
B
R

IC
S

R
S

-02-22
N

ielsen
etal.:

O
n

the
E

xpressive
P

ow
er

ofC
oncurrentC

onstraintP
rogram

m
ing

Languages

BRICS
Basic Research in Computer Science

On the Expressive Power of Concurrent
Constraint Programming Languages

Mogens Nielsen
Catuscia Palamidessi
Frank D. Valencia

BRICS Report Series RS-02-22

ISSN 0909-0878 May 2002

Copyright c© 2002, Mogens Nielsen & Catuscia Palamidessi &
Frank D. Valencia.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/02/22/

On the Expressive Power of Temporal
Concurrent Constraint Programming

Languages

Mogens Nielsen∗

BRICS, University of Aarhus
mn@brics.dk

Catuscia Palamidessi†

Penn State University
catuscia@cse.psu.edu

Frank D. Valencia∗

BRICS, University of Aarhus
fvalenci@brics.dk

May 8, 2002

Abstract
The tcc paradigm is a formalism for timed concurrent con-

straint programming. Several tcc languages differing in their way
of expressing infinite behavior have been proposed in the litera-
ture. In this paper we study the expressive power of some of these
languages. In particular, we show that: (1) recursive procedures
with parameters can be encoded into parameterless recursive pro-
cedures with dynamic scoping, and viceversa. (2) replication can
be encoded into parameterless resursive procedures with static
scoping, and viceversa. (3) the languages from (1) are strictly
more expressive than the languages from (2). Furthermore, we
show that behavioral equivalence is undecidable for the languages
from (1), but decidable for the languages from (2). The undecid-
ability result holds even if the process variables take values from
a fixed finite domain.

∗The contribution of Mogens Nielsen and Frank D. Valencia to this research has
been supported by Basic Research in Computer Science, Centre of the Danish National
Research Foundation.

†The contribution of Catuscia Palamidessi to this research has been supported by
the NSF-POWRE grant EIA-0074909.

1

1 Introduction

Timed concurrent constraint programming (tcc) was introduced in [15]
as an extension of concurrent constraint programming (ccp) aimed at
specifying timed systems, following the paradigms of Synchronous Lan-
guages ([1]). As argued in [15, 19, 17, 12], tcc has a declarative nature
that distinguishes it from other timed formalisms. Indeed, tcc programs
(or processes) can be viewed as first-order linear-time temporal logic for-
mulas ([15, 12]). Furthermore, tcc languages have simple fully-abstract
semantics based on solutions of equations ([15, 12]).

In tcc time is conceptually divided into discrete intervals (or time
units). Intuitively, in a particular timed interval, a ccp process P receives
a stimulus (i.e. piece of information represented as a constraint) c from
the environment, it executes with this stimulus as the initial store, and
when it reaches its resting point, it responds to the environment with the
resulting store d. The resting point also determines a residual process Q,
which is then executed in the next time interval.

The finite tcc processes provide for the telling and asking of informa-
tion, and basic operators for parallel composition, locality and unit-delay.
In the literature there are several tcc process languages variants differing
in their way of extending standard finite processes in order to express in-
finite behavior. The main purpose of this paper is to study the expressive
power of a few fundamental representatives of these processes languages.
This way, we believe that we can contribute to the better understanding
of tcc languages.

We shall study in detail the following extensions of finite process:

• rep: obtained by adding a replication operator similar to the one
of the π-calculus ([10]).

• recp: obtained by adding recursion given with formal parameters,
but no free variables in procedure bodies.

• reci: same as recp, but where the actual parameters in recursive
calls are identical to the formal parameters.

• recd: obtained by adding procedures without parameters, but with
free variables in procedure bodies, with dynamic scoping.

• recs: same as recd but with static scoping.

2

• rec0 : recursion given by procedures without parameters and with
no free variables in procedure bodies.

The expressive power of these process languages is compared rela-
tively to the standard notion of input-output behavior ([17, 12]) for tcc
processes. Namely, one language is considered at least as expressive as
another if the input-output behavior expressed by a process in the latter
can be expressed also by a process in the former. Our comparison results
can be summarized as follows:

• recp and recd are equally expressive, and strictly more expressive
than the other tcc languages,

• rep, recs and reci are equally expressive, and strictly more ex-
pressive than rec0.

We actually show a strong separation result between recp/recd and
rep/recs/reci, namely that input-output equivalence is undecidable for
the languages in the the first class, even if we fix an underling constraint
system with a finite domain, but decidable for the languages in the sec-
ond class for arbitrary constraint systems. The undecidability result is
obtained by a reduction from the Post’s correspondence problem ([13]).
The decidability result is obtained by a reduction to Büchi automata
([2]) following similar results in [17] and [11] establishing the finite-state
representability of rep processes.

The expressiveness gaps illustrated above may look surprising to those
acquainted with the π-calculus, because the π-calculus correspondents of
rep, reci and recp have all the same expressive power. Our interpreta-
tion of this difference is that the π-calculus has some powerful mecha-
nisms (synchronous communication and mobility) which compensate for
the weakness of replication and of the lower forms of recursion.

The paper is structured as follows. The first section is devoted to de-
scribing the semantics of the various tcc languages. Section 3 first intro-
duces the equivalences and their corresponding congruences arising from
the input-output behavior and the output behavior on the empty input.
Then it states the relationship between the equivalences and their con-
gruences for the various languages. Section 4 presents the undecidability
of the input-output equivalence for recp processes in a finite-domain con-
straint system. Section 5 presents the decidability of the input-output
equivalence for rep processes in arbitrary constraint systems. Finally,
Section 6 presents encodings preserving the input-output semantics, and
the classification of the tcc languages as stated above.

3

2 TCC Languages

In this section we describe the various tcc languages. We shall use the
syntax of (the deterministic fragment of) the ntcc calculus introduced in
[12].

2.1 Constraint Systems.

Concurrent constraint languages are parameterized by a constraint sys-
tem. A constraint system provides a signature from which syntactically
denotable objects called constraints can be constructed, and an entail-
ment relation ` specifying interdependencies between such constraints.
For our purposes it will suffice to consider the notion of constraint system
based on First-Order Predicate Logic, as it was done in [22] 1.

Definition 2.1. A constraint system is a pair (Σ, ∆) where Σ is a sig-
nature specifying constant, functions and predicate symbols, and ∆ is a
consistent first-order theory over Σ.

Given a constraint system (Σ, ∆), let L be the underlying first-order
language (Σ,V,S), where V = {x, y, z, . . .} is a countable set of vari-
ables and S is the set of logical symbols including ∧, ∨, ⇒, ∃, ∀, true
and false which denote logical conjunction, disjunction, implication,
existential and universal quantification, and the always true and false
predicates, respectively. Constraints, denoted by c, d, . . . are first-order
formulae over L. We use fv(c) and bv(c) to designate the set of free and
bound variables of c, respectively. We say that c entails d in ∆, written
c ` d, if the formula c ⇒ d holds in all models of ∆. As usual, in this
paper we shall require ` to be decidable.

We say that c is equivalent to d, written c ≈ d, iff c ` d and d ` c.
Henceforth, C is the set of constraints modulo ≈ in (Σ, ∆).

The following is a very simple finite-domain constraint system.

Definition 2.2 (Finite-Domain Constraint System). Let n > 0.
Define FD[n] as the constraint system s.t.

• Σ is given by the constants symbols 0, 1,, n−1 plus the equality
= and

1See [18] for a more general notion of constraints based on Scott’s information
systems.

4

• ∆ is given by the axioms for equality ([20])
x = x, x = y ⇒ y = x, x = y∧y = z ⇒ x = z plus v = w ⇒ false

for each two different constants v, w in Σ.

Intuitively FD[n] provides a theory of variables ranging over a finite
domain of values {0, . . . , n−1} with syntactic equality over these values.
We shall use FD[n] as the underlying constraint system in the examples
and our undecidability results.

2.2 Finite Processes

Processes P, Q, . . . ∈ Proc are built from constraints in c ∈ C and vari-
ables x ∈ V in the underlying constraint system. The processes that
define finite behavior are given by the following syntax:

P, Q ::= skip | tell(c) | when c do P
| P ‖ Q | next P | (localx) P
| (local x) P

Process skip does nothing. Process tell(c) adds the constraint c
to the current store, thus making c available to other processes in the
current time interval. Process when c do P performs the action of
asking c in the current time interval. If during the current time interval
this information can eventually be inferred from the store d (i.e., d ` c
) then process P is executed within the same time interval, otherwise
the process is precluded from execution. Process P ‖ Q represents the
parallel composition of P and Q. In one time unit (or interval) P and
Q operate concurrently, communicating through the store. We shall use∏

i∈I Pi, where I is finite, to denote the parallel composition of all Pi.
Process (local x) P behaves like P , except that all the information

on x produced by P can only be seen by P and the information on x
produced by other processes cannot be seen by P . We then say that
(localx) P binds x in P . Given a process Q, we can define, in the
standard way, its bound variables bv(Q) as the set of variables with a
bound occurrence in Q, and its free variables fv(Q) as the set of variables
with a non-bound occurrence in Q. We use (localx1x2 . . . xn) P as an
abbreviation of (localx1) (localx2) . . . (localxn) P .

The only move of nextP is a unit-delay for the activation of P . The
process unless c next P is similar, but P will be activated only if c cannot
be eventually inferred from the store during the current time interval. We

5

use nextn(P) as an abbreviation for
next(next(. . . (nextP) . . .)), where next is repeated n times.

2.3 Semantics of Finite Process

Operationally, the current information is represented as a constraint c ∈
C, so-called store. Following standard lines ([18]), we extend the syntax
with a construct (localx, d) P which represents the evolution of a process
of the form
(localx) Q, where d is the local information (or private store) produced
during this evolution. Initially d is “empty”, so we regard (localx) P as
(localx, true) P .

The operational semantics will be given in terms of the reduction
relations −→, =⇒⊆ Proc×C×Proc×C defined in Table 1. The internal
transition

〈P, c〉 −→ 〈Q, d〉
should be read as “P with store c reduces, in one internal step, to Q with
store d ”. The observable transition

P
(c,d)

====⇒ Q

should be read as “P on input c from the environment, reduces in one
time unit to Q and outputs d to the environment”. Process Q is the
process to be executed in the next time unit. Such a reduction is obtained
from a sequence of internal reduction starting in P with initial store c and
terminating in a process Q′ with store d. Crudely speaking, Q is obtained
by removing from Q′ what was meant to be executed only during the
current time interval. In tcc the store d is not automatically transferred
to the next time unit. If needed, information in d can be transfered to
next time unit by process P .

Let us describe some of the rules for the internal transitions. Rules
RT, RW, RPL, RPR, RU follow [18] and they should be self-explanatory.
Rule RU says that if c is entailed by the current store, then the execution
of the process P (in the next time interval) is precluded.

Rule RL is the standard rule for locality (or hiding) in Concurrent
Constraint Programming (see [18, 4]). This rules deserves further ex-
planation as it plays a key role in the results of this paper. Consider
the process Q = local (x, c) in P . We distinguish between the external
(corresponding to Q) and the internal point of view (corresponding to
P). From the internal point of view, the information about x, possibly

6

appearing in the “global” store d, cannot be observed. Thus, before re-
ducing P we should first hide the information about x that Q may have
in d. We can do this by existentially quantifying x in d. Similarly, from
the external point of view, the observable information about x that the
reduction of internal agent P may produce (i.e., c′) cannot be observed.
Thus we hide it by existentially quantifying x in c′ before adding it to the
global store corresponding to the evolution of Q. Additionally, we should
make c′ the new private store of the evolution of the internal process for
its future reductions.

Let us now describe the rule for the observable transitions. Rule RO

says that an observable transition from P labeled by (c, d) is obtained by
performing a terminating sequence of internal transitions from 〈P, c〉 to
〈Q, d〉, for some Q. The process to be executed in the next time interval,
F (Q) (“future” of Q), is obtained by removing from Q “when” processes
which could not be executed during the current time interval and any
local information which has been stored in Q, and by “unfolding” the
sub-terms within nextR expressions. More precisely:

Definition 2.3 (Future Function). Let F : Proc ⇀ Proc be defined
by

F (P) =

skip if P = skip
skip if P = when c do Q
F (P1) ‖ F (P2) if P = P1 ‖ P2

(localx) F (Q) if P = (localx, c) Q
Q if P = nextQ
Q if P = unless c nextQ

Remark. Function F is not total, but this is not a problem since whenever
we need to apply F to a P (Rules RO in Table 1), all the sub-processes
of P not considered in the definition of F will occur within a “next” or
“unless” expression.

In the following sections we consider several ways in which tcc lan-
guages can express infinite behavior through the time intervals.

2.4 Replication

One simple way to express infinite behavior in tcc is by using a replicator
operator as in [12] and [5]2. Let us extend the syntax of processes as

2More precisely, [5] uses the hence operator. However, henceP is equivalent to
next ! P and, similarly ! P is equivalent to P ‖ henceP .

7

follows.

P := . . . | !P (1)

the operator “!” represents a delayed version of the replication operator
of the π−calculus ([10]): ! P represents P ‖ nextP ‖ next2P ‖ . . ., i.e.
unboundedly many copies of P but one at a time. We shall use rep to
denote the language using this operator for infinite behavior.

The operational semantics of rep is obtained by adding to the rules
in Table 1 the rule for replication:

RREP 〈! P, c〉 −→ 〈P ‖ next ! P, c〉 (2)

Rule RREP specifies that the process ! P produces a copy P at the
current time unit, and then persists in the next time unit.

2.5 Recursion

An alternative to define infinite behavior in tcc languages is by using
recursion as it was done in [15, 16, 23] . We extend the syntax of finite
processes by:

P := . . . | A(y1, . . . , yn) (3)

Process A(y1, . . . , yn) is an identifier with arity n. We assume that

every such an identifier has a (recursive) definition A(x1, . . . , xn)
def
= P

where the xi’s are pairwise distinct, and the intuition is that A(y1, . . . , yn)
behaves as P with yi replacing xi for each i. We presuppose an underlying
set of definitions D. We shall often use the notation ~x as an abbreviation
of x1, x2, . . . , xn if n is unimportant or obvious. We shall sometimes say

that A(~y) is an invocation with actual parameters ~y and given A(~x)
def
= P

we shall refer to P as its body and to ~x as its formal parameters
Following [15] we require any process to depend only on finitely many

definitions and recursion to be “next” guarded. For example, given

A(~x)
def
= P , every invocation A(~y) in P must occur within the scope of

a “next” or “unless” operator operator. This avoids non-terminating se-
quences of internal reductions (i.e., non-terminating computation within
a time interval).

We can formalize the two requirements above as follows. Given

A1(~x1)
def
= P1 and A2(~x2)

def
= P2 we say that A1 (directly) depends on A2,

8

written A1 ; A2, if there is an invocation A2(~y) in P1. The first require-
ment can be then formalized by requiring the strict ordering induced by
;∗ (the reflexive and transitive closure of ;)3 to be well founded. For the
second requirement, suppose that A1 ; A2 ; . . . ; An ; An+1 = A1,

where Ai(~x1)
def
= Pi. We shall require that for at least one i, 1 ≤ i ≤ n,

the occurrences of Ai+1 in Pi are within the scope of a “next” or an
“unless” operator.

Furthermore, for the simplicity of the presentation let us assume that
the free variables in definitions’ bodies are formal parameters. More pre-

cisely, for each A(x1, . . . , xn)
def
= P , we have fv(P) ⊆ {x1, . . . , xn}. This

requirement is imposed on the recursive versions of the π-calculus.
We shall use recp to denote the tcc language with recursion with the

above syntactic restriction. The operational rules for recp are obtained
by adding to the rules in Table 1 the rule for recursion:

RREC

A(~x)
def
= P 〈P [~y/~x]〉 −→ 〈P ′, d′〉
〈A(~y), d〉 −→ 〈P ′, d′〉 (4)

As usual P [y1 . . . yn/x1 . . . xn] is the process that results from syntacti-
cally replacing every free occurrence of xi by yi using α-conversion wher-
ever needed to avoid capture.

2.5.1 Identical Parameters Recursion.

An interesting tcc language considered in [15] arises from recp by requir-
ing the parameters not to change through recursive invocations. In the
π-calculus this restriction does not cause any loss of expressive power
since such form of recursion can encode replication and replication can
encode general recursion (see [10]).

An example satisfying this restriction on recursion is RP (~x)
def
= P ‖

nextRP (~x). Here the actual parameters of the invocation in the defini-
tion’s body are the same as the formal parameters of RP . An example

not satisfying the restriction is R′
P (~x)

def
= P ‖ next (local ~x) R′

P (~x). Here
the actual parameters, although syntactically the same, are bound and
therefore different from those of the formal parameters. One can gener-
alize this for a set of mutually recursive definitions as follows. Suppose

3The relation ;∗ is a preordering. By induced strict ordering we mean the strict
component of ;∗ modulo the equivalence relation obtained by taking the symmetric
closure of ;∗.

9

that A1 ; A2 and A2 ;∗ A1 with A1(~x1)
def
= P1 and A2(~x2)

def
= P2 in

the underlying set of definitions D. Then for each invocation A2(~y) in
P1 we should require ~y = ~x2 and ~y 6∈ bv(P1). In other words the actual
parameters of the invocation A2 in P1 (i.e., ~y) should be syntactically the
same as its formal parameters (i.e., ~x2). Furthermore, they should not
be bound in P1 to avoid cases such as R′

P (~x) above. The processes of tcc
with identical parameters are those of recp that satisfy this requirement.
We shall refer to this language as reci.

2.6 Parameterless Recursion.

Tcc languages with parameterless recursion have been considered in [15]
and [16]. We shall refer to identifiers with arity zero and their cor-
responding definitions as constant identifiers and constant definitions,
respectively. We omit the “()” in A().

Given a parameterless definition A
def
= P , requiring all variables in

fv(P) to be formal parameters, as we did in recp, would be too restrictive.
This would mean that the body P has no free variables and processes
in ccp communicate through free variables. For example, it would be
impossible to define the process that every two time units tells x = 1.
Consequently, let us consider a fragment allowing only parameterless
recursion with free variables in the bodies of constant definitions.

Now assuming that the operational rules for parameterless recursion
are the same as for recp, one may wonder about the scope of the free
variables in definitions bodies. Is it some kind of dynamic scoping similar
to that of CCS ([9]) and, most notably, as it is in the standard model
of concurrent constraint programming ([18])? Is it static as in most
programming languages?.

The next section answers this question. Let us first illustrate what
we mean by dynamic and static scoping.

Example 2.1. Consider a constant identifier A with the following defi-
nition

A
def
= tell(x = 1)

‖ next (local x) (A ‖ when x = 1 do tell(z = 1))

In the case of dynamic scoping, an outside invocation A causes the execu-
tion tell(z = 1) in the second time interval. The reason is that (local x)
binds the x resulting from the unfolding of the A inside the definition’s

10

body4. In fact, the telling of x = 1, in the second time unit, will not be
visible in the store. In the case of static scoping, (local x) does not bind
the x of the unfolding of A because such an x is intuitively a “global”
variable, and hence tell(z = 1) will not be executed. In fact, the telling
of x = 1, will also be visible in the store in the second time interval.

2.6.1 Parameterless Recursion with Dynamic Scoping

Rule RL combined with RREC causes the parameterless recursion to have
dynamic scoping5. As illustrated in the example below, the idea is that
since (local x) P reduces to a process of the form (localx) Q, the x’s
occurring free in the unfolding of invocations in P get bounded. We
shall refer to the language allowing only parameterless recursion with
free-variables in the procedure bodies as recd; parameterless recursion
with dynamic scoping.

Example 2.2. Let A as defined in Example 2.1. Let us abbreviate the

definition as A
def
= tell(x = 1) ‖ P . We have the following reduction of

(localx) A on store true.

〈tell(x = 1), true〉 −→ 〈skip, x = 1〉 RT

〈tell(x = 1) ‖ P, true〉 −→ 〈skip ‖ P, x = 1〉 RPL

〈A, true〉 −→ 〈skip ‖ P, x = 1〉 RREC

〈(local x, true)A, true〉 −→ 〈(local x, x = 1) (skip ‖ P), true〉 RL

Thus (localx) A in store true reduces to (localx, x = 1) (skip ‖ P)
in store true. Notice that the free x in A’s body become local to
(localx, x = 1) (skip ‖ P), i.e, it now occurs in the local store but
not in the global one.

Remark. It should be noticed that, unlike in recp, we cannot freely α-
convert processes in recd without changing behavior. For example, we
could α-convert the (local x) A in the above example into (local z) A
(since A[z/x] is syntactically equal to A) but the behavior of (local z) A
would not be the same as that of (localx) A. We could solve this problem
by defining the substitutions [z/x] to be relabeling functions as in CCS
instead of syntactic replacements. We can see in Table 1, however, that

4Just as in the CCS definition A
def= a.O ‖ τ.(A ‖ ā.O)\a, process ā.O can com-

municate through a with the unfolding of A.
5Rules RL and RREC are the same in ccp, hence the observations made in this

section regarding dynamic scoping apply to ccp as well.

11

no syntactic substitutions will be applied in the reductions of recd as this
deals only with constant definitions. Therefore, the operational semantics
in recd does not appeal to α-conversion.

2.6.2 Parameterless Recursion with Static Scoping

From the previous section it follows that if we want to have static scoping
as in [15] we should replace the rule for local behavior RL .

Rule R′
L defines locality for the parameterless recursion with static

scoping language henceforth referred to as recs.

R′
L

〈P [y/x], d〉 −→ 〈P ′, d′〉 y is fresh

〈(localx) P, d〉 −→ 〈P ′, d′〉 (5)

As in [8], we use the notion of fresh variable meaning that it does not
occur elsewhere in a process, definition or the store. It will be convenient
to presuppose that the set of variables V is partitioned into two infinite
sets F and V − F . We shall assume that the fresh variables are taken
from F and that no input from the environment or process, other than
the ones generated when applying R′

L, can contain variables in F .
The fresh variables introduced by R′

L are not to be visible from the
outside. We hide these fresh variables, as it is done in [17], by using exis-
tential quantification in the output constraint of observable transitions.
More precisely, we replace the rule for the observable transitions RO with
the rule

R′
O

〈P, c〉 −→∗ 〈Q, d〉 6−→
P

(c,∃Fd)
====⇒ F (Q) (6)

where ∃Fd represents the constraint resulting from the existential quan-
tification in d of free occurrences of variables in F .

In order to see why R′
L causes static scoping in recs, suppose that

P in Rule R′
L in Equation 5 contains an invocation A with A

def
= R.

When replacing x with y in P , A remains the same since A[y/x] is A.
Furthermore, since y is chosen from F , there will be no capture of free
variables in R when unfolding A. This causes the scoping to be static.
Let us illustrate this by revisiting the previous example.

Example 2.3. Let A and P as in the previous example. We have the

12

following reduction of (localx) A in store true.

〈tell(x = 1), true〉 −→ 〈skip, x = 1〉 RT

〈tell(x = 1) ‖ P, true〉 −→ 〈skip ‖ P, x = 1〉 RPL

〈A, true〉 −→ 〈skip ‖ P, x = 1〉 RREC

〈(local x)A, true〉 −→ 〈skip ‖ P, x = 1〉 R′
L

Thus (localx) A in store true reduces to skip ‖ P in store (x = 1)
making the free x in A’s body, as oppose to the previous example, visible
in the “global” store .

Remark. Notice that, as in recd, in recs we do not need α-conversion
since in the reductions of recs we only use syntactic replacements of
variables by fresh variables (i.e., there will not be captures).

2.7 Summary of TCC Languages

We described several languages based on the literature of (Timed) ccp.
We have rep the tcc language with replication and recp the tcc language
with recursion instead. A special case of recp is reci which restricts
the parameters not to change through the recursive invocations. We also
have the parameterless recursion languages recd and recs. The former
deals with dynamic-scoping while the later deals with static scoping.

For the sake of completeness, we consider here an additional lan-
guage: rec0, the language with neither parameters nor free variables in
the bodies of definitions.

Notation. Henceforward we use L to designate the set of tcc languages
{rep, recp, reci, recd, recs, rec0}. In the following sections, we shall
sub-index sets and relations with the appropriate tcc language name to
make it clear what is the language under consideration. For example
−→recp means that the reduction under consideration is that of recp.
Similarly, Procrecp denotes the set of processes in recp. Often we shall
omit the sub-index when it is unimportant or clear from the context.

3 Process Equivalences

In the following we use α, α′ to represent elements of Cω and β to represent
an element of C∗. Notation β.α represents the concatenation of β and α.

Let us consider infinite sequence of observable transitions

13

P = P1
(c1,c′1)====⇒ P2

(c2,c′2)====⇒ P3
(c3,c′3)====⇒ . . .

This sequence can be interpreted as an interaction between the system
P and an environment. At the time unit i, the environment provides a
stimulus ci and Pi produces c′i as response. We then regard (α, α′) as a
reactive observation of P . If α = c1.c2.c3. . . . and α′ = c′1.c

′
2.c

′
3 . . ., we

represent the above interaction as P
(α,α′)

====⇒ω. Given P we shall refer to
the set of all its reactive observations as the input-output behavior of P .

Alternatively, if α = trueω, we can interpret the run as an interaction
among the parallel components in P without the influence of an external
environment (i.e., each component is part of the environment of the
others). In this case α is called the empty input sequence and α′ is
regarded as a timed observation of such an interaction in P . We shall
refer to the set of all timed observations of a process P as the output
behavior of P 6.

The following definition summarizes the observables above mentioned.

Definition 3.1 (Equivalences). For each tcc language ` ∈ L let us
define

1. The input-output (or stimulus-response) relation of a process P in
` as

io`(P) = {(α, α′) | P
(α,α′)

====⇒ω
` }

2. The output relation of a process P in ` as

o`(P) = {α′ | P
(trueω,α′)
====⇒ ω

` }

Furthermore, define P ∼io
` Q iff io`(P) = io`(Q) and P ∼o

` Q iff o`(P) =
o`(Q).

Let us now to consider the largest congruences included in ∼io
` and

∼o
` , respectively. More precisely,

Definition 3.2. Let ` ∈ L. We define P ≈io
` Q iff for every process

context C[·] in `, C[P] ∼io
` C[Q], and similarly P ≈o

` Q iff for every
process context C[·] , C[P] ∼o

` C[Q].

6In [11] the term “language” instead of “output” is used. We have changed termi-
nology to avoid confusions with “tcc language”.

14

As usual a process context C[·] is a process term with a single hole
such that placing a process in the hole yields a well-formed process.

The following theorem relate the equivalences and their congruences
for the various tcc languages.

Theorem 3.1. For each ` ∈ L,

1. If ` 6= recs then ≈io
` =≈o

` =∼io
` ⊂∼o

` .

2. If ` = recs then ≈io
` =≈o

` ⊂∼io
` ⊂∼o

` .

Proof. Here we prove (1) ≈io = ≈o and (2) ≈io
recs

⊂ ∼io
recs

. The other
cases follow from results in [11].

(1) Obviously ≈io⊆≈o . We want to prove that P ≈o Q implies
P ≈io Q . Suppose that P ≈o Q but P 6≈io Q. Then there must exist a
context C[·] s.t C[P] 6∼io C[Q]. Consider the case io(C[P]) 6⊃ io(C[Q]).
Take an α = c1.c2 . . . such that (α, α′) ∈ io(C[Q]) but (α, α′) 6∈ io(C[P]).
There must then be a prefix of α′ which differs from all other prefixes
of sequences α′′ s.t. (α, α′′) ∈ io(C[P]). Suppose that this is the n−th
prefix. One can verify that for the context

C ′[·] = C[·] ‖
∏
i≤n

next i tell(ci),

o(C ′[P]) 6= o(C ′[Q]). This contradicts our assumption P ≈o Q. The case
io(C[Q]) 6⊃ io([P]) is symmetric. Therefore P 6≈o Q as required

(2) The inclusion is obvious. As for the proper inclusion, take A
def
=

tell(c) with c = (x = y) in any underlying constraint system with
equality. Notice that for ` = recs, A ∼io

` tell(c) but

(localx) A ∼io
` tell(c) 6∼io

` skip ∼io
` (localx) tell(c).

The theorem states that the input-output and output congruences
coincide for all languages. It also states that the input-output behav-
ior is a congruence for every tcc language but recs. As expected (see
Item (2)), the input-output behavior of an arbitrary process (localx) P
in recs cannot be inferred from the input-output behavior of P only.
This reveals a distinction between recs and the other tcc languages and,
in fact, between recs and the standard model of concurrent constraint
programming ([18]).

In the following sections we shall classify the tcc languages based on
the decidability of their input-output equivalence.

15

4 Undecidability Results

In this section we first state that ∼io
recp

is undecidable for processes
with an underlying finite-domain constraint system. Recall that a finite-
domain constraint system FD[n] (see Definition 2.2) provides a theory of
variables ranging over a finite domain of values D = {0, 1, . . . , n−1} with
syntactic equality over these values. We shall also prove a stronger ver-
sion of this result establishing that ∼io

recp
is undecidable even for the finite-

domain constraint system with one single constant FD[1], i.e., |D| = 1.
In sections 6 we shall give an input-output preserving encoding from
recp into the parameterless recursion language recd. Therefore, ∼io

recd
is

undecidable as well.
Our proof of undecidability will proceed by a reduction from the

Post’s correspondence problem (PCP)[13]. Let us recall the following
definition.

Definition 4.1. A PCP instance is a tuple (W, V), where
W = {w0, . . . , wn} and V = {v0, . . . , vn} are two set of words over the
alphabet {0, 1}. A solution to this instance is a sequence of indexes
i0, . . . , im in I = {0, . . . , n} s.t.

wi0 .wi2 . . . wim = vi0 .vi2 . . . vim .

In the PCP we are given an instance (V, W) and we are asked whether
there is a solution for such an instance. The PCP is known to be un-
decidable [13], even if we confine our attention to instances involving
non-empty words only and to solutions where the first index is required
to be 0.

Theorem 4.1. Given P, Q ∈ Procrecp in a finite-domain constraint sys-
tem, the question of whether P ∼io

recp
Q or not is undecidable.

Proof. Here we give a reduction from the PCP where the instances in-
volve non-empty words only and the solutions are required to have 0 as
their first index.

Let (V, W) be a PCP instance where W = {w0, . . . , wn} and V =
{v0, . . . , vn} are sets of non-empty words. Let FD[m] (Definition 2.2) be
the underlying constraint system where m = max(|V |, 2) (i.e., we need at
least two constants in the encoding below). For each i ∈ I = {0, . . . , |V |−
1}, we shall a define process Ai(b1, b2, index , x) which intuitively does the
following:

16

1. It waits until is told that b1 = 1 to start writing wi, one symbol
per time unit. Each such a symbol, say s, will be written in x by
telling x = s. Similarly, it waits until b2 = 1 to start writing vi,
one symbol per time unit. Each such a symbol will also be written
in x.

2. It spawns a process Aj(b
′
1, b

′
2, index , x) when the environment inputs

an index index = j in I.

3. It sets b1 = 0 and b′1 = 1 when it finishes writing wi, i.e., |wi|
time units later after it started writing (this way it announces that
its job of writing wi is done, and allows Aj to start writing wj).
Similarly, it sets b2 = 0 and b′2 = 1 when it finishes writing vi.

4. It aborts unless the environment provides an index in I. It also
aborts if an inconsistency arises: Either two symbols (one from a
W word and another from a V word) are written in x in the same
time unit and they do not match (thus generating false), or the
environment itself inputs false.

Thus, intuitively the Ai’s keep writing W and V words, as the en-
vironment dictates, as long as the symbols match and the environment
keeps providing indexes in I at each time unit.

We use the following constructs:

Wc,P (~x)
def
= when c do P ‖ unless c nextWc,P (~x)

RQ(~y)
def
= P ‖ nextRQ(~y)

where fv(P) ∪ fv(c) = {~x} and fv(Q) = {~y}. The former waits until c
holds and then it triggers P . The latter repeats Q at each time (like the
“!” operator in rep). We use the more readable notation wait c do P
and repeat Q for Wc,P (~x) and RQ(~y), respectively.

Below we define Ai(b1, b2, index , x) for each i ∈ I according to Items
1-4. The local variable ichosen is used as flag to check whether the
environment input an index.

17

Ai(b1, b2, index , x)
def
= (local b′1 b′2 ichosen) (

wait b1 = 1 do (Wi(x)
‖ next |wi|(tell(b1 = 0) ‖ tell(b′1 = 1)))

‖ wait b2 = 1 do (Vi(x)
‖ next |vi|(tell(b2 = 0) ‖ tell(b′2 = 1)))

‖ ∏
j∈I when index = j do (tell(ichosen = 1)

‖ nextAj(b
′
1, b

′
2, index , x))

‖ Abort(ichosen))

Process Wi(x) writes, one by one, the wi symbols in x (notation wi(n)
denotes the n−th element of wi). Process Vi(x) is defined analogously.

Wi(x)
def
=

∏
0≤k≤|wi|−1

next ktell(x = wi(k)),

Vi(x)
def
=

∏
0≤k≤|vi|−1

next ktell(x = vi(k))

Process Abort aborts, according to Item 4 above, by telling false

thereafter (thus creating a constant inconsistency).

Abort(ichosen)
def
=

‖ unless ichosen = 1 next repeat tell(false)
‖ when false do repeat tell(false)

Let us now define a process Bi(b1, b2, index , x, ok) for each i ∈ I that
behaves exactly like Ai(b1, b2, index , x), but in addition it outputs ok = 1
if it stops writing vi and wi exactly in the same time interval. This
happens when b1 and b2 are set to zero in the same unit and it will imply
that a solution of the form wi0.wi = vi0vi for the PCP (V, W)
has been found.

Bi(b1, b2, index , x, ok)
def
= (local b′1 b′2 ichosen) (

wait b1 = 1 do (Wi(x)
‖ next |wi|(tell(b1 = 0) ‖ tell(b′1 = 1)))

‖ wait b2 = 1 do (Vi(x)
‖ next |vi|(tell(b2 = 0) ‖ tell(b′2 = 1)))

‖ ∏
j∈I when index = j do (tell(ichosen = 1)

‖ nextBj(b
′
1, b

′
2, index , x, ok))

‖ Abort(ichosen)
‖ wait b1 = 0 ∧ b2 = 0 do tell(ok = 1))

18

Since we require the first index in a solution for PCW (W, V) to be
0, we define two processes A(index , x) and B(index , x, ok) which trigger
A0 and B0 as follows .

A(index , x)
def
= (local b1 b2) (

tell(b1 = 1) ‖ tell(b2 = 1) ‖ A0(b1, b2, index , x))

B(index , x, ok)
def
= (local b1 b2) (

tell(b1 = 1) ‖ tell(b2 = 1) ‖ B0(b1, b2, index , x, ok))

One can verify that the only difference between a process A(index , x)
and B(index , x, ok) is that the latter eventually tells ok = 1 iff there is a
solution to the PCP (V, W). Therefore, A(index , x) ∼io

recp
B(index , x, ok)

iff the answer to to PCP (W, V) is negative. It follows that ∼io
recp

is
undecidable for finite domain constraint systems.

We now prove a stronger version of the above theorem; input-output
equivalence in undecidable in recp even if we fix the underlying constraint
system to be FD[1], which is the finite-domain constraint system whose
only constant is 0.

Theorem 4.2. Fix FD[1] to be the underlying constraint system. The
question of whether P ∼io

recp
Q or not is undecidable.

Proof. Let us consider the proof of Theorem 4.1. Let m = max(|V |, 2).
Thus every value that a variable can take is in D = {0, . . . , m − 1}. For
each variable y in the process definitions let us introduce m new variables
y0, . . . , ym−1. Replace the declarations of y (whether as a local or as
formal parameter) by the corresponding declarations of the y0, . . . , ym−1.
Replace each constraint y = v in the process definitions with yv = 0.
Create an inconsistency (i.e. by telling false) whenever yv = yw for any
two different values v and w in D (since (y = v ∧ y = w) = false).

From the above theorem and Theorem 3.1 we obtain the following
result.

Corollary 4.1. The input-output and output congruences ≈io
recp

and ≈o
recp

are undecidable for processes in the finite-domain constraint system FD[1].

Notice that FD[1] is a very simple constraint system (i.e., only equal-
ity and one single constant). So, the undecidability results for other
constraint systems providing theories with equality and an at least one

19

constant symbol follow from Theorem 4.2. This includes almost all con-
straint system of interest (e.g. the Herbrand constraint system [14], the
Kanh constraint [18], Enumerated Types [14] and modular arithmetic
[12]) .

5 Decidability Results

In this section we establish that ∼io
rep is decidable for arbitrary constraint

systems. In section 6 we shall show via encodings that rep, reci, recs
have the same expressive power. We then conclude that the correspond-
ing equivalences for reci and recs are also decidable.

The key for our decidability result is that the transitions of processes
in rep can be represented by finite-state machines. This follows similar
results in [17] and [11].

Example 5.1. Let Q =!!P with P = tell(c). The following is an ob-
servable transition sequence in rep.

Q
(c1,d1)
==⇒!P ‖ Q

(c2,d2)
==⇒!P ‖!P ‖ Q

(c3,d3)
==⇒ . . .

(cn,dn)
==⇒

∏
n

!P ‖ Q . . .

where for 1 ≤ i ≤ n di = ci ∧ c.
Thus process Q has an infinite number of derivatives. This illustrates

that in a transition system where states are the elements of Procrep it is
possible to have infinite paths where all states are different.

Nevertheless, from standard results in ccp ([18]), in all the tcc lan-
guages in L one copy of P does exactly the same job than two copies,
i.e. P ‖ P 7. So !P ‖!P ‖ . . . ‖!P and !P behaves the same way. Below
we establish this property more precisely.

Definition 5.1. For each tcc language ` ∈ L define ≡` as the smallest
congruence satisfying the axiom P ≡` P ‖ P for P ∈ Proc`

The following property states that ≡ is preserved by input-output
congruence.

Proposition 5.1. For each ` ∈ L, ≡` ⊂ ≈io
` .

7Notice that this does mean that !P and P behave the same way.

20

Definition 5.2. We say that Q is a derivative of P if there is a sequence

P
(c1,c2)

====⇒ . . .
(cn,dn)
====⇒ Q. Define Der(P) as the set of all derivatives of

P .

The following properties are used for constructing automata repre-
senting processes in rep.

Lemma 5.1. Let P ∈ Procrep. Then the set Der(P) modulo ≡ is finite.

Proof. The proof can be established by induction on the structure of P
following analogous proofs in [17] and [11].

Proposition 5.2. Relation ≡rep is decidable.

We shall characterize the input-output behavior (see Definition 3.1)
in terms of ω-regular languages, i.e., the languages accepted by Büchi
automata. Recall that Büchi automata are ordinary finite-state au-
tomata equipped with an acceptance condition that is appropriate for
ω-sequences: an ω-sequence is accepted if the automaton can read it
from left to right while visiting a sequence of states in which some final
state occurs infinitely often. This condition is called Büchi acceptance
([2]).

Our plan is then to construct Büchi automata for the input-output be-
havior in which the transitions are labeled with input-output constraints.
The problem, however, is that there are infinitely many input constraints
(even if the underlying constraint system is finite domain as there are in-
finitely many variables). In [17] is shown how to compute a set containing
the “relevant” inputs for hiding-free processes in arbitrary constraint sys-
tems. Below we extend the result to arbitrary processes.

Definition 5.3. Given S ⊆ C, let S be the closure under conjunction
and implication of S. Let C : Proc → C be defined as:
C(skip) = {true}
C(tell(c)) = {c}
C(

∑
i∈I when ci do Pi) =

⋃
i∈I{ci} ∪ C(Pi)

C(unless c nextP) = {c} ∪ C(P)
C(P ‖ Q) = C(P) ∪ C(Q)
C(! P) = C(? P) = C(nextP) = C(P)
C((localx) P) = {∃xc, ∀xc | c ∈ C(P)}

Define the relevant input constraints of P , C(P), as the set (modulo
logical equivalence) C(P).

21

Definition 5.4. Let d ∈ C. Define the strongest consequence of d in
P , written d(P), as the unique constraint (modulo logical equivalence)
e ∈ C(P) such that d ` e and e ` e′ for every e′ ∈ C(P) such that d ` e′.

Notice that that d(P) always exists since C(P) is closed under con-
junction. Furthermore, it can be computed since ` is decidable and C(P)
is finite.

The next lemma intuitively states that C(P) indeed contains the rel-
evant input constraints of P .

Lemma 5.2. For all P ∈ Procrep, P
(c,c∧d)
====⇒ P ′ if and only if P

(c(P),d)
====⇒

P ′.

Proof. Here we outline the main aspects of the proof of the “only if”
direction. For simplicity, we assume that P contains no nesting of local

operator. Any reduction P
(c,c∧d)
====⇒ Q is obtained from a sequence of

transitions 〈P0, c〉 −→∗ 〈Pn, c ∧ d〉 6−→ where P = P0 and Q = F (Pn).
For simplicity, let us also assume that such a sequence involves the ap-
plication of at least one application of RW (i.e., that the execution of
a “when” operator takes place). It follows that the sequence can be
represented as the sequence:

〈P0, c〉 −→∗ 〈P1, c ∧ c1〉 −→ 〈P ′
1, c ∧ c1〉 −→∗ . . .

−→∗ 〈Pi, c ∧ ci〉 −→ 〈P ′
i , c ∧ ci〉

−→∗ 〈Pi+1, c ∧ ci+1〉 −→
〈
P ′

i+1, c ∧ ci+1

〉 −→∗ . . .

satisfying the conditions below. The reductions 〈Pi, c ∧ ci〉 −→ 〈P ′
i , c ∧ ci〉

are obtained from a derivation whose topmost (or root) rule is either RW

or RU. In other words the reduction involves the execution of a “when” or
an “unless” operator. Furthermore, each of the 〈Pi, c ∧ ci〉 −→∗ 〈Pi+1, c ∧ ci+1〉
involves no application of RW or RU.

Suppose that gi is the constraint guard of the “when” or “unless”
operator when deriving 〈Pi, c ∧ ci〉 −→ 〈P ′

i , c ∧ ci〉. We can infer that
ei∧∃~xi

(c∧ci) ` gi where ~xi and ei are a vector of at most one variable and
a local store introduced by rule RL (the vector can be empty and ei can be
true meaning that RL was not applied). This implies ∃~xi

(c∧ ci) ` (ei ⇒
gi), and then ∃~xi

(c ∧ ci) ` ∀~xi
(ei ⇒ gi). If follows c ∧ ci ` ∀~xi

(ei ⇒ gi)
and thus c ` ci ⇒ ∀~xi

(ei ⇒ gi). Let di = ci ⇒ ∀~xi
(ei ⇒ gi). Notice that

di ∧ ci ∧ ei ` gi. From the definition of C(P) we have di ∈ C(P) since
gi appears within some (local~x) Q in P (i.e., gi ∈ C(Q)) and the local
store ei is then in C(Q). Let c′ =

∧
i∈{1,...,n} di. By induction on n we

22

can show that 〈P0, c
′〉 −→∗ 〈Pn, d〉. Trivially c ` c′ ∈ C(P) since C(P) is

also closed under conjunction. Hence by definition c ` c(P) ` c′. We can
then show that 〈P0, c(P)〉 −→∗ 〈Pn, d〉, thus concluding the proof.

Corollary 5.1. (c1.c2. . . . , c1 ∧ c′1.c2 ∧ c′2, . . .) ∈ io(P) iff
(c1(P).c2(P). . . . , c′1.c

′
2. . . .) ∈ io(P).

Having found the set of relevant input constraints for a given process
we can now proceed to define a finite-state automaton representing its
behavior.

5.1 Input-Output Automata

Given an arbitrary process P and a finite set of (input) constraints S,
we shall construct an automaton AS

P which recognizes the input-output
behavior of P restricted to inputs in S. The start state is P and each
transition from state Q to state R with label (c, d), where c ∈ S, repre-

sents an observable reduction Q
(c,d)

====⇒ R in rep. The construction is
given in the proof of the following lemma which also states the language
accepted by AS

P .

Lemma 5.3. Given P ∈ Procrep and a finite set of constraints S, one
can effectively construct a Büchi automaton AS

P recognizing the set of all
(c1, c

′
1).(c2, c

′
2) . . . such that c1, c2 . . . ∈ Sω and (c1, c2 . . . , c′1.c

′
2 . . .) ∈

io(P)

Proof. Here is the algorithm that constructs AS
P . (1) Make P to be an

accepting and the start state. (2) Choose a state Q from the current tran-

sition graph and compute a reduction Q
(c,d)

====⇒ R (such computation
always terminates). The choice should satisfy that there is not already
an edge labeled with (c, d) from Q to some R′ ≡ R. If such a choice is
not possible then stop. (3) Else if there is already a state R′ ≡ R then
create an edge labeled with (c, d) from Q to it. Otherwise, create a new
(accepting) state R and edge from Q to it with label (c, d). (4) Go to
(2).

From the finiteness of S, the decidability of ≡rep (Proposition 5.2)
and Lemma 5.1 it follows that the algorithm terminates. The partial
correctness of the construction is easy to verify.

From Corollary 5.1 and the above Lemma it follows that the automa-
ton A

C(P)
P provides a finite representation of the input-output behavior

of P .

23

Furthermore, from the above lemma it follows that the question of
whether P and Q have the same input-output behavior restricted to S
can be reduced to whether AS

P and AS
Q accept the same language.

Therefore, the question of whether P and Q have the same output
behavior can be reduced to whether AS

P and AS
Q with S = {true} ac-

cept the same language. Since language equivalence for Büchi automata
is decidable [21], we can conclude that ∼o

rep is decidable for arbitrary
constraint systems.

Theorem 5.1. For any P, Q ∈ Procrep over an arbitrary constraint sys-
tem the question whether or not P ∼o

rep Q is decidable.

Similarly, by appealing to Corollary 5.1, it follows that the question
of whether P and Q have the same input-output behavior can be reduced
to whether AS

P and AS
Q with S = C(P)∪C(Q) accept the same language.

Theorem 5.2. Given P, Q ∈ Procrep over an arbitrary constraint system.
The question whether or not P ∼io

rep Q is decidable

From the above theorem and Theorem 3.1 we obtain the following
result.

Corollary 5.2. The input-output and output congruences ≈io
rep and ≈o

rep

are decidable for processes over arbitrary constraint systems.

These decidability results in rep with arbitrary constraint system are
to be contrasted to the undecidability results in recp with the simple
finite-domain constraint system FD[1].

6 Classification of the tcc languages

In this section we discuss the relation between the various tcc languages,
and we classify them on the basis of their expressive power.

Figure 1 shows the sub-language inclusions and the encodings preserv-
ing the input-output semantics between the various tcc versions. Classes
I, II, III represent a partition based on the expressive power: two lan-
guages are in the same class if and only if they have the same expressive
power. We will first discuss the separation results, and then the equiva-
lences.

Given the encodings, which will be proved later, the separation be-
tween Classes II and III follows immediately from the results of Sections 4

24

and 5. From the proof of Theorem 4.1 it follows that recp is capa-
ble of expressing the ”behavior” of Post Correspondence problems, and
hence clearly capable of expressing input-output behaviors not accepted
by Büchi automata, and hence not in rep (Lemma 5.3). For example,
consider the PCP instance (V, W) with W = {w0 = aa, w1 = b} and
V = {v0 = aaa, v1 = a}, where a = 0 and b = 1. Define the constraints
c0 = (index = 0), c1 = (index = 1) and d = (x = a). Let P be the
process A(index , x) in the proof of Theorem 4.1. It is easy to verify that
P on input cn

0 .c
ω
1 contributes to output with d2n. falseω (i.e., it outputs

(c0 ∧ d)n.(c1 ∧ d)n. falseω). It follows from Lemma 5.3 and simple argu-
ments from automata theory that no process in rep can then exhibit the
input-output behavior of A(index , x).

The separation between Classes I and II, on the other hand, follows
from the fact that without parameters or free variables the recursive
calls cannot communicate with the external environment, hence in rec0

a process can produce information on variables for a finite number of
time intervals only. More precisely, we have the following result:

Proposition 6.1. For every P in rec0, if (c1.c2.c3. . . . , d1.d2.d3. . . .) ∈
io(P) then there exist n such that, for all k > n, if ∃xck = ck then
∃xdk = dk, i.e. if ck does not contain information about x then dk does
not contain information about x either.

In rep, on the contrary, it is possible to express process which pro-
duce information about certain variables indefinitely through the time
intervals. For instance, the process ! tell(x = 1) has an input-output
sequence of the form (true . true . true , x = 1.x = 1.x = 1. . . .).

The rest of this section is devoted to illustrate the encodings of the
various tcc languages. In the following, [[·]] : ` → `′ will represent the
encoding function for each pair ` and `′. We will say that [[·]] is homo-
morphic wrt to the parallel operator if [[P ‖ Q]] = [[P]] ‖ [[Q]], and
similarly for the other operators.

6.1 Encoding rep → reci

This encoding is rather simple. The idea is to replace ! P by a call to a
new process identifier RP , defined as a process that expands P and then
calls itself recursively in the next time interval. The free variables of ! P ,
~x, are passed as (identical) parameters. Therefore we define

25

Irec

rep

rec

rec
d

rec p

 irec

III

II

 0

s

Encoding

Language inclusion

Undecidable

Decidable

Figure 1: Classification of the various tcc languages.

[[! P]] = RP (~x),

with RP (~x)
def
= P ‖ nextRP

where {~x} = fv(P)

and [[·]] homomorphic on all the other operators of rep.
In what follows we use repeat P as an abbreviation of RP (~x). Notice

that repeat was already used in the proof of Theorem 4.1.

6.2 Encoding recs → rep

Here the idea is to simulate a procedure definition by a replicated process
that activates its body B each time there is a call for it. The activation
can be done by using a construct of the form when c do B. The call, of
course, will be simulated by tell(c).

The key case is the local operator, since we do not want to capture
the free variables in the bodies of procedures. Thus, we need to α-convert
the local variables with fresh variables.

In the following sections we shall use call(x) as abbreviation of x = 1
(thus assuming that the underlying constraint system provides equality
and at least one constant symbol). We shall also use for each identifier
A, a fresh variable zA uniquely associated to it.

We first define an auxiliary function [[·]]0 : recs → rep as follows:

26

[[A
def
= P]]0 = !when call(zA) do [[P]]0

[[A]]0 = tell(call(zA))

[[(local x) P]]0 = (local y) ([[P]]0[y/x])
where y is fresh

and [[·]]0 homomorphic on all the other operators of recs.
Let P be an arbitrary process in recs. We shall use I(P) to denote

the set of identifiers P depends upon (formally, I(P) is the transitive
closure under ; of the identifiers in P , see Section 2.5). The encoding
[[·]] : recs → rep is given by

[[P]] = (local~z) ([[P]]0 ‖
∏

1≤i≤n

[[Ai(~x1)
def
= Pi]]0)

where I(P) = {A1, . . . , An} and ~z are the fresh variables introduced
during the translation.

6.3 Encoding reci → rep

This encoding is somewhat more complex because we have to encode the
passing of parameters.

A call A(~y) can occur in a process or in the definition of another
identifier B. If there is no mutual dependency between A and B or A
is a call in a process, then the actual parameters of A may be different
from the formal ones, and we need to model the call by providing a copy
of the replicated process that constitutes the body of A’s definition and
by making the appropriate parameters replacement. If, on the contrary,
there is a mutual dependency between A and B (i.e. if also A depends on
B) then the actual parameters coincide with the formal ones (see Section
2.5.1) and therefore we don’t need to make any parameter replacement.
Neither do we need to provide a copy of the replicated processes as it will
be available at the top level. Note that we need this simplification in the
case of mutual recursion, otherwise the translation would not terminate.

We define the auxiliary encodings [[·]]0 : reci → rep for the definitions
and for the calls occurring in a body, and [[·]]A0 : reci → rep (where A is

27

an identifier) for the calls occurring in a process, as follows:

[[A(~x)
def
= P]]0 = !when call(zA) do [[P]]A0

[[A(~y)]]B0 = tell(call(zA))
if A ;∗ B

[[A(~y)]]B0 = (local zA) (

tell(call(zA)) ‖ ([[A(~x)
def
= P]]0[~y/~x]))

if A 6;∗ B

[[A(~y)]]0 = (local zA) (

tell(call(zA)) ‖ ([[A(~x)
def
= P]]0[~y/~x]))

and [[·]]0, [[·]]A0 homomorphic on all the other operators of reci.
The encoding of an arbitrary P in reci into rep is given by

[[P]] = (local ~z) ([[P]]0 ‖
∏

1≤i≤n

[[Ai(~xi)
def
= Pi]]0)

where I(P) = {A1, . . . , An} and ~z are the fresh variables introduced
during the translation.

6.4 Encoding rep → recs

Here we take advantage of finite-state automata representation of the
input-output behavior of rep processes given in Section 5.1.

Let P be an arbitrary process in rep. Let M = A
C(P)
P be the au-

tomaton representing the input-output behavior of P on the inputs of
relevance for P , C(P) (Definition 5.3). Recall that the start state of M
is P . Each transition from Q to R with label (c, d), written 〈Q, (c, d), R〉,
in M represents an observable transition Q

(c,d)
====⇒ R, where c ∈ C(P).

Let T be the set of transitions of M . For each state Q of M we define
an identifier AQ as follows:

AQ
def
=

∏
〈Q,(c,d),R〉∈T

when c do (tell(d) ‖ unless C nextAR)

where C =
∨

e∈{c′ | c′ 6=c, c′`c, 〈Q,(c′,d′),R′〉∈T}
e

28

Intuitively, AQ expresses that if we are in state Q and c is the strongest
constraint entailed by the the input, then the next state will be R and
the output will be d, with 〈Q, (c, d), R〉 ∈ T .

We define the encoding of P as [[P]] = AP .

6.5 Encoding recd → recp

Intuitively, if the free variables are treated dynamically, then they could
equivalently be passed as parameters. Thus we can define the encoding
as follows:

[[A
def
= P]] = A(~x)

def
= [[P]],

where ~x = fv(P)

[[A]] = A(~x)

and [[·]] homomorphic on all the other operators of recd.

6.6 Encoding recp → recd

The idea is to establish the link between the formal parameters ~x and
the actual parameters ~y by telling the constraint ~x = ~y. However, this
operation has to be encapsulated within a (local ~x) in order to avoid
confusion with other potential occurrences of ~x in the same context of
the call.

[[A(~x)
def
= P]] = A

def
= [[P]]

[[A(~y)]] = (local~x) (A ‖ repeat tell(~y = ~x))

and [[·]] homomorphic on all the other operators of recd.

6.7 Correctness of the encodings

The encodings defined in previous sections are all correct with respect
to the input-output behaviors of the corresponding languages. More
precisely:

Proposition 6.2. For each encoding [[·]] : ` → `′ defined from Section 6.1
through Section 6.6 we have
io(P) = io([[P]]) for every P in `.

29

7 Concluding Remarks and Related Work

We have studied the expressive power of several tcc languages focusing on
the decidability of their behavioral equivalences. In particular, we have
shown that rep (i.e. tcc with replication) can be compiled into finite-
state automata, while recp (i.e.tcc with recursion) cannot, not even when
the constraint system is based on a finite domain.

Further, we have presented behavior-preserving encodings between
rep, reci (tcc with identical parameters recursion) and recs (tcc with
parameterless recursion and static-scope free variables), and between rep

and recd (tcc with dynamic-scope free variables). This implies a clear
distinction between dynamic and static scoping in tcc languages.

We believe that our results contribute to a better understanding of
tcc languages and to clarify some conjectures made in literature. In par-
ticular, in [15] it was conjectured that recs would be equivalent to reci
provided that definitions are allowed to be nested within the processes.
Our results show that this extension is not necessary. Another conse-
quence of our work is that the denotational semantics of recs cannot
be just an extension to sequences of the standard ccp construction in
[18], because the semantic equations of ccp can be satisfied only by a
dynamically-scoped language.

One interesting implication of our results is that, from the point of
view of the expressive power, in recs the local operator is redundant. In
fact, as shown in Section 6, recs can be encoded into rep and rep can be
encoded into a local-free fragment of recs. Note that, on the contrary,
locality plays a key role in the reduction of the PCP to recp and in the
encoding of recp into recd.

A closely related work is [23]. Also that paper explores the expressive-
ness of tcc languages, but it focuses on the capability of recs to encode
synchronous languages. In particular, it shows that Argos ([7]) and a
version of Lustre restricted to finite domains ([6]) can be encoded in
recs. Consequently, our decidability results extend to these synchronous
languages as well.

In [17] similar results show how to compile (an extension of) rep into
finite-state automata. The fact that, in order to obtain the translation to
finite-state machines, the authors restrict to rep already suggests some
of the separation results that we have formally proved in our paper. In
[17] the states are labeled with processes and transitions are labeled with
output constraints rather than pair of input-output constraints. Such
automata provide an execution model for recs rather than a direct way

30

of verifying input-output (or output) equivalence. In particular, the stan-
dard equivalence between two automata defined as in our construction
(i.e. language equivalence) imply input-out equivalence of the processes
they represent. This implication does not hold in general for the con-
struction in [17]. Another difference wrt [17] is that we were able to
compute the whole set of relevant constraints, while [17] leaves out the
existentally quantified ones. This capability is a key property of our con-
struction, because it makes it possible to translate rep into automata
with simple states. Without it, i.e., if only a subset S of the relevant
constraints could be computed, then it would probably be necessary to
consider the processes in the states, like it is done in [17], to compute at
run time relevant input constraints which would not be in S. It should
be noticed that using the set of relevant constraints, our construction
and the one in [17] (restricted to processes in rep) can be obtained from
each other.

The tccp calculus ([3]) is another timed extension of ccp. The results
in our paper do not apply automatically to that language, because tccp
additionally has a nondeterministic choice, and the information about
the store is carried through the time units, so the semantic setting is
rather different from the languages we are considering.

A correspondence between formulae in a classic first-order linear-time
logic and processes in rep has been established in [12]. As future work
we plan to study how the results in our paper can help to establish
decidability results for such a logic.

Acknowledgments

We would like to thank Maurizio Gabbrielli and Vijay Saraswat for stim-
ulating discussion on the topics of this paper.

References

[1] G. Berry and G. Gonthier. The Esterel synchronous programming
language: design, semantics, implementation. Science of Computer Pro-
gramming, 19(2):87–152, November 1992.

[2] J. R. Buchi. On a decision method in restricted second order arithmetic.
In Proc. Int. Cong. on Logic, Methodology, and Philosophy of Science,
pages 1–11. Stanford University Press, 1962.

31

[3] F. de Boer, M. Gabbrielli, and M. C. Meo. A timed concurrent constraint
language. Information and Computation, 1999. To appear.

[4] F. S. de Boer, M. Gabbrielli, E. Marchiori, and C. Palamidessi. Proving
concurrent constraint programs correct. ACM Transactions on Program-
ming Languages and Systems, 19(5):685–725, 1997.

[5] V. Gupta, R. Jagadeesan, and V. Saraswat. Models for concurrent con-
straint programming. In Ugo Montanari and Vladimiro Sassone, editors,
CONCUR ’96: Concurrency Theory, 7th International Conference, vol-
ume 1119 of Lecture Notes in Computer Science, pages 66–83, 26–29 Au-
gust 1996.

[6] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data-flow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305–1320, September 1991.

[7] Florence Maraninchi. Operational and compositional semantics of syn-
chronous automaton compositions. In W. R. Cleaveland, editor, CON-
CUR ’92: Third International Conference on Concurrency Theory, vol-
ume 630 of Lecture Notes in Computer Science, pages 550–564, Stony
Brook, New York, 24–27August 1992. Springer-Verlag.

[8] Nax P. Mendler, Prakash Panangaden, P. J. Scott, and R. A. G. Seely.
A logical view of concurrent constraint programming. Nordic Journal of
Computing, 2(2):181–220, Summer 1995.

[9] R. Milner. Communication and Concurrency. International Series in
Computer Science. Prentice Hall, 1989. SU Fisher Research 511/24.

[10] R. Milner. Communicating and Mobile Systems: the π-calculus. Cam-
bridge University Press, 1999.

[11] M. Nielsen and F. Valencia. Temporal Concurrent Constraint Program-
ming: Applications and Behavior, chapter 4, pages 298–324. Springer-
Verlag, LNCS 2300, February 2002.

[12] C. Palamidessi and F. Valencia. A temporal concurrent constraint pro-
gramming calculus. In Proc. of the Seventh International Conference on
Principles and Practice of Constraint Programming, 26 November 2001.

[13] E. L. Post. A variant of a recursively unsolvable problem. Bulletion of
the American Mathematical Society, 52:264–268, 1946.

[14] V. Saraswat. Concurrent Constraint Programming. The MIT Press, Cam-
bridge, MA, 1993.

32

[15] V. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of timed con-
current constraint programming. In Proc. of the Ninth Annual IEEE
Symposium on Logic in Computer Science, pages 71–80, 4–7 July 1994.

[16] V. Saraswat, R. Jagadeesan, and V. Gupta. Default timed concurrent
constraint programming. In Proc. of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 272–285,
January 1995.

[17] V. Saraswat, R. Jagadeesan, and V. Gupta. Timed default concurrent
constraint programming. Journal of Symbolic Computation, 22(5–6):475–
520, November–December 1996.

[18] V. Saraswat, M. Rinard, and P. Panangaden. The semantic foundations
of concurrent constraint programming. In POPL ’91. Proceedings of the
eighteenth annual ACM symposium on Principles of programming lan-
guages, pages 333–352, 21–23 January 1991.

[19] Vijay Saraswat, Radha Jagadeesan, and Vinheet Gupta. Programming
in timed concurrent constraint languages. In B. Mayoh, E. Tyugu, and
J. Penjaam, editors, Constraint Programming: Proceedings 1993 NATO
ASI Parnu, Estonia, NATO Advanced Science Institute Series, pages
361–410, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,
1994. Springer Verlag.

[20] J. R. Shoenfield. Mathematical Logic. Addison-Wesley Publishing Com-
pany, 1967.

[21] A. Sistla, M. Vardi, and P. Wolper. The complementation problem for
buchi automata with applications to temporal logic. Theoretical Com-
puter Science, 49:217–237, 1987.

[22] G. Smolka. A Foundation for Concurrent Constraint Programming. In
Constraints in Computational Logics, volume 845 of Lecture Notes in
Computer Science, Munich, Germany, September 1994. Invited Talk.

[23] S. Tini. On the expressiveness of timed concurrent constraint program-
ming. Electronics Notes in Theoretical Computer Science, 1999.

33

RT 〈tell(c), d〉 −→ 〈skip, d∧̇c〉

RW
d ` c

〈when c do P, d〉 −→ 〈P, d〉

RPL

〈P, c〉 −→ 〈P ′, d〉
〈P ‖ Q, c〉 −→ 〈P ′ ‖ Q, d〉

RPR

〈Q, c〉 −→ 〈Q′, d〉
〈P ‖ Q, c〉 −→ 〈P ‖ Q′, d〉

RU
d ` c

〈unless c next P, d〉 −→ 〈skip, d〉

RL

〈P, c ∧ (∃xd)〉 −→ 〈P ′, c′〉
〈(localx, c) P, d〉 −→ 〈(localx, c′) P ′, d ∧ ∃xc

′〉

RO

〈P, c〉 −→∗ 〈Q, d〉 6−→
P

(c,d)
====⇒ F (Q)

Table 1: Rules for the internal reduction −→ (upper part) and the ob-
servable reduction =⇒ (lower part). Function F is given in Definition 2.3.

34

Recent BRICS Report Series Publications

RS-02-22 Mogens Nielsen, Catuscia Palamidessi, and Frank D. Valen-
cia. On the Expressive Power of Concurrent Constraint Pro-
gramming Languages. May 2002. 34 pp.

RS-02-21 Zolt́an Ésik and Werner Kuich. Formal Tree Series. April 2002.
66 pp.

RS-02-20 Zolt́an Ésik and Kim G. Larsen. Regular Languages Defin-
able by Lindstr̈om Quantifiers (Preliminary Version). April 2002.
56 pp.

RS-02-19 Stephen L. Bloom and Zolt́an Ésik. An Extension Theorem with
an Application to Formal Tree Series. April 2002. 51 pp.

RS-02-18 Gerth Stølting Brodal and Rolf Fagerberg. Cache Oblivious
Distribution Sweeping. April 2002. To appear in 29th Interna-
tional Colloquium on Automata, Languages, and Programming,
ICALP ’02 Proceedings, LNCS, 2002.

RS-02-17 Bolette Ammitzbøll Madsen, Jesper Makholm Nielsen, and
Bjarke Skjernaa. On the Number of Maximal Bipartite Sub-
graphs of a Graph. April 2002. 7 pp.

RS-02-16 Jǐr ı́ Srba. Strong Bisimilarity of Simple Process Algebras: Com-
plexity Lower Bounds. April 2002. To appear in 29th Interna-
tional Colloquium on Automata, Languages, and Programming,
ICALP ’02 Proceedings, LNCS, 2002.

RS-02-15 Jesper Makholm Nielsen.On the Number of Maximal Indepen-
dent Sets in a Graph. April 2002. 10 pp.

RS-02-14 Ulrich Berger and Paulo B. Oliva. Modified Bar Recursion.
April 2002. 23 pp.

RS-02-13 Gerth Stølting Brodal, Rune B. Lyngsø, AnnaÖstlin, and
Christian N. S. Pedersen.Solving the String Statistics Problem
in Time O(n log n). March 2002. To appear in29th Interna-
tional Colloquium on Automata, Languages, and Programming,
ICALP ’02 Proceedings, LNCS, 2002.

RS-02-12 Olivier Danvy and Mayer Goldberg. There and Back Again.
March 2002. This report supersedes the earlier report BRICS
RS-01-39.

