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There and Back Again

Olivier Danvy and Mayer Goldberg

Dear Reader:

Before proceeding any further, could you first ponder on the two
following riddles?

Computing a symbolic convolution:
Given two lists [x1, x2, ..., xn−1, xn] and [y1, y2, ..., yn−1, yn],
where n is not known in advance, write a function that con-
structs

[(x1, yn), (x2, yn−1), ..., (xn−1, y2), (xn, y1)]

in n recursive calls and with no auxiliary list.

Detecting a palindrome:
Given a list of length n, where n is not known in advance,
determine whether this list is a palindrome in dn/2e recursive
calls and with no auxiliary list.

Thank you.
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Abstract

We present a programming pattern where a recursive function traverses
a data structure—typically a list—at return time. The idea is that the
recursive calls get us there (typically to a base case) and the returns get us
back again while traversing the data structure. We name this programming
pattern of traversing a data structure at return time “There And Back
Again” (TABA).

The TABA pattern directly applies to computing a symbolic convolu-
tion. It also synergizes well with other programming patterns, e.g., dy-
namic programming and traversing a list at double speed. We illustrate
TABA and dynamic programming with Catalan numbers. We illustrate
TABA and traversing a list at double speed with palindromes and we
obtain a novel solution to this traditional exercise.

A TABA-based function written in direct style makes full use of an
Algol-like control stack and needs no heap allocation. Conversely, in a
TABA-based function written in continuation-passing style, the continu-
ation acts as a list iterator. In general, the TABA pattern saves one from
constructing intermediate lists in reverse order.

∗With apologies to Tolkien.
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark. E-mail: danvy@brics.dk
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1 A symbolic convolution

Symbolically convolving the two lists [x1, x2, ..., xn−1, xn] and [y1, y2, ..., yn−1, yn]
yields the list [(x1, yn), (x2, yn−1), ..., (xn−1, y2), (xn, y1)]. Numeric convolutions
are used, e.g., to multiply generating functions [6, Section 5.4], and they have
occurred very early in the history of mathematics [12]. Computing a symbolic
convolution is straightforward for a functional programmer; it is achieved by
zipping the first list and the reverse of the second list. In Standard ML:

(* cnv1 : ’a list * ’b list -> (’a * ’b) list *)

(* zip : ’a list * ’b list -> (’a * ’b) list *)

(* rev : ’b list -> ’b list *)

fun cnv1 (xs, ys)

= let fun zip (nil, nil)

= nil

| zip (x :: xs, y :: ys)

= (x, y) :: (zip (xs, ys))

in zip (xs, rev ys)

end

This definition induces a compiler warning about non-exhaustive pattern match-
ing, but this warning is unfounded since the two input lists have the same
length. (In a version of ML with dependent types [16], the type of cnv1 would
be ∀n ∈ N . α list(n) × β list(n) → (α × β) list(n).)

At any rate, cnv1 performs two iterations—one to reverse the second list
(rev above), and one to traverse the first list and the reversed list (zip above).
In addition, rev constructs an intermediate list.

Could we do better, i.e., could we traverse each list only once and construct
no intermediate list? Similar problems have been considered before. For exam-
ple, Launchbury and Sheard’s warm fusion comes to mind [8].

In our solution, we traverse the first list (walk below) while building a list
iterator (the second parameter of walk below). On reaching the end of the first
list, we apply the list iterator to the second list to traverse it and construct the
result:

(* cnv2 : ’a list * ’b list -> (’a * ’b) list *)

(* walk : ’a list * ((’a * ’b) list * ’b list *)

(* -> (’a * ’b) list) *)

(* -> (’a * ’b) list *)

fun cnv2 (xs, ys)

= let fun walk (nil, k)

= k (nil, ys)

| walk (x :: xs, k)

= walk (xs, fn (r, y :: ys) => k ((x, y) :: r, ys))

in walk (xs, fn (r, nil) => r)

end

3



Figuratively speaking, traversing the first list winds up a list-traversal spring,
which we explicitly unwind over the second list.

This higher-order solution is reminiscent of the call-by-value version of Bird’s
famous repmin function [1], where a function is constructed while a tree is tra-
versed, and eventually applied. In contrast to repmin, however, walk is written
in continuation-passing style (CPS), since its carries a higher-order accumulator
and all of its calls are tail calls.

Having identified that walk is in CPS, and since there is nothing intrinsic to
CPS about it, let us write it in direct style. The resulting function traverses the
first list at call time and the second list at return time:

(* cnv3 : ’a list * ’b list -> (’a * ’b) list *)

(* walk : ’a list -> (’a * ’b) list * ’b list *)

fun cnv3 (xs, ys)

= let fun walk nil

= (nil, ys)

| walk (x :: xs)

= let val (r, y :: ys) = walk xs

in ((x, y) :: r, ys)

end

in let val (r, nil) = walk xs

in r

end

end

Figuratively speaking, the calls implicitly wind up a list-traversal spring and
the returns unwind it.

This direct-style solution only allocates storage to construct the result, and
all its intermediate results are held on the control stack if one uses an implemen-
tation of a derivative of ALGOL 60 such as Chez Scheme (http://www.scheme.
com) or OCaml (http://caml.inria.fr).

Generalizing, we can see that every time we want to fold a function over the
result of zipping a list and the reverse of another list, we can avoid reversing
the other list and avoid zipping. Instead, we can use only one recursive descent
to traverse one list at call time and to traverse the other at return time. The
situation is crystallized in the following fusion-like law, which is reminiscent of
Launchbury and Sheard’s warm fusion [8], though distinct from it.

Proposition 1 (There And Back Again)
For all suitably typed f and b, and for all lists xs and ys with the same length,

foldr f b (zip (xs, rev ys))

= let val (r, nil) = foldr (fn (x, (r, y :: ys))

=> (f ((x, y), r), ys))

(b, ys)

xs

in r

end

4



The rest of this article illustrates further the TABA programming pattern
of traversing a list at return time, including trivial calls in Appendix A and
multiple returns in Appendix B.

2 The Catalan numbers

The Catalan numbers are recursively defined as follows [6, 7, 15]:

C0 = 1
Cn = C0Cn−1 + . . . + CkCn−k−1 + . . . + Cn−1C0

This specification fits the TABA pattern very well: given a list [C0, ..., Cn−1],
one computes Cn with a numeric self-convolution.

We can define a function computing Catalan numbers using course-of-values
induction, i.e., iteratively building a list of intermediate Catalan numbers in
reverse order. The result reads as follows.

(* catalan : int -> int *)

(* cat : int list -> int *)

(* walk : int list -> int * int list *)

(* iterate : int * int list -> int *)

fun catalan m

= let fun cat a

= let fun walk nil

= (0, a)

| walk (n :: ns)

= let val (r, n’ :: ns’)

= walk ns

in (r + (n * n’), ns’)

end

in let val (r, nil) = walk a

in r

end

end

fun iterate (i, a)

= if i > m

then hd a

else iterate (i + 1, (cat a) :: a)

in iterate (1, [1])

end

The local function iterate builds an intermediate list of Catalan numbers
[..., C2, C1, C0]. Given such an intermediate list, the local function cat yields
Cn if the intermediate list starts with Cn−1. It traverses this list in the TABA
fashion.

We could even take advantage of the symmetry in the definition of Cn above
to traverse the first half of the intermediate list at call time, and to traverse the
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second half at return time. Let us illustrate this idea of traversing the second
half of a list on the momentum of traversing the first half.

An analogy: convolving the two halves of a list of even length. The
following function takes a list and its length n, which must be even, and yields
a convolution of its first and second halves. It does so in n/2 calls only:

(* cnv_halves : ’a list * int -> (’a * ’a) list *)

(* walk : int * ’a list -> (’a * ’a) list *)

fun cnv_halves (xs, n)

= let fun walk (0, xs)

= (nil, xs)

| walk (n, x :: xs)

= let val (r, y :: ys) = walk (n-2, xs)

in ((x, y) :: r, ys)

end

in let val (r, nil) = walk (n, xs)

in r

end

end

Applying cnv halves to [0,1,2,3,4,5,6,7,8,9] and 10, for example, yields [(0,9),
(1,8),(2,7),(3,6),(4,5)] in five recursive calls. The idea applies directly to
defining another function computing Catalan numbers using course-of-values
induction, with half as many calls to walk in cat. We leave this definition as an
exercise for the reader.

3 Palindromes

A list L is a palindrome if it is the concatenation of a list and of its reverse, with
possibly an element in between if the length of L is odd. To detect whether a
list is a palindrome, given its length, we can just traverse half of the list at call
time and traverse the other half at return time, as cnv halves in Section 2. But
what if we do not know its length?

Actually, we do not need to know the length of a list to reach its middle,
if we use two pointers—one going twice as fast as the other [14, Section 15.2].
Eventually, the fast one either points to the empty list or it points to a list
whose tail is the empty list. The slow one then points to the middle of the list.

Once we have reached the middle of the list, we can return the second half
of the list and use the chain of returns to traverse it, incrementally comparing
each of its elements with the corresponding element in the first half. There is
no need to test for the end of the list, since by construction, there are precisely
enough returns to scan both halves of the input list. Using CPS, the returns
manifest themselves as a function traversing a list, i.e., as a list iterator.
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3.1 A CPS solution

(* pal_c : ’’a list -> bool *)

(* walk : ’’a list * ’’a list * (’’a list -> bool) *)

(* -> bool *)

fun pal_c xs

= let fun walk (xs1, nil, k)

= k xs1 (* even length *)

| walk (_ :: xs1, _ :: nil, k)

= k xs1 (* odd length *)

| walk (x :: xs1, _ :: _ :: xs2, k)

= walk (xs1, xs2, fn (y :: ys) => x = y andalso k ys)

in walk (xs, xs, fn nil => true)

end

Description: The local function walk is passed the input list twice and an
initial continuation, and it traverses the list recursively. For the i-th call to walk

(starting at 0), the three parameters are the i-th tail of the input list, the 2i-th
tail, and a continuation. Eventually, the continuation is sent the second half of
the input list, which is of length n. The continuation of the i-th call is only
invoked if listing the n − i right-most elements of the first half of the input list
and the n − i left-most elements of the second half forms a palindrome.

Analysis: pal c constructs a list iterator for scanning the second half of the
input list. This iterator either completes the traversal and yields true, or it
aborts and yields false.

The continuation is not used linearly and therefore writing this program in
direct style requires a control operator [4]. In the following direct-style solution,
we choose to use an exception.

3.2 A direct-style solution

(* pal_d : ’’a list -> bool *)

(* walk : ’’a list * ’’a list -> ’’a list *)

fun pal_d xs0

= let exception FALSE

fun walk (xs1, nil)

= xs1 (* even length *)

| walk (_ :: xs1, _ :: nil)

= xs1 (* odd length *)

| walk (x :: xs1, _ :: _ :: xs2)

= let val (y :: ys) = walk (xs1, xs2)

in if x = y

then ys

else raise FALSE

end
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in let val nil = walk (xs0, xs0)

in true

end handle FALSE => false

end

Description: The local function walk is passed the input list twice and tra-
verses the list recursively. For the i-th call to walk (starting at 0), the two
parameters are the i-th tail of the input list and the 2i-th tail. Eventually, the
second half of the input list, which is of length n, is returned. Each i-th call
returns normally if listing the n − i right-most elements of the first half of the
input list and the n−i left-most elements of the second half forms a palindrome.
Otherwise the computation aborts and yields false.

Analysis: This direct-style version demonstrates that one can detect whether
a list is a palindrome in one traversal, with no list reversal, and using no other
space than what is provided by a traditional control stack—a solution that
is more efficient than the traditional solutions from transformational program-
ming [11, Example 3]. Specifically, if a list has length m, Pettorossi and Proietti
count 2m hd-operations, 2m tl-operations, m cons-operations, and m closures
for their solution [10, Section 2, page 410] and for Bird’s solution [1]. In con-
trast, our solution requires m hd-operations if m is even and m− 1 if m is odd,
2m tl-operations, 0 cons-operations, and 0 closures.

Variations: For the same number of operations, we could halve the number
of recursive calls by using four pointers instead of two to traverse the putative
palindrome. We could even halving it further by using eight pointers, etc.

Using three pointers, we could also recognize 3-palindromes (i.e., the con-
catenation of three occurrences of a list of length n or of its reverse) in n recursive
calls. And using m pointers, we could recognize m-palindromes (i.e., the con-
catenation of m occurrences of a list of length n or of its reverse) in n recursive
calls, for any given m.

4 Conclusion and issues

Maybe because of the map functional, lists make one think iteratively (or do we
still think that recursive calls are expensive and should be avoided? [9, 13]).
There is more to processing a list, however, than simply traversing it. The
TABA programming pattern hinges on the fact that a recursive descent provides
just enough expressive power to traverse another list iteratively, at return time.
Besides, since ALGOL 60, the infrastructure for running recursive programs is
geared to hold multiple intermediate results without having to represent them
explicitly, e.g., in an auxiliary list. (This does not necessarily mean that a control
stack is cheaper to use than the heap, especially in the presence of first-class
continuations [2].)
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In this article, we have put these observations to use. When convolving
two lists, we have avoided constructing an intermediate list for the sole purpose
of reversing it. When detecting palindromes, we have avoided constructing an
intermediate list for the sole purpose of traversing it again. This last example
has led us to a new solution for the traditional palindrome problem.

Acknowledgments: We want to thank all the functional programmers and
implicit computational complexity theorists whom we subjected with the exam-
ples presented here. We are also grateful to Mads Sig Ager, Julia L. Lawall,
Henning Korsholm Rohde, Michael Sperber, and the anonymous reviewers for
comments.

A List reversal

The TABA programming pattern makes it possible to write a recursive version
of the reverse function that completely traverses the input list at call time and
then re-traverses it at return time, constructing the result.

(* taba_rev : ’a list -> ’a list *)

(* walk : ’a list -> ’a list * ’a list *)

fun taba_rev xs

= let fun walk nil

= (nil, xs)

| walk (_ :: xs)

= let val (r, x :: xs) = walk xs

in (x :: r, xs)

end

in let val (r, nil) = walk xs

in r

end

end

This extreme definition is not that alien, though, since CPS-transforming it and
defunctionalizing the result yields the usual reverse function with an accumula-
tor [5].

B Convolving successive prefixes

A simple variant of cnv2 in Section 1 makes it possible to list the symbolic
convolutions of the successive prefixes of two lists of length n in n recursive
calls and n(n + 1)/2 returns:

(* cnv2’ : ’a list * ’b list -> (’a * ’b) list list *)

(* walk : ’a list * ((’a * ’b) list * ’b list *)

(* -> (’a * ’b) list) *)

(* -> (’a * ’b) list list *)
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fun cnv2’ (xs, ys)

= let fun walk (nil, k)

= (k (nil, ys)) :: nil

| walk (x :: xs, k)

= (k (nil, ys)) :: (walk (xs, fn (r, y :: ys)

=> k ((x, y) :: r, ys)))

in walk (xs, fn (r, _) => r)

end

Indeed applying cnv2’ to [1,2,3,4] and [10,20,30,40] yields

[[],

[(1,10)],

[(1,20),(2,10)],

[(1,30),(2,20),(3,10)],

[(1,40),(2,30),(3,20),(4,10)]]

The definition of walk is not in CPS since two calls to k are not in tail
position. It can still be written without the higher-order accumulator, i.e., in
“direct style,” if one uses the control operator shift and the control delimiter
reset [3].
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