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Abstract

A vertex set X of a digraph D = (V, A) is a kernel if X is indepen-
dent (i.e., all pairs of distinct vertices of X are non-adjacent) and for
every v ∈ V − X there exists x ∈ X such that vx ∈ A. A vertex set
X of a digraph D = (V, A) is a quasi-kernel if X is independent and
for every v ∈ V − X there exist w ∈ V − X, x ∈ X such that either
vx ∈ A or vw, wx ∈ A. In 1994, Chvátal and Lovász proved that every
digraph has a quasi-kernel. In 1996, Jacob and Meyniel proved that, if
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a digraph D has no kernel, then D contains at least three quasi-kernels.
We characterize digraphs with exactly one and two quasi-kernels, and,
thus, provide necessary and sufficient conditions for a digraph to have
at least three quasi-kernels. In particular, we prove that every strong
digraph of order at least three, which is not a 4-cycle, has at least
three quasi-kernels. We conjecture that every digraph with no sink
has a pair of disjoint quasi-kernels and provide some support to this
conjecture.

1 Introduction, terminology and notation

A vertex set X of a digraph D = (V,A) is a kernel if X is independent (i.e.,
all pairs of distinct vertices of X are non-adjacent) and for every v ∈ V −X
there exists x ∈ X such that vx ∈ A. A vertex set X of a digraph D = (V,A)
is a quasi-kernel if X is independent and for every v ∈ V − X there exist
w ∈ V − X,x ∈ X such that either vx ∈ A or vw,wx ∈ A. A digraph
T = (V,A) is a tournament if for every pair x, y of distinct vertices in V ,
either xy ∈ A or yx ∈ A, but not both. A vertex of out-degree zero is called
a sink.

While not every digraph has a kernel (e.g., a directed cycle ~Cn has a
kernel if and only if n is even), Chvátal and Lovász [2] (see also Chapter 12
in [1]) proved that every digraph has a quasi-kernel. Jacob and Meyniel [3]
proved that, if a digraph D has no kernel, then D contains at least three
quasi-kernels. While the assertion of Chvátal and Lovász generalizes the
fact that every tournament has a 2-serf, i.e., a quasi-kernel of cardinality
1, the Jacob-Meyniel theorem extends the result of Moon [4] that every
tournament with no sink has at least three 2-serfs.

While the Jacob-Meyniel theorem provides sufficient conditions for a
digraph to have at least three quasi-kernels, in Section 2, we characterize di-
graphs with exactly one and two quasi-kernels, and, thus, provide necessary
and sufficient conditions for a digraph to have at least three quasi-kernels
(see Theorem 2.6). In particular, we prove that every strong digraph, of
order at least three, different from the 4-cycle ~C4 has at least three quasi-
kernels. Note that, in our proofs, we naturally use the Chvátal-Lovász
theorem, but not the more powerful Jacob-Meyniel theorem.

In Section 3, we pose a conjecture that every digraph with no sink has a
pair of disjoint quasi-kernels. We show that the conjecture is true for every
digraph which possesses a quasi-kernel of cardinality at most two and every
kernel-perfect digraph, i.e., a digraph for which every induced subdigraph
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has a kernel. It was proved by von Neumann and Morgenstern [5] that every
acyclic digraph is kernel-perfect. Richardson [6] generalized this result by
showing that every digraph with no odd cycle is kernel-perfect. Richardson’s
theorem was later improved in a number of papers, cf. Section 12.3 in [1].

We use the standard terminology and notation on digraphs as given in
[1]. We still provide most of the necessary definitions for the convenience of
the reader.

For a digraph D, the vertex (arc) set is denoted by V (D) (A(D)). Let
x, y be a pair of vertices in D. If xy ∈ A(D), we say x dominates y, and y is
dominated by x, and denote it by x→y. A digraph D is strong if, for every
ordered pair x, y of distinct vertices in D, there is a path from x to y. An
orientation of a digraph D is an oriented graph obtained from D by deleting
exactly one arc from each 2-cycle in D. A biorientation of D is a digraph,
which is a subdigraph of D and superdigraph of an orientation of D. The
closed in-neighbourhood (closed out-neighbourhood) of a set X of vertices of
a digraph D = (V,A) is defined as follows.

N−
D [X] = X∪{y ∈ V : ∃x ∈ X, y→x} (N+

D [X] = X∪{y ∈ V : ∃x ∈ X,x→y}).

For disjoint subsets X and Y of V (D), let X × Y = {xy : x ∈ X, y ∈ Y },
(X,Y )D = (X × Y ) ∩ A(D); D[X] is the subdigraph of D induced by X. If
the digraph under consideration is clear from the context, then we will omit
the subscript D.

2 Digraphs with exactly one and two quasi-kernels

We start with the following:

Lemma 2.1 Let x be a vertex in a digraph D. If x is a non-sink, then D
has a quasi-kernel not including x.

Proof: Let y ∈ N+[x] − {x} be arbitrary. If N−[y] = V (D), then y is
the required quasi-kernel. If N−[y] 6= V (D), let Q′ be a quasi-kernel in
D − N−[y]. If y dominates a vertex in Q′, then Q′ is a quasi-kernel in
D, which does not contain x. If y does not dominate a vertex in Q′, then
Q′ ∪ {y} is a quasi-kernel in D, which does not include x. 2

The following is an easy characterization of digraphs with merely one
quasi-kernel.

3



Theorem 2.2 A digraph D has only one quasi-kernel if and only if D has
a sink and every non-sink of D dominates a sink of D. If a digraph D has
only one quasi-kernel Q, then Q is a kernel and consists of the sinks of D.

Proof: Assume that D has a sink and every non-sink of D dominates a sink
of D. Let S be the set of sinks in D. To see that S is a unique quasi-kernel
of D, it is enough to observe that every sink must be in a quasi-kernel.

Let D have only one quasi-kernel Q. To see that Q is the set of sinks in
D, observe that Q contains all sinks in D and, by Lemma 2.1, Q does not
have non-sinks. If x is a non-sink and x does not dominate a vertex in Q,
then Q ∪ {x} is another quasi-kernel of D, a contradiction. Thus, we have
proved that D has a sink and every non-sink of D dominates a sink of D. 2

In view of Theorem 2.2, the following assertion is a strengthening of the
Jacob-Meyniel theorem for the case of digraphs with no sinks.

Theorem 2.3 Let D be a digraph with no sink. Then D has precisely two
quasi-kernels if and only if D has an induced 4-cycle or 2-cycle, C, such
that no vertex of C dominates a vertex in D − V (C) and every vertex in
D − V (C) dominates at least two adjacent vertices in C.

To prove Theorem 2.3, we will extensively use the following:

Lemma 2.4 Let a digraph D have exactly two quasi-kernels, R and Q.
Then the following claims hold:

(i) If a vertex x in R dominates some vertex y such that V (D) 6= N−[y],
then Q − y is the only quasi-kernel in D − N−[y];

(ii) {R,Q} is the set of quasi-kernels of every biorientation of D, in
which both R and Q contain non-sinks.

Proof: Let R1, R2, . . . , Rk be the quasi-kernels in D−N−[y]. Then R′
1, R

′
2, . . . , R

′
k

are quasi-kernels in D, where R′
i = Ri if (y,Ri) 6= ∅ and R′

i = Ri ∪ {y},
otherwise, i = 1, 2, . . . , k. Since D has only two quasi-kernels, k ≤ 2. Since
x ∈ N−[y] and x ∈ R, we conclude that R − y is not a quasi-kernel in
D − N−[y]. By the Chvátal- Lovász theorem, every digraph has a quasi-
kernel, so Q − y is the unique quasi-kernel in D − N−[y].

Let D′ be a biorientation of D, in which both R and Q contain non-
sinks. Clearly, every quasi-kernel in D′ is a quasi-kernel in D. However,
by Theorem 2.2, neither R nor Q can be the only quasi-kernel in D′. Thus
{R,Q} is the set of quasi-kernels of D′. 2
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Proof of Theorem 2.3: We first show that, if D has precisely two quasi-
kernels, then D has the above-described structure. We will prove this asser-
tion by induction on |V (D)|. The assertion is clearly true when |V (D)| ≤ 2,
so we may assume that it is true for all digraphs, D∗, with |V (D∗)| < |V (D)|.
Let Q1 and Q2 be the only two quasi-kernels in D. Note that by Lemma
2.1, Q1 and Q2 must be disjoint (if x ∈ Q1 ∩Q2 then use Lemma 2.1 for x).
We now prove the following claims.

Claim A: If (Qi, Qj) 6= ∅ ({i, j} = {1, 2}), then for every w ∈ Qi,
(w,Qj) 6= ∅.

Proof of Claim A: Let xy ∈ (Qi, Qj) and let w be a vertex in Qi

which has no arc into Qj. By Lemma 2.4(i), Qj − y is the unique kernel
in D − N−[y] and, thus, by Theorem 2.2, we must have an arc from w to
Qj − y since w ∈ V (D) − N−[y], a contradiction.

Claim B: Both (Q1, Q2) and (Q2, Q1) are non-empty.

Proof of Claim B: Clearly Q1 ∪Q2 is not an independent set, as then
it would be a quasi-kernel. Hence, without loss of generality we may assume
that (Q1, Q2) 6= ∅. Suppose that (Q2, Q1) = ∅. Since Q1 is a quasi-kernel,
there exists a 2-path from any given x ∈ Q2 to Q1, say xzy (z 6∈ Q1 ∪ Q2

and y ∈ Q1).
We now show that every vertex in Q2 must dominate z. Suppose that

this is not the case, and let w be a vertex not dominating z. By Lemma
2.4, Q1 is the only quasi-kernel in D − N−[z]. However, by Theorem 2.2,
this is a contradiction against the fact that w dominates no vertex in Q1

(w ∈ V (D) − N−[z]). Thus, Q2 ⊆ N−[z].
Let D′ be any orientation of D for which (z,Q2)D′ = ∅, and let ab be

an arc in (Q1, Q2)D′ . Since z ∈ V (D′) − N−
D′ [b], we have V (D′) 6= N−

D′ [b].
By Lemma 2.4, Q2 − b is the only quasi-kernel in D′ −N−

D′ [b]. By Theorem
2.2, Q2 − b is a kernel in V (D′)−N−

D′ [b]. However, Q2 − b is not a kernel in
D′ − N−

D′ [b] as z dominates no vertex in Q2 − b, a contradiction.

Claim C: Let {a, b} be a set of two distinct vertices from Q1 and let
{c, d} be a set of two distinct vertices from Q2. Then we cannot have both
a→c and d→b.

Proof of Claim C: Assume that a→c and d→b. Suppose first that
c6→b. By Lemma 2.4, Q1 − b is the only quasi-kernel in V (D) − N−[b].
However, since the arc ac ∈ D − N−[b] we see that Q1 − b contains a non-
sink in V (D)−N−[b] in contradiction with Theorem 2.2. Suppose now that
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c→b, and let D′ equal D − bc (if bc 6∈ D, then D′ = D). By Lemma 2.4,
Q2 − c is the only quasi-kernel in V (D′) − N−[c]. However, since the arc
db ∈ D′ − N−

D′ [c] we see that Q2 − c contains a non-sink in contradiction
with Theorem 2.2.

Claim D: Either D[Q1 ∪ Q2] is a 2-cycle or D[Q1 ∪ Q2] contains an
induced 4-cycle.

Proof of Claim D: If either Q1 or Q2 has only one vertex, then without
loss of generality we may assume that |Q1| = 1. If |Q2| = 1 then by Claim B,
D[Q1 ∪Q2] is a 2-cycle, so assume that |Q2| ≥ 2. Let Q1 = {x} and observe
that by Claims A and B there exists a pair a, b of distinct vertices in Q2 such
that ax, xb ∈ A(D). Let D′ be any orientation of D with ax, xb ∈ A(D′).
By Lemma 2.4, Q1 − x is the only quasi-kernel in the non-empty digraph
D′ − N−

D′ [x], which contradicts the fact that Q1 = {x}.
Therefore, we may now assume that both Q1 and Q2 have cardinality

at least two. By Claim B, there exists an arc x2x1 in (Q2, Q1)D. Let
y1 ∈ Q1 − {x1} be arbitrary, and observe that (y1, Q2) 6= ∅, by Claims A
and B. By Claim C, y1x2 ∈ (y1, Q2). Let y2 ∈ Q2 − {x2} be arbitrary.
Analogously, we have y2y1 ∈ A(D). Finally, Claims A and C imply that
x1y2 ∈ A(D). Therefore, C = x2x1y2y1x2 is a 4-cycle. Observe that C is
an induced 4-cycle, by Claim C and the fact that {x1, y1} and {x2, y2} are
independent sets (they are subsets of quasi-kernels).

Claim E: If abcda is a 4-cycle such that {a, c} ⊆ Q1 and {b, d} ⊆ Q2,
then there is no arc from {a, b, c, d} to any vertex in D − {a, b, c, d}.

Proof of Claim E: Assume that the claim is false and that there exists
a vertex z ∈ V (D) − {a, b, c, d} such that there is an arc from {a, b, c, d}
to z. Without loss of generality, assume that az ∈ A(D), and consider the
following two cases.

Case 1: z→c. Let D′ be any orientation of D with zc, az ∈ A(D′). By
Lemma 2.4, Q2 − z is the only quasi-kernel in D′ − N−

D′ [z]. However, the
existence of the arc bc ∈ D′ contradicts Theorem 2.2.

Case 2: z 6→c. By Lemma 2.4(i), Q1−c is the only quasi-kernel in N−
D [c].

However, the existence of the arc az ∈ D −N−[c] contradicts Theorem 2.2.

Claim F: If abcda is a 4-cycle such that {a, c} ⊆ Q1 and {b, d} ⊆ Q2,
then every vertex in D−{a, b, c, d} dominates two adjacent vertices on abcda.

Proof of Claim F: Let x ∈ V (D) − {a, b, c, d} be arbitrary. If x has
no arc into {a, b, c, d}, then consider the digraph D∗ = D − N−[x]. Clearly,
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Q1 − N−[x] and Q2 − N−[x] are distinct quasi-kernels in D∗; D∗ cannot
have another quasi-kernel as D has only two quasi-kernels. Therefore there
are exactly two quasi-kernels in D∗, and by our induction hypothesis, these
quasi-kernels are precisely {a, c} and {b, d}. Observe that, by Claim E, x is
adjacent to no vertex from the set {a, b, c, d}. However, this means that both
{x, a, c} and {x, b, d} are quasi-kernels in D, contradicting the fact that Q1

and Q2 are disjoint. Therefore, x must have an arc into {a, b, c, d}. Observe
that since x is arbitrary, this implies that {a, c} and {b, d} are quasi-kernels
in D.

Without loss of generality, assume that x→a in D. Suppose also that
x6→b and x6→d, as otherwise we would be done. However, these assumptions
imply that {x, b, d} also is a quasi-kernel, along with {a, c} and {b, d}, a
contradiction.

Claim G: If C = D[Q1∪Q2] is a 2-cycle, then no vertex of C dominates
a vertex in D−V (C) and every vertex in D−V (C) dominates both vertices
in C.

Proof of Claim G: Let C = xyx. Assume there exists an arc xz, z 6= y.
Consider an orientation, D′, of D such that D′−N−

D′ [x] contains z and does
not contain y. On one hand, D′ has no quasi-kernels other than {x} and {y};
on the other hand, either Q or Q∪ {x} is a quasi-kernel in D′, where Q is a
quasi-kernel in D′ − N−

D′ [x]. We have arrived at a contradiction. Therefore
(V (C), V (D) − V (C)) = ∅. Furthermore, every vertex v ∈ V (D) − V (C)
must dominate both vertices on C since otherwise there would be a quasi-
kernel containing v.

Claims D,E, F and G prove the assertion on the structure of D.

Now assume that D has the structure described in this theorem, and C
is the cycle in D. If C is a 2-cycle, then it is easy to see that each of the
two vertices on C is a quasi-kernel (and kernel) in D, and that there are
no other quasi-kernels in D. So now assume that C = abcda is an induced
4-cycle in D. Observe that {a, c} and {b, d} are quasi-kernels in D. Since
({a, b, c, d}, V (D) − {a, b, c, d}) = ∅, any quasi-kernel in D must contain a
vertex, x, in C. Since the successor x+ of x in C has to be able to reach
the quasi-kernel with a path of length at most two, (x+)+ must also belong
to the quasi-kernel. Since all other vertices are adjacent to one of these
vertices, the only quasi-kernels are {a, c} and {b, d}. 2

As corollaries we obtain the following two theorems.
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Theorem 2.5 A strong digraph D of order at least three has at least three
quasi-kernels, unless D is ~C4.

Proof: Immediate from the previous theorems, Theorems 2.2 and 2.3. 2

Theorem 2.6 Let D be a digraph, S the set of sinks in D, R the set of
vertices that have an arc into S, and H = D−S −R. Then D has precisely
two quasi-kernels, if and only if one of the following holds:

(a) There is a 2-cycle C in H such that at most one of the vertices in
C has an arc into R, no vertex of C dominates a vertex in H − V (C), and
every vertex in H − V (C) dominates both vertices in C.

(b) There is an induced 4-cycle, C, in H such that no vertex of C dom-
inates a vertex in D − V (C) and every vertex in H − V (C) dominates two
adjacent vertices in C.

(c) The digraph H has at least two vertices. There is a vertex x in H
such that no vertex of H is dominated by x, all the vertices of H−x dominate
x, i.e., (V (H) − {x}, x) = (V (H) − {x}) × {x}, and there is a kernel Q in
H − x, consisting only of sinks in H − x. Moreover, there is no arc from Q
to R.

(d) The digraph H consists of a single vertex.

Proof: We first show that, if D has precisely two quasi-kernels, then D
has the above-described structure. Let D be a digraph with exactly two
quasi-kernels. If D has no sinks, then by Theorem 2.3, D has the structure
described in part (a) or (b) with R ∪ S = ∅. Hence, we may assume that D
contains some sinks, and let S, R and H be as defined in the formulation of
this theorem. Let us first prove that H has at most one sink.

Suppose that there are at least two sinks in H. Let x and y be two
distinct sinks in H. Note that both x and y have arcs into R, since otherwise
they would belong to S or R. Let Q1 be a quasi-kernel in H, Q2 a quasi-
kernel in H − x, and Q3 a quasi-kernel in H − y. Since {x, y} ⊆ Q1,
{x, y} ∩ Q2 = {y} and {x, y} ∩ Q3 = {x} we see that Q1 ∪ S, Q2 ∪ S and
Q3 ∪ S are 3 different quasi-kernels in D, a contradiction. Hence, H has at
most one sink.

Suppose that there is exactly one sink x in H. Since the case of H having
exactly one vertex is trivial, we may assume that H contains at least two
vertices. Let Q1 be a quasi-kernel in H, and let Q2 be a quasi-kernel in H−x.
Note that S∪Q1 and S∪Q2 are different quasi-kernels in D (as x ∈ Q1 and x
has an arc into R). Therefore, Q2 must be the unique quasi-kernel in H −x,
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and, by Theorem 2.2, Q2 is a kernel in H−x consisting only of sinks in H−x.
Since x is the only sink in H, every vertex in Q2 dominates x. Therefore,
{x} is a quasi-kernel in H. Since x must be the unique quasi-kernel in H
and x is a sink, we must have (V (H)−{x}, x) = (V (H)−{x})×{x}. Thus,
S∪{x} and S∪Q2 are quasi-kernels in D. If there is a vertex w ∈ Q2 which
dominates a vertex in R, then let Q3 be a quasi-kernel in H − w − x, and
observe that Q3 ∪ S is a third quasi-kernel, a contradiction. Therefore, D
has the structure described in part (c).

Suppose now that H has no sink. (Since D has more than one quasi-
kernel, H is non-empty.) By Theorem 2.2, there are at least two quasi-
kernels, Q1 and Q2, in H. If Q is a quasi-kernel in H, then S ∪ Q is a
quasi-kernel in D. Hence, Q1 and Q2 are the only quasi-kernels in H, and,
thus, the structure of H is provided by Theorem 2.3. Let C be the 2-cycle
or induced 4-cycle given in Theorem 2.3.

If C is a 2-cycle, xyx, then, by Theorem 2.3, to show that D has the
structure described in part (a) it suffices to prove that at most one of the
vertices x and y has an arc into R. Assume that both x and y have arcs
into R. Let Q3 be a quasi-kernel in H − x − y, if V (H) 6= {x, y}, and the
empty set, otherwise. However, S ∪ x, S ∪ y and S ∪ Q3 are three different
quasi-kernels in D, a contradiction.

If C is an induced 4-cycle, abcda, then, by Theorem 2.3, to show that
D has the structure described in part (b) it suffices to prove that no vertex
in V (C) dominates a vertex in R. Without loss of generality, assume that
a dominates a vertex in R. By Lemma 2.1, there exists a quasi-kernel, Q,
in H − a, which does not contain b, as b is not a sink in H − a. However,
Q ∪ S, {a, c} ∪ S and {b, d} ∪ S are three different quasi-kernels in D, a
contradiction.

This proves that, if D has exactly two quasi-kernels, then D has the
structure described in the formulation of this theorem. If D has the structure
provided in part (a), (b), (c) or (d), then it is not too difficult to check that
there are exactly two quasi-kernels in D. 2

3 Disjoint quasi-kernels

If a digraph D has a sink x, then every quasi-kernel in D must contain
x. Hence, a digraph with sinks has no disjoint quasi-kernels. However, we
suspect that the following holds.
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Conjecture 3.1 Every digraph with no sink has a pair of disjoint quasi-
kernels.

By Lemma 2.1, this conjecture holds for digraphs with exactly two quasi-
kernels: see the first paragraph in the proof of Theorem 2.3. We will show
that the conjecture is also true for every digraph which possesses a quasi-
kernel of cardinality at most two and every kernel-perfect digraph. We recall
that a digraph D is kernel-perfect if every induced subdigraph of D has a
kernel.

We start with the following useful lemma.

Lemma 3.2 Let D be a digraph and let Y be a set of vertices in D such
that D[Y ] is kernel-perfect. Then there exists a quasi-kernel, Q, in D, such
that Q ⊆ V (D) − (N−[Y ] − Y ).

Proof: Let H = D − N−[Y ] and let Q1 be a quasi-kernel in H (if H = ∅
then Q1 = ∅). Let Y ′ contain all vertices from Y , which have no arc into
Q1. Since D[Y ] is kernel-perfect, there is a kernel, K ′, in D[Y ′]. We claim
that Q = Q1 ∪ K ′ is the desired quasi-kernel in D.

Clearly, Q is an independent set as Q1 and K ′ are independent sets,
there is no arc from K ′ to Q1 (by the definition of Y ′) and there is no arc
from Q1 to K ′ (by the definition of H). By the definition of Q1, every vertex
in H can reach Q with a path of length at most 2. Observe that every vertex
in Y − K ′ dominates a vertex in Q (each y ∈ Y either has an arc into Q1

or is a vertex in Y ′ and has an arc into K ′ or is in K ′). Therefore, every
vertex in N−(Y ) can reach Q with a path of length at most 2. 2

Corollary 3.3 Every kernel-perfect digraph with no sink has a pair of dis-
joint quasi-kernels.

Proof: Let D be a kernel-perfect digraph with no sink, K a kernel in D,
Y = N+[K] − K. Observe that K ⊆ N−[Y ] − Y . Hence, by Lemma 3.2, D
has a quasi-kernel disjoint from K. 2

Corollary 3.4 Let D be a digraph, and let S = {x, y} be a set of distinct
vertices in D such that N+[x]−S 6= ∅ and N+[y]−S 6= ∅. Then there exists
a quasi-kernel in D, which is disjoint from S.

Proof: Let u ∈ N+[x]−S and v ∈ N+[y]−S be arbitrary (possibly u = v).
Since D[{u, v}] is obviously kernel-perfect and S ⊆ N−[{u, v}] − {u, v}, the
desired result follows from Lemma 3.2. 2
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It follows from Corollary 3.4 that Conjecture 3.1 is true for every digraph
with a quasi-kernel of cardinality at most 2.

Corollary 3.4 cannot be improved to sets of size 3, by the following
example. Let V (D) = {x1, x2, x3, y1, y2, y3, z1, z2, z3} and let the arc set
of D contain the 3-cycles xiyizixi for i = 1, 2, 3, z1z2z3z1 and y1y2y3y1 as
well as the arcs {z1y2, z1y3, z2y1, z2y3, z3y1, z3y2}. By the definition of D,
X = {x1, x2, x3} is a quasi-kernel of size 3. To see that X intersects any
other quasi-kernel in D, observe that every pair of vertices in D − X is
adjacent and none of the vertices in D − X is a quasi-kernel (for example,
the shortest path from x2 to y1 is of length 3). At the same time, {x1, y3}
and {y1, x2} are disjoint quasi-kernels.
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