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Abstract

Computational experiments show that the greedy algorithm (GR)
and the nearest neighbor algorithm (NN), popular choices for tour con-
struction heuristics, work at acceptable level for the Euclidean TSP,
but produce very poor results for the general Symmetric and Asym-
metric TSP (STSP and ATSP). We prove that for every n ≥ 2 there
is an instance of ATSP (STSP) on n vertices for which GR finds the
worst tour. The same result holds for NN. We also analyze the repeti-
tive NN (RNN) that starts NN from every vertex and chooses the best
tour obtained. We prove that, for the ATSP, RNN always produces
a tour, which is not worse than at least n/2 − 1 other tours, but for
some instance it finds a tour, which is not worse than at most n − 2
other tours, n ≥ 4. We also show that, for some instance of the STSP
on n ≥ 4 vertices, RNN produces a tour not worse than at most 2n−3
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tours. These results are in sharp contrast to earlier results by G. Gutin
and A. Yeo, and A. Punnen and S. Kabadi, who proved that, for the
ATSP, there are tour construction heuristics, including some popular
ones, that always build a tour not worse than at least (n − 2)! tours.

Keywords: TSP, domination analysis, greedy algorithm, nearest
neighbor algorithm

1 Introduction

In this note we consider the Asymmetric Traveling Salesman Problem (ATSP):
given a weighted complete directed graph, (

↔
Kn, c), where n is the number

of vertices and c is the weight function from the arc set of
↔
Kn to the set of

reals, one seeks a hamiltonian cycle of minimum total weight. Below we call
a hamiltonian cycle a tour and c(a) the cost of a for an arc a of

↔
Kn . For a

tour T , its cost c(T ) is the sum of the costs of its arcs. The Symmetric TSP
(STSP) is defined similarly to the ATSP apart from the fact that

↔
Kn is re-

placed by the complete undirected graph Kn. Since an instance of the STSP
can be transformed into an ”equivalent” instance of the ATSP by replacing
every edge {x, y} of Kn by the pair (x, y), (y, x) of arcs of the costs equal to
the cost of {x, y}, every heuristic for the ATSP can be used for the STSP.
We well use the term TSP when it is not important whether the ATSP or
STSP is under consideration.

It is well-known that for the majority of combinatorial optimization prob-
lems (including the TSP) even the problem to find an approximate solution
(within a guaranteed constant factor from the optimum) is NP-hard. As
a result, heuristics for such problems are usually compared using computa-
tional experiments. Glover and Punnen [3] suggested a new approach for
evaluation of heuristics that compares heuristics according to their so-called
domination number. We define this notion only for the TSP since its exten-
sion to other problems is obvious. The domination number of a heuristic A
for the TSP is the maximum integer d(n) such that, for every instance I of
the TSP on n vertices, A produces a tour T which is not worse than at least
d(n) tours in I including T itself. Observe that an exact algorithm for the
ATSP (STSP) has domination number (n − 1)! ((n − 1)!/2).

Clearly, the domination number is well defined for every heuristic, and a
heuristic with higher domination number may be considered a better choice
than a heuristic with lower domination number. (This kind of comparison is
somewhat similar to the standard comparison of approximation algorithms,
which continues to be the most popular choice of theoretical performance
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analysis.)
Computational experiments show that the greedy algorithm (GR) and

the nearest neighbor algorithm (NN), popular choices for tour construction
heuristics, work at acceptable level for the Euclidean TSP (see e.g. [7, 9]),
but produce very poor results for the general Symmetric and Asymmetric
TSP (see, e.g., [1, 2, 6, 7]). For the ATSP, GR builds a tour by repeatedly

choosing the cheapest eligible arc of (
↔
Kn, c) until the chosen arcs form a

tour; an arc a = (u, v) is eligible if the out-degree of u in D and the in-
degree of v in D equal zero, where D is the digraph induced by the set S of
chosen arcs, and a can be added to S without creating a non-hamiltonian
cycle. NN starts its tour from a fixed vertex i1, goes to the nearest vertex i2
(i.e., c(i1, i2) = min{c(i1, j) : j 6= i1}), then to the nearest vertex i3 (from
i2) distinct from i1 and i2, etc. The repetitive NN (RNN) starts NN from
every vertex and chooses the best tour obtained.

We analyze GR, NN and RNN using the domination number approach.
We prove that for every n ≥ 2 there is an instance of ATSP (STSP) on n
vertices for which GR finds the worst tour, i.e., the domination number of
GR for the ATSP (STSP) is 1. The same result holds for NN. We show
that, for the ATSP, RNN always produces a tour, which is not worse than
at least n/2 − 1 other tours, but for some instance on n vertices it finds a
tour, which is not worse than at most n−2 other tours, i.e., the domination
number of RNN is between n/2 and n−1. We also prove that, for the STSP,
the domination number of RNN is at most 2n−2. These results are in sharp
contrast to earlier results by G. Gutin and A. Yeo [4, 5], and A. Punnen and
S. Kabadi [8], who proved that, for the ATSP, there are tour construction
heuristics, including some popular ones (such as the Karp-Steele patching
algorithm, which is a good choice for the ATSP [2]) that always build a
tour not worse than at least (n − 2)! tours. (It follows from the simple
construction mentioned in the last sentence of the first paragraph of this
section that those heuristics have domination number at least (n− 2)!/2 for
the STSP.) This provides some theoretical explanation why ”being greedy”
is not so good for solving the TSP.

2 Results

In the following theorems we use the notions of forward and backward arcs
in

↔
Kn, V (

↔
Kn) = {1, 2, ..., n}. We call an arc (i, j) forward (backward) if i < j

(j < i).
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Theorem 2.1 The domination number of GR for the TSP is 1.

Proof: We show this theorem only for the ATSP since its proof for the
STSP is practically the same. We construct an instance of the ATSP for
which GR produces the worst possible tour. Let the cost of every arc (i, j)
be n ·min{i, j} + 1 with the following exceptions: c(i, i + 1) = in for i =
1, 2, ..., n − 1 and c(n, 1) = n3.

Since the cheapest arc is (1, 2), GR constructs the tour T = (1, 2, . . . , n, 1).
The cost of T is

n−1∑

i=1

in + c(n, 1).

Suppose that there is a tour H in (
↔
Kn, c) such that c(H) ≥ c(T ). The tour

H must contain the arc (n, 1) since

c(n, 1) > n·max{c(i, j) : 1 ≤ i 6= j ≤ n, (i, j) 6= (n, 1)}.
This implies that H contains a hamiltonian path P from 1 to n of cost at least∑n−1

i=1 in. Let ei be an arc of P whose tail is i. Observe that c(ei) ≤ in + 1
and P must have a backward arc, say ek. Since c(ek) ≤ (k − 1)n + 1, we
have c(P ) ≤ (

∑n−1
i=1 in) + (n − 1) − n, a contradiction. 2

The proof of this theorem implies that the domination number of NN
for TSP is also 1. Certainly, this is the case if one always starts from the
vertex 1. More often, NN is initiated from a random vertex. In this case,
on at least one of the n instances obtained from the instance in the theorem
by exchanging vertices 1 and i, i = 1, 2, . . . , n, NN will produce the worst
tour. However, the following two theorems show that the situation is slightly
better for RNN.

Theorem 2.2 Let n ≥ 4. The domination number of RNN for the ATSP is
at least n/2 and at most n − 1.

Proof: We first consider the following instance of the ATSP, which proves
that the RNN has domination number at most n − 1. Let N > 2n. Let all
arcs (i, i + 1), 1 ≤ i < n, have cost iN , all arcs (i, i + 2), 1 ≤ i ≤ n− 2, cost
iN + 1, and all remaining forward arcs (i, j) cost iN + 2. Let a backward
arc (i, j) have cost (j − 1)N .

When NN tour T starts at i /∈ {1, n}, it has the form (i, 1, 2, ..., i− 1, i +
1, i + 2, ..., n, i) and cost

` =
n−1∑

k=1

kN − N + 1.
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When T starts at 1 or n, we simply have T = (1, 2, ..., n, 1) of cost
∑n−1

k=1 kN >
`. Let F denote the set of all tours T described above (note that |F| = n−1).
Observe that any tour in F has cost at least `. Let C be any tour not in
F . Let B denote the set of backward arcs in C, and define the length of a
backward arc (i, j) by i− j. Let q denote the sum of the lengths of the arcs
in B. Since C is a tour (and therefore there is a path from n to 1) we have
q ≥ n − 1. The cost of C is at most

∑n
i=1(iN + 2) − qN − |B|N , since if

(i, j) is an arc in B, then the corresponding term iN + 2 in the sum can be
replaced by the real cost (j − 1)N = iN + 2 − (i − j + 1)N − 2 of the arc.
We have

∑n
i=1(iN + 2) − qN − |B|N ≤ ` + N − 1 + 2n + nN − qN − |B|N

= ` + 2n + N(n + 1 − q − |B|) − 1.

Since C is not in F we have |B| ≥ 2, implying that 2n + N(n + 1 − q −
|B|) − 1 is negative except for the case of q = n − 1 and |B| = 2. We may
conclude that the cost of C is less than `, as q = n − 1 and |B| = 2 would
imply that C belongs to F . Therefore all cycles not in F have cost less than
those in F .

In order to prove that RNN has domination number at least n/2, assume
that this is false, and proceed as follows. RNN constructs n tours, but several
of them may coincide. By the assumption, there exist at least three tours
that coincide. Let F = x1x2...xnx1 be a tour such that F = Fi = Fj =
Fk, where Fs is the tour obtained by starting NN at xs and xi, xj and xk

are distinct. Without loss of generality, we may assume that i = 1 and
2 < j ≤ 1 + (n/2). For every m, with j < m ≤ n, let Cm be the tour
obtained by deleting the arcs (xi, xi+1), (xj , xj+1), (xm, xm+1) and adding
the arcs (xi, xj+1), (xm, xi+1), (xj , xm+1). Note that c(Cm) ≥ c(F ), since
c(xi, xi+1) ≤ c(xi, xj+1) (because we used NN from xi to construct Fi),
c(xj , xj+1) ≤ c(xj , xm+1) (since we used NN from xj to construct Fj) and
c(xm, xm+1) ≤ c(xm, xi+1) (since NN chose the arc xmxm+1 on Fj , when
the arc xmxi+1 was available). Therefore the cost of F is at most that
of F,Cj+1, Cj+2, . . . , Cn, implying that the domination number is at least
n − j + 1 ≥ n/2, a contradiction. 2

We call a tour x1x2 . . . xnx1, x1 = 1, of the STSP pyramidal if x1 <
x2 < . . . < xk > xk+1 > . . . > xn for some index k. Since every pyramidal
tour x1x2 . . . xnx1, x1 = 1, is determined by the set {x2, x3, . . . , xk−1} or
the set {xk+1, xk+2, . . . , xn} (clearly, xk = n), we obtain that the number of
pyramidal tours of the STSP is 2n−3.
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The next theorem gives an upper bound for the domination number of
RNN for the STSP. Even though the theorem leaves a possibility that this
domination number is exponential, it is still much smaller than Θ((n− 2)!).

Theorem 2.3 Let n ≥ 4. The domination number of RNN for the STSP is
at most 2n−3.

Proof: We consider the following instance of the STSP, which proves that
RNN for the STSP has domination number at most 2n−3. Let N > 2n. Let
all edges {i, i+1}, 1 ≤ i < n, have cost iN , all edges {i, i+2}, 1 ≤ i ≤ n−2,
cost iN + 1, and all remaining edges {i, j}, i < j, cost iN + 2.

Let cRNN be the cost of the cheapest tour constructed by RNN. It is
straightforward to verify that

cRNN = c(12 . . . n1) =
n−1∑

i=1

iN + N + 2. (1)

Let T = x1x2 . . . xnx1 be a tour in Kn, x1 = 1; we orient all edges of T
such that T becomes a directed cycle T ′. Some of arcs in T ′ are forward,
others are backward. For a backward arc e = (j, i), we define its length as
q(e) = j − i. We denote the sum of the lengths of backward arcs in T ′ by
q(T ′). (By the definition of a backward arc the length of every backward arc
is positive.) Let cmax be the cost of the most expensive non-pyramidal tour
T . Since the number of pyramidal tours is 2n−3, to prove this theorem it
suffices to show that cmax < cRNN.

Observe that q(T ′) ≥ n for every T ′ corresponding to a non-pyramidal
tour T . Let H be a non-pyramidal tour of cost cmax, and let ei = (i, j) be
an arc of H ′. If ei is forward, then c(ei) ≤ iN + 2, and if ei is backward,
then c(ei) ≤ jN + 2 = iN + 2 − q(ei)N. Thus,

cmax ≤
n∑

i=1

(iN + 2) − q(H ′)N ≤
n−1∑

i=1

iN + 2n

as q(H ′) ≥ n. Since N > 2n and by (1), we conclude that indeed cmax <
cRNN. 2

By the construction mentioned in the last sentence of the first paragraph
of Section 1 and the lower bound in Theorem 2.2, the domination number of
RNN for the STSP is at least n/4. It would be interesting to find the exact
values of the domination number of RNN for the ATSP and STSP. It would
be of certain interest to compute the domination numbers of several more
heuristics and to analyze how the behavior of heuristics in computational
experiments depends on their domination numbers.

6



References

[1] J. Cirasella, D.S. Johnson, L.A. McGeoch and W. Zhang, The asym-
metric traveling salesman problem: algorithms, instance generators and
tests, To appear in Proc. 3rd Workshop on Algorithm Engineering and
Experiments (ALENEX 01), Washington DC, 2001

[2] F. Glover, G. Gutin, A. Yeo and A. Zverovich, Construction heuristics
for the asymmetric traveling salesman problem, to appear in Europ. J.
Oper. Res.

[3] F. Glover and A. Punnen, The traveling salesman problem: New solv-
able cases and linkages with the development of approximation algo-
rithms, J. Oper. Res. Soc. 48 (1997) 502-510

[4] G. Gutin and A. Yeo, Polynomial approximation algorithms for the TSP
and the QAP with factorial domination number, to appear in Discrete
Applied Math.

[5] G. Gutin and A. Yeo, TSP tour domination and Hamilton cycle decom-
position of regular digraphs, to appear in Oper. Res. Letters

[6] G. Gutin and A. Zverovich, Evaluation of the Contract-or-Patch Heuris-
tic for the Asymmetric TSP, submitted

[7] D.S. Johnson and L.A. McGeoch, The traveling salesman problem: a
case study in local optimization. Local Search in Combinatorial Opti-
mization, E.H.L. Aarts and J.K. Lenstra (eds.), Wiley, N.Y., 215-310
(1997)

[8] A.P. Punnen and S. Kabadi, Domination analysis of some heuristics for
the asymmetric traveling salesman problem, submitted

[9] G. Reinelt, The traveling salesman problem: Computational Solutions
for TSP Applications. Springer Lecture Notes in Computer Sci. 840
(1994), Springer-Verlag, Berlin

7



Recent BRICS Report Series Publications

RS-01-6 Gregory Gutin, Anders Yeo, and Alexey Zverovich. Travel-
ing Salesman Should not be Greedy: Domination Analysis of
Greedy-Type Heuristics for the TSP. January 2001. 7 pp.

RS-01-5 Thomas S. Hune, Judi Romijn, Marïelle Stoelinga, and
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