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BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/53/



Temporal Logic with Cyclic Counting and the

Degree of Aperiodicity of Finite Automata

Z. Ésik∗
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Abstract

We define the degree of aperiodicity of finite automata and show that
for every set M of positive integers, the class QAM of finite automata
whose degree of aperiodicity belongs to the division ideal generated by M
is closed with respect to direct products, disjoint unions, subautomata,
homomorphic images and renamings. These closure conditions define q-
varieties of finite automata. We show that q-varieties are in a one-to-
one correspondence with literal varieties of regular languages. We also
characterize QAM as the cascade product of a variety of counters with
the variety of aperiodic (or counter-free) automata. We then use the
notion of degree of aperiodicity to characterize the expressive power of
first-order logic and temporal logic with cyclic counting with respect to
any given set M of moduli. It follows that when M is finite, then it is
decidable whether a regular language is definable in first-order or temporal
logic with cyclic counting with respect to moduli in M .

∗The results of this paper were obtained during the first author’s visit at the Faculty of
Science at the Kyoto Sangyo University and at the Department of Computer Science at the
University of Aalborg. The first author was partially supported by Grant-in-Aid 10044098,
Japan Society for the Promotion of Science, by BRICS (Basic Research in Computer Science),
and by grant no. T30511 from the National Foundation of Hungary for Scientific Research.

†Partially supported by Grant-in-Aid 10044098, Japan Society for the Promotion of Sci-
ence.
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1 Introduction

The richness of the theory of regular languages is due to the many different
characterizations of (subclasses of) regular languages. By the theorem of Büchi
and Elgot, a language is regular iff it is definable in monadic second-order logic
over words [2, 5] involving the predicate < and a predicate corresponding to each
letter of the alphabet. Moreover, by classic results of Schützenberger [13] and
Mc Naughton and Papert [10], a language is star-free iff it is definable in first-
order logic iff it is accepted by an aperiodic (or counter-free) finite automaton.
Thus, it is decidable for a regular language whether or not it is definable in first-
order logic, or has a star-free expression. Moreover, by a classic result of Kamp
[9] and Gabbay et al. [7], the logic LTL of Linear (Propositional) Temporal
Logic over words has the same expressive power as first-order logic.

The above results have been extended in several directions involving, in addition
to words, also ω-words, trees and other structures, see [17, 18] for overviews.
In order to increase the expressive power of first-order logic on words, two
kinds of cyclic counting have been studied: the extension of first-order logic
with numerical predicates Crm(x) that holds for a position x in a word iff x is
congruent to r modulom, see [1, 15], and the extension with modular quantifiers,
cf. [16, 15]. In this paper our concern is the first type of counting. In [1],
Barrington, Compton, Straubing and Therien gave a decidable characterization
of the languages definable in first-order logic with counting with respect to the
predicates Crm(x), where the modulus m ranges over all positive integers and r
is any nonnegative integer < m. However, this characterization does not answer
the question that, given a finite setM of moduli, what languages are definable by
using only predicates involving moduli in M . Our aim in this paper is to provide
an analysis of the above mentioned result of Barrington, Compton, Straubing
and Therien that will allow to answer the previous question. Moreover, we also
study an extension of temporal logic yielding the same expressive power.

We define the degree of aperiodicity of finite automata and show that for every
set M of positive integers, the class QAM of automata whose degree of ape-
riodicity belongs to the division ideal generated by M is closed with respect
to direct products, disjoint unions, subautomata, homomorphic images and re-
namings. These closure conditions define q-varieties. We show that q-varieties
are in a one-to-one correspondence with literal varieties of regular languages.
We also characterize QAM as the cascade product of a variety of counters with
the variety of aperiodic (or counter-free) automata. We then use the notion of
degree of aperiodicity to characterize the expressive power of first-order logic
and temporal logic with cyclic counting with respect to any given set M of
moduli. When M is finite, this characterization is effective.

The paper is organized as follows. In Section 2 we define literal varieties of reg-
ular languages, q-varieties of finite automata, and establish an Eilenberg-type
correspondence between them. In Section 3, we recall the notion of cascade
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product of finite automata together with a few basic facts regarding regular lan-
guages accepted by cascade products. We also define cascade products V ?W
of q-varieties. Then, in Section 4, we study q-varieties of finite automata of the
form CM ?V, where M is a given subset of the positive integers and CM is the
q-variety generated by all counters whose length belongs to M . Then, in Section
5, we define the degree of aperiodicity of finite automata and show that for every
set M as above, the finite automata whose degree of aperiodicity belongs to the
division ideal generated by M form a q-variety QAM which is the cascade prod-
uct of CM with the q-variety of aperiodic (counter-free) automata. Moreover,
we show that the degree of aperiodicity of a finite automaton is computable.
We also show that a language can be recognized by an automaton in QAM iff
it can be constructed from the finite languages and the languages consisting
of all words over the underlying alphabet whose length is a multiple of some
integer in M by the boolean operations and concatenation. Then, in Section
6 we prove that the very same condition characterizes the languages definable
in first-order logic with cyclic counting with respect to moduli in M . When
M is empty or M is the set of all positive integers, these results correspond to
those of Schützenberger [13], Mc Naughton and Papert [10], and Barrington et
al. [1] mentioned above. In Section 7, we provide several extensions of proposi-
tional temporal logic with cyclic counting and show that all these are equivalent.
Moreover, we show that temporal logic with cyclic counting with respect to any
given set M of moduli has the same expressive power as first-order logic with
counting with respect to moduli in M . When M is empty, this fact corresponds
to the result of Kamp [9] and Gabbay et al. [7]. Section 8 contains a summary
of the results obtained and outlines some future results.

2 An Eilenberg correspondence

A finite alphabet, or just alphabet, for short, is any finite nonempty set whose
elements are called letters. When Σ is an alphabet, we let Σ∗ denote the free
monoid of words over Σ including the empty word ε equipped with the operation
of concatenation as product. For any word u = a0 . . . an−1, where the ai are
letters, we call the integer n the length of u and denote it by |u|. We let Σn

denote the set of all words in Σ∗ of length n. The prefix order ≤ on words is
defined by u ≤ v iff there is a word z with uz = v, i.e., when u is a prefix of v.
Suppose that h is a (monoid) homomorphism Σ∗ → ∆∗, where Σ,∆ are finite
alphabets. We call h nonerasing if ah 6= ε holds for all a ∈ Σ. Moreover, we call
h a literal homomorphism if ah ∈ ∆ holds for all a ∈ Σ.

A language (over Σ) is any subset of Σ∗. Languages over Σ are equipped with
several operations including the boolean operations ∪, ∩ and c (complement),
product (or concatenation), Kleene star (∗), left and right quotients, homomor-
phisms, inverse homomorphisms, etc. These are defined in the standard way.
When L ⊆ Σ∗ and u ∈ Σ∗, we let u−1L and Lu−1 denote the left and right
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quotients of L with respect to u, respectively:

u−1L = {v ∈ Σ∗ : uv ∈ L}
Lu−1 = {v ∈ Σ∗ : vu ∈ L}.

We will sometimes identify a word w with the singleton set {w} and write w∗

for the Kleene star {w}∗ of the language {w}.
Recall that a language L ⊆ Σ∗ is called regular if it can be constructed from the
finite subsets of Σ∗ by the regular operations of union, product and Kleene star.
It is well-known that the class of regular languages is closed with respect to all
of the operations mentioned above. Moreover, by Kleene’s classic theorem, the
regular languages are exactly those languages that can be recognized by finite
automata.

In this paper, by a finite automaton, or just automaton, we mean a system
Q = (Q,Σ, ·) consisting of a finite nonempty set Q of states, a finite input
alphabet Σ and a right action of Σ on Q, i.e., a function · : Q× Σ → Q, which
is extended to an action of Σ∗ on Q in the usual way. Below we will usually
write just qu for q · u, for all q ∈ Q and u ∈ Σ∗. The function q 7→ qu is called
the function induced by u, denoted uQ. When we want to emphasize that the
input alphabet of an automaton is some alphabet Σ, we call it a Σ-automaton.
Suppose that L ⊆ Σ∗ and that Q = (Q,Σ, ·) is a Σ-automaton. We say that L is
recognizable in Q, or that L can be recognized by Q, if there is a state q0 ∈ Q, the
initial state, and a set F ⊆ Q of final states such that L = {u ∈ Σ∗ : q0u ∈ F}.
Moreover, a language is called recognizable if it can be recognized by some finite
automaton. The aforementioned theorem of Kleene equates the recognizable
languages with the regular languages.

Recall [4, 11] that a stream (or class) V of regular languages is a nonempty
collection Σ∗V of regular languages over Σ, for each finite alphabet Σ. Streams of
regular languages are ordered by set inclusion: we write V ⊆ V ′ if Σ∗V ⊆ Σ∗V ′,
for all finite alphabets Σ.

Definition 2.1 A literal variety (of languages), or l-variety, for short, is a
stream V of regular languages closed with respect to the boolean operations, left
and right quotients and inverse literal homomorphisms. Thus, if L1, L2 ∈ Σ∗V
and a ∈ Σ, then L1 ∪ L2, L1 ∩ L2, Lc1, a−1L1 and L1a

−1 are all in Σ∗V.
Moreover, if h is a literal homomorphism ∆∗ → Σ∗, so that ∆h ⊆ Σ, then
L1h

−1 ∈ ∆∗V.

A ∗-variety (+-variety) of languages is a literal variety which is closed with
respect to all (nonerasing) inverse homomorphisms.

Example 2.2 It is clear that l-varieties form a complete lattice, in fact, an
algebraic lattice. The largest l-variety contains, for each Σ, all the regular
languages in Σ∗, and the smallest only the empty language and the language
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Σ∗. When {Vi : i ∈ I} is a directed set of l-varieties, the least upper bound
V =

∨
i∈I Vi is just the union

⋃
i∈I Vi, so that Σ∗V =

⋃
i∈I Σ∗Vi, for each Σ.

Example 2.3 Of course, every ∗-variety or +-variety is a literal variety. For
each Σ, let Σ∗L consist of all regular languages L in Σ∗ such that for all words
u, v ∈ Σ∗, if u ∈ L and |u| = |v|, then v ∈ L. Then L is a literal variety which
is not a +-variety or a ∗-variety.

The l-varieties contained in L correspond to those boolean algebras of regular
languages over the one-letter alphabet closed with respect to quotients. We give
some examples of such varieties.

Suppose that d ≥ 1 is an integer. The l-variety Cd is that generated by the
one-letter regular language (ad)∗, considered as a subset of a∗. It is not hard
to see that each language in Σ∗Cd is a finite union of languages of the form
(Σd)∗Σi, where i is an integer in [d] = {0, 1, . . . , d− 1}.
Suppose that M is a subset of the set Nat of positive integers. Then let CM
denote the smallest l-variety containing all of the Cm with m ∈ M . It is clear
that CM is the union of those Cd where d is contained in the division ideal
(M ] generated by M . (Of course, (M ] consists of all divisors of least common
multiples of finite families of elements of M .) Thus, CM ⊆ CM ′ iff (M ] ⊆ (M ′].
We write C for CNat.

Further examples of literal varieties that are not ∗-varieties or +-varieties will
be given later.

Remark 2.4 The ∗-varieties defined above are the same as the ∗-varieties of
Eilenberg [4], see also [11]. However, Eilenberg’s +-varieties [4] are streams
of regular languages containing only nonempty words closed with respect to
the boolean operations, left and right quotients, and nonerasing inverse homo-
morphisms. If V is a +-variety as defined in Definition 2.1, and if Σ+W =
Σ∗V ∩ Σ+, for each Σ, where Σ+ denotes the free semigroup of all nonempty
words over Σ, then W is an Eilenberg +-variety. This mapping V 7→ W is
surjective but not injective.

Suppose that W is an Eilenberg +-variety. For each alphabet Σ, define

Σ∗V = {L,L∪ ε : L ∈ Σ+W}.
Then V is a +-variety, as defined in Definition 2.1, which is mapped to W. If for
some Σ, there is a finite nonempty set in Σ+W, then this is in fact the unique
+-variety mapped to W. However, if Σ∗V = {∅,Σ∗} and Σ∗V ′ = {∅, ε,Σ+,Σ∗},
for each alphabet Σ, then the same Eilenberg +-variety W corresponds to both
V and V ′:

Σ+W = {∅,Σ+},
for each Σ.
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A stream (or class) V of finite automata is a nonempty collection ΣV of finite
Σ-automata, for each finite alphabet Σ. Streams of finite automata are ordered
by set inclusion in the same way as streams of regular languages.

The notions of subautomaton and quotient (or homomorphic image) of an au-
tomaton are defined as usual. When Q = (Q,Σ, ·) and Q′ = (Q′,Σ, ·) are
automata with the same set of input letters, the direct product Q × Q′ =
(Q×Q′,Σ, ·) is equipped with the pointwise action, so that (q, q′) ·a = (qa, q′a),
for all q ∈ Q, q′ ∈ Q′ and a ∈ Σ. The disjoint sum (or disjoint union) of
Q and Q′ is also defined in the standard way. It is the automaton Q ⊕ Q′ =
(Q × {0} ∪Q × {1},Σ, ·), where (q, 0)a = (qa, 0) and (q′, 1)a = (q′a, 1), for all
q ∈ Q and q′ ∈ Q′. Suppose now that Q = (Q,Σ, ·) and Q′ = (Q′,∆, ·), where
Σ and ∆ are any alphabets. We say that Q can be constructed from Q′ by
renaming, or that Q is a renaming of Q′, if Q = Q′ and there is a function
h : Σ → ∆ such that qa = q(ah), for all q ∈ Q and a ∈ Σ.

Definition 2.5 A q-variety of finite automata is any stream of finite automata
closed with respect to the operations of taking subautomata, quotients, direct
products, disjoint sums and renamings.

We use the prefix to distinguish q-varieties from varieties (or pseudo-varieties)
that are nonempty classes of automata with the same input alphabet closed with
respect to the operations of taking subautomata, quotients, and direct products,
and to express that q-varieties are also closed with respect to the quasi-direct
product [8].

Since a q-variety V is nonempty and closed with respect to subautomata, quo-
tients, direct product and renaming, closure under disjoint sum is clearly equiv-
alent to the requirement that the two-element discrete automaton with a single
input letter belongs to V. (A Σ-automaton is called discrete if it is a disjoint
sum of trivial, i.e., one-state Σ-automata.)

A ∗-variety (+-variety) of finite automata is a q-variety that is also closed with
respect to the operation Q 7→ Q∗ (Q 7→ Q+). Here, the operation Q 7→ Q∗

is defined as follows. Let Q = (Q,Σ, ·), say, and let M(Q) denote the monoid
of Q. Thus, the elements of M(Q) are the functions uQ : Q → Q induced by
the words u ∈ Σ∗, and the product operation in M(Q) is function composition
written left-to-right. Now Q∗ is (Q,M(Q), ·), where for each q ∈ Q and u ∈ Σ∗,
q ·uQ is just qu = q ·u, the image of q under uQ. The automaton Q+ is defined in
the same way except that its alphabet is S(Q) = {uQ : u ∈ Σ+}, the semigroup
of Q.

Remark 2.6 It is clear that ∗-varieties of finite automata correspond in a bi-
jective manner to varieties of finite monoids as defined in [4, 11]. Given a
∗-variety V of finite automata, the corresponding variety of finite monoids con-
sists of all monoids that are isomorphic to the monoid of some automaton in V.
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However, a similar function mapping +-varieties of finite automata to varieties
of finite monoids is only surjective, but not injective. See also Remark 2.4.

Example 2.7 The set of all q-varieties equipped with set inclusion is an alge-
braic lattice. The largest q-variety contains, for each Σ, all Σ-automata, and
the smallest one only the discrete Σ-automata. When {Vi : i ∈ I} is a directed
set of q-varieties, the least upper bound

∨
i∈I Vi is just the union

⋃
i∈I Vi.

Example 2.8 For each Σ, the q-variety L consists of all autonomous Σ-automata,
i.e., all the automata Q = (Q,Σ, ·) such that qa = qb, for all q ∈ Q and a, b ∈ Σ.

Given an integer d ≥ 1, the q-variety Cd has, as its members in ΣCd, all the
Σ-automata that are disjoint sums of Σ-counters of length a divisor of d. A
Σ-counter is an automaton (Q,Σ, ·) such that each letter in Σ induces the same
cyclic permutation Q → Q. The length of the counter is |Q|, the number of
states in Q. Note that Cd is contained in L.

When M is a set of positive integers, then we define CM =
∨
m∈M Cm, so that

CM is the least q-variety containing all of the Cm with m ∈M . Note that CM

is just the union of the Cd with d any integer in (M ]. Thus, CM ⊆ CM ′ iff
(M ] ⊆ (M ′]. We denote CNat by C.

Suppose that V is a q-variety. The corresponding stream V of regular languages
contains those languages in Σ∗V that can be recognized by an automaton in ΣV
(by a suitable initial state and a set of final states). Thus, a language L ⊆ Σ∗

belongs to Σ∗V if and only if there is an automaton Q = (Q,Σ, ·) in V, a state
q0 ∈ Q and a set F ⊆ Q such that the language recognized by Q with initial
state q0 and final states F is L. Alternatively, a (regular) language L ⊆ Σ∗

belongs to Σ∗V if and only if the minimal automaton recognizing L is in ΣV.

The following variant of Eilenberg’s variety theorem [4, 11] follows by standard
arguments.

Theorem 2.9 The correspondence V 7→ V is an order isomorphism from the
lattice of q-varieties of finite automata onto the lattice of l-varieties of regular
languages. The same correspondence establishes an order isomorphism between
∗-varieties (+-varieties) of finite automata and ∗-varieties (+-varieties) of reg-
ular languages.

Proof. We briefly sketch the proof of the first statement. If L is in Σ∗V , then
L is accepted by an automaton in V by a suitable initial state and a set of
final states. By taking the same initial state and the complement of the set of
final states, the same automaton accepts Lc. It is also known that any quotient
of L can be accepted by the same automaton with suitable initial and final
states. Closure with respect to set union follows from the fact that the union
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of languages accepted by Q1 and Q2 can be accepted by the direct product of
Q1 and Q2. It is clear that V1 ⊆ V2 implies V1 ⊆ V2. Suppose now that
V1 ⊆ V2. Assume that Q = (Q,Σ, ·) ∈ V1 is generated by a single state q0,
so that each state q ∈ Q is of the form q0u, for some u ∈ Σ∗. For each state
q ∈ Q, let Lq denote the language accepted by Q with initial state q0 and single
final state q. Since Lq ∈ V1 and V1 ⊆ V2, there exists an automaton Qq ∈ V2

accepting Lq with some initial state iq and some set of final states Fq. Now
the direct product of the Qq contains a subautomaton that can be mapped
homomorphically onto Q: take those tuples of the direct product accessible
by a word from that tuple whose components are the respective initial states
iq. It follows that each state s = (sq)q∈Q has a unique component sq with
sq ∈ Fq, and that the map taking s to this component sq is a homomorphism
onto Q. Since V2 is closed with respect to direct product, subautomata and
homomorphic images, it follows that Q is in V2. If Q ∈ V1 is not generated
by a single state, then Q is a quotient of the disjoint sum of its (maximal)
one-generated subautomata. Since q-varieties are closed with respect to disjoint
sum, it follows by the above argument that Q ∈ V2. Finally, the fact that the
assignment V 7→ V is surjective can be seen as follows. Given an l-variety V ,
consider the stream V of automata that only accept languages in V , so that
Q = (Q,Σ, ·) ∈ V iff for each q0 ∈ Q and F ⊆ Q it holds that the language
accepted by Q with initial state q0 and set of final states F is in V . Then V
is a q-variety mapped to V . Indeed, the closure properties of V guarantee that
V is a q-variety. Moreover, every language L ∈ Σ∗V can be accepted by an
automaton in V, namely the minimal automaton QL corresponding to L, since
any language accepted by this automaton is a boolean combination of quotients
of L. �

Example 2.10 The l-variety corresponding to L is the variety L defined in
Example 2.3. For each M , the l-variety corresponding to CM is CM .

Example 2.11 We call a finite automaton Q = (Q,Σ, ·) nilpotent if there is an
integer n such that qu = qv holds for all words u, v ∈ Σ∗ of length ≥ n. (Note
that the usual definition of nilpotent automata [8] requires that qu = q′v hold
for all states q, q′ and words u, v ∈ Σ∗ of length at least n.) Nilpotent automata
form a +-variety denoted N. The corresponding +-variety N of languages
contains in Σ∗N , for each alphabet Σ, all finite and cofinite languages in Σ∗.

Example 2.12 A finite automaton Q = (Q,Σ, ·) is called definite if there exits
some n ≥ 0 such that for all q ∈ Q and u, v ∈ Σ∗, if the suffixes of u and v of
length at most n agree, then qu = qv. (Again, the usual definition of definite
automata [8] requires more.) For example, any shift register (Σn,Σ, ·) with u · a
being the length n suffix of ua, for each u ∈ Σn and a ∈ A, is definite.

Definite automata form a +-variety D with corresponding +-variety of languages
denoted D. We call D the +-variety of definite languages. For each Σ and
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L ⊆ Σ∗, we have L ∈ Σ∗ iff there is an integer n ≥ 0 such that for all words
u, v ∈ Σ∗ such that u and v have the same suffixes of length at most n, it holds
that u ∈ L iff v ∈ L. (See [4].)

Example 2.13 A finite automaton Q is called aperiodic, or counter-free [4], if
M(Q) (or S(Q)) contains only trivial subgroups. Aperiodic automata form a
∗-variety A with corresponding language variety A. We have that N ⊂ D ⊂ A
and N ⊂ D ⊂ A.

3 Cascade product

We call a function τ : Σ∗ → ∆∗ sequential if τ preserves prefixes, i.e., for all
words u and v in Σ∗, if u ≤ v in the prefix order then τ(u) ≤ τ(v). It then
follows that for each word u ∈ Σ∗ there is a (unique) function, in fact a sequential
function τu : Σ∗ → ∆∗ with τ(uv) = τ(u)τu(v). If in addition τ preserves the
length of the words, then we call τ a literal sequential function.

Sequential functions are known to be the functions inducible by sequential trans-
ducers, and literal sequential functions by Mealy automata [8], which are a re-
stricted type of transducers. The (literal) sequential functions τ : Σ∗ → ∆∗

that can be induced by finite transducers obey the condition that the functions
τu, u ∈ Σ∗ form a finite set. Such (literal) sequential functions are said to be
of finite state. Note that any (literal) homomorphism is a finite state (literal)
sequential function.

Suppose that Q = (Q,Σ, ·) is a finite automaton. A Mealy automaton [8] over
Q is the extension of Q by an output alphabet ∆ and an output function µ :
Q × Σ → ∆. We let Q(∆, µ) denote this extension. Clearly, each state q ∈ Q
may be used to induce a finite state literal sequential function µq : Σ∗ → ∆∗

defined by µq(ε) = ε and µq(ua) = µq(u)µ(qu, a). We use Mealy automata
extensions to define cascade products.

Suppose that Q = (Q,Σ, ·) and R = (R,∆, ·) are finite automata and suppose
that we are given a Mealy automaton extension Q(∆, µ). Then the cascade
product of Q with R determined by µ is defined to be the automaton Q×µR =
(Q × R,Σ, ·), where (q, r) · a = (qa, rµ(q, a)) = (qa, rµq(a)), for all q ∈ Q and
r ∈ R. Note that it follows by induction that (q, r) · u = (qu, rµq(u)), for all
u ∈ Σ∗.

The semigroup theoretic concepts corresponding to the cascade product are the
semi-direct product and the wreath product, cf. [4, 11]. The following fundamen-
tal fact is an adaptation of Straubing’s “wreath product principle” [3] to the
cascade product.

Proposition 3.1 A language is recognized by a cascade product Q ×µ R with
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initial state (q0, r0) iff it is a finite union of languages of the form K ∩ µ−1
q0 (L),

where K is a language recognized by Q with initial state q0 and L is a language
recognized by R with initial state r0.

The cascade product may be extended to q-varieties.

Definition 3.2 Suppose that V and W are q-varieties. The q-variety V ?W
is that generated by all cascade products Q×µ R with Q an automaton in ΣV,
R an automaton in ∆W, and Q(∆, µ) a Mealy automaton extension of Q.

It is immediate to prove that when both V and W are +-varieties (∗-varieties,
respectively), then so is V ?W.

The l-variety corresponding to V ? W has the following description. The re-
sult is an adaptation of a similar characterization of languages recognizable by
semigroups in the wreath product of two semigroup varieties, see [11].

Theorem 3.3 Suppose that V and W are q-varieties with corresponding l-
varieties V and W. Then for each Σ, the l-variety V ?W corresponding to V?W
contains exactly those languages in Σ∗ that are finite unions of languages of the
form K ∩ µ−1(L), where K ∈ Σ∗V, L ∈ ∆∗W and where µ : Σ∗ → ∆∗ is a
sequential function induced by some state of a Mealy automaton extension of an
automaton in V.

We may as well require that the same finite state literal sequential function µ
appears in all terms of the finite union. Theorem 3.3 relies on on Proposition 3.1
and the following fact.

Theorem 3.4 For any q-varieties V and W and any Σ, an automaton Q is in
Σ(V ?W) iff Q is a quotient of a subautomaton of a cascade product R ×µ S,
where R ∈ ΣV and S ∈ ∆W such that and R(∆, µ) is a Mealy automaton
extension of R.

Proof. Let K denote the stream determined by those automata Q that can
be constructed as quotients of subautomata of cascade products of automata
R ∈ V and S ∈ W. It is clear that K ⊆ V ?W. Also, K is easily shown to be
closed with respect to subautomata, quotients, direct products and renaming.
Moreover, K clearly contains all discrete automata. Hence, K is closed with
respect to disjoint sum. It follows that V ?W ⊆ K. �

We say that a q-variety V is closed with respect to the cascade product if for
any cascade product Q ×µ R with Q,R ∈ V, it holds that Q ×µ R ∈ V. For
example, N,D,A are all closed with respect to the cascade product, cf. [4].
Moreover, for any set M of positive integers, CM is closed with respect to the
cascade product, as is any q-variety of autonomous automata.

10



We omit the straightforward proofs of the following facts.

Proposition 3.5 Any q-variety contained in L is closed with respect to the
cascade product. If V and W are q-varieties such that V is contained in L and
W is closed with respect to the cascade product, then V ?W is also closed with
respect to the cascade product.

Proposition 3.6 Suppose that {Vi : i ∈ I} is a directed set of q-varieties and
V =

⋃
i∈I Vi. Then for any q-variety W, we have V ? W =

⋃
i∈I Vi ? W.

Suppose that Vi denotes the l-variety corresponding to Vi, for each i ∈ I, and
suppose that V denotes the l-variety corresponding to V. Then for any l-variety
W, it holds that V ?W =

⋃
i∈I(Vi ?W).

Thus, the ? operation is continuous in its first argument. In a similar way, it is
continuous in its second argument.

As an immediate application of Proposition 3.6 we have that

CM ?V =
⋃

d∈(M ]

Cd ?V

and

CM ? V =
⋃

d∈(M ]

Cd ? V ,

for all q-varieties V and l-varieties V , and for all M ⊆ Nat.

4 Varieties CM ? V

In this section, we study q-varieties of the form Cd ?V and CM ?V, and the
corresponding l-varieties Cd ? V and CM ? V .

Definition 4.1 For any automaton Q = (Q,Σ, ·) and integer d > 0, let Q(d)

denote the automaton (Q,Σ(d), ·), where Σ(d) consists of all letters 〈u〉, where u
is any word of length d in Σ∗, i.e., any element of Σd, and where

q · 〈u〉 = qu,

for all q ∈ Q and u ∈ Σd.

Thus, Q(d) arises from Q by letting the words in Σ∗ of length d be the input
letters. For each u ∈ Σd, the function induced by 〈u〉 in Q(d) is the same as
the function induced by u in the automaton Q. Besides Q(d), we will also use
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the automaton Q(d)
1 , which is the extension of Q(d) by a letter a0 inducing the

identity function Q→ Q. Thus, Q(d)
1 = (Q,Σ(d) ∪ {a0}, ·), where q · a0 = q, for

all q ∈ Q, and where for all q ∈ Q and u ∈ Σd, q · 〈u〉 is defined as above. Note
that the monoids M(Q(d)) and M(Q(d)

1 ) are both isomorphic to the submonoid
Md(Q) of the monoid M(Q) of automaton Q consisting of all functions Q→ Q
induced by those words in Σ∗ whose length is a multiple of d.

Proposition 4.2 Each automaton Q is a homomorphic image of a cascade
product of an automaton which is a direct product of a counter of length d with
a shift register, and the automaton Q

(d)
1 .

Proof. Suppose that Q = (Q,Σ, ·), so that Q(d)
1 is (Q,Σ(d) ∪ {a0}, ·) defined

above.

Let Cd denote the counter of length d whose input alphabet is Σ and whose
states are the integers in [d], so that i · a = i + 1 mod d, for all i ∈ [d] and
a ∈ Σ. Let Dd−1 denote the shift register of length d − 1 over Σ. Thus the
states of Dd−1 are the words in Σd−1, and the transition is defined so that for
each u ∈ Σd−1 and a ∈ Σ, state u · a is the suffix of ua of length d− 1. Define

µ : ([d] × Σd−1) × Σ → Σ(d) ∪ {a0}
by

µ((i, u), a) =
{
a0 if i 6= d− 1
〈ua〉 otherwise.

We thus obtain the cascade product Q′ = (Cd ×Dd−1)×µ Q(d)
1 . We claim that

there is a surjective homomorphism h : Q′ → Q. Indeed, for each state ((i, u), q)
of Q′, define

((i, u), q)h = qv,

where v denotes the suffix of u of length i. In particular, ((0, u), q)h = q, for all
u ∈ Σd−1 and q ∈ Q, so that h is surjective. We show that h is a homomorphism.
Assume that ((i, u), q) is a state of Q′ and a ∈ Σ. If i 6= d− 1 then

((i, u), q)ah = ((i+ 1, u′a), q)h
= qva

= (((i, u), q)h)a,

where v denotes the suffix of u of length i and u′ the suffix of u of length d− 1.
When i = d− 1, we have

((d − 1, u), q)ah = ((0, u′a), qua)h
= qua

= (((d − 1, u), q)h)a,

where u′ is the same as above. �
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Remark 4.3 The same argument proves the following stronger version of Propo-
sition 4.2. Suppose that R is a subautomaton of Q(d)

1 such that for each q ∈ Q
there exists a state r ∈ R and a word u ∈ Σ∗ with |u| < d such that ru = q holds
in Q. Then automaton Q is a homomorphic image of a cascade product of an
automaton which is the direct product of a counter of length d with a shiftregis-
ter, and the automaton R. Indeed, if we replace Q(d)

1 with R in the above proof,
the same argument works. The assumption that each q be of the form ru with
r ∈ R and |u| < d is needed to show that h is surjective.

Recall that D denotes the +-variety of definite automata and that D denotes
the corresponding +-variety of definite languages. Note that for any ∗-variety
V of automata and for any automaton Q and d ≥ 1, we have Q(d) ∈ V iff
Q

(d)
1 ∈ V.

Corollary 4.4 Suppose that V is a q-variety such that D ?V ⊆ V. Then for
any integer d ≥ 1 and automaton Q, if Q(d)

1 ∈ V then Q ∈ Cd ?V.

We now want to prove a certain converse of the above result.

Proposition 4.5 Suppose that V is a ∗-variety of automata and d ≥ 1. If
Q ∈ Cd ?V, then Q(d), and thus Q(d)

1 , is in V.

Proof. First assume that Q is 1-generated, i.e., there exists a state q0 in Q such
that each state is accessible from q0 by an input word. If Q ∈ Cd ? V then,
by Theorem 3.4, Q is a quotient of a subautomaton R′ of a cascade product
of an automaton C in Cd and an automaton R in V. Since Q is 1-generated,
without loss of generality we may assume that so is R′. But in that case C
may be chosen to be 1-generated as well, so that C is a counter in Cd and is
thus a quotient of a counter of length d. We conclude that Q is a homomorphic
image, with respect to a homomorphism h, of a subautomaton R′ = (R′,Σ, ·) of
a cascade product Cd×µR, where Cd = ([d],Σ, ·) is the counter of length d with
ia = i+1 mod d, for all i ∈ [d] and a ∈ Σ, and R = (R,∆, ·) is an automaton in
V. For each i ∈ [d], let Ri denote the set of all states r ∈ R such that (i, r) ∈ R′.
It is clear that Ri 6= ∅. Moreover, let hi : Ri → Q be defined by r 7→ h((i, r)),
for all r ∈ Ri. We turn each Ri into an automaton Ri = (Ri,Σ(d), ·) with input
letters in the set Σ(d). For each r ∈ Ri and u ∈ Σd, let r · 〈u〉 = rµi(u), the
image of r with respect to the word which is the image of u with respect to the
sequential function induced by state i of the Mealy extension Cd(∆, µ). Since
V is a ∗-variety and R ∈ V, it follows that each Ri is in V. Indeed, Ri can be
constructed from R∗ by renaming and taking subautomata. Also, each hi is a
homomorphism Ri → Q(d), and since h is surjective, each state in Q appears
as the image of some state in

⋃
i∈[d]Ri. Thus, the disjoint sum of the Ri can

be mapped homomorphically onto Q(d), proving that Q(d) is in V (since V is
closed with respect to disjoint sum).
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In the general case, Q is a quotient of the disjoint sum of its 1-generated sub-
automata Q1, . . . , Qn. If Q ∈ Cd ?V then each Qi belongs to Cd ? V. Thus,
by the above argument, we have Q(d)

i ∈ V, for each i. Since V is closed with
respect to disjoint sum, it follows that the disjoint sum of the Q(d)

i is also in V.
But Q(d) is a quotient of this disjoint sum, so that Q(d) ∈ V. �

Call a q-variety V decidable if there is an algorithm to decide for any given
automaton Q whether or not Q belongs to V. Similarly, call an l-variety V
decidable if there is an algorithm to decide whether or not a regular language
(given by an automaton or a regular expression) belongs to V . From Corol-
lary 4.4 and Proposition 4.5 we have:

Theorem 4.6 For any ∗-variety V of automata with D ?V ⊆ V, and for any
d ≥ 1 and automaton Q, we have that Q ∈ Cd ?V iff Q(d) ∈ V. Thus, if V is
decidable, then so is Cd ?V.

A first characterization of the languages in the variety Cd ? V , where V is any
l-variety of languages, may be obtained from the wreath product principle. Let
Σ denote an alphabet and consider the Σ-counter Cd = ([d],Σ, ·) with i · a =
i + 1 mod d, for all i ∈ [d] and a ∈ Σ. Consider the alphabet [d] × Σ and the
identity function πd : [d] × Σ → [d] × Σ. Let σd denote the literal sequential
function induced by the Mealy extension Cd([d] × Σ, πd) in state 0. Then any
literal sequential function σ : Σ∗ → ∆∗ induced by a state of a Mealy extension
of an automaton in Cd can be factorized as the composite of σd with a literal
homomorphism τ : ([d] × Σ)∗ → ∆∗. Thus, by the wreath product principle we
get:

Proposition 4.7 A language L ⊆ Σ∗ belongs to Cd ? V iff L can be written as

L =
⋃
i∈[d]

(Σd)Σi ∩ σ−1
d (Ki),

for some languages Ki ∈ ([d] × Σ)∗V, i ∈ [d].

When V corresponds to a ∗-variety V with D?V ⊆ V, we can use Theorem 4.6
to derive an alternative characterization of the languages in Cd ? V .

Suppose that L ⊆ Σ∗ and d ≥ 1. We define

L(d) = {〈u0〉 . . . 〈uk−1〉 : u0 . . . uk−1 ∈ L, ui ∈ Σd, i ∈ [k]},

so that L(d) ⊆ (Σ(d))∗. Moreover, for each u ∈ Σ∗ with |u| < d, we define
L(d,u) = (Lu−1)(d). Thus, L(d) and each L(d,u) is a language in (Σ(d))∗, more-
over, L(d) = L(d,ε).
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Theorem 4.8 Suppose that V is a ∗-variety of automata with D?V ⊆ V, and
suppose that V denotes the language variety corresponding to V. Then for any
integer d ≥ 1 and language L ⊆ Σ∗, if L ∈ Cd ?V then L(d,u) ∈ V, for all u ∈ Σ∗

with |u| < d. Moreover, if L(d,u) ∈ V, for all u ∈ Σ∗ with |u| < d, and if V is
closed with respect to right (or left) concatenation with letters, then L ∈ Cd ? V.

Proof. Suppose first that L ⊆ Σ∗ is in Σ∗(Cd ? V). Then L can be recognized
by an automaton Q in Cd ?V. By Theorem 4.6 we have that Q(d) ∈ V. But
each of the languages L(d,u), where u ∈ Σ∗ with |u| < d can be recognized
by Q(d). For if L is recognized by Q = (Q,Σ, ·) with initial state q0 and final
states F , then L(d,u) is recognized by Q(d) with initial state q0 and final states
Fu = {q ∈ Q : qu ∈ F}. Thus, each L(d,u) belongs to V .

Suppose now that each L(d,u) belongs to V , for any u ∈ Σ∗ with |u| < d, so that
each L(d,u) can be recognized by some automaton Qu in Σ(d)V. For each u, let
Ru = Qu × (∪k∈[d]Σk). We turn Ru into a Σ-automaton (Ru,Σ, ·) by defining,
for each (q, v) ∈ Ru and a ∈ Σ,

(q, v) · a =
{

(q, va) if |v| < d− 1
q〈va〉 otherwise.

Let Q′
u = (q, ε), q ∈ Qu. Then Q′

u determines a subautomaton of R(d)
u which

is isomorphic to Qu. Moreover, (q, v) = (q, ε)v, for each (q, v) ∈ Ru. Thus,
by Remark 4.3 and the assumption D ? V ⊆ V, it follows that Ru belongs to
Cd ?V. Now for every u, the language Lu = (Lu−1) ∩ (Σd)∗ can be recognized
by Ru, so that Lu ∈ Cd ? V . Since L =

⋃
u∈Σ∗, |u|<d Luu, it follows now that L

is in Cd ? V . �

Corollary 4.9 Under the assumption of Theorem 4.8, if V is decidable, then
so is Cd ? V.

Proof. This follows either from Theorem 4.8 or from Theorem 4.6. �

Corollary 4.10 Suppose that M ⊆ Nat and V is a q-variety with correspond-
ing l-variety V. Suppose that D ? V ⊆ V and that V is closed with respect to
right concatenation by letters. An automaton Q is in CM ?V iff there is some
d ∈ (M ] with Q(d) ∈ V. Moreover, a language L ⊆ Σ∗ is in CM ? V iff there is
some d ∈ (M ] such that L(d,u) ∈ V for each u ∈ Σ∗ with |u| < d.

5 Degree of aperiodicity

Following [1, 15], we call an automaton Q = (Q,Σ, ·) quasi-aperiodic if for each
n, M(Q) (or S(Q)) contains no nontrivial group all of whose members can be
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induced by length n words. Thus, for any given n, the set of functions uQ, where
u is any word in Σn of length n, does not contain a nontrivial group. (In the
terminology of [6], Q is quasi-aperiodic if no nontrivial group divides M(Q) in
“equal lengths”. )

It is clear that any aperiodic automaton is quasi-aperiodic. On the other hand,
a counter of length > 1 is quasi-aperiodic, but not aperiodic. Let QA denote
the stream of quasi-aperiodic automata. The following theorem is a rephrasing
of a result due to Barrington, Compton, Straubing and Therien. In its original
formulation, the theorem involved the wreath product instead of the cascade
product.

Theorem 5.1 (Barrington et al. [1]) QA = C ?A. Thus QA is a q-variety.

It is a well-known consequence of the Krohn-Rhodes theorem [4, 15] that A ?
A ⊆ A, in fact equality holds. Thus, by Proposition 3.5, QA is also closed
with respect to the cascade product. Moreover, since D ⊆ A, we have that
D ?A ⊆ A. Thus, by Theorem 4.6 we have:

Corollary 5.2 For any d ≥ 1 and automaton Q, we have Q ∈ Cd ? A iff
Q(d) ∈ A.

Corollary 5.3 An automaton Q is quasi-aperiodic iff there is some integer
d ≥ 1 such that Q(d) is aperiodic.

Proof. If Q is quasi-aperiodic, then by Theorem 5.1, Q is in C ?A. But since
C is the union of the Cn where n is any positive integer, it follows that Q is in
Cd ? A, for some d ≥ 1. Thus, by Corollary 5.2, Q(d) is in A, so that Q(d) is
aperiodic.

Assume now that Q(d) is aperiodic, for some d ≥ 1. Then, by Corollary 5.2 and
Theorem 5.1, Q is in Cd ?A ⊆ QA. �

Remark 5.4 Of course, it is possible to prove Corollary 5.3 without using The-
orem 5.1 and Corollary 5.2. Assume that Q(d) is aperiodic for some d ≥ 1.
Then it cannot be the case that for some n, the set of all functions in M(Q)
that can be induced by the length n words contains a nontrivial group G, since
otherwise each element of G would be induced by a word of length dn, so that
Q(d) would not be aperiodic. The other direction can be verified by following the
argument given in the proof of Theorem 5.10.

Proposition 5.5 Suppose that Q is an automaton such that both Q(m) and
Q(n) are aperiodic, where m,n ≥ 1. If m and n are relative primes, then also
Q is aperiodic.
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Proof. If Q is not aperiodic, then M(Q) contains a cyclic subgroup G =
{g0, . . . , gp−1} of prime order p > 1, where g0 = e denotes the unit. Unless
gm1 = e, it follows that each element of G can be induced by a word whose
length is a multiple of m. (Indeed, if gm1 = gi, where i 6= 0, then gi can be
induced by a word whose length is a multiple of m. Since gi is a generator
element of G, the same holds for any other group element.) But since Q(m)

is aperiodic, this is impossible. We conclude that gm1 = e. In the same way,
gn1 = e. But then p divides both m and n, a contradiction. �

Corollary 5.6 Suppose that Q is an automaton such that both Q(m) and Q(n)

are aperiodic. If d denotes the g.c.d. of m and n, then Q(d) is also aperiodic.

Corollary 5.7 An automaton Q is quasi-aperiodic iff there is a least integer
d ≥ 1 such that Q(d) is aperiodic. Moreover, for an integer n ≥ 1 we have that
Q(n) is aperiodic iff this integer d is a divisor of n.

Definition 5.8 The degree of aperiodicity, or aperiodicity degree of an au-
tomaton Q is the least integer d such that Q(d) is aperiodic, if such an integer
exists. Otherwise the degree of aperiodicity of Q is ∞.

Thus, by Corollary 5.7, the aperiodicity degree of Q is finite iff Q is quasi-
aperiodic.

For any set M of positive integers, we let QAM denote the stream of automata
whose aperiodicity degree is finite and belongs to (M ]. In particular, A =
QA{1} = QA∅ and QA = QANat. We also denote QAd = QA{d}, for each
d ≥ 1.

Theorem 5.9 Suppose that M is a set of positive integers. Then QAM =
CM ?A. Thus, QAM is a q-variety closed with respect to the cascade product.

Proof. Suppose that the aperiodicity degree d of automaton Q is finite and is
contained in (M ]. Then Q(d) is aperiodic so that Q ∈ Cd ?A, by Corollary 5.2.
But Cd ⊆ CM , so that Q ∈ CM ?A.

Suppose now that Q ∈ CM ?A. Then since CM is the union of all varieties Cd,
where d belongs to (M ], it follows by Proposition 3.6 that Q ∈ Cd ?A, for some
such d. Thus, by Corollary 5.2, Q(d) is aperiodic. But then the aperiodicity
degree of Q divides d, so that it also belongs to (M ]. �

Theorem 5.10 There exists an algorithm to compute the aperiodicity degree of
an automaton.

Proof. Barrington, Compton, Straubing and Therien showed in [1] how to decide
for an automaton whether or not it belongs to QA. (See also [6].) Our result
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follows by a slight modification of their argument. Given Q = (Q,Σ, ·), succes-
sively compute the sets M=1(Q), M=2(Q), . . . until a repetition occurs, i.e., until
M=m(Q) = M=n(Q), for some m < n. Here, we let M=m(Q) denote the set
of all functions Q → Q induced by the words in Σm. Then also M=m+r(Q) =
M=n+r(Q), for all r ≥ 1. In particular, we have M=d(Q) = M=d+n−m(Q) for
some m ≤ d < n such that n−m divides d. Thus, M=d(Q) = M=2d(Q), showing
that M=d(Q) is a subsemigroup of M(Q). In fact, M=d(Q) is the semigroup of
all functions inducible by words whose length is a positive multiple of d. If Q is
quasi-aperiodic, then this semigroup contains no nontrivial group by definition.
It follows that Q(d) is aperiodic. Thus, to compute the aperiodicity degree of
Q it suffices to find the least divisor d′ of d such that Q(d′) is aperiodic. On
the other hand, if M=d does contain a nontrivial group, then Q is not quasi-
aperiodic and thus its aperiodicity degree is ∞. �

Corollary 5.11 Suppose that it is decidable for an integer n whether n belongs
to the division ideal generated by M . Then QAM is decidable. In particular, if
M is a recursive set and a division ideal, then QAM is decidable.

Remark 5.12 The opposite direction is immediate: if QAM is decidable then
(M ] is recursive.

Since QAM is a q-variety, there is a corresponding l-variety that we denote by
QAM . We also denote QA{d} by QAd. In particular, QA{1} = QA1 = A and
QANat = QA, the l-variety corresponding to QA. Since QAM is the union
of the QAd, where d is any element of the division ideal (M ] generated by
M , also QAM is the union of the QAd, where d is any member (M ]. The
languages belonging to A have been characterized by Schützenberger as the
star-free languages.

Theorem 5.13 (Schützenberger [13]) A language L ⊆ Σ∗ belongs to A iff L
can be constructed from the finite subsets of Σ∗ by the operations of set union,
complement and concatenation.

A similar characterization of languages in QA was obtained in [1].

Theorem 5.14 (Barrington, Compton, Straubing and Therien [1]) A language
L ⊆ Σ∗ belongs to QA iff L can be constructed from the finite languages in Σ∗

and the languages (Σd)∗, d ≥ 1, by the operations of union, complement and
concatenation.

In the rest of this section we prove a refinement of these results.

Theorem 5.15 Let M denote any subset of the set of positive integers. A lan-
guage L ⊆ Σ∗ belongs to QAM iff L can be constructed from the finite languages
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in Σ∗ and the languages (Σm)∗, where m ∈M , by the operations of union, com-
plement and concatenation.

In our argument, we will make use of the following characterization of QAd,
which is an immediate consequence of Theorem 4.8 and the fact that A is closed
with respect to concatenation and contains the finite sets.

Corollary 5.16 For any integer d ≥ 1 and language L ⊆ Σ∗, if L ∈ QAd

then L(d,u) ∈ A, for all u ∈ Σ∗ with |u| < d. Moreover, if L(d,u) ∈ A, for all
u ∈ Σ∗ with |u| < d, then L ∈ QAd.

Proof of Theorem 5.15. First note that any language (Σd)∗, where d is any
member of the division ideal generated by M can be constructed from the fi-
nite languages and the languages (Σm)∗, m ∈ M by the operations of union,
complement, and concatenation. This follows from the following two facts. If
m1 and m2 are positive integers and m denotes their least common multiple
(l.c.m.), then (Σm)∗ = (Σm1)∗ ∩ (Σm2)∗. Moreover, if d is a divisor of m, then
for some finite F , (Σd)∗ = (Σm)∗F . Thus, since QAM =

⋃
d∈(M ] QAd, in the

rest of the argument we may assume that M is itself a division ideal.

Suppose first that L ∈ QAM . Since QAM is the union of the QAm with
m ∈M , there exists an integer d ∈M with L ∈ QAd. Thus, by Corollary 5.16,
all the languages L(d,u), u ∈ Σ∗, |u| < d are in A. By Schützenberger’s theorem,
Theorem 5.13, it follows that each L(d,u) with u ∈ Σ∗, |u| < d can be constructed
from the finite languages in (Σ(d))∗ by using the operations of union, complement
and concatenation. Hence, each language Ku = Lu−1 ∩ (Σd)∗, where u ∈
Σ∗ with |u| < d can be constructed from the finite languages in Σ∗ and the
language (Σd)∗ by the operations of union, complement and concatenation.
(Take complement relatively to (Σd)∗.) Since L =

⋃
u∈Σ∗, |u|<dKuu, the same

holds for L.

Suppose now that L can be constructed from the finite subsets of Σ∗ and the
languages (Σm)∗, where m ∈ M by the operations of union, complement and
concatenation. Let d denote the l.c.m. of those integers m for which (Σm)∗ is
used in the construction of L. If we can show that L(d,v) belongs to A, for each
v ∈ Σ∗ with |v| < d, then it follows by Corollary 5.16 that L ∈ QAd, and thus
that L ∈ QAM . We will show that for each u, v ∈ Σ∗ with |u|, |v| < d, the
language in (Σ(d))∗

L(d,u,v) = {〈x0〉 . . . 〈xk−1〉 : k ≥ 0, ux0 . . . xk−1v ∈ L}
is in A. Now this follows by a straightforward induction argument using Schützen-
berger’s theorem, Theorem 5.13, and the following facts. Let u, v ∈ Σ∗ with
|u|, |v| < d, and let L,L1, L2 ⊆ Σ∗.

1. If L is finite, then so is L(d,u,v).
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2. (L1 ∪ L2)(d,u,v) = L
(d,u,v)
1 ∪ L(d,u,v)

2 .

3. (Lc)(d,u,v) = (L(d,u,v))c.

4. If the length of each word in L1 is at least |u| and the length of each word
in L2 is at least |v|, then (L1L2)(d,u,v) =

⋃
|wz|=d L

(d,u,w)
1 〈wz〉L(d,z,v)

2 .

5. If the length of each word in L1 is less than |u| and the length of each
word in L2 is at least |v|, then (L1L2)(d,u,v) =

⋃
wz=u, w∈L1

L
(d,z,v)
2 .

6. If the length of each word in L1 is at least |u| and the length of each word
in L2 is less than |v|, then (L1L2)(d,u,v) =

⋃
zw=v, w∈L2

L
(d,u,z)
1 .

7. If the length of each word in L1 is less than |u| and the length of each
word in L2 is less than |v|, then (L1L2)(d,u,v) is finite. �

Corollary 5.17 Suppose that it is decidable for an integer whether it is con-
tained in the division ideal generated by M . Then there exists an algorithm to
decide for a regular language L ⊆ Σ∗ whether or not L can be constructed from
the finite languages and the languages (Σm)∗ with m ∈ M by the operations of
union, complement and concatenation.

Remark 5.18 The converse of the above corollary is immediate. If there exists
an algorithm to decide for a regular language L ⊆ Σ∗ whether or not L can be
constructed from the finite languages and the languages (Σm)∗ with m ∈ M by
the operations of union, complement and concatenation, then (M ] is a recursive
set.

6 First-order logic

The expressive power of first-order logic on words with a unary predicate corre-
sponding to each letter of the alphabet and < as the only numerical predicate
was characterized by McNaughton and Papert [10]. We let FO[<] denote this
logic. Thus, for any fixed alphabet Σ, the atomic formulas of FO[<] are the
propositions Pa(x) and x < y, where a is any letter of Σ and x and y are vari-
ables. Formulas can be constructed from the atomic formulas by the boolean
connectives ∨ and ¬, denoting disjunction and negation, and existential quan-
tification. The other boolean connectives and universal quantification can be
introduced as abbreviations. Free and bound variables are defined as usual. We
may assume that no variable is bound two or more times in a formula, or in
a finite set of formulas, and that any free variable is different from any bound
variable. Below we will denote syntactic equality by ≡.

Suppose that ϕ is a formula with free variables in X , and suppose that w ∈ Σ∗

and λ : X → [|w|], i.e., λ maps variables in X to “positions” in w. We say that
(w, λ) satisfies ϕ, denoted (w, λ) |= ϕ, if
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• ϕ ≡ Pa(x) and the letter in w at position x is a, or

• ϕ ≡ x < y and xλ < yλ, or

• ϕ ≡ ϕ1 ∨ ϕ2 and (w, λ) |= ϕ1 or (w, λ) |= ϕ2, or

• ϕ ≡ ¬ψ and (w, λ) 6|= ψ, or

• ϕ ≡ (∃x)ψ and there exists a function λ′ : X ∪ {x} → [|w|] which agrees
with λ on X such that (w, λ′) |= ψ. (Here, by our conventions, we may
assume without loss of generality that x 6∈ X .)

When X is empty, so that ϕ is a sentence, i.e., ϕ has no free variables, we just
write w |= ϕ and call {w ∈ Σ∗ : w |= ϕ} the language defined by ϕ. Moreover,
we say that a language L ⊆ Σ∗ is definable in FO[<] if there is a sentence ϕ
which defines L.

As before, we let A denote the ∗-variety of aperiodic automata, and let A denote
the corresponding ∗-variety of languages.

Theorem 6.1 (McNaughton and Papert [10]) A language L ⊆ Σ∗ is definable
in FO[<] iff L ∈ Σ∗A.

We refer the reader to [10], and in particular to [15], for detailed proofs of
Theorem 6.1.

Subsequently, Barrington, Compton, Straubing and Therien [1] considered the
extension of first-order logic by atomic propositions of the form Crd(x), d ≥
1, r ∈ [d] meaning that position x in the word satisfies x ≡ r mod d. Thus,
using the above notations, (w, λ) |= Crd(x) if and only if xλ is congruent to r
mod d. Since this logic is equivalent to the extension of FO[<] by all regular
numerical predicates, see [14], we denote it by FO[R]. As before, let QA denote
the l-variety corresponding to the q-variety QA of quasi-aperiodic automata.

Theorem 6.2 (Barrington et al. [1]) A language L ⊆ Σ∗ is definable in FO[R]
iff L ∈ Σ∗QA.

For an integer d ≥ 1 let FO[d] denote the fragment of FO[R] where only
atomic propositions associated to the letters of the alphabet and propositions
of the form x < y and Crd(x) are allowed. (It would be sufficient to allow only
x < y and C0

d(x).) Moreover, for a set M of the positive integers, let FO[M ]
denote the union of the FO[d] with d ∈ M . Thus, FO[R] = FO[Nat] and
FO[<] = FO[∅] = FO[1].

Below we will write x ≤ y as abbreviation for ¬(y < x), x = y + 1 for x <
y ∧ ¬(∃z)(x < z ∧ z < y), Last(x) for (∀y)(y ≤ x), True for ϕ ∨ ¬ϕ, where ϕ is
a fixed sentence, and False for ¬True.
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Proposition 6.3 A language L ⊆ Σ∗ is definable in FO[M ] iff L is definable
in FO[(M ]].

Proof. This follows by the following two observations.

1. If d is a divisor of m, say dk = m, then C0
d(x) can be expressed as C0

m(x)∨
Cdm(x) ∨ . . . C

d(k−1)
m (x). Moreover, for every r ∈ [d], Cr+1

m (x) can be
expressed by (∃y)(x = y + 1 ∧ Crm(y)).

2. If m1,m2 ≥ 1 and m denotes the l.c.m. of m1 and m2, then C0
m(x) can

be expressed as C0
m1

(x) ∧ C0
m2

(x). �

By our previous results we can prove the following common extension of Theo-
rems 6.1 and 6.2.

Theorem 6.4 Suppose that M is any set of the positive integers. Then a lan-
guage L ⊆ Σ∗ is definable in FO[M ] iff L ∈ Σ∗QAM .

The proof of Theorem 6.4 will be completed at the end of the section.

Proposition 6.5 Suppose that L ⊆ Σ∗ and d ≥ 1. If L(d) is definable in
FO[<], then L ∩ (Σd)∗ is definable in FO[d].

Proof. First we prove that for all ϕ ∈ FO[<] with free variables in X there
exists some ϕ′ ∈ FO[d] with free variables in X such that for all w ∈ (Σ(d))∗

and λ : X → [|w|],

(w, λ) |= ϕ iff (wh, κ) |= ϕ′,

where h denotes the homomorphism (Σ(d))∗ → Σ∗ defined by 〈u〉 7→ u, for all
u ∈ Σd, and where xκ = d(xλ), the product of the integers d and xλ, for all
x ∈ X . We prove this claim by induction on the structure of ϕ.

• ϕ ≡ P〈u〉(x), where u = a0 . . . ad−1. Then, writing xd−1 for x, we define

ϕ′ ≡ (∃x0) . . . (∃xd−2)


d−2∧
j=0

xj+1 = xj + 1 ∧
d−1∧
j=0

Paj (xj)


 .

• ϕ ≡ x < y. Then ϕ′ ≡ x < y.

• ϕ ≡ ϕ1 ∨ ϕ2. Then ϕ′ ≡ ϕ′
1 ∨ ϕ′

2.

• ϕ ≡ ¬ϕ1. Then ϕ′ ≡ ¬ϕ′
1.
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• ϕ ≡ ∃xϕ1, Then ϕ′ ≡ (∃x)(C0
d (x) ∧ ϕ′

1).

We now complete the proof of Proposition 6.5. Suppose that L(d) is defined by
sentence ϕ in FO[<]. Then L∩ (Σd)∗ is defined by ϕ′ ∧ (∀x)(Last(x) → C0

d(x)).
�

Corollary 6.6 Suppose that L ⊆ Σ∗ and d ≥ 1. If L(d,u) is definable in
FO[<] for all u ∈ Σ∗ with |u| < d, then L is definable in FO[d].

Proof. For each u ∈ Σ∗ with |u| < d we have that L(d,u) = (Lu−1)(d). By
Proposition 6.5, it follows that if L(d,u) is definable in FO[<], then Ku = Lu−1∩
(Σd)∗ is definable in FO[d], for each u ∈ Σ∗, |u| < d. But then, using the formula
L =

⋃
u∈Σ∗, |u|<dKuu, it follows easily that L is definable in FO[d]. Indeed, if

Ku is defined by ϕu, where u = a0 . . . an−1 ∈ Σ∗ with |u| = n < d, then Kuu is
defined by the formula ψu

(∃x0) . . . (∃xn−1)

[
n−2∧
i=0

xi+1 = xi + 1 ∧
n−1∧
i=0

Pai(xi) ∧ Last(xn−1) ∧ ϕu[< x0]

]
,

where ϕu[< x0] is the relativization of ϕu defined in the usual manner [15].
Finally, L is defined by

∨
u∈Σ∗, |u|<d ψu. �

Proposition 6.7 If L ⊆ Σ∗ is definable in FO[d], then L(d) is definable in
FO[<].

Proof. We prove the following claim. For all ϕ in FO[d] with free variables in
X and for all functions ρ : X → [d] there exists a formula ϕ′

ρ ∈ FO[<] with free
variables in X such that for all words w ∈ (Σ(d))∗ and functions λ : X → [|w|],

(w, λ) |= ϕ′
ρ iff (wh, κρ) |= ϕ,

where h denotes the homomorphism (Σ(d))∗ → Σ∗ given by 〈u〉 7→ u, for all
u ∈ Σd, and where xκρ = (xλ)d + xρ, for all x ∈ X . We prove this claim by
induction on the structure of ϕ.

• ϕ ≡ Pa(x). Then ϕ′
ρ is the disjunction of all of the P〈u〉(x) such that the

letter of u on the (xρ)th position is a.

• ϕ ≡ x < y. Then

ϕ′
ρ ≡

{
x < y if xρ ≥ yρ
x ≤ y if xρ < yρ.
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• ϕ ≡ Crd(x). Then

ϕ′
ρ ≡

{
True if xρ = r
False if xρ 6= r.

• ϕ ≡ ϕ1 ∨ ϕ2. Then ϕ′
ρ = (ϕ′

1)ρ ∨ (ϕ′
2)ρ.

• ϕ ≡ ¬ψ. Then ϕ′
ρ = ¬ψ′

ρ.

• ϕ ≡ (∃x)ψ. Here we may assume that x is not in the set X . For each
i ∈ [d], let ρ[x 7→ i] denote that function X ∪ {x} → [d] which agrees with
ρ on X and such that xρ = i. Then we define

ϕ′
ρ ≡ (∃x)

∨
i∈[d]

ψ′
ρ[x 7→i].

We now complete the proof of Proposition 6.7. Suppose that L ⊆ Σ∗ is defined
by the sentence ϕ in FO[d]. Let ϕ′ be the corresponding sentence of FO[<]
defined above. Then for all w ∈ (Σ(d))∗,

w |= ϕ′ iff wh |= ϕ.

(Note that ρ is the empty function.) Thus, ϕ′ defines L(d). �

Corollary 6.8 If L ⊆ Σ∗ is definable in FO[d] then for each u ∈ Σ∗ with
|u| < d, L(d,u) is definable in FO[<].

Proof. Use the fact that L(d,u) = (Lu−1)(d) and that if L is definable in FO[d],
then so is Lu−1. �

We are now in the position to complete the proof of Theorem 6.4.

Proof of Theorem 6.4. By Corollaries 6.6 and 6.8, a language L ⊆ Σ∗ is definable
in FO[d] iff L(d,u) is definable in FO[<], for each u ∈ Σ∗ with |u| < d. Thus, by
the theorem of McNaughton and Papert, Theorem 6.1, and by Corollary 5.16,
L is definable in FO[d] iff L ∈ QAd. Since a language is definable in FO[M ] iff
it is definable in FO[d], for some d in the division ideal generated by M , and
since QAM is the union of the QAd where d is any integer in the division ideal
generated by M , the result follows. �

Corollary 6.9 Suppose that membership in the division ideal generated by M
is decidable. Then it is decidable for a regular language L whether or not L can
be defined in FO[M ].

Again, the converse direction holds obviously.
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7 Temporal logic

The language LTL of Linear (Propositional) Temporal Logic [12] over an al-
phabet Σ has, as atomic formulas (or atomic propositions), the propositional
constants pa associated with the letters a ∈ Σ. Formulas can be constructed
from the atomic formulas by the boolean connectives ∨ and ¬, and the modal-
ities X (next) and U (until). Other boolean connectives may be introduced as
usual. Suppose that u ∈ Σ∗ and that ϕ is a formula. We say that u satisfies ϕ,
denoted u |= ϕ, if

1. ϕ ≡ pa and u = av, for some a ∈ Σ and v ∈ Σ∗, or

2. ϕ ≡ ϕ1 ∨ ϕ2, for some ϕ1 and ϕ2, and u |= ϕ1 or u |= ϕ2, or

3. ϕ ≡ ¬ψ, for some formula ψ, and it is not the case that u |= ψ, or

4. ϕ ≡ ϕ1Uϕ2, for some ϕ1 and ϕ2, and there exist v, w ∈ Σ∗ such that
u = vw, w |= ϕ2, moreover, z |= ϕ1 for all suffixes z of u properly
including w.

In this section we study the extension of LTL by counting. Suppose that M ⊆
Nat. For an alphabet Σ, the atomic formulas of LTL[M ] are those of LTL
together with an additional propositional constant lgd,r, for each d ∈ M and
r ∈ [d]. Formulas are constructed from the atomic formulas as above, so that if
ϕ and ψ are formulas, then so are ϕ∨ ψ, ¬ϕ, Xϕ and ϕUψ. For all d ∈M and
r ∈ [d], we define u |= lgd,r iff the length of u is congruent to r modulo d. The
semantics of the other constructs of LTL[M ] are defined as above. When M is
the division ideal generated by d, we write just LTL[d] for LTL[M ]. Note that
LTL[1] is just LTL, as is LTL[∅].
We say that a language L ⊆ Σ∗ is definable in LTL[M ] if there is a formula
ϕ of LTL[M ] (with propositional constants corresponding to the letters of Σ)
such that L = Lϕ = {u ∈ Σ∗ : u |= ϕ}.

Example 7.1 For any m,n > 0 and u ∈ Σ∗, we have that u |= lgm,0 and
u |= lgn,0 iff u |= lgk,0, where k denotes the least common multiple of m and n.
Moreover, u |= lgm,r, for r ∈ [m], iff u |= Xrlgm,0, where Xr is X . . .X with X
appearing r times. Also, if n divides m, then u |= lgn,0 iff u |= ∨

i∈[m/n] lgm,in.

By the above example, we have that LTL[M ] is as exactly as expressive as
LTL[(M ]], i.e., a language is definable in LTL[M ] iff it is definable in LTL[(M ]].
Moreover, when M is not empty, then a language is definable in LTL[M ] iff it
is definable in LTL[d], for some d ∈ (M ].

The logic LTL[M ] allows for several counting versions of the until modality.
For any formulas ϕ and ψ, and for any d ∈ M and r ∈ [d], define ϕU (d,0)ψ to

25



be the formula ∨
i∈[d]

[lgd,i ∧ (ϕU(ψ ∧ lgd,i))],

and define ϕU (d,r)ψ, r > 0 as

ϕ ∧Xϕ ∧ . . . ∧Xr−1ϕ ∧Xr(ϕU (d,0)ψ).

We then have u |= ϕU (d,r)ψ iff u has a decomposition u = vw such that w |= ψ,
|v| is congruent to r modulo d, moreover, for all x, z with xz = u such that w
is a proper suffix of z, it holds that z |= ϕ.

A second counting version of the until modality can now be defined as follows.
For all ϕ, ψ and d, r as before, let ϕU (d,0)

1 ψ be the formula∨
i∈[d]

[lgd,i ∧ (¬lgd,i ∨ ϕ)U (d,0)ψ)].

Moreover, when r > 0, let ϕU (d,r)
1 ψ be the formula

ϕ ∧Xϕ ∧ . . . ∧Xr−1ϕ ∧Xr(ϕU (d,0)
1 ψ).

We now have u |= ϕU (d,r)ψ, for u a word in Σ∗, iff u has a decomposition
u = vw such that w |= ψ, |v| is congruent to r modulo d, moreover, for all x, z
with xz = u such that w is a proper suffix of z and |x| is congruent to r modulo
d, it holds that z |= ϕ.

A last version of until involves several formulas. Suppose, as before, that
d ∈ M , and suppose that ϕ0, . . . , ϕd−1, ψ are formulas of LTL[M ]. We de-
fine (ϕ0, . . . , ϕd−1)U

(d,0)
2 ψ as the formula∨
i∈[d]

[lgd,i ∧ ((¬lgd,i ∨ ϕi)U (d,0)ψ)]

Thus, for all words u ∈ Σ∗, we have u |= (ϕ0, . . . , ϕd−1)U
(d,0)
2 ψ iff u has a de-

composition u = vw such that w |= ψ, |v| is congruent to r modulo 0, moreover,
for all x, z and i ∈ [d] with xz = u such that w is a proper suffix of z and |x|
is congruent to i modulo d, it holds that z |= ϕi. The modalities U (d,r) with
r ∈ [d], r 6= 0, which have a similar semantics, can be introduced in the obvious
way. Of course, the propositional constants lgd,r can in turn be defined using
either version of until.

Remark 7.2 The last version of until shows that the extension of LTL by
counting fits in the framework of Wolper’s extension of temporal logic by gram-
mar (or finite automaton) operators, cf. [21, 20].
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We introduce several abbreviations. First, let True = pa ∨ ¬pa, where a is
any letter in Σ, and let False = ¬True. Moreover, let End denote the formula∧
a∈Σ ¬pa, so that for all u ∈ Σ∗, we have u |= End iff u = ε. Finally, for any

formula ϕ, let 〈〉(d,r)ϕ stand for TrueU (d,r)ϕ and �(d,r)ϕ for ¬〈〉(d,r)¬ϕ. The
modalities 〈〉 and � are defined as usual.

Example 7.3 Let Σ = {a, b}. If ϕ is the formula 〈〉(2,0)End, then Lϕ, the
language defined by ϕ is (Σ2)∗. Moreover, if ψ ≡ paU

(2,0)(�pb), then Lψ is the
language (a2)∗b∗.

In his thesis [9], Kamp proved that temporal logic with past and future modal-
ities is expressively complete in the sense that it can express every first-order
property of words. Subsequently, it has been shown in [7] that future (or past)
modalities alone suffice. An algebraic proof of this result, based on the Krohn-
Rhodes decomposition theorem for finite semigroups and automata [4, 15], was
later given by Cohen, Perrin and Pin in [3]. However, the simplest proof to date
is the one found by Th. Wilke, cf. [19].

Theorem 7.4 (Kamp [9], Gabbay et al. [7]) A language L ⊆ Σ∗ is definable
in LTL iff L is definable in FO[<].

Hence, L is definable in LTL iff L is in A. Our aim is to prove the following
counting version of Kamp’s theorem.

Theorem 7.5 Suppose that M is a division ideal. Then a language L ⊆ Σ∗ is
definable in LTL[M ] iff L is definable in FO[M ].

In our proof of Theorem 7.5, we will use:

Proposition 7.6 Suppose that L ⊆ Σ∗, d ≥ 1 and v ∈ Σ∗ with |v| < d. If
L(d,v) is definable in LTL, then L ∩ (Σd)∗v is definable in LTL[d].

Proof. First we show that for every formula ϕ of LTL there is a formula ϕ′ of
LTL[d] such that for all words w ∈ (Σ(d))∗ it holds that w |= ϕ iff (wh)v |= ϕ′,
where h denotes the homomorphism (Σ(d))∗ → Σ∗ defined by 〈w〉 7→ w, all
w ∈ Σd. We construct ϕ′ by induction.

• ϕ ≡ p〈u〉, where u = a0 . . . ad−1. Then

ϕ′ ≡ pa0 ∧Xpa1 ∧ . . . ∧Xd−1pad−1 ,

where Xnϕ is X . . .Xϕ with X appearing n times.
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• ϕ ≡ ϕ1 ∨ ϕ2. Then ϕ′ ≡ ϕ′
1 ∨ ϕ′

2.

• ϕ ≡ ¬ψ. Then ϕ′ ≡ ¬ψ′.

• ϕ ≡ Xψ. Then ϕ′ ≡ Xdψ′.

• ϕ ≡ ϕ1Uϕ2. Then ϕ′ ≡ ϕ′
1U

(d,0)
1 ϕ′

2.

Suppose now that L(d,v) is defined by ϕ. Then the formula

ϕ′ ∧ 〈〉(d,0)(pa0 ∧Xpa1 ∧ . . . ∧X i−1pai−1 ∧X iEnd)

defines L∩(Σd)∗v, where v = a0 . . . ai−1 and ϕ′ denotes the formula constructed
above. �

Corollary 7.7 Suppose that L ⊆ Σ∗ and d ≥ 1. If L(d,u) is definable in LTL,
for each u ∈ Σ∗ with u ∈ Σ∗, |u| < d, then L is definable in LTL[d].

We are now ready to prove Theorem 7.5.

Proof of Theorem 7.5. It is well-known that temporal logic can be embedded
in first order logic: any language definable in LTL is definable in FO[<]. The
proof goes by formula induction, essentially by formalizing the definition of
the semantics of LTL. It is easy to show in the same way that any language
definable in LTL[M ] is definable in FO[M ].

Suppose now that L is definable in FO[M ]. Then L is definable in FO[d], for
some d ∈ M . Thus, by Corollary 6.8, L(d,u) is definable in FO[<], for each
u ∈ Σ∗ with |u| < d. Thus, by Theorem 7.4 and Corollary 7.7, L is definable in
LTL[d], hence in LTL[M ]. �

8 Summary and future results

Our main results can be summarized in a single statement that establishes the
equivalence between four descriptions of the same class of languages.

Corollary 8.1 Suppose that M is a set of the positive integers. The following
conditions are equivalent for a language L ⊆ Σ∗:

1. L can be constructed from the finite subsets of Σ∗ and the languages (Σm)∗,
where m ∈M , by the Boolean operations and concatenation.

2. L can be defined by a formula of LTL[M ].

3. L can be defined by a formula of FO[M ].
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4. L can be accepted by a finite automaton whose degree of aperiodicity be-
longs to (M ] (or equivalently, the minimal automaton accepting L is finite
with aperiodicity degree contained in (M ]).

As mentioned above, this result is a common extension of those obtained in
[1, 7, 9, 10, 13]. In fact, we have shown that Corollary 8.1 is easily derivable
from the classical results of Schützenberger [13], McNaughton and Papert [10],
Kamp [9] and Gabbay et al. [7], using Corollary 4.10, which is in turn based on
Theorem 4.8 and Theorem 4.6. (Of course, it is possible to prove Corollary 4.10
without using Theorem 4.6.)

Some of the implications of Corollary 8.1 are quite obvious. It is clear that the
second condition implies the third as does the first. The fact that the second
condition implies the first can be proved by generalizing an argument from [3]
which concerns the case when M is empty. That the third condition implies the
fourth can also be shown directly using Ehrenfeucht-Fraisse games, following
the usual argument establishing the fact that any language definable in FO has
an aperiodic syntactic monoid. In the classical case, i.e., when M = ∅, there
are two different direct arguments in the literature establishing that the last
condition implies the second. The first argument is based on (a weak form of)
the Krohn-Rhodes decomposition theorem, and can be found in [3]. A more
elementary argument is given in [19]. Both arguments can be generalized to
any given set M of moduli.

Theorem 4.8 and Theorem 4.6 are also very useful in the characterization of
the expressive power of other variants of first-order and temporal logic. Various
fragments of LTL have been studied in [3] and [19]. In a forthcoming paper,
we will characterize the expressive power of the extension of most of these frag-
ments by counting. In [15, 16], the expressive power of first-order logic with
modular quantifiers with respect to any given set of moduli has been character-
ized, as well as the expressive power of first-order logic with modular quantifiers
and the predicates Crm(x), where m is any positive integer and r ∈ [m]. Using
Theorem 4.8 and Theorem 4.6, we can give a characterization of the expressive
power of the extension of first-order logic with any collection of modular quan-
tifiers and any collection of predicates Crm(x). A further natural research topic
is to extend these results to ω-languages.
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