
B
R

IC
S

R
S

-02-26
M

.K
orovina:

F
ixed

P
oints

on
A

bstractS
tructures

w
ithoutthe

E
quality

Test

BRICS
Basic Research in Computer Science

Fixed Points on Abstract Structures
without the Equality Test

Margarita Korovina

BRICS Report Series RS-02-26

ISSN 0909-0878 June 2002



Copyright c© 2002, Margarita Korovina.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/02/26/



Fixed Points on Abstract Structures
without the Equality Test

M. V. Korovina

BRICS∗

Department of Computer Science

University of Aarhus
Ny Munkegade

DK-8000 Aarhus C, Denmark

Abstract

In this paper we present a study of definability properties of
fixed points of effective operators on abstract structures without
the equality test. In particular we prove that Gandy theorem
holds for the reals without the equality test. This provides a
useful tool for dealing with recursive definitions using Σ-formulas.

1 Introduction

The aim of the paper is to present a study of definability properties of
fixed points of effective operators on abstract structures without the equal-
ity test. The question of definability of fixed points of Σ-operators on
abstract structures with equality was first studied in [1, 6, 5]. One of the
most fundamental theorems in the area is Gandy theorem which states
that the least fixed point of any positive Σ-operator is Σ-definable. This
theorem allows us to treat inductive definitions using Σ-formulas. The
role of inductive definability as the basic principle of general computabil-
ity is discussed in [9, 13]. In some case it is natural to consider a structure

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.
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in the language without equality. For example, in all effective approaches
to exact real number computation via concrete representations [7, 8, 14],
the equality test is undecidable. This is not surprising, because infinite
amount of information must be checked in order to decide that two given
numbers are equal.

Until now there has been no Gandy-type theorem known for such
structures. Let us note that in all proofs of Gandy theorem that have
been known so far it is the case that even when the definition of a Σ-
operator does not involve equality, the resulting Σ-formula usually does.
In this paper we show that it is possible to overcome this problem. In par-
ticular we show that Gandy theorem holds for the real numbers without
the equality test.

The concept of Σ-definability is closely related to the generalised com-
putability on an abstract structure [1, 6, 12, 15], in particular on the real
numbers [10, 11, 15].

Notions of Σ-definable sets or relations generalise those of computable
enumerable sets of natural numbers, and play a leading role in the spec-
ification theory that is used in the higher order computation theory on
abstract structures.

In this paper we investigate definability of the least fixed points of
Σ-operators on abstract structure without the equality test. The organ-
isation of paper is as follows. In Section 2 we introduce basic notations
and definitions. We provide the background information necessary to
understand of main results. Section 3 presents Gandy theorem for struc-
tures without the equality test. In Section 4 we give an application of
our result to the real numbers without the equality test. We end with
discussion of future work.

2 Background

We start by introducing basic notations and definitions. Let us consider
an abstract structure A in a finite language σ0 without the equality test.

In order to do any kind of computation or to develop a computability
theory one has to work within a structure rich enough for information
to be coded and stored. For this purpose we extend the structure A by
the set of hereditarily finite sets HF(A).

The idea that the hereditarily finite sets over A form a natural domain
for computation is quite classical and is developed in detail in [1, 6].

Note that such or very similar extensions of structures with equality
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are used in the theory of abstract state machines [2, 3] and in query
languages for hierarchic databases [4].

We will construct the set of hereditarily finite sets over the model
without equality. This structure permits us to define the natural num-
bers, and to code and store information via formulas.

We construct the set of hereditarily finite sets, HF(A), as follows:

1. HF0(A) 
 A, HFn+1(A) 
 Pω(HFn(A)) ∪ HFn(A), where n ∈ ω
and for every set B, Pω(B) is the set of all finite subsets of B.

2. HF(A) =
⋃

n∈ω HFn(A).

We define HF(A) as the following model:

HF(A) 
 〈HF(A), U, S, σ0, ∅,∈〉
 〈HF(A), σ〉 ,

where the constant ∅ stands for the empty set, the binary predicate
symbol ∈ has the set-theoretic interpretation. Also we add predicates
symbols U for urelements (elements from A) and S for sets. Let us
denote S(HF(A)) 
 HF(A) \ A.

The natural numbers 0, 1, . . . are identified with the (finite) ordinals
in HF(A) i.e. ∅, {∅, {∅}}, . . ., so in particular, n + 1 = n ∪ {n} and the
set ω is a subset of HF(A).
We use variables subject to the following conventions:

r, r1, . . . range over A (urelements),
x, y, z, s, w, f, g, . . . range over S(HF(A)) (sets),
n,m, l, . . . range over ω (natural numbers) and
a, b, c . . . range over HF(A).
We use the same letters to denote elements from the corresponding

structures and r̄ to denote r1, . . . , rm.
The notions of a term and an atomic formula are given in the standard

manner.
The set of ∆0-formulas is the closure of the set of atomic formu-

las under ∧,∨,¬, and bounded quantifiers (∃a ∈ s) and (∀a ∈ s), where
(∃a ∈ s) Ψ denotes ∃a(a ∈ s ∧ Ψ) and (∀a ∈ s) Ψ denotes ∀a(a ∈ s→
Ψ).

The set of Σ-formulas is the closure of the set of ∆0 formulas un-
der ∧,∨, (∃a ∈ s), (∀a ∈ s), and ∃.

We are interested in Σ-definability of sets on An which can be con-
sidered as generalisation of recursive enumerability. The analogy of Σ-
definable and recursive enumerable sets is based on the following fact.
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Consider the structure HF = 〈HF(∅),∈〉 with the hereditarily finite sets
over ∅ as its universe and membership as its only relation. In HF the
Σ-definable sets are exactly the recursively enumerable sets.

The notion of Σ-definability has a natural meaning also in the struc-
ture HF(A).

Definition 2.1 1. A set B ⊆ HF(A) is Σ-definable, if there exists
a Σ-formula Φ(a) such that b ∈ B ↔ HF(A) |= Φ(b).

2. A function f : HF(A)→ HF(A) is Σ-definable, if there exists
a Σ-formula Φ(c, d) such that f(a) = b↔ HF(A) |= Φ(a, b).

Note that the sets A and ω are ∆0-definable. This fact makes HF(A)
a suitable domain for studying subsets of An and operators of the type

Γ : P(An)→ P(An).

In the following lemma we introduce some ∆0-definable and Σ-definable
predicates that we will use later.

Lemma 2.2 1. The predicates R(a) 
 a ∈ A, S(a) 
 a is a set, and
n ∈ ω are ∆0-definable.

2. The following predicates are ∆0-definable: x = y, x = y ∩ z, x =
y ∪ z, x =< y, z >, x = y \ z (recall that all variables x, y, z range
over sets).

3. A function f : ωn → ωm is computable if and only if it is Σ-
definable.

4. Let Fun(g) mean that g is a finite function i.e.

g = {〈x, y〉 | for every x there exists a unique y }
then the predicate Fun(g) is ∆0-definable.

5. If HF(A) |= Fun(g) then the domain of g, denoted by δg, is ∆0-
definable.

Proof. Proofs of all properties are straightforward except (3) which
can be found in [6]. �

For finite functions Fun(f) let us denote f(x) = y if 〈x, y〉 ∈ f .
The following proposition states that we have full collection on HF(A).
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Proposition 2.3 (Collection.) For every formula Φ the following claim
holds. If HF(A) |= (∀a ∈ x) ∃bΦ(a, b) then there is a set z such that

HF(A) |= (∀a ∈ x) (∃b ∈ z) Φ(a, b) ∧ (∀b ∈ z) (∃a ∈ x) Φ(a, b).

Proof. The claim follows from the definition of HF(A). Indeed, if
x ∈ HF(A) consists of k elements a1, . . . , ak and for each of these ai there
is an bi such that Φ(ai, bi) holds. Then all b1, . . . , bk occur in HFn(A) for
some n, hence {b1, . . . , bk} ∈ HFn+1(A). �

3 The least fixed points of effective opera-

tors

Now we recall the notion of Σ-operator and prove Gandy theorem for
structures without the equality test.

Let Φ(a1, . . . , an, P ) be a Σ-formula where P occurs positively in Φ
and the arity of Φ is equal to n.

We think of Φ as defining a Σ-operator Γ : P(HF(A)n)→ P(HF(A)n)
given by

Γ(Q) = {ā| (HF(A), Q) |= Φ(ā, P )},
where for every set B, P(B) is the set of all subsets of B.

Since the predicate symbol P occurs only positively we have that the
corresponding operator Γ is monotone i.e. for any sets from A ⊆ B
follows Γ(A) ⊆ Γ(B).

By monotonicity, the operator Γ has the least (w.r.t. inclusion) fixed
point which can be described as follows.

We start from the empty set and apply operator Γ until we reach the
fixed point:

Γ0 = ∅, Γn+1 = Γ(Γn), Γγ = ∪n<γΓ
n, (1)

where γ is a limit ordinal.
One can easily check that the sets Γn form an increasing chain of sets:

Γ0 ⊆ Γ1 ⊆ . . .. By set-theoretical reasons, there exists the least ordinal
γ such that Γ(Γγ) = Γγ. This Γγ is the least fixed point of the given
operator Γ.

In order to study the least fixed points of arbitrary Σ-operators (with-
out equality test), we first consider Σ-operators of the type

Γ : P(S(HF(A))n)→ P(S(HF(A))n).
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Then we will show how the least fixed points of arbitrary Σ-operators can
be constructed using the least fixed points of such operators. Note that,
as S(HF(A)) is closed under pairing, S(HF(A))n ⊆ S(HF(A)) for n > 0.
Moreover, S(HF(A))n is a Σ-definable subset of HF(A). So, without loss
of generality we can consider the case n = 1.

Let us formulate some properties of Σ-operators which we will use
below. The following proposition states that each element from the value
of a Σ-operator on a Σ-set can be obtained as an element of the value of
this operator on a finite subset of the set.

Proposition 3.1 If Q is a Σ-definable subset of S(HF(A)) and w ∈
Γ(Q) then there exists p ∈ S(HF(A)) such that p ⊆ Q and w ∈ Γ(p).

Proof. We prove the proposition for the more general case where we
allow parameters from S(HF(A)) to occur into the formula defining our
operator.

Let Φ(b̄, x, P ) be a Σ-formula defining our operator Γ, where b̄ =
b1, . . . , bn are parameters from S(HF (A)). And let Q be a Σ-definable
subset of S(HF (A)) and w ∈ Γ(Q). We need to prove that there exists
p ∈ S(HF (A)) such that p ⊆ Q and w ∈ Γ(p).

We prove the claim by induction on the structure of Φ.
If Φ(b̄,x, P ) 
 P (x) and (HF(A), Q) |= P (w) then the set p 
 {w}

is a required one.
If Φ is an atomic formula which does not contain P then the set p 
 ∅

is a required one.
For the induction step let us consider all possible cases.
1. Suppose Φ(b̄, x, P ) 
 (∀a ∈ bj) Ψ(a, b̄, x, P ) and

(HF(A), Q) |= (∀a ∈ bj) Ψ(a, b̄, w, P ).

By induction hypothesis,

(HF(A), Q) |= (∀a ∈ bj)∃s
(
Ψ(a, b̄, w, P )

)P (t)

t∈s
∧ s ⊆ Q.

Using Proposition 2.3, we find an element q such that

(HF(A), Q) |= (∀a ∈ bj) (∃s ∈ q)
((

Ψ(a, b̄, w, P )
)P (t)

t∈s
∧ s ⊆ Q

)
∧

(∀s ∈ q) (∃a ∈ bj)
((

Ψ(a, b̄, w, P )
)P (t)

t∈s
∧ s ⊆ Q

)
.

Let p 
 ∪q.
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By definition, for all a ∈ bj there exists s ⊆ p such that

(HF(A), s) |= (
Ψ(a, b̄, w, P )

)P (t)

t∈s
.

So we have
(HF(A), p) |= Ψ(a, b̄, w, P ) for all a ∈ bj .

In other words,

(HF(A), p) |= (∀a ∈ bj)Ψ(a, b̄, x, P ).

By construction the set p is a required one.
2. The case Φ(b̄, x, P ) 
 (∃a ∈ bj)Ψ(a, b̄, x, P ) is similar to the case

above.
3. Suppose Φ(b̄, x, P ) 
 ∃aΨ(a, b̄, x, P ) and

(HF(A), Q) |= Ψ(b′, b̄, w, P ).

By induction hypothesis, there exists p0 ⊆ Q such that p0 ∈ S(HF(A))
and

(HF(A), p0) |= Ψ(b′, b̄, w, P ).

The set p 
 p0 is a required one.
4. Suppose Φ(b̄, x, P ) 
 Ψ1(b̄, x, P ) ∧Ψ2(b̄, x, P ) and

(HF(A), Q) |= Ψ1(b̄, w, P ) ∧Ψ2(b̄, w, P ).

By induction hypothesis, there exist p1 ⊆ Q and p2 ⊆ Q such that
p1 ∈ S(HF(A)), p2 ∈ S(HF(A)) and

(HF(A), p1) |= Ψ1(b̄, w, P )

and
(HF(A), p2) |= Ψ2(b̄, w, P ).

The set p 
 p1 ∪ p2 is a required one.
5. The case Φ(b̄, x, P ) 
 Ψ1(b̄, x, P )∨Ψ2(b̄, x, P ) is similar to the case

above. �

Proposition 3.2 Let Γ : P(S(HF(A)))→ P(S(HF(A))) be a Σ-operator.
The relation x ∈ Γ(y) is Σ-definable.
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Proof. Let Φ(z, P ) be a Σ-formula which defines the operator Γ.
Suppose x ∈ Γ(y). By definition,

x ∈ {z| (HF(A), y) |= Φ(z, P )}.

It means that
(HF(A), y) |= Φ(x, P ).

So we have
(HF(A)) |= (Φ(x, P ))P (t)

t∈y .

It is easy to see that the relation x ∈ Γ(y) is defined by Σ-formula

Φ(x, P )
P (t)
t∈y . �

Now we are ready to prove Gandy theorem for Σ-operators of the
type

Γ : P(S(HF(A)))→ P(S(HF(A))).

Theorem 3.3 Let Γ : P(S(HF(A))) → P(S(HF(A))) be a Σ-definable
operator. Then the least fixed-point of Γ is Σ-definable.

Proof. We will prove that the least fixed point of the operator Γ is Γω,
where Γω is defined as follows: Γ0 = ∅, Γn = Γ(Γn−1) for a finite ordinal
n, and Γω =

⋃
m<ω Γm.

Let us show Σ-definability of Γn for every finite ordinal n.
For this purpose we introduce the following family of finite functions:

X0 = < ∅, ∅ >,
Xn = {f |Fun(f) and δf = n+ 1, f(0) = ∅, f is monotonic

and for any m ≤ n the following is true:f(m) ⊆
⋃
l<m

Γ(f(l)}

where n > 0.
From the definitions Xn and Γ it follows that Xn is Σ-definable for

all n ∈ ω, moreover there exists a Σ-formula ψ(n, x) such that

HF(A) |= ψ(n, x)↔ x ∈ Xn.

Below we will use the following useful properties of the families Xn:

1. Let w be a finite subset of Xn. Let us define f ∗(m) 
 ∪f∈wf(m)
for all m ≤ n. Then f ∗ ∈ Xn.
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2. If f ∈ Xn and m ≤ n. Then f � (m+ 1) ∈ Xm.

3. Let f ∈ Xm and m ≤ n.

Define a function

f ∗(l) =

{
f(l), if l ≤ m
f(m), if m < l ≤ n.

Then f ∗ ∈ Xn.

4. Let f ∈ Xn and b ∈ Γ(f(m)) where m ≤ n.

Define a function

f ∗(l) =

{
f(l), if l ≤ n
{b}, if l = n+ 1.

Then f ∗ ∈ Xn+1.

Using these properties let us show that:

x ∈ Γn iff HF(A) |= ∃f (f ∈ Xn ∧ x ∈ f(n)) (2)

by induction on n. For n = 0 we have Γn = ∅ and therefore (2) holds.
Assume that (2) holds for n let us prove that (2) holds for n+ 1.
To prove from left to right let us consider x ∈ Γn+1 = Γ(Γn). By

induction hypothesis we have that x1 ∈ Γn iff ∃g (g ∈ Xn ∧ x1 ∈ g(n)) .
So the set Γn is Σ-definable. By Proposition 3.1 it follows that there
exists y ∈ S(HF(A)) such that y ⊆ Γn and x ∈ Γ(y).
By induction hypothesis and the condition y ⊆ Γn,

HF(A) |= (∀z ∈ y)∃g (g ∈ Xn ∧ z ∈ g(n)) .

Using Proposition 2.3, we find an element w such that

HF(A) |= (∀z ∈ y) (∃g ∈ w) (g ∈ Xn ∧ z ∈ g(n)) ∧
(∀g ∈ w) (∃z ∈ y) (g ∈ Xn ∧ z ∈ g(n)) .

Starting from the finite subset w ⊆ Xn, we define the function g0 as
follows:

g0(l) = ∪g∈wg(l), l ≤ n.

By Property (1) of Xn which is mentioned above, g0 ∈ Xn. It is easy
to check the following inclusion y ⊆ g0(n). Indeed, if z ∈ y then there
exists g ∈ w such that z ∈ g(n) ⊆ g0(n).
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Define a function

f(l) =

{
g0(l), if l ≤ n
{x}, if l = n+ 1.

From Property (4) ofXn follows that f ∈ Xn+1 and moreover x ∈ f(n+1)
holds by the definition of f . So f is a required one.

To prove from right to left let us suppose there exists f such that
(f ∈ Xn+1 ∧ x ∈ f(n+ 1)) . By the definition of Xn+1, x ∈ Γ(f(m)) for
some m ≤ n.

Let us check the inclusion : f(m) ⊆ Γm. For this purpose we consider
f1 = f � (m+1). From Property (2) of Xm follows that f1 ∈ Xm. So, for
all y ∈ f1(m) we have HF(A) |= ∃f (f ∈ Xm ∧ y ∈ f(m)) . By induction
it means that f1(m) = f(m) ⊆ Γm.

The operator Γ is monotone, so we have

x ∈ Γ(f(m)) ⊆ Γ(Γm) ⊆
⋃

m<n+1

Γ(Γm) = Γn+1.

Thus we have proven that Γn is Σ-definable for all n ∈ ω. Consequently,

x ∈ Γω ↔ ∃n∃f (f ∈ Xn ∧ x ∈ f(n)) (3)

is Σ-definable.
To check that Γω is a fixed point i.e. Γ(Γω) ⊆ Γω let us consider x ∈

Γ(Γω). From (3) it follows that Γω is Σ-definable. From Proposition 3.1
it follows that there exists y ∈ S(HF(A)) such that y ⊆ Γω and x ∈ Γ(y).
It is easy to check that y ⊆ Γm for some m ∈ ω. From this we have that
x ∈ Γ(Γm) ⊆ Γω. By monotonicity of Γ, the set Γω is the least fixed
point. So the least fixed point of the operator Γ is Σ-definable. �

Now we consider arbitrary Σ-operators on the structure A without
the equality test.

Theorem 3.4 Let Γ : P(HF(A)n) → P(HF(A)n) be an arbitrary Σ-
operator. Then the least fixed-point of Γ is Σ-definable.

Proof.
Without loss of generality let us consider the case n = 1. For simplic-

ity of notation, we will give the construction only for that case, since the
main ideas are already contained here. Let Φ(r, P ) define the operator
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Γ. We construct a new Σ-operator F : P(S(HF(A))) → P(S(HF(A)))
such that

r ∈ Γn ←→ ∃x (x ∈ F n ∧ r ∈ x) .
For this purpose we define the following formula with a new unary

predicate symbol Q:

Ψ(x,Q) = (∀r ∈ x) (Φ(r, P ))
P (t)
∃yQ(y)∧t∈y .

It is easy to see that Ψ induces a Σ-operator F given by

F (D) = {x|(HF(A), D) |= Ψ(x,Q)}.
Let us show that

r ∈ Γn ↔ ∃x(x ∈ F n ∧ r ∈ x) (4)

by induction on n. For n = 0 we have Γn = F n = ∅ and therefore (4)
holds.

Assume that (4) holds for n let us prove that (4) holds for n + 1. In
other words we need to prove that

(HF(A),Γn) |= Φ(r, P )↔
(HF(A), F n) |= ∃x

(
r ∈ x ∧ (∀r′ ∈ x) (Φ(r′, P ))

P (t)
∃yQ(y)∧t∈y

)
.

Since the first formula does not contain Q and the second formula does
not contain P it is sufficient to consider one structure (HF(A),Γn, F n)
and prove that

(HF(A),Γn, F n) |= Φ(r, P )↔
(HF(A),Γn, F n) |= ∃x

(
r ∈ x ∧ (∀r′ ∈ x) (Φ(r′, P ))

P (t)
∃yQ(y)∧t∈y

)
.

To prove from left to right let us consider r ∈ HF(A) such that

(HF(A),Γn, F n) |= Φ(r, P ).

Consider the formula (Φ(r, P ))
P (t)
∃yQ(y)∧t∈y then by induction hypothesis we

have that

(HF(A),Γn, F n) |= ∀r′ (P (r′)↔ ∃x(x ∈ Q ∧ r′ ∈ x)) (5)

and therefore (by replacement lemma) we have

(HF(A),Γn, F n) |= (Φ(r, P ))
P (t)
∃yQ(y)∧t∈y .
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Now it is easy to check that

(HF(A),Γn, F n) |= ∃x
(
r ∈ x ∧ (∀r′ ∈ x) (Φ(r′, P ))

P (t)
∃yQ(y)∧t∈y

)

taking x = {r}.
To prove from right to left let us consider r ∈ HF(A) such that

(HF(A),Γn, F n) |= ∃x
(
r ∈ x ∧ (∀r′ ∈ x) (Φ(r′, P ))

P (t)
∃yQ(y)∧t∈y

)
.

From this we have that

(HF(A),Γn, F n) |= (Φ(r, P ))
P (t)
∃yQ(y)∧t∈y

and from (5) (by replacement lemma) we obtain that

(HF(A),Γn, F n) |= Φ(r, P ).

Now from Theorem 3.3 it follows that the least fixed point of the
operator F is Σ-definable and therefore the the least fixed point of the
operator Γ is also Σ-definable.

�

4 The least fixed points of effective oper-

ators on the real numbers without the

equality test

In this section we consider the standard model of the real numbers
〈IR, 0, 1,+, ·,−, <〉, denoted also by IR, where +, · and − are regarded
as the usual arithmetic operations on the reals. We use the language of
strictly ordered rings, so the predicate < occurs positively in formulas.
This allows us to consider Σ-definability as generalisation of computable
enumerability. Indeed, in all effective approaches to exact real number
computation via concrete representations, we need only finite amount of
information in order to show that one given number is less than another
one. The following is an immediate corollary of Theorem 3.4.

Corollary 4.1 Let Γ : P(HF(IR)n) → P(HF(IR)n) be an arbitrary Σ–
operator. Then the least fixed-point of Γ is Σ-definable.
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5 Future work

One of the applications of Gandy theorem in the case of structures with
equality is that it allows us to define universal Σ-predicates. It leads to a
topological characterisation of Σ-relations on IR. Thus the sets B ⊆ IRn

that are Σ-definable in HF(IR) with equality are exactly the effective
unions of semialgebraic sets.

We think that Gandy theorem can be used in this way for the struc-
tures without equality, but for this we need more evolved arguments.
Also we think that it is possible to show that the sets B ⊆ IRn that are
Σ-definable in HF(IR) without equality are exactly the effective unions
of open semialgebraic sets.
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RS-02-20 Zolt́an Ésik and Kim G. Larsen. Regular Languages Defin-
able by Lindstr̈om Quantifiers (Preliminary Version). April 2002.
56 pp.

RS-02-19 Stephen L. Bloom and Zolt́an Ésik. An Extension Theorem
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