
B
R

IC
S

R
S

-02-27
Ö

stlin
&

P
agh:

S
im

ulating
U

niform
H

ashing
in

C
onstantT

im
e

and
O

ptim
alS

pace

BRICS
Basic Research in Computer Science

Simulating Uniform Hashing in
Constant Time and Optimal Space

Anna Östlin
Rasmus Pagh

BRICS Report Series RS-02-27

ISSN 0909-0878 2002



Copyright c© 2002, AnnaÖstlin & Rasmus Pagh.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/02/27/



Simulating Uniform Hashing in

Constant Time and Optimal Space∗

Anna Östlin and Rasmus Pagh
BRICS†

Department of Computer Science
University of Aarhus, Denmark

{annao,pagh}@brics.dk

Abstract

Many algorithms and data structures employing hashing have been
analyzed under the uniform hashing assumption, i.e., the assumption that
hash functions behave like truly random functions. In this paper it is
shown how to implement hash functions that can be evaluated on a RAM
in constant time, and behave like truly random functions on any set of n
inputs, with high probability. The space needed to represent a function
is O(n) words, which is the best possible (and a polynomial improvement
compared to previous fast hash functions). As a consequence, a broad class
of hashing schemes can be implemented to meet, with high probability, the
performance guarantees of their uniform hashing analysis.

1 Introduction

Hashing is an important tool for designing and implementing randomized al-
gorithms and data structures. The basic idea is to use a function h : U → V ,
called a hash function, that “mimics” a random function. In this way a “ran-
dom” value h(x) can be associated with each element from the domain U . This
has been useful in many applications in, for example, information retrieval, data
mining, cryptology, and parallel algorithms.

Many algorithms have been carefully analyzed under the assumption of uni-
form hashing, i.e., assuming that the hash function employed is a truly random
function. As the representation of a random function requires |U | log |V | bits, it
is usually not feasible to actually store a randomly chosen function. For many
years hashing was largely a heuristic, and one used fixed functions that were
empirically found to work well in cases where truly random functions could be
shown to work well.

∗Partially supported by the Future and Emerging Technologies programme of the EU under
contract number IST-1999-14186 (ALCOM-FT).

†Basic Research in Computer Science (www.brics.dk), funded by the Danish National Re-
search Foundation.

1



The gap between hashing algorithms and their analysis narrowed with the
advent of universal hashing [7]. The key insight was that it is often possible
to get provable performance guarantees by choosing hash functions at random
from a small family of functions (rather than from the family of all functions).
The importance of the family being small is, of course, that a function from
the family can be stored succinctly. Following universal hashing, many hash
function families have been proposed (e.g., [3, 6, 8, 10, 11, 12, 14, 16, 18, 21]),
and their performance analyzed in various settings.

One property of the choice of hash function that often suffices to give per-
formance guarantees is that it maps each set of k elements in U to uniformly
random and independent values, where k is some parameter that depends on the
application. If this holds for a random function from a family H of functions,
H is called k-wise independent. The hash functions described by Carter and
Wegman in [7], for example, were 2-wise independent. The first constructions of
k-wise independent families required time Ω(k) for evaluating a hash function.
(Here, and in the rest of the paper, we will consider complexity on a RAM with
word size Θ(log |U | + log |V |).) A breakthrough was made by Siegel [21], who
showed that high independence is achievable with relatively small families of
hash functions that can be evaluated in constant time.

The two main performance parameters of a hash function family is the
space needed to represent a function and the time necessary to compute a
given function value from a representation. A lower bound on the number of
bits needed to achieve k-wise independence is Ω(k) words [2, 9], and there are
constructions using O(k) words of space in the case where |U | and |V | are
powers of the same prime. Sometimes there is a trade-off between the space
used to represent a function and its evaluation time. For example, Siegel’s
k-wise independent family requires k1+Ω(1) words of space to achieve constant
evaluation time, for |U | = kO(1).

If one applies Siegel’s family with k = n to a set S of n elements, it will map
these to independent and uniformly random values. We say that it is uniform
on S. However, the superlinear space usage means that, in many possible
applications, the hash function description itself becomes asymptotically larger
than all other parts of the data structure. In this paper we present a family
of hash functions that has the same performance as Siegel’s family on any
particular set of n elements, and improves space to the optimal bound of O(n)
words.

Theorem 1 Let S ⊆ U be a set of n elements. For any constant c > 0 there
is an algorithm constructing a random family of functions from U to V in o(n)
time and space, such that:

• With probability 1 − O(n−c) the family is uniform on S.

• There is a data structure of O(n) words words representing its functions
such that function values can be computed in constant time. The data
structure can be initialized to a random function in O(n) time.

2



1.1 Implications

The fact that the space usage is linear in n means that a large class of hashing
schemes can be implemented to perform, with high probability, exactly as if
uniform hashing was used, increasing space by at most a constant factor. This
means that our family makes a large number of analyses performed under the
uniform hashing assumption “come true” with high probability.

Two comprehensive surveys of early data structures analyzed under the
uniform hashing assumption can be found in the monographs of Gonnet [15] and
Knuth [17]. Gonnet provides more than 100 references to books, surveys and
papers dealing with the analysis of classic hashing algorithms. This large body
of work has made the characteristics of these schemes very well understood,
under the uniform hashing assumption. As the classic hashing algorithms are
often very simple to implement, and efficient in practice, they seem to be more
commonly used in practice than newer schemes with provably good behavior1.
While our family is not likely to be of practical importance for these hashing
schemes, it does provide a theoretical “bridge” justifying the uniform hashing
assumption for a large class of them. Previously, such justifications have been
made for much more narrow classes of hashing schemes, and have only dealt
with certain performance parameters (see, e.g., [19, 20]).

In addition to the classic hashing schemes, our hash functions provide a
provably efficient implementation of a recent load balancing scheme of Azar et
al. [4].

1.2 Overview of the paper

The organization of the paper is as follows. In section 2 we provide the back-
ground information necessary to understand our construction. Specifically,
we survey Siegel’s construction, which will play an important role. Section 3
presents our construction and its analysis. Finally, section 4 gives a number of
applications of our result.

2 Background

The main result of this paper can be seen as an extension of Siegel’s family of
high performance hash functions [21, 22]. The motivation for Siegel’s work was
that many algorithms employing hashing can be shown to work well if the hash
functions are chosen at random from a k-wise independent family of functions,
for suitably large k.

Definition 1 A family H of functions from U to V is k-wise independent if,
for any set of distinct elements x1, . . . , xk ∈ U , and any y1, . . . , yk ∈ V , when
h ∈ H is chosen uniformly at random,

Pr[h(x1) = y1, . . . , h(xk) = yk] = |V |−k .

1One could argue that hashing will always be a heuristic on real, deterministic machines.
However, cryptographic applications have made it increasingly common to equip computers
with a hardware random number generator, such as in Intel’s 8xx chipsets.

3



In other words, a random function from a k-wise independent family acts like
a truly random function on any set of k elements of U . In this paper we will
assume that the range V of hash functions is the set of elements in some group
R = (V,⊕), where the group operation ⊕ can be performed in constant time
on a RAM. There are many such examples of groups, for example those with
group operations addition modulo |V | and bitwise exclusive or.

Siegel primarily considered the case in which |U | = kO(1). He showed that
in this case one can, for arbitrary constants c, ε > 0, construct, in o(k) time
and space, a family of functions from U to V such that:

• The family is k-wise independent with probability 1 − k−c.

• There is a data structure of k1+ε words words representing its functions
such that function values can be computed in constant time. The data
structure can be initialized to a random function in k1+ε time.

The positive probability that the family is not k-wise independent is due to the
fact that Siegel’s construction relies on a certain type of expander graph that,
in lack of an explicit construction, is found by selecting a graph at random
(and storing it). However, there is a small chance that the randomly chosen
graph is not the desired expander, in which case there is no guarantee on the
performance of the family. Also, there seems to be no known efficient way of
generating a graph at random and verifying that it is the desired expander.
(However, a slightly different class of expanders can be efficiently generated in
this way [1].)

It is no coincidence that Siegel achieves constant evaluation time only for
|U | = kO(1). He shows the following trade-off between evaluation time and the
size of the data structure:

Theorem 2 (Siegel [21]) For any k-wise independent family H of functions
from U to V , any data structure using m words of O(log |V |) bits to represent a
function from H requires worst case time Ω(min(logm/k(|U |/k), k)) to evaluate
a function.

Note that when using optimal space, i.e., m = O(k), one must use time
Ω(min(log(|U |/k), k)) to evaluate a function. Siegel’s upper bound extends to
the case where |U | is not bounded in terms of k. However, in this case the lack of
an explicit expander construction results in an exponentially larger evaluation
time than in the first term of the lower bound.

Theorem 2 establishes that high independence requires either high evalu-
ation time or high space usage when |U | is large. A standard way of getting
around problems with hashing from a large domain is to first perform a domain
reduction, where elements of U are mapped to elements of a smaller domain
U ′ using, say, universal hashing. As this mapping cannot be 1-1, the domain
reduction forces some hash function values to be identical. However, for any
particular set S of n elements, the probability of two elements in S mapping to
the same element of U ′ can be made low by choosing |U ′| = nO(1) sufficiently
large.

4



Definition 2 A family of functions defined on U is uniform on the set S ⊆ U
if its restriction to S is |S|-wise independent.

Using domain reduction with Siegel’s family described above, one gets the
following result. For k = n it is similar to our main theorem, except that the
space usage is superlinear.

Theorem 3 (Siegel [21, 22]) Let S ⊆ U be a set of n = kO(1) elements. For
any constants ε, c > 0 there is an algorithm constructing a random family
SI(U, V, k, n, c, ε) of functions from U to V in o(k) time and space, such that:

• With probability 1 − n−c the family is k-wise independent on S.

• There is a data structure of O(k1+ε) words words representing its functions
such that function values can be computed in constant time. The data
structure can be initialized to a random function in O(k1+ε) time.

With current expander “technology”, Siegel’s construction exhibits high
constant factors. Other proposals for high performance hash functions, due
to Dietzfelbinger and Meyer auf der Heide [12, 13], appear more practical.
However, these families only exhibit O(1)-wise independence and appear to be
difficult to analyze in general.

3 Hash function construction

In this section we describe our hash function family and show Theorem 1. We
use the notation T [i] to denote the ith entry in an array (or vector) T . By [m]
we denote the set {1, . . . ,m}.

3.1 The hash function family

Definition 3 Let R = (V,⊕) be a group, let G be a family of functions from U
to V , and let f1, f2 : U → [m]. We define the family of functions

H(f1, f2,G) = {x 7→ T1[f1(x)] ⊕ T2[f2(x)] ⊕ g(x) | T1, T2 ∈ V m and g ∈ G}.

A similar way of constructing a function family was presented in [12]. The
novel feature of the above definition is the use of two values looked up in tables,
rather than just one. The hash function family used to prove Theorem 1 uses
Siegel’s construction of function families to get the functions f1 and f2 and the
family G in the above definition.

Definition 4 For n ≤ |U | and any constant c > 0 we define the random fam-
ily Hn,c = H(f1, f2,G) of functions as follows: Construct the random families
G = SI(U, V,

√
n, n, c, 1/2) and F = SI(U, [4n],

√
n, n, c, 1/2) according to The-

orem 3, and pick f1 and f2 independently at random from F .

5



3.2 Properties of the family

For a set S ⊆ U and two functions f1, f2 : U → [m] let G(f1, f2, S) = (A,B,E)
be the bipartite graph with vertex sets A = {a1, . . . , am} and B = {b1, . . . , bm},
and edge set E = {ex = (af1(x), bf2(x)) | x ∈ S}, where ex is labeled by x. Note
that there may be parallel edges.

We define a cyclic subgraph E′ ⊆ E of a graph as a subset of the edges such
that there is no vertex incident to exactly one edge in E′. A graph’s cyclic part
C ⊆ E is the maximal cyclic subgraph in the graph, i.e., the edges in cycles
and edges in paths connecting cycles.

Lemma 1 Let S ⊆ U be a set of n elements and let G be a family of functions
from U to V that is k-wise independent on S. If the total number of edges in the
cyclic part of G(f1, f2, S) = (A,B,E) is at most k, then H(f1, f2,G) is uniform
on S.

Proof. Let S′ be the set of all elements x ∈ S where the corresponding edge ex

is in the cyclic part C of G(f1, f2, S).
The proof is by induction. First, assume that |E \ C| = 0. Since S = S′

and g is chosen from a k-wise independent family and |S′| ≤ k we can conclude
that H(f1, f2,G) is uniform on S.

It remains to show that H(f1, f2,G) is uniform on S when |E \ C| ≥ 1.
Among the edges in E \ C there has to be at least one edge with one unique
endpoint. Let ex∗ = (af1(x∗), bf2(x∗)) be such an edge, x∗ ∈ S \ S′. W.l.o.g. as-
sume that af1(x∗) is the unique endpoint. By induction it holds that H(f1, f2,G)
is uniform on S \ {x∗}. For h ∈ H(f1, f2,G) chosen at random, all values h(x)
for x ∈ S \ {x∗} are independent of the value T1[f1(x∗)]. Additionally, given
g ∈ G and all entries in vectors T1 and T2 except T1[f1(x∗)], h(x∗) is uniformly
distributed when choosing T1[f1(x∗)] at random. Hence H(f1, f2,G) is uniform
on S.

2

Lemma 2 For each set S of size n, and for f1, f2 : U → [4n] chosen at random
from a family that is k-wise independent on S, k ≥ 32, the probability that the
cyclic part C of the graph G(f1, f2, S) has size at least k is n/2Ω(k).

Proof. Assume that |C| ≥ k and that k is even (w.l.o.g.). Either there is a
connected cyclic subgraph in G(f1, f2, S) of size at least k/2 or there is a cyclic
subgraph of size k′, where k/2 < k′ ≤ k. In the first case there is a connected
subgraph in G(f1, f2, S) with exactly k/2 edges and at most k/2 + 1 vertices.
In the second case there is a subgraph with k′ edges and at most k′ vertices in
G(f1, f2, S), where k/2 < k′ ≤ k.

In the following we will count the number of different edge labeled subgraphs
with k′ edges and at most k′ + 1 vertices for k/2 ≤ k′ ≤ k to bound the
probability of such a subgraph to appear in G(f1, f2, S). Hence, we also get an
upper bound on the probability that |C| is at least k. Note that since f1 and
f2 are chosen from a k-wise independent family, each subset of at most k edges

6



will be random and independent. We will only consider subgraphs with at most
k edges.

To count the number of different subgraphs with k′ edges and at most
k′ + 1 vertices, for k/2 ≤ k′ ≤ k, in a bipartite graph G = (A,B,E) with
|A| = |B| = 4n and |E| = n, we count the number of ways to choose the edge
labels, the vertices, and the endpoints of the edges such that they are among
the chosen vertices. The k′ edge labels can be chosen in

(
n
k′

) ≤ (en/k′)k′
ways.

Since the number of vertices in the subgraph is at most k′ + 1, and they are
chosen from 8n vertices in G, the total number of ways in which they can be
chosen is bounded by

∑k′+1
i=1

(8n
i

) ≤ (8en/(k′ + 1))k
′+1. Let ka and kb be the

number of vertices chosen from A and B, respectively. The number of ways to
choose an edge such that it has both its endpoints among the chosen vertices
is kakb ≤ ((k′ + 1)/2)2k′

. In total, the number of different subgraphs with k′

edges and up to k′ + 1 vertices is at most

(en/k′)k
′ · (8en/(k′ + 1))k

′+1 · ((k′ + 1)/2)2k′

= 8en
k′+1 · (2e2 · n2 · k′+1

k′ )k
′

≤ 8en
k′+1 · (63

4 · n2)k
′
,

using k′ ≥ k/2 ≥ 16.
There are in total (4n)2k′

graphs with k′ specific edges. In particular, the
probability that k′ specific edges form a particular graph is (4n)−2k′

, using k′-
wise independence. To get an upper bound on the probability that there is
some subgraph with k′ edges and at most k′ + 1 vertices, where k/2 ≤ k′ ≤ k,
we sum over all possible values of k′:

∑

k/2≤k′≤k

8en
k′+1 · (63

4 · n2)k
′ · (4n)−2k′

=
∑

k/2≤k′≤k

8en
k′+1 · (63

64 )k
′

≤ (k/2 + 1) · 8en
k/2+1 · (63

64)k/2

= n/2Ω(k) .

2

Proof of Theorem 1. We will show that the random family Hn,c of Definition 4
fulfills the requirements in the theorem. Assume w.l.o.g. that

√
n is integer.

The families G = SI(U, V,
√

n, n, c, 1/2) and F = SI(U, [4n],
√

n, n, c, 1/2) are
both

√
n-wise independent with probability 1 − n−c for sets of size up to n

according to Theorem 3. If F is
√

n-wise independent then by Lemma 2 the
probability that the cyclic part of graph G(f1, f2, S) has size at most

√
n is at

least 1 − n−Ω(
√

n), if
√

n ≥ 32. We can assume w.l.o.g. that
√

n ≥ 32, since
otherwise the theorem follows directly from Theorem 3. When the cyclic part
of graph G(f1, f2, S) has size at most

√
n then, by Lemma 1, Hn,c is uniform on

S if G is
√

n-wise independent. The probability that G is
√

n-wise independent,
F is

√
n-wise independent, and that the cyclic part of graph G(f1, f2, S) has

size at most
√

n is altogether (1 − n−c)2(1 − n−Ω(
√

n)) = 1 − O(n−c).

7



The construction of Hn.c, i.e., constructing F and G and choosing f1 and f2,
can according to Theorem 3, be done in time and space o(n). The space usage
of a data structure representing a function from Hn,c is O(n) words for T1 and
T2, and o(n) words for storing g ∈ G. The initialization time is dominated by
the time used for initializing T1 and T2 to random arrays. Function values can
clearly be computed in constant time. 2

4 Applications

We now characterize a class of data structures that, when used with our hash
function construction, behave exactly as if uniform hashing was used, in the
sense that at any time it holds (with high probability) that the probability
distribution over possible memory configurations is the same. We give a number
of examples of data structures falling into this class.

Definition 5 A data structure with oracle access to a hash function h : U →
V is n-hash-dependent if there is a function f mapping operation sequences
to subsets of U of size at most n, such that after any sequence of operations
O1, . . . , Ot, the memory configuration depends only on O1, . . . , Ot, the random
choices made by the data structure, and the function values of h on the set
f(O1, . . . , Ot).

The following is an immediate implication of Theorem 1.

Theorem 4 Consider a sequence of nO(1) operations on an n-hash-dependent
RAM data structure with a random hash function oracle. For any constant
c > 0, the oracle can be replaced by a random data structure using O(n) words
of space and increasing time by at most a constant factor, such that with proba-
bility 1−O(n−c) the distribution of memory configurations after each operation
remains the same.

At first glance, the theorem concerns only what the data structure will look
like, and does not say anything about the behavior of queries. However, in most
cases O(n)-hash-dependence is maintained if we extend a data structure to write
down in memory, say, the memory locations inspected during a query. Using
the theorem on this data structure one then obtains that also the distribution
of memory accesses during queries is preserved when using our class of hash
functions.

The additional space usage of O(n) words can be reduced if U is much larger
than V by packing several log |V | bit entries of the arrays T1 and T2 in each
Θ(log |U |) bit word. It should be noted that although O(n) words may be of
the same order as the space used by the rest of the data structure, there are
many cases where it is negligible. For example, if more than a constant number
of words of associated information is stored with each key in a hash table, the
space usage for our hash function is a vanishing part of the total space.

8



4.1 Examples

In the following we describe some n-hash-dependent hashing schemes.

Insertion only hash tables. One class of hash tables that are clearly n-hash-
dependent are those that support only insertions of elements, have a bound of
n on the number of elements that can be inserted (before a rehash), and use h
only on inserted elements. This is the primary kind of scheme considered by
Gonnet in [15], and includes linear probing, double hashing, quadratic hashing,
ordered hashing, Brent’s algorithm, chained hashing, coalesced hashing, and
extendible hashing.

Many such schemes are extended to support deletions by employing “dele-
tion markers”. However, as noted by Knuth [17], deleting many elements in this
way tends to lead to very high cost for unsuccessful searches. It thus makes
sense to rebuild such data structures (with a new hash function) when the total
number of insertions and deletions reaches some number n (around the size of
the hash table). If this is done, the hashing scheme remains n-hash-dependent.

Deletion independent hash tables. Some hash tables have the property
that deleting an element x leaves the data structure in exactly the state it
would have been in if x had never been inserted. In particular, the state depends
exclusively on the current set of elements, the order in which they were inserted,
and their hash function values. If the capacity of the hash table is bounded by
n, such a data structure is n-hash-dependent.

An example of the above is a hash table using linear probing, with the
deletion algorithm in [17]. Also, chained hashing methods have deletion in-
dependent pointer structure. In particular, for those methods we get n-hash-
dependence up to pointer structure equivalence.

Load balancing. A load balancing scheme of Azar et al. [4], further devel-
oped and analyzed in [5, 23], can also be thought of as a hashing data structure.
This scheme has been analyzed under the uniform hashing assumption. It has
the property that an element in the hash table never needs to be moved once it
has been placed, while at the same time, the worst case time for accessing an
element remains very low.

Theorem 4 implies that, in the insertion only case, this data structure can be
efficiently implemented such that the uniform hashing analysis holds with high
probability. This means, in turn, that this is also true for the load balancing
scheme.

References

[1] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.

[2] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel
algorithm for the maximal independent set problem. J. Algorithms, 7(4):567–583,
1986.

9



[3] Noga Alon, Martin Dietzfelbinger, Peter Bro Miltersen, Erez Petrank, and Gábor
Tardos. Is linear hashing good? In Proceedings of the 29th Annual ACM Sympo-
sium on Theory of Computing (STOC ’97), pages 465–474. ACM Press, 1997.

[4] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations.
SIAM J. Comput., 29(1):180–200 (electronic), 1999.

[5] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. Bal-
anced allocations: the heavily loaded case. In Proceedings of the 32nd Annual
ACM Symposium on Theory of Computing (STOC ’00), pages 745–754. ACM
Press, 2000.

[6] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher.
Min-wise independent permutations. J. Comput. System Sci., 60(3):630–659, 2000.

[7] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. J.
Comput. System Sci., 18(2):143–154, 1979.

[8] Andrew Chin. Locality-preserving hash functions for general purpose parallel
computation. Algorithmica, 12(2-3):170–181, 1994.

[9] Benny Chor, Oded Goldreich, Johan Hastad, Joel Friedman, Steven Rudich, and
Roman Smolensky. The bit extraction problem of t-resilient functions (prelimi-
nary version). In Proceedings of the 26th Annual Symposium on Foundations of
Computer Science (FOCS ’85), pages 396–407. IEEE Comput. Soc. Press, 1985.

[10] Martin Dietzfelbinger. Universal hashing and k-wise independent random variables
via integer arithmetic without primes. In Proceedings of the 13th Symposium on
Theoretical Aspects of Computer Science (STACS ’96), pages 569–580. Springer-
Verlag, 1996.

[11] Martin Dietzfelbinger, Joseph Gil, Yossi Matias, and Nicholas Pippenger. Polyno-
mial hash functions are reliable (extended abstract). In Proceedings of the 19th In-
ternational Colloquium on Automata, Languages and Programming (ICALP ’92),
volume 623 of Lecture Notes in Computer Science, pages 235–246. Springer-Verlag,
1992.

[12] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new universal class
of hash functions and dynamic hashing in real time. In Proceedings of the 17th In-
ternational Colloquium on Automata, Languages and Programming (ICALP ’90),
volume 443 of Lecture Notes in Computer Science, pages 6–19. Springer-Verlag,
1990.

[13] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. High performance uni-
versal hashing, with applications to shared memory simulations. In Data structures
and efficient algorithms, volume 594 of Lecture Notes in Computer Science, pages
250–269. Springer, 1992.

[14] Oded Goldreich and Avi Wigderson. Tiny families of functions with random
properties: A quality-size trade-off for hashing. Random Structures & Algorithms,
11(4):315–343, 1997.

[15] Gaston Gonnet. Handbook of Algorithms and Data Structures. Addison-Wesley
Publishing Co., 1984.

[16] Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and Santosh Vempala.
Locality-preserving hashing in multidimensional spaces. In Proceedings of the 29th
Annual ACM Symposium on Theory of Computing (STOC ’97), pages 618–625.
ACM, New York, 1999.

10



[17] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley Publishing Co., Reading, Mass., second edition,
1998.

[18] Nathan Linial and Ori Sasson. Non-expansive hashing. Combinatorica, 18(1):121–
132, 1998.

[19] Jeanette P. Schmidt and Alan Siegel. On aspects of universality and performance
for closed hashing (extended abstract). In Proceedings of the 21st Annual ACM
Symposium on Theory of Computing (STOC ’89), pages 355–366. ACM Press,
1989.

[20] Jeanette P. Schmidt and Alan Siegel. The analysis of closed hashing under lim-
ited randomness (extended abstract). In Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing (STOC ’90), pages 224–234. ACM Press,
1990.

[21] Alan Siegel. On universal classes of fast high performance hash functions, their
time-space tradeoff, and their applications. In Proceedings of the 30th Annual
Symposium on Foundations of Computer Science (FOCS ’89), pages 20–25. IEEE
Comput. Soc. Press, 1989.

[22] Alan Siegel. On universal classes of extremely random constant time hash functions
and their time-space tradeoff. Technical Report TR1995-684, New York University,
April, 1995.

[23] Berthold Vöcking. How asymmetry helps load balancing. In Proceedings of the
40th Annual Symposium on Foundations of Computer Science (FOCS ’99), pages
131–141. IEEE Computer Society Press, 1999.

11



Recent BRICS Report Series Publications

RS-02-27 AnnaÖstlin and Rasmus Pagh.Simulating Uniform Hashing
in Constant Time and Optimal Space. 2002. 11 pp.

RS-02-26 Margarita Korovina. Fixed Points on Abstract Structures with-
out the Equality Test. June 2002.

RS-02-25 Hans Ḧuttel. Deciding Framed Bisimilarity. May 2002. 20 pp.

RS-02-24 Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach.Static Analysis of Dynamic XML. May 2002.

RS-02-23 Antonio Di Nola and Laurent¸iu Leuştean. Compact Represen-
tations of BL-Algebras. May 2002. 25 pp.

RS-02-22 Mogens Nielsen, Catuscia Palamidessi, and Frank D. Valen-
cia. On the Expressive Power of Concurrent Constraint Pro-
gramming Languages. May 2002. 34 pp.

RS-02-21 Zolt́an Ésik and Werner Kuich. Formal Tree Series. April 2002.
66 pp.

RS-02-20 Zolt́an Ésik and Kim G. Larsen. Regular Languages Defin-
able by Lindstr̈om Quantifiers (Preliminary Version). April 2002.
56 pp.

RS-02-19 Stephen L. Bloom and Zolt́an Ésik. An Extension Theorem
with an Application to Formal Tree Series. April 2002. 51 pp. To
appear in Blute, editor, Category Theory and Computer Science:
9th International Conference, CTCS ’02 Proceedings, ENTCS,
2002 under the titleUnique Guarded Fixed Points in an Additive
Setting.

RS-02-18 Gerth Stølting Brodal and Rolf Fagerberg. Cache Oblivious
Distribution Sweeping. April 2002. To appear in 29th Interna-
tional Colloquium on Automata, Languages, and Programming,
ICALP ’02 Proceedings, LNCS, 2002.

RS-02-17 Bolette Ammitzbøll Madsen, Jesper Makholm Nielsen, and
Bjarke Skjernaa. On the Number of Maximal Bipartite Sub-
graphs of a Graph. April 2002. 7 pp.

RS-02-16 Jǐr ı́ Srba. Strong Bisimilarity of Simple Process Algebras: Com-
plexity Lower Bounds. April 2002. 33 pp. To appear in29th In-
ternational Colloquium on Automata, Languages, and Program-
ming, ICALP ’02 Proceedings, LNCS, 2002.


