer. On the other hand,
each flavor of CPS enables new and distinct opportunities for administrative
eta-reductions, which are a source of compactness in CPS programs.

Tail-conscious CPS à la Plotkin: In a λ-abstraction, a tail call where sub-
terms are values such as in λy.f x is transformed into λk.k (λy.λk.f x k), where
the inner continuation can be eta-reduced.

Tail-conscious CPS à la Fischer: A term with nested applications such as
λx.f (g (h x)) is transformed as follows:

λk.k (λk.λx.h (λw1.g (λw2.f k w2) w1) x)

In this CPS term, the parameter of each continuation can be administratively
eta-reduced, producing the following term:

λk.k (λk.λx.h (g (f k)) x)

(Indeed even x can be eta-reduced.)
As the two examples illustrate, a curried CPS à la Plotkin makes it possible

to eta-reduce continuation identifiers for some source λ-abstractions, whereas a
curried CPS à la Fischer makes it possible to eta-reduce parameters of continu-
ations for some source applications. Since, on the average, there are many more
applications than abstractions in a λ-term, by construction, the Fischer curried
flavor offers more opportunities than the Plotkin curried flavor for obtaining
compact CPS programs through administrative eta-reductions.

Furthermore, it is possible to perform administrative eta-reductions at trans-
formation time, i.e., in one pass. One is, however, left with the task of proving

3On pragmatic grounds—using cons rather than append over lists of parameters in uncur-
ried CPS.

11

that administrative eta-reductions are value eta-reductions, i.e., that they do
not alter the properties of CPS-transformed programs, namely simulation, in-
difference, and translation [28, 38] as well as termination.

At any rate, the current agreement in the continuation community is that
administrative eta-reductions bring more trouble than benefits. In fact, for
uncurried CPS, neither flavor provides any extra opportunity for administra-
tive eta-reduction beyond tail consciousness. In short, only tail-consciousness
matters, and it works both for Plotkin and Fischer, uniformly.

5 CPS transformation with generalized reduc-

tion

5.1 Generalized reduction

In his PhD thesis [44, 46], Sabry considered βlift , a generalized reduction that
is most easily described using evaluation contexts [6]:

E[(λx.e0) e1] −→βlift
(λx.E[e0]) e1

A βlift -reduction in the direct-style world corresponds to an administrative
(i.e., overlined) β-reduction in the corresponding CPS program à la Fischer:

((λk.λx.e′0) @ c)@ v′1 −→adm (λx.e′0[c/k])@ v′1

(e′0 is the CPS counterpart of e0, v′1 is the CPS counterpart of e1, and c represents
E.)

Similarly, a βlift -reduction in the direct-style world corresponds to an ad-
ministrative generalized β-reduction in the corresponding CPS program à la
Plotkin:

((λx.λk.e′0) @ v′1) @ c −→adm (λx.e′0[c/k])@ v′1

5.2 Administrative generalized reduction

Integrating βlift into the CPS transformation is achieved by refining the following
rule in Definition 1:

E [[E[v0 v1]]] k = V [[v0]] V [[v1]] (C[[E]] k)

The idea is to enumerate the possible instances of v0, i.e., whether it denotes a
variable or a λ-abstraction:

E [[E[x v1]]] k = x V [[v1]] (C[[E]] k)
E [[E[(λx.e0) v1]]] k = (λx.E [[E[e0]]] k) V [[v1]]

As in Section 2, the refined context-based CPS transformation can be refo-
cused to operate in one-pass and Church-encoded to be higher-order. Making it

12

compositional, however, makes the CPS transformation dependently typed [12].
The steps are reversible, turning a one-pass higher-order CPS transformation
with generalized reduction into a one-pass refocused context-based CPS trans-
formation.

6 Tail-conscious CPS transformation à la Fis-

cher with administrative eta-reductions and
generalized reduction

Putting everything together, Definition 1 can be made tail-conscious and ex-
tended with administrative eta-reductions and generalized reduction. The re-
sult, if it is à la Fischer, coincides with Sabry and Felleisen’s compacting CPS
transformation [46, Definition 5]. It can be refocused to operate in one-pass
and Church-encoded to be higher-order. But as in Section 5, making it compo-
sitional makes the CPS transformation dependently typed [12]. The derivation
steps are reversible.

7 Conclusions and issues

We have connected two distinct approaches to a one-pass CPS transformation
that have been reported separately in the literature. One is higher-order and
compositional, stems from denotational semantics, and can be expressed directly
as a functional program. The other is rewriting-based and non-compositional,
stems from syntactic theories, and requires an adaptation such as refocusing to
operate in one pass. The connection between the two approaches reduces their
choice to a matter of convenience.

While all textbook descriptions of the one-pass CPS transformation [1, 21,
40] account for tail-consciousness, none pays a particular attention to adminis-
trative eta-reductions and to generalized reduction. For example, the context-
based CPS transformation of the second edition of Essentials of Programming
Languages [21] produces uncurried CPS programs à la Plotkin and corresponds
to the content of Section 3.

The derivation steps presented in the present article can be used for richer
languages, i.e., languages with literals, primitive operations, conditional expres-
sions, block structure, and computational effects (state, control, etc.). They
also directly apply to transforming programs into monadic normal form [5, 19,
27, 34].

Acknowledgments: Thanks are due to Julia L. Lawall for comments.

13

References

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, New York, 1992.

[2] Andrew W. Appel and Trevor Jim. Continuation-passing, closure-passing
style. In Michael J. O’Donnell and Stuart Feldman, editors, Proceedings
of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, pages 293–302, Austin, Texas, January 1989. ACM Press.

[3] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundation of Mathematics. North-Holland,
1984. Revised edition.

[4] Gilles Barthe, John Hatcliff, and Morten Heine Sørensen. CPS transla-
tions and applications: the cube and beyond. Higher-Order and Symbolic
Computation, 12(2):125–170, 1999.

[5] Nick Benton and Andrew Kennedy. Monads, effects, and transformations.
In Third International Workshop on Higher-Order Operational Techniques
in Semantics, volume 26 of Electronic Notes in Theoretical Computer Sci-
ence, pages 19–31, Paris, France, September 1999.

[6] Roel Bloo, Fairouz Kamareddine, and Rob Nederpelt. The Barendregt cube
with definitions and generalised reduction. Information and Computation,
126(2):123–143, 1996.

[7] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University
Press, 1941.

[8] Daniel Damian and Olivier Danvy. Syntactic accidents in program anal-
ysis: On the impact of the CPS transformation. In Philip Wadler, edi-
tor, Proceedings of the 2000 ACM SIGPLAN International Conference on
Functional Programming, SIGPLAN Notices, Vol. 35, No. 9, pages 209–
220, Montréal, Canada, September 2000. ACM Press. Extended version to
appear in the Journal of Functional Programming.

[9] Olivier Danvy, editor. Proceedings of the Second ACM SIGPLAN Workshop
on Continuations, Technical report BRICS-NS-96-13, University of Aarhus,
Paris, France, January 1997.

[10] Olivier Danvy and Andrzej Filinski. Abstracting control. In Mitchell Wand,
editor, Proceedings of the 1990 ACM Conference on Lisp and Functional
Programming, pages 151–160, Nice, France, June 1990. ACM Press.

[11] Olivier Danvy and Andrzej Filinski. Representing control, a study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361–391, 1992.

14

[12] Olivier Danvy and Lasse R. Nielsen. CPS transformation of beta-redexes.
In Sabry [45], pages 35–39. Also available as the technical report BRICS
RS-00-35.

[13] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Har-
ald Søndergaard, editor, Proceedings of the Third International Conference
on Principles and Practice of Declarative Programming, pages 162–174,
Firenze, Italy, September 2001. ACM Press. Extended version available as
the technical report BRICS RS-01-23.

[14] Olivier Danvy and Lasse R. Nielsen. Syntactic theories in practice. In
Mark van den Brand and Rakesh M. Verma, editors, Informal proceedings
of the Second International Workshop on Rule-Based Programming (RULE
2001), volume 59.4 of Electronic Notes in Theoretical Computer Science,
Firenze, Italy, September 2001. Extended version available as the technical
report BRICS RS-01-31.

[15] Olivier Danvy and Lasse R. Nielsen. A first-order one-pass CPS transforma-
tion. In Mogens Nielsen, editor, Foundations of Software Science and Com-
putation Structures, 5th International Conference, FOSSACS 2002, Lec-
ture Notes in Computer Science, Grenoble, France, April 2002. Springer-
Verlag. Extended version available as the technical report BRICS RS-01-49.

[16] Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory
of Control and State in Imperative Higher-Order Programming Languages.
PhD thesis, Department of Computer Science, Indiana University, Bloom-
ington, Indiana, August 1987.

[17] Andrzej Filinski. An extensional CPS transform (preliminary report). In
Sabry [45], pages 41–46.

[18] Michael J. Fischer. Lambda-calculus schemata. LISP and Symbolic Com-
putation, 6(3/4):259–288, 1993. Earlier version available in the proceedings
of an ACM Conference on Proving Assertions about Programs, SIGPLAN
Notices, Vol. 7, No. 1, January 1972.

[19] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The
essence of compiling with continuations. In David W. Wall, editor, Pro-
ceedings of the ACM SIGPLAN’93 Conference on Programming Languages
Design and Implementation, SIGPLAN Notices, Vol. 28, No 6, pages 237–
247, Albuquerque, New Mexico, June 1993. ACM Press.

[20] Pascal Fradet and Daniel Le Métayer. Compilation of functional lan-
guages by program transformation. ACM Transactions on Programming
Languages and Systems, 13:21–51, 1991.

[21] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials
of Programming Languages, second edition. The MIT Press, 2001.

15

[22] Michael Gordon. The Denotational Description of Programming Lan-
guages. Springer-Verlag, 1979.

[23] Timothy G. Griffin. A formulae-as-types notion of control. In Paul Hudak,
editor, Proceedings of the Seventeenth Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 47–58, San Francisco, California,
January 1990. ACM Press.

[24] Philippe de Groote. A CPS-translation of the λµ-calculus. In Sophie Tison,
editor, 19th Colloquium on Trees in Algebra and Programming (CAAP’94),
number 787 in Lecture Notes in Computer Science, pages 47–58, Edinburgh,
Scotland, April 1994. Springer-Verlag.

[25] Bob Harper and Mark Lillibridge. Polymorphic type assignment and CPS
conversion. LISP and Symbolic Computation, 6(3/4):361–380, 1993.

[26] John Hatcliff. The Structure of Continuation-Passing Styles. PhD thesis,
Department of Computing and Information Sciences, Kansas State Univer-
sity, Manhattan, Kansas, June 1994.

[27] John Hatcliff and Olivier Danvy. A generic account of continuation-passing
styles. In Hans-J. Boehm, editor, Proceedings of the Twenty-First Annual
ACM Symposium on Principles of Programming Languages, pages 458–471,
Portland, Oregon, January 1994. ACM Press.

[28] John Hatcliff and Olivier Danvy. Thunks and the λ-calculus. Journal of
Functional Programming, 7(2):303–319, 1997. Extended version available
as the technical report BRICS RS-97-7.

[29] Richard A. Kelsey. Compilation by Program Transformation. PhD thesis,
Computer Science Department, Yale University, New Haven, Connecticut,
May 1989. Research Report 702.

[30] David A. Kranz. ORBIT: An Optimizing Compiler for Scheme. PhD thesis,
Computer Science Department, Yale University, New Haven, Connecticut,
February 1988. Research Report 632.

[31] Jakov Kučan. Retraction approach to CPS transform. Higher-Order and
Symbolic Computation, 11(2):145–175, 1998.

[32] Julia L. Lawall. Continuation Introduction and Elimination in Higher-
Order Programming Languages. PhD thesis, Computer Science Depart-
ment, Indiana University, Bloomington, Indiana, July 1994.

[33] Albert R. Meyer and Mitchell Wand. Continuation semantics in typed
lambda-calculi (summary). In Rohit Parikh, editor, Logics of Programs
– Proceedings, number 193 in Lecture Notes in Computer Science, pages
219–224, Brooklyn, June 1985. Springer-Verlag.

16

[34] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93:55–92, 1991.

[35] Lasse R. Nielsen. A selective CPS transformation. In Stephen Brookes
and Michael Mislove, editors, Proceedings of the 17th Annual Conference
on Mathematical Foundations of Programming Semantics, volume 45 of
Electronic Notes in Theoretical Computer Science, pages 201–222, Aarhus,
Denmark, May 2001. Elsevier Science Publishers.

[36] Lasse R. Nielsen. A study of defunctionalization and continuation-passing
style. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Den-
mark, July 2001. BRICS DS-01-7.

[37] Simon L. Peyton Jones. The Implementation of Functional Program-
ming Languages. Prentice Hall International Series in Computer Science.
Prentice-Hall International, 1987.

[38] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theo-
retical Computer Science, 1:125–159, 1975.

[39] Gordon D. Plotkin. A structural approach to operational semantics. Tech-
nical Report FN-19, DAIMI, Department of Computer Science, University
of Aarhus, Aarhus, Denmark, September 1981.

[40] Christian Queinnec. Lisp in Small Pieces. Cambridge University Press,
Cambridge, 1996.

[41] John Reppy. Local CPS conversion in a direct-style compiler. In Sabry
[45], pages 1–6.

[42] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic
Computation, 6(3/4):233–247, 1993.

[43] John C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998.
Reprinted from the proceedings of the 25th ACM National Conference
(1972).

[44] Amr Sabry. The Formal Relationship between Direct and Continuation-
Passing Style Optimizing Compilers: A Synthesis of Two Paradigms. PhD
thesis, Computer Science Department, Rice University, Houston, Texas,
August 1994. Technical report 94-242.

[45] Amr Sabry, editor. Proceedings of the Third ACM SIGPLAN Workshop
on Continuations, Technical report 545, Computer Science Department,
Indiana University, London, England, January 2001.

[46] Amr Sabry and Matthias Felleisen. Reasoning about programs in continu-
ation-passing style. Lisp and Symbolic Computation, 6(3/4):289–360, 1993.

17

[47] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report AI-TR-
474, Artificial Intelligence Laboratory, Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts, May 1978.

[48] Christopher Strachey and Christopher P. Wadsworth. Continuations: A
mathematical semantics for handling full jumps. Higher-Order and Sym-
bolic Computation, 13(1/2):135–152, 2000. Reprint of the technical mono-
graph PRG-11, Oxford University Computing Laboratory (1974).

[49] Hayo Thielecke. Categorical Structure of Continuation Passing Style. PhD
thesis, University of Edinburgh, Edinburgh, Scotland, 1997. ECS-LFCS-
97-376.

[50] Mitchell Wand. Correctness of procedure representations in higher-order
assembly language. In Stephen Brookes, Michael Main, Austin Melton,
Michael Mislove, and David Schmidt, editors, Proceedings of the 7th In-
ternational Conference on Mathematical Foundations of Programming Se-
mantics, number 598 in Lecture Notes in Computer Science, pages 294–311,
Pittsburgh, Pennsylvania, March 1991. Springer-Verlag.

[51] Yong Xiao, Amr Sabry, and Zena M. Ariola. From syntactic theories to
interpreters: Automating proofs of decomposition lemma. Higher-Order
and Symbolic Computation, 14(4), 2001. To appear.

[52] Steve Zdancewic and Andrew Myers. Secure information flow and CPS.
In David Sands, editor, Proceedings of the Tenth European Symposium on
Programming, number 2028 in Lecture Notes in Computer Science, pages
46–61, Genova, Italy, April 2001. Springer-Verlag.

18

Recent BRICS Report Series Publications

RS-02-3 Olivier Danvy and Lasse R. Nielsen.On One-Pass CPS Trans-
formations. January 2002. 18 pp.

RS-02-2 Lasse R. Nielsen.A Simple Correctness Proof of the Direct-Style
Transformation. January 2002.

RS-02-1 Claus Brabrand, Anders Møller, and Michael I. Schwartzbach.
The <bigwig> Project. January 2002. 36 pp. This revised
report supersedes the earlier BRICS report RS-00-42.

RS-01-55 Daniel Damian and Olivier Danvy.A Simple CPS Transforma-
tion of Control-Flow Information. December 2001.

RS-01-54 Daniel Damian and Olivier Danvy.Syntactic Accidents in Pro-
gram Analysis: On the Impact of the CPS Transformation. De-
cember 2001. To appear in theJournal of Functional Program-
ming. This report supersedes the earlier BRICS report RS-00-
15.

RS-01-53 Zolt́an Ésik and Masami Ito. Temporal Logic with Cyclic
Counting and the Degree of Aperiodicity of Finite Automata. De-
cember 2001. 31 pp.

RS-01-52 Jens Groth.Extracting Witnesses from Proofs of Knowledge in
the Random Oracle Model. December 2001. 23 pp.

RS-01-51 Ulrich Kohlenbach. On Weak Markov’s Principle. December
2001. 10 pp.

RS-01-50 Jǐr ı́ Srba. Note on the Tableau Technique for Commutative
Transition Systems. December 2001. 19 pp. To appear in the
proceedings of FOSSACS ’02.

RS-01-49 Olivier Danvy and Lasse R. Nielsen.A First-Order One-Pass
CPS Transformation. December 2001. 21 pp. Extended version
of a paper to appear in the proceedings of FOSSACS ’02.

RS-01-48 Mogens Nielsen and Frank D. Valencia.Temporal Concurrent
Constraint Programming: Applications and Behavior. Decem-
ber 2001. 36 pp.

RS-01-47 Jesper Buus Nielsen.Non-Committing Encryption is Too Easy
in the Random Oracle Model. December 2001. 20 pp.

RS-01-46 Lars Kristiansen. The Implicit Computational Complexity of
Imperative Programming Languages. November 2001. 46 pp.

