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Strong Bisimilarity of Simple Process Algebras:

Complexity Lower Bounds?

Jǐŕı Srba??

BRICS? ? ?

Department of Computer Science, University of Aarhus,
Ny Munkegade bld. 540, 8000 Aarhus C, Denmark

srba@brics.dk

Abstract. In this paper we study bisimilarity problems for simple pro-
cess algebras. In particular, we show PSPACE-hardness of the following
problems: (i) strong bisimilarity of Basic Parallel Processes (BPP), (ii)
strong bisimilarity of Basic Process Algebra (BPA), (iii) strong regu-
larity of BPP, and (iv) strong regularity of BPA. We also demonstrate
NL-hardness of strong regularity problems for the normed subclasses of
BPP and BPA.
Bisimilarity problems for simple process algebras are introduced in a
general framework of process rewrite systems, and a uniform description
of the new techniques used for the hardness proofs is provided.

1 Introduction

An important question in the area of verification of infinite-state systems
is that of equivalence checking [3]. In this paper we are interested in
equivalence checking problems for simple process algebras, namely for the
purely sequential case called Basic Process Algebra (BPA) and its parallel
analogue called Basic Parallel Processes (BPP). These two formalisms
occupy the lowest levels in most of the process hierarchies considered in
the literature so far [6, 23, 21].

Strong bisimilarity [25, 22] is a well accepted notion of behavioural
equivalence for concurrent processes. Unlike all other equivalences in van
Glabbeek’s spectrum (see [32, 33]), strong bisimilarity is decidable for
BPA [9] and BPP [8]. This challenging phenomenon was a motivation for
further investigation of strong bisimilarity in the class of simple process
algebras. Restricted classes of so called normed processes were studied
(a process is normed if from every reachable state there is at least one
? A revised and extended version of [28] and [29].
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terminating computation), with surprising results that even though lan-
guage equivalence is still undecidable for normed BPA [13] and BPP [14],
strong bisimilarity becomes decidable even in polynomial time [11, 12].
However, the situation is different for the unrestricted classes of simple
process algebras.

Despite the fact that strong bisimilarity of BPA appeared to be decid-
able in 2-EXPTIME [4], it is still an open problem whether there exists
an elementary decision algorithm for BPP. The conjecture that strong
bisimilarity of unnormed BPP is decidable (as well as in the normed
case) in polynomial time was only recently proved false (unless P=NP)
by Mayr. He showed that strong bisimilarity of BPP is co-NP-hard [20].
No nontrivial lower bound was known for unnormed BPA.

We improve Mayr’s co-NP lower bound for BPP and show that the
complexity of bisimilarity checking of BPA is indeed different (unless
P=PSPACE) from the case of normed BPA by demonstrating that strong
bisimilarity of BPA and BPP is PSPACE-hard. We describe polynomial
time reductions from the quantified satisfiability (QSAT) problem (for
PSPACE-completeness see e.g. [24]) to strong bisimilarity checking prob-
lems for BPA and BPP. Given an instance C of QSAT, we construct a
pair of BPA (BPP) processes P1 and P2 such that P1 and P2 are strongly
bisimilar if and only if C is true.

The new contribution is a general technique which enables to imitate
a generation of quantified assignments of boolean formulas in the context
of bisimulation games of an attacker and a defender. While the truth
value of a variable prefixed by the universal quantifier is being chosen,
the attacker has the possibility to decide between two alternatives in the
continuation of the bisimulation game. On the other hand, while choosing
the truth value for an existentially quantified variable, the defender can
force the attacker to continue the bisimulation game according to his
decision1. Satisfied clauses of the formula are remembered by means of
process constants that are present in the current states of BPA and BPP
systems. After the whole assignment of boolean variables was generated,
the attacker can make a final check whether all clauses are indeed satisfied.
This is easier to verify for BPP because we have a parallel access to all
process constants contained in the current state. To achieve the same
result for BPA, we have to encode satisfied clauses in a unary way.

Another decidability problem that has attracted much attention is
that of regularity checking. The question is whether a given BPA (or BPP)

1 Similar ideas appeared independently also due to Jančar in connection with high
undecidability of weak bisimilarity for Petri nets [15].
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process is strongly bisimilar to some finite-state process. Strong regularity
checking is decidable in 2-EXPTIME for BPA [5, 4] and in polynomial
time for normed BPA and BPP [18]. Decidability of strong regularity for
BPP follows from the fact that the problem is decidable even for Petri
nets [16], a proper superclass of BPP. However, no elementary upper
bound has been established so far. It is known that strong regularity is co-
NP-hard for BPP [20] and no hardness result was available for BPA. We
describe polynomial time reductions from strong bisimilarity of regular
BPA (BPP) processes to strong regularity checking of BPA (BPP). By
using our PSPACE-hardness of strong bisimilarity for BPA and BPP, and
by the fact that the involved processes are strongly regular, we conclude
that strong regularity of BPA and BPP are PSPACE-hard problems.

Finally, we also investigate the complexity of regularity checking prob-
lems for normed BPA and BPP and show their NL-completeness.

The paper is structured as follows. Basic background is introduced
in Section 2 and the general idea of our reduction from QSAT to strong
bisimilarity checking is explained in the beginning of Section 3. Next
two subsections further develop the idea and show PSPACE-hardness of
strong bisimilarity for BPP (Subsection 3.2) and then also for the more
involved case of BPA (Subsection 3.3). Regularity checking problems are
studied in Section 4: proofs of PSPACE-hardness for BPP and BPA are
given in Subsections 4.1 and 4.2, respectively, and NL-completeness of
regularity checking under the assumption of normedness is discussed in
Subsection 4.3. An overview of the state of the art of bisimilarity and
regularity checking problems for BPA and BPP is presented in Section 5.

2 Basic Definitions

2.1 Transition Systems, Bisimilarity

Semantics to process algebras is usually given in terms of (infinite-state)
labelled transition systems [26]. Processes are understood as nodes of a
certain labelled transition system and the transition relation is defined in
a compositional way.

Definition 1 (Labelled transition system).
A labelled transition system T is a triple T = (S,Act,−→) where

– S is a set of states (or processes),
– Act is a set of labels (or actions), and
– −→ ⊆ S × Act × S is a transition relation, written α

a−→ β, for
(α, a, β) ∈ −→.
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As usual we extend the transition relation to the elements of Act∗,
i.e., α

ε−→ α for every α ∈ S, and α
aw−→ β iff α

a−→ α′ and α′ w−→ β for
every α, β ∈ S, a ∈ Act and w ∈ Act∗.

We write α −→∗ β iff α
w−→ β for some w ∈ Act∗. We also write α 6 a−→

whenever there is no β such that α
a−→ β, and α 6−→ whenever α 6 a−→ for

all a ∈ Act.

Definition 2 (Process and its reachable states).
A process is a pair (α, T ) where T = (S,Act,−→) is a labelled transition
system and α ∈ S. We say that β ∈ S is reachable in (α, T ) iff α −→∗ β.

Definition 3 (Finite-state process).
Whenever (α, T ) has only finitely many reachable states, we call it a finite-
state process.

Definition 4 (Strong bisimilarity).
Let T = (S,Act,−→) be a labelled transition system. A binary relation
R ⊆ S ×S is a strong bisimulation iff whenever (α, β) ∈ R then for each
a ∈ Act:

– if α
a−→ α′ then β

a−→ β′ for some β′ such that (α′, β′) ∈ R
– if β

a−→ β′ then α
a−→ α′ for some α′ such that (α′, β′) ∈ R.

Processes (α1, T ) and (α2, T ) are strongly bisimilar, written (α1, T ) ∼
(α2, T ) (or simply α1 ∼ α2 if T is clear from the context), iff there is a
strong bisimulation R such that (α1, α2) ∈ R. Given a pair of processes
(α1, T1) and (α2, T2) such that T1 and T2 are different labelled transition
systems, we write (α1, T1) ∼ (α2, T2) iff (α1, T ) ∼ (α2, T ) where T is a
disjoint union of T1 and T2.

Definition 5 (Strong regularity).
We say that a process (α, T ) is strongly regular iff there exists some
finite-state process bisimilar to it.

Bisimulation equivalence has an elegant characterisation in terms of
bisimulation games.

Definition 6 (Bisimulation game).
A bisimulation game on a pair of processes (α1, T ) and (α2, T ) where
T = (S,Act,−→) is a two-player game of an ‘attacker’ and a ‘defender’.
The game is played in rounds on pairs of states from S × S. In each
round the players change the current states β1 and β2 (initially α1 and
α2) according to the following rule.
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1. The attacker chooses an i ∈ {1, 2}, a ∈ Act and β′
i ∈ S such that

βi
a−→ β′

i.
2. The defender responds by choosing β′

3−i ∈ S such that β3−i
a−→ β′

3−i.
3. The states β′

1 and β′
2 become the current states.

A play is a maximal sequence of pairs of states formed by the players
according to the rule described above, and starting from the initial states
α1 and α2. The defender is the winner in every infinite play. A finite
play is lost by the player who is stuck. Note that the attacker gets stuck
in current states β1 and β2 if and only if both β1 6−→ and β2 6−→.

The following proposition is a standard one (see e.g. [30, 31]).

Proposition 1. Processes (α1, T ) and (α2, T ) are strongly bisimilar iff
the defender has a winning strategy (and nonbisimilar iff the attacker has
a winning strategy).

2.2 Process Rewrite Systems

Let Act and Const be sets of actions and process constants, respectively,
such that Act ∩ Const = ∅.
Definition 7 (Process expressions).
We define the class of process expressions G over Const by the following
abstract syntax

E ::= ε | X | E.E | E||E
where ‘ε’ is the empty process, X ranges over Const, the operator ‘.’
stands for a sequential composition and ‘||’ stands for a parallel composi-
tion.

Definition 8 (Structural congruence).
We do not distinguish between process expressions related by a structural
congruence, which is the smallest congruence over process expressions
such that the following laws hold:

– ‘.’ is associative,
– ‘||’ is associative and commutative, and
– ‘ε’ is a unit for ‘.’ and ‘||’.

Definition 9 (Classes of process expressions).
We distinguish the following classes of process expression:

G, the class of general process expressions introduced in Definition 7,

5
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Fig. 1. Classes of Process Expressions

S, a subclass of G which contains all process expressions from G that do
not contain the ‘||’ operator,

P, a subclass of G which contains all process expressions from G that do
not contain the ‘.’ operator, and

1, a subclass of G which contains only the process constants from Const
and the empty process ‘ε’.

Obviously, 1 ⊂ S, 1 ⊂ P , S ⊂ G and P ⊂ G. The classes S and P are
incomparable and S ∩ P = 1. See Figure 1.

Remark 1. We use the notation G(Const), S(Const), P(Const) and 1(Const)
whenever we need to explicitly specify from which process constants the
expressions are formed.

Definition 10 (Process rewrite system (PRS) [21]).
Let α, β ∈ {1,S,P ,G} such that α ⊆ β. An (α, β)-PRS is a finite set
∆ ⊆ α × Act × β of rewrite rules, written E

a−→ F for (E, a, F ) ∈ ∆.
Moreover, we require that E 6= ε.

Remark 2. Let us denote the set of actions and process constants that
appear in ∆ by Act(∆) and Const(∆), respectively. Note that Act(∆)
and Const(∆) are finite sets.

Definition 11 (Transition system T (∆)).
Let ∆ be an (α, β)-PRS. The system ∆ determines a labelled transition
system T (∆) = (β,Act(∆),−→), where states are process expressions
from the class β (modulo the structural congruence introduced in Defini-
tion 8), Act(∆) is the set of labels, and transition relation is the least
relation satisfying the SOS rules from Figure 2 — recall that ‘||’ is com-
mutative.

Definition 12 ((α, β)-process).
An (α, β)-process is a process

(
P, T (∆)

)
— see Definition 2 — where ∆

is an (α, β)-PRS and P ∈ β is a process expression.
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(E
a−→ E′) ∈ ∆

E
a−→ E′

E
a−→ E′

E.F
a−→ E′.F

E
a−→ E′

E||F a−→ E′||F

Fig. 2. SOS rules

(G,G)-PRS
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{

CC
CC

CC
CC

C

(S,G)-PRS
PAD

{{
{{

{{
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{

CC
CC

CC
CC

C
(P ,G)-PRS

PAN

{{
{{

{{
{{

{

CC
CC

CC
CC

C

(S,S)-PRS
PDA

(1,G)-PRS
PA

(P ,P)-PRS
PN

(1,S)-PRS
BPA

CCCCCCCCC

{{{{{{{{{
(1,P)-PRS

BPP

CCCCCCCCC

{{{{{{{{{

(1, 1)-PRS
FS

CCCCCCCCC

{{{{{{{{{

Fig. 3. Hierarchy of process rewrite systems

We remind the reader of the fact that Definitions 2 to 5 define the
corresponding process properties also for (α, β)-processes. Moreover, in
the rest of this paper we denote an (α, β)-process

(
P, T (∆)

)
by only

(P,∆), or even P if ∆ is clear from the context.

Definition 13 (Normed (α, β)-process).
An (α, β)-process (P,∆) is normed iff from every reachable state E in
(P,∆) there is a terminating computation, i.e., E −→∗ ε.

Many classes of infinite-state systems studied so far — e.g. basic pro-
cess algebra (BPA), basic parallel processes (BPP), pushdown automata
(PDA), Petri nets (PN) and process algebra (PA) — are contained in the
hierarchy of process rewrite systems presented in Figure 3. This hierar-
chy is strict w.r.t. strong bisimilarity and we refer the reader to [21] for
further discussions.

In this paper we study the two bottom classes BPA and BPP.
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2.3 Basic Process Algebra

Basic Process Algebra (BPA) — or equivalently (1,S)-PRS — represents
the class of processes introduced by Bergstra and Klop (see [2]). This class
corresponds to the transition systems associated with context-free gram-
mars in Greibach normal form (GNF), in which only left-most derivations
are allowed.

Let ∆ be a BPA process rewrite system. Every rewrite rule from ∆ is
of the form

X
a−→ E

where X ∈ Const(∆), a ∈ Act(∆) and E ∈ S(Const(∆)). It is usually
assumed that for each X ∈ Const(∆) there is at least one rewrite rule
in ∆, i.e., that there is some a ∈ Act(∆) and E ∈ S(Const(∆)

)
such

that (X,a,E) ∈ ∆. If it is not the case, we say that the system contains
deadlocks. A study of decidability problems for BPA with deadlocks is
provided in [27].

Remark 3. Let m be a natural number and A ∈ Const be a process con-
stant. Whenever it is clear from the context that we consider only the
‘.’ operator, we use the notation Am for a sequential composition of m

occurrences of A, i.e., A0 def= ε and Am+1 def= Am.A.

A simple BPA system is presented in the following example.

Example 1. Let Const(∆) = {Q1, Q2, . . . , Qk} for a natural number k > 0
and let Act(∆) = {a}. Consider the following BPA system ∆ containing
the rewrite rules:

Q1
a−→ ε

Qj+1
a−→ Qj for all j, 1 ≤ j < k.

Observe that Qj
aj−→ ε for every j, 1 ≤ j ≤ k, and no other transitions

are possible. Also notice that e.g. (Q5
1,∆) ∼ (Q1.Q

2
2,∆) — see Remark 3.

Assume now that m1,m2 > 0 are natural numbers. For every `1,
1 ≤ `1 ≤ m1, and every `2, 1 ≤ `2 ≤ m2, let i`1 ∈ {1, 2, . . . , k} and
j`2 ∈ {1, 2, . . . , k}. It is an easy observation that

(Qi1 .Qi2 . · · · .Qim1
,∆) ∼ (Qj1.Qj2 . · · · .Qjm2

,∆)

if and only if
m1∑

`1=1

i`1 =
m2∑

`2=1

j`2 .

8



This example demonstrates that even though the BPA class is non-commu-
tative, we can achieve a restricted commutative behaviour by assuming
that Act(∆) is a singleton set and by encoding process constants in this
unary alphabet.

2.4 Basic Parallel Processes

Basic Parallel Processes (BPP) — or equivalently (1,P)-PRS — are a
fragment of CCS [22] without restriction, relabelling and communication.
This class was first studied by Christensen [7], and it is equivalent to the
communication-free subclass of Petri nets (each transition has exactly one
input place).

Let ∆ be a BPP process rewrite system. Every rewrite rule from ∆ is
of the form

X
a−→ E

where X ∈ Const(∆), a ∈ Act(∆) and E ∈ P(Const(∆)). Unlike BPA,
the presence of deadlocks in BPP systems is not essential. Assume that
D ∈ Const(∆) is a deadlock, i.e., D 6−→. Then (E,∆) ∼ (E||D,∆) for any
expression E ∈ P(Const(∆)

)
and we can safely replace all occurrences of

such deadlocks in ∆ by the empty process ‘ε’.

Remark 4. Let m be a natural number and A ∈ Const be a process con-
stant. Whenever it is clear from the context that we consider only the ‘||’
operator, we use the notation Am for a parallel composition of m occur-
rences of A, i.e., A0 def= ε and Am+1 def= Am||A.

The following example aims to demonstrate that the operator ‘||’ in
BPP systems allows a parallel access to all process constants contained
in the current state.

Example 2. Let Const(∆) = {Q1, Q2, . . . , Qk} for a natural number k > 0
and let Act(∆) = {q1, q2, . . . , qk}. The set of rewrite rules ∆ is defined
by:

Qj
qj−→ Qj for all j, 1 ≤ j ≤ k.

Assume now that m1,m2 > 0 are natural numbers. For every `1, 1 ≤
`1 ≤ m1, and every `2, 1 ≤ `2 ≤ m2, let i`1 ∈ {1, 2, . . . , k} and j`2 ∈
{1, 2, . . . , k}. We conclude that

(Qi1 ||Qi2 || · · · ||Qim1
,∆) ∼ (Qj1||Qj2 || · · · ||Qjm2

,∆)

9



if and only if
{i1, i2, . . . , im1} = {j1, j2, . . . , jm2}.

In other words, the processes are strongly bisimilar if and only if for all
j, 1 ≤ j ≤ k, the process constant Qj appears either in both sides of the
processes or in neither of them. In the first case the number of occurrences
of Qj is irrelevant since (Qm

j ,∆) ∼ (Qj,∆) for any natural number m > 0
— see Remark 4.

2.5 Definitions of Problems

Problem: Strong bisimilarity of BPA (BPP)
Instance: Two BPA (BPP) processes (P1,∆) and (P2,∆).
Question: (P1,∆) ∼ (P2,∆) ?

Problem: Strong regularity of BPA (BPP)
Instance: A BPA (BPP) process (P,∆).
Question: Is there a finite-state process (F,∆′) such that

(P,∆) ∼ (F,∆′) ?

The main results of Section 3 are proved by polynomial time reduc-
tions from a PSPACE-complete problem called quantified satisfiability
(QSAT) [24]. We use a version where the prefix of quantifiers starts with
the existential one.

Problem: QSAT
Instance: A natural number n > 0 and a boolean formula

φ in conjunctive normal form with boolean vari-
ables x1, . . . , xn and y1, . . . , yn.

Question: Is ∃x1∀y1∃x2∀y2 . . . ∃xn∀yn.φ true?

A literal is a variable or the negation of a variable. An instance of QSAT
is a formula C of the form

C ≡ ∃x1∀y1∃x2∀y2 . . . ∃xn∀yn. C1 ∧ C2 ∧ . . . ∧ Ck

where each clause Cj, 1 ≤ j ≤ k, is a disjunction of literals.
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3 Lower Bounds for Strong Bisimilarity

In this section we study strong bisimilarity problems for BPA and BPP.

3.1 The Main Idea

We try to explain here the main idea of PSPACE-hardness proofs given
in Subsections 3.2 and 3.3. Our aim is to make the rewrite rules defined
in this paper more readable, by demonstrating a general pattern used
heavily (with small modifications) later on. Let us consider the following
process rewrite system ∆ where αone and αtwo are some fixed process
expressions and⊕ is either a sequential or parallel composition.

X
a−→ Y choice

X
a−→ Y one X ′ a−→ Y one

X
a−→ Y two X ′ a−→ Y two

Y choice one−→ Z⊕αone Y one one−→ Z ′⊕αone

Y choice two−→ Z⊕αtwo Y two two−→ Z ′⊕αtwo

Y one two−→ Z⊕αtwo Y two one−→ Z⊕αone

Transition systems generated by processes (X,∆) and (X ′,∆) are
depicted in Figure 4. The intuition behind the construction can be nicely
explained in terms of bisimulation games. Consider a bisimulation game
starting from the pair X and X ′.

The attacker is forced to make the first move by playing X
a−→ Y choice

because in all other possible moves, either from X or X ′, the defender can
make the resulting processes syntactically equal and hence bisimilar. The

11



defender’s answer to the move X
a−→ Y choice is either (i) X ′ a−→ Y one or

(ii) X ′ a−→ Y two.
In the next round starting from (i) Y choice and Y one or (ii) Y choice

and Y two, the attacker can use either the action one or two — obviously
it is irrelevant whether the chosen action is performed in the first or in the
second process. In case (i), if the attacker chooses the action one then the
players reach the pair Z⊕αone and Z ′⊕αone. If he chooses the action two
then the players reach a pair of syntactically equal states, namely Z⊕αtwo

and Z⊕αtwo, from which the defender has an obvious winning strategy. In
case (ii), if the attacker chooses the action two then the players reach the
pair Z⊕αtwo and Z ′⊕αtwo. If he chooses the action one then he loses as
in case (i). Now, either the defender won by reaching syntactically equal
states, or the resulting processes after two rounds are (i) Z⊕αone and
Z ′⊕αone or (ii) Z⊕αtwo and Z ′⊕αtwo. Note that it was the defender who
had the possibility to decide between adding αone or αtwo.

We can repeat this construction several times in a row, which is ex-
plained in more detail in the following two subsections.

3.2 Strong Bisimilarity of BPP

In this subsection we show that strong bisimilarity of BPP is a PSPACE-
hard problem. We prove it by reduction from QSAT. Let

C ≡ ∃x1∀y1∃x2∀y2 . . . ∃xn∀yn. C1 ∧ C2 ∧ . . . ∧ Ck

be an instance of QSAT. We define the following BPP processes (X1,∆)
and (X ′

1,∆) where

Const(∆) def= {Q1, . . . , Qk} ∪
{X1, . . . ,Xn+1, Y

choice
1 , . . . , Y choice

n , Z1, . . . , Zn} ∪
{X ′

1, . . . ,X
′
n+1, Y

tt
1 , . . . , Y tt

n , Y ff
1 , . . . , Y ff

n , Z ′
1, . . . , Z

′
n}

and Act(∆) def= {q1, . . . , qk, a, tt, ff}. For each i, 1 ≤ i ≤ n, let

αi be a parallel composition Qi1 ||Qi2 || · · · ||Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where xi occurs positively,

αi be a parallel composition Qi1 ||Qi2 || · · · ||Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where xi occurs negatively,
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βi be a parallel composition Qi1 ||Qi2 || · · · ||Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where yi occurs positively, and

βi be a parallel composition Qi1 ||Qi2 || · · · ||Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where yi occurs negatively.

Example 3. Let us consider a quantified boolean formula

∃x1∀y1∃x2∀y2. (x1 ∨ ¬y1 ∨ y2) ∧ (¬x1 ∨ y1 ∨ y2) ∧ (x1 ∨ y1 ∨ y2 ∨ ¬y2)

where n = 2, k = 3, C1 = x1 ∨ ¬y1 ∨ y2, C2 = ¬x1 ∨ y1 ∨ y2 and
C3 = x1 ∨ y1 ∨ y2 ∨ ¬y2. Then

α1 = Q1||Q3 α1 = Q2 β1 = Q2||Q3 β1 = Q1

α2 = ε α2 = ε β2 = Q1||Q2||Q3 β2 = Q3.

The set ∆ is given by the following rewrite rules:

– for all j such that 1 ≤ j ≤ k:

Qj
qj−→ Qj

– for all i such that 1 ≤ i ≤ n:

Xi
a−→ Y choice

i

Xi
a−→ Y tt

i X ′
i

a−→ Y tt
i

Xi
a−→ Y ff

i X ′
i

a−→ Y ff
i

Y choice
i

tt−→ Zi||αi Y tt
i

tt−→ Z ′
i||αi

Y choice
i

ff−→ Zi||αi Y ff
i

ff−→ Z ′
i||αi

Y tt
i

ff−→ Zi||αi Y ff
i

tt−→ Zi||αi

Zi
tt−→ Xi+1||βi Z ′

i
tt−→ X ′

i+1||βi

Zi
ff−→ Xi+1||βi Z ′

i
ff−→ X ′

i+1||βi

– and
Xn+1

a−→ Q1||Q2|| . . . ||Qk−1||Qk X ′
n+1

a−→ ε.
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We can see the processes (X1,∆) and (X ′
1,∆) in Figure 5 (if we set

i = 1 and γ1 = ε). The intuition behind the construction will be explained
in terms of bisimulation games and follows the main idea from Subsec-
tion 3.1. Consider a bisimulation game starting from the pair of processes
X1 and X ′

1.
The attacker is forced to make the first move by playing X1

a−→
Y choice

1 because in all other possible moves, either from X1 or X ′
1, the

defender can make the resulting processes syntactically equal and hence
bisimilar. The defender’s answer to the move X1

a−→ Y choice
1 is either (i)

X ′
1

a−→ Y tt
1 (this corresponds to setting the variable x1 to true) or (ii)

X ′
1

a−→ Y ff
1 (this corresponds to setting the variable x1 to false).

In the next round the attacker is forced to take the action (i) tt or
(ii) ff, according to the defender’s choice in the first round. Otherwise
the attacker loses. The defender can only imitate the same action in the
other process. The resulting processes after two rounds are (i) Z1||α1 and
Z ′

1||α1 or (ii) Z1||α1 and Z ′
1||α1. Note that it was the defender who had

the possibility to decide between adding α1 (i.e. setting x1 to true) or α1

(i.e. setting x1 to false).
In the third round the attacker has the choice of playing either along

the action tt or ff, which corresponds to the universal quantifier in front
of y1. It does not matter in which process the attacker performs the move.
The defender has only one possibility how to answer to this move — he
must imitate the corresponding move in the other process. The resulting
processes are X2||γ2 and X ′

2||γ2 such that γ2 = α̃1||β̃1 where α̃1 ∈ {α1, α1}
and β̃1 ∈ {β1, β1} according to the truth values chosen for x1 (by the
defender) and for y1 (by the attacker). Now the game continues in similar
fashion from X2||γ2 and X ′

2||γ2. Playing some of the actions q1, . . . , qk

cannot make the attacker win since the defender has always the possibility
to imitate the same move in the other processes.

Hence if the attacker wants to win he has to reach eventually the states
Xn+1||γn+1 and X ′

n+1||γn+1, and then he performs the move Xn+1||γn+1
a−→

Q1||Q2|| . . . ||Qk−1||Qk||γn+1 to which the defender has only one answer,
namely X ′

n+1||γn+1
a−→ γn+1. From the states Q1||Q2|| . . . ||Qk−1||Qk||γn+1

and γn+1 the attacker has the possibility to check whether every clause
Cj , 1 ≤ j ≤ k, in C is indeed satisfied under the generated truth assign-
ment by using the rule Qj

qj−→ Qj in the first process. If the clause Cj is
not satisfied then Qj does not appear in γn+1 and the defender loses. If
all the clauses in C are satisfied then Q1||Q2|| . . . ||Qk−1||Qk||γn+1 ∼ γn+1

and the defender wins.
In what follows we formally prove that C is true iff (X1,∆) ∼ (X ′

1,∆).
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Fig. 5. Processes (Xi||γi, ∆) and (X ′
i ||γi, ∆)
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Lemma 1. If (X1,∆) ∼ (X ′
1,∆) then the formula C is true.

Proof. We show that (X1,∆) 6∼ (X ′
1,∆) under the assumption that C is

false. If C is false then C ′ defined by

C ′ def= ∀x1∃y1∀x2∃y2 . . . ∀xn∃yn. ¬(C1 ∧ C2 ∧ . . . ∧ Ck)

is true and we claim that the attacker has a winning strategy in the bisim-
ulation game starting from (X1,∆) and (X ′

1,∆). The attacker’s strategy
starts with performing a sequence of actions

a, x̃1, ỹ1, . . . , a, x̃i, ỹi, . . . , a, x̃n, ỹn, a

where x̃i, ỹi ∈ {tt, ff} for all i, 1 ≤ i ≤ n. The attacker is playing only in
the first process (X1,∆). The choice of x̃i is done by the defender and of
ỹi by the attacker — see the discussion above. This means that whatever
values for x̃1, . . . , x̃n are chosen by the defender, the attacker can still
decide on values for ỹ1, . . . , ỹn such that the generated assignment satisfies
the formula ¬(C1∧C2∧ . . .∧Ck). Hence there must be some j, 1 ≤ j ≤ k,
such that the clause Cj is not satisfied. This implies that Qj does not occur
in the second process. However, the attacker can perform the action qj

in the first process by using the rule Qj
qj−→ Qj . Thus the attacker has a

winning strategy in the bisimulation game and (X1,∆) 6∼ (X ′
1,∆). ut

Lemma 2. If the formula C is true then (X1,∆) ∼ (X ′
1,∆).

Proof. Let us define sets ASi, corresponding to the assignments of vari-
ables from x1, y1 to xi, yi, 1 ≤ i ≤ n, such that the formula

∃xi+1∀yi+1 . . . ∃xn∀yn. C1 ∧ C2 ∧ . . . ∧ Ck

is still true. The set ASi for i ∈ {1, . . . , n} is defined by

ASi
def= { α̃1||β̃1||α̃2||β̃2|| . . . ||α̃i||β̃i |

such that for all j, 1 ≤ j ≤ i, it holds that α̃j ∈ {αj , αj}
and β̃j ∈ {βj , βj}, and under the assignment

xj =

{
tt if α̃j = αj

ff if α̃j = αj

and yj =

{
tt if β̃j = βj

ff if β̃j = βj

the formula ∃xi+1∀yi+1 . . . ∃xn∀yn. C1 ∧ C2 ∧ . . . ∧ Ck

is true }.
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By definition AS0
def= {ε}. In particular, ASn contains all the assignments

for which the unquantified formula C1∧C2∧. . .∧Ck is true. The following
relation is a strong bisimulation.

{(Xi||γi,X
′
i||γi) | 1 ≤ i ≤ n ∧ γi ∈ ASi−1} ∪

{(Y choice
i ||γi, Y

tt
i ||γi) | 1 ≤ i ≤ n ∧ γi||αi||βi ∈ ASi ∧ γi||αi||βi ∈ ASi} ∪

{(Y choice
i ||γi, Y

ff
i ||γi) | 1 ≤ i ≤ n ∧ γi||αi||βi ∈ ASi ∧ γi||αi||βi ∈ ASi} ∪

{(Zi||γi||αi, Z
′
i||γi||αi) | 1 ≤ i ≤ n ∧ γi||αi||βi ∈ ASi ∧ γi||αi||βi ∈ ASi} ∪

{(Zi||γi||αi, Z
′
i||γi||αi) | 1 ≤ i ≤ n ∧ γi||αi||βi ∈ ASi ∧ γi||αi||βi ∈ ASi} ∪

{(Xn+1||γn+1,X
′
n+1||γn+1) | γn+1 ∈ ASn} ∪

{(Q1||Q2|| . . . ||Qk−1||Qk||γn+1, γn+1) | γn+1 ∈ ASn} ∪
{(E,E) | E ∈ P(Const(∆)

)}
Since AS0 = {ε}, we get that the pair (X1,X

′
1) is an element of this

relation. Hence we proved that (X1,∆) ∼ (X ′
1,∆). ut

Theorem 1. Strong bisimilarity of BPP is PSPACE-hard.

Proof. By Lemma 1 and Lemma 2. ut
Remark 5. Notice that there are only finitely many reachable states from
both (X1,∆) and (X ′

1,∆). Hence (X1,∆) and (X ′
1,∆) are strongly regular

processes.

Remark 6. Theorem 1 can be easily extended to 1-safe Petri nets where
each transition has exactly one input place (for related results about 1-
safe Petri nets see e.g. [17]). It is enough to introduce for each αi, αi, βi

and βi, 1 ≤ i ≤ n, a new set of process constants {Q1, . . . , Qk} to ensure
that in each reachable marking there is at most one token in every place.

3.3 Strong Bisimilarity of BPA

In this subsection we show that strong bisimilarity of BPA is a PSPACE-
hard problem. The proof is again by reduction from QSAT, using the main
idea from Subsection 3.1. However, there is a substantial difference from
the proof for BPP explained in the previous subsection. In case of BPP
it is easier to check which clauses of a given boolean formula are satisfied
because we have a parallel access to all process constants contained in the
current state. This technique has to be modified to work for BPA since
we have only a sequential access to the process constants contained in the
current state, and there is no possibility of remembering any information
in e.g. a finite-state control unit as in pushdown systems. Hence we have to
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encode the information about satisfied clauses in a unary way to achieve
our result.

Let
C ≡ ∃x1∀y1∃x2∀y2 . . . ∃xn∀yn. C1 ∧ C2 ∧ . . . ∧ Ck

be an instance of QSAT. Assume that Q1, . . . , Qk are process constants.
For each i, 1 ≤ i ≤ n, let

αi be a sequential composition Qi1.Qi2 . · · · .Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where xi occurs positively,

αi be a sequential composition Qi1.Qi2 . · · · .Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where xi occurs negatively,

βi be a sequential composition Qi1.Qi2 . · · · .Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where yi occurs positively, and

βi be a sequential composition Qi1.Qi2 . · · · .Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where yi occurs negatively.

Example 4. Let us consider a quantified formula

∃x1∀y1∃x2∀y2. (x1 ∨ ¬y1 ∨ y2) ∧ (¬x1 ∨ y1 ∨ y2) ∧ (x1 ∨ y1 ∨ y2 ∨ ¬y2)

where n = 2, k = 3, C1 = x1 ∨ ¬y1 ∨ y2, C2 = ¬x1 ∨ y1 ∨ y2 and
C3 = x1 ∨ y1 ∨ y2 ∨ ¬y2. Then

α1 = Q1.Q3 α1 = Q2 β1 = Q2.Q3 β1 = Q1

α2 = ε α2 = ε β2 = Q1.Q2.Q3 β2 = Q3.

Let SF(γ) be the set of all suffixes of a sequential composition γ ∈
S({Q1, . . . , Qk}), i.e., SF(γ) def= {γ′ | ∃γ′′ such that γ′′.γ′ = γ}. Let M be
the least natural number such that M ≥ 2n + 1 and M = 2K for some
natural number K > 0. Of course, M > 1.

We define BPA processes (X1.S,∆) and (X ′
1.S,∆), where Const(∆) def=

{A0, A1, A2, . . . , AkK−1} ∪ {Q1, . . . , Qk} ∪
{V γ

i , V γ,choice
i , V

′γ
i , V

γ,yes
i , V γ,no

i | 1 ≤ i ≤ n ∧ γ ∈ SF(αi) ∪ SF(αi)} ∪
{W γ

i ,W γ,choice
i ,W

′γ
i ,W

γ,yes
i ,W γ,no

i | 1 ≤ i ≤ n ∧ γ ∈ SF(βi) ∪ SF(βi)} ∪
{Xi, Y

choice
i , Zi,X

′
i , Y

tt
i , Y ff

i , Z ′
i | 1 ≤ i ≤ n} ∪ {Xn+1,X

′
n+1, S}
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and Act(∆) def= {a, c, tt, ff, yes, no, s}. The first part of the rewrite system
∆ consists of the rewrite rules:

A0
c−→ ε

A`
c−→ A`−1.A`−2. · · · .A1.A0 for all `, 1 ≤ ` ≤ kK − 1

Qj
c−→ AjK−1.AjK−2. · · · .A1.A0 for all j, 1 ≤ j ≤ k.

Remark 7. Notice that the size of the previously introduced rewrite rules

is polynomial w.r.t. the size of the formula C. Moreover A`
c2

`

−→ ε for
all `, 0 ≤ ` ≤ kK − 1, which implies by using the equation 2jK = M j

that Qj
cMj

−→ ε for all j, 1 ≤ j ≤ k. Hence Qj can perform exactly M j

transitions labelled by the “counting” action c and then disappears.

The intuition is that each clause Cj , 1 ≤ j ≤ k, is coded by the process
constant Qj, which enables to perform exactly M j of c actions. The key
idea of our proof is then that the defender and the attacker will choose
truth values for the variables x1, . . . , xn and y1, . . . , yn, respectively. Dur-
ing this process some of the clauses C1, . . . , Ck become satisfied, and the
defender will have the possibility to add the corresponding process con-
stants Q1, . . . , Qk to the current state.

Moreover, the defender will be able to select which of the process
constants (corresponding to the satisfied clauses) appear in the current
state in such a way that each of them appears there exactly once.

The following lemma shall be essential for proving our reduction cor-
rect.

Lemma 3. Assume that M and k are constants introduced above, i.e.,
M > 1 and k > 0. Let aj , 1 ≤ j ≤ k, be natural numbers such that
0 ≤ aj ≤ M − 1 for all j. The following two statements are equivalent:

(i)
k∑

j=1
ajM

j =
k∑

j=1
M j (ii) aj = 1 for all j, 1 ≤ j ≤ k.

Proof. By uniqueness of M -ary representations. Obviously (ii) implies (i).
By induction on k we prove the other direction. If k = 1 then a1M = M

immediately gives that a1 = 1. Let
k+1∑
j=1

ajM
j =

k+1∑
j=1

M j . Since aj ≤ M −1

for all j, 1 ≤ j ≤ k + 1, we get that

k∑
j=1

ajM
j ≤

k∑
j=1

(M − 1)M j = (M − 1)M ·
k−1∑
j=0

M j =
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(M − 1)M · Mk − 1
M − 1

= Mk+1 − M < Mk+1.

Let us now consider the equation

k∑
j=1

ajM
j + ak+1M

k+1 =
k∑

j=1

M j + Mk+1.

The fact that
k∑

j=1
ajM

j < Mk+1 gives that ak+1 ≥ 1. On the other hand

k∑
j=1

M j = M ·
k−1∑
j=0

M j = M · Mk−1
M−1 < Mk+1, which implies that ak+1 ≤ 1.

Hence ak+1 = 1 and the following equation must be satisfied

k∑
j=1

ajM
j =

k∑
j=1

M j.

By induction hypothesis aj = 1 also for all j, 1 ≤ j ≤ k. ut
We continue with the definition of the set of rewrite rules ∆. For all

i, 1 ≤ i ≤ n, and Q.γ ∈ SF(αi) ∪ SF(αi) where Q ∈ {Q1, . . . , Qk} and
γ ∈ S({Q1, . . . , Qk}), ∆ contains the rules:

V Q.γ
i

a−→ V Q.γ,choice
i

V Q.γ
i

a−→ V
Q.γ,yes
i V

′Q.γ
i

a−→ V
Q.γ,yes
i

V Q.γ
i

a−→ V Q.γ,no
i V

′Q.γ
i

a−→ V Q.γ,no
i

V Q.γ,choice
i

yes−→ V γ
i .Q V

Q.γ,yes
i

yes−→ V
′γ
i .Q

V Q.γ,choice
i

no−→ V γ
i V Q.γ,no

i
no−→ V

′γ
i

V
Q.γ,yes
i

no−→ V γ
i V Q.γ,no

i

yes−→ V γ
i .Q.

Similarly, for all i, 1 ≤ i ≤ n, and Q.γ ∈ SF(βi) ∪ SF(βi) where
Q ∈ {Q1, . . . , Qk} and γ ∈ S({Q1, . . . , Qk}), ∆ contains the rules:

W Q.γ
i

a−→ W Q.γ,choice
i

W Q.γ
i

a−→ W
Q.γ,yes
i W

′Q.γ
i

a−→ W
Q.γ,yes
i

W Q.γ
i

a−→ W Q.γ,no
i W

′Q.γ
i

a−→ W Q.γ,no
i

W Q.γ,choice
i

yes−→ W γ
i .Q W

Q.γ,yes
i

yes−→ W
′γ
i .Q

W Q.γ,choice
i

no−→ W γ
i W Q.γ,no

i
no−→ W

′γ
i

W
Q.γ,yes
i

no−→ W γ
i W Q.γ,no

i

yes−→ W γ
i .Q.
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Assume now a bisimulation game starting from (V αi
i ,∆) and (V

′αi
i ,∆).

As shown in Subsection 3.1, either in some round the states become syn-
tactically equal, or the defender has the possibility to choose in the first
round the next states (i) V αi,choice

i and V
αi,yes
i or (ii) V αi,choice

i and
V αi,no

i . This means that in the next round a process constant Q such that
αi = Q.α′

i for some α′
i is either (i) added to the current state or (ii) left

out. Now the game continues either from (i) V
α′

i
i .Q and V

′α′
i

i .Q or from

(ii) V
α′

i
i and V

′α′
i

i . This repeats in similar fashion until the states V ε
i .γi

and V
′ε
i .γi are reached, such that γi is some subsequence of αi (in a re-

verse order) and it was the defender who had the possibility to decide
which of the process constants contained in αi appear also in γi.

The same happens if we start playing the bisimulation game from the
pairs (V αi

i ,∆) and (V
′αi
i ,∆), or (W βi

i ,∆) and (W
′βi
i ,∆), or (W βi

i ,∆) and

(W
′βi
i ,∆).
We finish the definition of ∆ by adding the rules:

– for all i, 1 ≤ i ≤ n:

Xi
a−→ Y choice

i

Xi
a−→ Y tt

i X ′
i

a−→ Y tt
i

Xi
a−→ Y ff

i X ′
i

a−→ Y ff
i

Y choice
i

tt−→ V αi
i Y tt

i
tt−→ V

′αi
i

Y choice
i

ff−→ V αi
i Y ff

i
ff−→ V

′αi
i

Y tt
i

ff−→ V αi
i Y ff

i
tt−→ V αi

i

V ε
i

a−→ Zi V
′ε
i

a−→ Z ′
i

Zi
tt−→ W βi

i Z ′
i

tt−→ W
′βi
i

Zi
ff−→ W βi

i Z ′
i

ff−→ W
′βi
i

W ε
i

a−→ Xi+1 W
′ε
i

a−→ X ′
i+1

– and Xn+1
a−→ Q1.Q2. . . . .Qk−1.Qk.S X ′

n+1
a−→ ε S

s−→ S.

Lemma 4. If (X1.S,∆) ∼ (X ′
1.S,∆) then the formula C is true.

Proof. We show that (X1.S,∆) 6∼ (X ′
1.S,∆) under the assumption that

C is false. If C is false then C ′ defined by

C ′ def= ∀x1∃y1∀x2∃y2 . . . ∀xn∃yn. ¬(C1 ∧ C2 ∧ . . . ∧ Ck)
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is true and we claim that the attacker has a winning strategy in the
bisimulation game starting from (X1.S,∆) and (X ′

1.S,∆). As mentioned
in Subsection 3.1, in the first round the attacker is forced to perform
the move X1.S

a−→ Y choice
1 .S. The defender can respond either by (i)

X ′
1.S

a−→ Y tt
1 .S (which corresponds to setting the variable x1 to true)

or by (ii) X ′
1.S

a−→ Y ff
1 .S (which corresponds to setting the variable x1

to false). In the second round the attacker performs the action (i) tt or
(ii) ff, and the defender must answer by the same action in the other
process. Now the game continues from (i) V α1

1 .S and V
′α1
1 .S or (ii) V α1

1 .S

and V
′α1
1 .S. Within the next (i) 2 · |α1| or (ii) 2 · |α1| rounds (where

|w| is the length of w) the defender has the possibility to choose some
subsequence of (i) α1 or (ii) α1 and add it in a reverse order to the current
state. Then the game continues either from (i) V ε

1 .γ1.S and V
′ε
1 .γ1.S or

(ii) V ε
1 .γ1.S and V

′ε
1 .γ1.S, such that (i) γ1 is a subsequence (in a reverse

order and chosen by the defender) of α1 or (ii) γ1 is a subsequence (in a
reverse order and chosen by the defender) of α1. The players have only one
possible continuation of the game by using the rewrite rules V ε

1
a−→ Z1

and V
′ε
1

a−→ Z ′
1, thus reaching the states (i) Z1.γ1.S and Z ′

1.γ1.S or (ii)
Z1.γ1.S and Z ′

1.γ1.S.
Now, it is the attacker who has the possibility of making a choice

between the rewrite rules Z1
tt−→ W β1

1 or Z1
ff−→ W β1

1 in the first pro-
cess. This corresponds to setting the variable y1 to true or false. The de-
fender can only imitate the same action by using the rules Z ′

1
tt−→ W

′β1
1

or Z ′
1

ff−→ W
′β1
1 in the other process. From the current states starting

with W β1
1 and W

′β1
1 , or W β1

1 and W
′β1
1 , the same happens as before: the

defender has the possibility of choosing a subsequence δ1 (in a reverse
order) of β1 or a subsequence δ1 (in a reverse order) of β1. So precisely
after 2 · |β1| or 2 · |β1| rounds the following four possible pairs of states
can be reached: (1) W ε

1 .δ1.γ1.S and W
′ε
1 .δ1.γ1.S, or (2) W ε

1 .δ1.γ1.S and
W

′ε
1 .δ1.γ1.S, or (3) W ε

1 .δ1.γ1.S and W
′ε
1 .δ1.γ1.S, or (4) W ε

1 .δ1.γ1.S and
W

′ε
1 .δ1.γ1.S. We have now only one possible continuation of the game

in the next round, reaching the states (1) X2.δ1.γ1.S and X ′
2.δ1.γ1.S, or

(2) X2.δ1.γ1.S and X ′
2.δ1.γ1.S, or (3) X2.δ1.γ1.S and X ′

2.δ1.γ1.S, or (4)
X2.δ1.γ1.S and X ′

2.δ1.γ1.S.
We remind the reader of the fact that the defender had the possibility

to set the variable x1 to true or false, and the attacker decided on the
truth value for the variable y1. In the meantime, all the process constants
from {Q1, . . . , Qk} corresponding to the clauses that became satisfied by
this assignment could have been potentially added to the current state,
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but it was the defender who had the possibility to filter some of them
out.

In the next rounds the same schema of the game repeats, until we
reach the states Xn+1.ω.S and X ′

n+1.ω.S. The defender decides on the
truth values for each of the variables x2, . . . , xn, and the attacker has
the possibility to respond by choosing the truth values for the variables
y2, . . . , yn. During this some of the clauses appear to be satisfied and
ω consists of a selection (made by the defender) of process constants
corresponding to these clauses.

Since we assume that the formula C ′ is true, the attacker can de-
cide on the truth values for y1, . . . , yn in such a way that at least one
of the clauses C1, . . . , Ck is not satisfied. Let us suppose that it is Cm

for some m, 1 ≤ m ≤ k, that is not satisfied. Hence Qm cannot ap-
pear in ω and the attacker has the following winning strategy. He plays
Xn+1.ω.S

a−→ Q1.Q2. . . . .Qk−1.Qk.S.ω.S, to which the defender can only
answer by X ′

n+1.ω.S
a−→ ω.S.

The state Q1.Q2. . . . .Qk−1.Qk.S.ω.S can perform exactly
∑k

j=1 M j of
actions c (see Remark 7) followed by an infinite sequence of actions s. On
the other hand, ω.S can never perform exactly

∑k
j=1 M j of actions c and

then the infinite sequence of actions s. This follows from the fact that
Qm does not appear in ω and from Lemma 3 — obviously, any process
constant from {Q1, . . . , Qk} can occur at most 2n times in ω (2n ≤ M−1),
which justifies the assumption of Lemma 3.

Hence the attacker has a winning strategy and (X1.S,∆) 6∼ (X ′
1.S,∆).

ut
Lemma 5. If the formula C is true then (X1.S,∆) ∼ (X ′

1.S,∆).

Proof. Assume a bisimulation game starting from the pair (X1.S,∆) and
(X ′

1.S,∆). We show that the defender has a winning strategy. As men-
tioned in Subsection 3.1 and in the proof above, the attacker is forced
to play according to a strictly defined strategy, otherwise the defender
can make the resulting processes immediately syntactically equal and
hence bisimilar. As shown before the defender can make the choices be-
tween setting the variables x1, . . . , xn to true or false, whereas the at-
tacker can decide on truth values for y1, . . . , yn. Thus the defender can
play the bisimulation game such that finally every clause C1, . . . , Ck in
C is satisfied. The defender has the possibility to add the correspond-
ing process constants Q1, . . . , Qk to the current state in such a way that
when reaching the states Xn+1.ω.S and X ′

n+1.ω.S, the sequential com-
position ω contains every Qj exactly once for each j, 1 ≤ j ≤ k. This
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can be easily achieved by following the strategy: “add Qj to the current
state if and only if it is not already present there”. After performing the
moves Xn+1.ω.S

a−→ Q1.Q2. . . . .Qk−1.Qk.S.ω.S and X ′
n+1.ω.S

a−→ ω.S,
the defender wins since S.ω.S ∼ S and both Q1.Q2. . . . .Qk−1.Qk and ω
can perform the same number of actions c and then become ε. Hence
(X1.S,∆) ∼ (X ′

1.S,∆). ut
Theorem 2. Strong bisimilarity of BPA is PSPACE-hard.

Proof. By Lemma 4 and Lemma 5. ut
Remark 8. Notice that there are only finitely many reachable states from
both (X1.S,∆) and (X ′

1.S,∆). Hence (X1.S,∆) and (X ′
1.S,∆) are strongly

regular processes.

4 Lower Bounds for Strong Regularity

The idea to reduce bisimilarity to regularity first appeared in the litera-
ture due to Mayr [20]. He showed a technique for reducing weak bisimilar-
ity of regular BPP to weak regularity of BPP. However, in his reduction τ
actions are used. Building upon Mayr’s approach we provide a polynomial
time reduction from strong bisimilarity of regular BPP (BPA) to strong
regularity of BPP (BPA).

4.1 Strong Regularity of BPP

Theorem 3 (Reduction from bisimilarity to regularity).
Let (P1,∆) and (P2,∆) be strongly regular BPP processes. We can con-
struct in polynomial time a BPP process (P,∆′) such that

(P1,∆) ∼ (P2,∆) if and only if (P,∆′) is strongly regular.

Proof. Assume that (P1,∆) and (P2,∆) are strongly regular. We con-
struct a BPP process (P,∆′) with

Const(∆′) def= Const(∆) ∪ {X,A,Ac, Bc, P
′
1, P

′
2}

and
Act(∆′) def= Act(∆) ∪ {a, b}

where X,A,Ac, Bc, P
′
1, P

′
2 are new process constants and a, b are new ac-

tions. We define ∆′ def= ∆ ∪ ∆1 ∪ ∆2 where the set of rewrite rules ∆1 is
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X||Ai||Bc

ai′
��

∼? X||Aj ||Bc

ai′
��

P ′
1||Ai−i′+1||Ac||Bc

aj−i′
��

X||Aj−i′ ||Bc

aj−i′

��
P ′

1||Ai′′ ||Ac||Bc

a
��

X||Bc

a
��

P1||Ai′′ ||Ac||Bc 6∼ P2||Ac||Bc

Fig. 6. Winning strategy for the attacker (i < j)

given by

X
b−→ X||A A

a−→ ε Ac
a−→ Ac Bc

b−→ Bc

X
a−→ P ′

1||Ac X
a−→ P1||Ac P ′

1
a−→ P1

and ∆2 is given by

X
a−→ P ′

2||Ac X
a−→ P2||Ac P ′

2
a−→ P2.

Let P
def= X||Bc.

Lemma 6. If (P1,∆) 6∼ (P2,∆) then (P,∆′) is not strongly regular.

Proof. Let (P1,∆) 6∼ (P2,∆). For simplicity (and without loss of gener-
ality) we assume that P1 6∼ ε and P2 6∼ ε. We demonstrate that there are
infinitely many strongly nonbisimilar states reachable from (P,∆′).

Let us consider an infinite number of states of the form X||Ai||Bc for
any natural number i. Of course P −→∗ X||Ai||Bc and we claim that
(X||Ai||Bc,∆

′) 6∼ (X||Aj ||Bc,∆
′) for any i 6= j. Without loss of general-

ity assume that i < j. The attacker has the following winning strategy
(playing only in the second process — see Figure 6).

He performs a sequence of j actions a from X||Aj ||Bc, thus reaching a
state X||Bc. The defender playing from X||Ai||Bc cannot do this sequence
of a-actions without using some rule for X. This is because Bc 6 a−→ and
Ai can perform at most i a-actions (i < j). As we assume that P1 6∼ ε
and P2 6∼ ε, process constants P1 and P2 cannot appear in the defender’s
process during the first j rounds, otherwise he loses immediately. So the
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defender has to make a choice between the rules X
a−→ P ′

1||Ac and X
a−→

P ′
2||Ac sometime within the first j moves (let us say in round i′ where

i′ ≤ i + 1). Assume that the defender chooses X
a−→ P ′

1||Ac — the other
case is symmetric. Now, the defender must perform j − i′ of a-actions by
using the rules Ac

a−→ Ac or A
a−→ ε.

After j rounds the resulting states are P ′
1||Ai′′ ||Ac||Bc for i′′ ≤ i −

i′ + 1, and X||Bc. The attacker wins by performing the move X||Bc
a−→

P2||Ac||Bc. Again, since we assume that P2 6∼ ε the defender has to answer
with P ′

1||Ai′′ ||Ac||Bc
a−→ P1||Ai′′ ||Ac||Bc. The attacker has now a winning

strategy from P1||Ai′′ ||Ac||Bc and P2||Ac||Bc: the fact that P1 6∼ P2 and that
the actions a and b are fresh ones implies that P1||Ai′′ ||Ac||Bc 6∼ P2||Ac||Bc.

ut
Lemma 7. If (P1,∆) ∼ (P2,∆) then (P,∆′) is strongly regular.

Proof. Assume that (P1,∆) ∼ (P2,∆) which implies that (P,∆′) ∼
(P,∆′′) where ∆′′ def= ∆′

r ∆2 (strong bisimilarity is a congruence w.r.t.
the parallel operator). It is enough to show that (P,∆′′) is strongly reg-
ular. Observe that (Ai||Ac,∆

′′) ∼ (Ac,∆
′′) for any i such that 0 ≤ i.

Then also (P1||Ai||Ac||Bc,∆
′′) ∼ (P1||Ac||Bc,∆

′′) and (P ′
1||Ai||Ac||Bc,∆

′′) ∼
(P ′

1||Ac||Bc,∆
′′) for any i such that 0 ≤ i. This implies that

(X||Ai||Bc,∆
′′) ∼ (P ′

1||Ac||Bc,∆
′′) (1)

for any i such that 0 ≤ i. Since (P1,∆) is a strongly regular process then
(P ′

1||Ac||Bc,∆
′′) is also strongly regular. This by using (1) in particular

gives that (X||A0||Bc,∆
′′) = (X||Bc,∆

′′) = (P,∆′′) is strongly regular.
ut

Theorem 3 follows from Lemma 6 and Lemma 7. ut
Theorem 4. Strong regularity of BPP is PSPACE-hard.

Proof. By Theorem 1, Remark 5 and Theorem 3. ut

4.2 Strong Regularity of BPA

Theorem 5 (Reduction from bisimilarity to regularity).
Let (P1,∆) and (P2,∆) be strongly regular BPA processes. We can con-
struct in polynomial time a BPA process (P,∆′) such that

(P1,∆) ∼ (P2,∆) if and only if (P,∆′) is strongly regular.
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Proof. Assume that (P1,∆) and (P2,∆) are strongly regular BPA pro-
cesses. We construct a BPA process (P,∆′) with

Const(∆′) def= Const(∆) ∪ {X,A,C, S, P ′
1, P

′
2}

and
Act(∆′) def= Act(∆) ∪ {a, s}

where X,A,C, S, P ′
1, P

′
2 are new process constants and a, s are new ac-

tions. We define ∆′ def= ∆ ∪ ∆1 ∪ ∆2 where the set of transition rules ∆1

is given by

X
a−→ X.A X

a−→ ε A
a−→ ε S

s−→ S

A
a−→ P ′

1.S A
a−→ P1.S P ′

1
a−→ P ′

1 P ′
1

a−→ P1

X
a−→ P ′

1.S X
a−→ P1.S

C
a−→ P ′

1.S C
a−→ P1.S

and ∆2 is given by

A
a−→ P ′

2.S A
a−→ P2.S P ′

2
a−→ P ′

2 P ′
2

a−→ P2

X
a−→ P ′

2.S X
a−→ P2.S

C
a−→ P ′

2.S C
a−→ P2.S.

Let P
def= X.C.

Lemma 8. If (P1,∆) 6∼ (P2,∆) then (P,∆′) is not strongly regular.

Proof. Let (P1,∆) 6∼ (P2,∆). Without loss of generality assume that P1 6∼
ε and P2 6∼ ε. We show that there are infinitely many strongly nonbisimilar
states reachable from (P,∆′). Consider the states of the form Ai.C for any
natural number i. Of course, P −→∗ Ai.C. In order to prove that (P,∆′)
is not strongly regular, it is enough to show that (Ai.C,∆′) 6∼ (Aj .C,∆′)
for any i < j. Next paragraph describes attacker’s winning strategy from
the states Ai.C and Aj .C.

The attacker is playing only in the second process Aj .C. He performs
a sequence of actions a of the length j by using the rule A

a−→ ε and
reaches the state C. By examining all possible moves of the defender
from the process Ai.C, we get that a different rule from A

a−→ ε must
be used within the first j rounds since i < j. Using the assumption that
P1 6∼ ε and P2 6∼ ε we derive that only four types of states (reachable by
the defender from Ai.C after j rounds) must be considered. Namely
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– P ′
1.S.Ai′ .C for some i′, 0 ≤ i′ < i

– P ′
2.S.Ai′ .C for some i′, 0 ≤ i′ < i

– P ′
1.S or

– P ′
2.S.

Notice that S.α ∼ S for any process expression α, which in particular
means that P ′

1.S.Ai′ .C ∼ P ′
1.S and P ′

2.S.Ai′ .C ∼ P ′
2.S. Hence it is enough

to examine only the states P ′
1.S and P ′

2.S. Let us consider the bisimulation
game continuing from the pair of states P ′

1.S and C — the other case
(from states P ′

2.S and C) is symmetric. The attacker wins by performing
the move C

a−→ P2.S. The defender has to answer by P ′
1.S

a−→ P1.S since
the move P ′

1.S
a−→ P ′

1.S means an immediate loss for the defender (we
assume that P1 6∼ ε and P2 6∼ ε). Now the resulting states after j + 1
rounds are P1.S and P2.S. The attacker has a winning strategy from this
pair by our assumption that P1 6∼ P2 and by the fact that S

s−→ S is the
only rewrite rule for S and the action s is a fresh one. ut

Lemma 9. If (P1,∆) ∼ (P2,∆) then (P,∆′) is strongly regular.

Proof. Assume that (P1,∆) ∼ (P2,∆) which implies that (P,∆′) ∼
(P,∆′′) where ∆′′ def= ∆′

r ∆2 (strong bisimilarity is a congruence w.r.t.
the sequential operator2). It is enough to show that (P,∆′′) is strongly
regular. In what follows we often use (without explicitly mentioning it)
the fact that S.α ∼ S for any process expression α.

Let us first observe that (C,∆′′) ∼ (P ′
1.S,∆′′) which implies that

(Ai.C,∆′′) ∼ (P ′
1.S,∆′′) for all i, i ≥ 0. Using this fact we get that

(X.Ai.C,∆′′) ∼ (P ′
1.S,∆′′) (2)

for all i, i ≥ 0. Recall that (P1,∆) is a strongly regular process. It is easily
seen now that (P ′

1.S,∆′′) is also a strongly regular process. Hence (2) in
particular gives that (X.A0.C,∆′′) = (X.C,∆′′) = (P,∆′′) is strongly
regular. ut

Theorem 5 follows from Lemma 8 and Lemma 9. ut

Theorem 6. Strong regularity of BPA is PSPACE-hard.

Proof. By Theorem 2, Remark 8 and Theorem 5. ut
2 Under the usual assumption that ∆′ contains no deadlocks — see Subsection 2.3.

This is obviously the case for processes from Theorem 2.

28



4.3 Strong Regularity of Normed BPA and BPP

This subsection aims to show that under the condition of normedness,
strong regularity of BPA and BPP are complete problems for nondeter-
ministic logarithmic space (NL). Kučera in [18] argues that strong reg-
ularity of BPA and BPP is decidable in polynomial time but it is easy
to see that a test whether a BPA (BPP) process contains an accessible
and growing process constant (a condition equivalent to regularity) can
be performed even in nondeterministic logarithmic space. In [19] the pre-
vious results are extended to normed PA processes, and again it can be
shown that the decision algorithm for strong regularity of normed PA can
be implemented in NL.

Theorem 7. Strong regularity of normed BPA and normed BPP is NL-
hard.

Proof. In order to prove NL-hardness, we reduce the reachability problem
for acyclic directed graphs (NL-complete problem, see e.g. [24]) to strong
regularity checking of normed BPA (BPP).

Problem: Reachability for acyclic directed graphs
Instance: An acyclic directed graph G = (V,E) such that

V = {v1, . . . , vn}, 1 ≤ n, and E ⊆ V × V .
Question: Is it the case that (v1, vn) ∈ E∗ where E∗ is a

reflexive and transitive closure of E?

Let G = (V,E) be an instance of the reachability problem for acyclic
directed graphs. For u ∈ V we define its out-degree by

u+ def= |{v ∈ V | (u, v) ∈ E}|
and without loss of generality assume that v+

1 , v+
n > 0. Let ∆ be a finite-

state system such that Const(∆) def= {Xu | u ∈ V ∧ u+ > 0} ∪ {X},
Act(∆) def= {a} and

∆
def= {Xu

a−→ Xv | (u, v) ∈ E ∧ v+ > 0} ∪
{Xu

a−→ ε | (u, v) ∈ E ∧ v+ = 0} ∪
{Xvn

a−→ X}.
Obviously, (v1, vn) ∈ E∗ if and only if Xv1 −→∗ X. Let us define a BPA
system

∆1
def= ∆ ∪ {X a−→ X.X, X

a−→ ε}
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and a BPP system

∆2
def= ∆ ∪ {X a−→ X||X, X

a−→ ε}.

It is an easy observation that (X,∆1) and (X,∆2) are normed and nonreg-
ular processes. This implies that (Xv1 ,∆1) and (Xv1 ,∆2) are also normed
processes (G is acyclic) such that (v1, vn) ∈ E∗ iff (Xv1 ,∆1) is not strongly
regular, and (v1, vn) ∈ E∗ iff (Xv1 ,∆2) is not strongly regular. Recall
that NL=co-NL (see e.g. [24]). Hence the problems of strong regularity
for normed BPA and BPP are NL-hard (our reductions are obviously in
logarithmic space). ut

5 Conclusion

We proved that strong bisimilarity and regularity problems for BPA and
BPP are PSPACE-hard. Our proofs are by reduction from the problem
of quantified satisfiability (QSAT). The general idea (Subsection 3.1) for
generating quantified instances of QSAT applies to both BPA and BPP.
However, the proofs for BPA and BPP differ in checking that all clauses
are indeed satisfied. This is due to the fact that BPP enables parallel
access to all process constants contained in the current state whereas
BPA does not.

We expect that the technique for generation of QSAT instances can
be used in similar contexts, e.g. for showing lower bounds of weak bisim-
ilarity.

An interesting observation is that only one unnormed process constant
(namely S) is used in the hardness proofs for BPA. In contrast, the hard-
ness proofs for strong bisimilarity of BPP (see [20] and Subsection 3.2)
require a polynomial number of unnormed process constants.

In Figure 7 we present the state of the art of strong bisimilarity and
regularity checking for BPA, BPP and PA and their normed subclasses.
Results proved in this paper are in boldface. Obviously, all the lower
bounds for BPA and BPP apply also to PA.
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PSPACE-hard
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