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Rationally Additive Semirings

Zoltán Ésik1

(Department of Computer Science, The University of Szeged, Árpád tér 2,
H-6720 Szeged, Hungary.

Email: esik@inf.u-szeged.hu.)

Werner Kuich2

( Institut für Algebra und Computermathematik, Technische Universität Wien,
Wiedner Hauptstraße 8–10, A-1040 Wien, Austria.

Email: kuich@tuwien.ac.at.)

Abstract: We define rationally additive semirings that are a generalization of (ω)-
complete and (ω-)continuous semirings. We prove that every rationally additive semir-
ing is an iteration semiring. Moreover, we characterize the semirings of rational power
series with coefficients in N∞, the semiring of natural numbers equipped with a top
element, as the free rationally additive semirings.

Key Words: semiring, complete semiring, iteration semiring, fixed point, power se-
ries.

Category: F.4.3

1 Introduction

Rationally additive semirings arise in [Mohri 1998]. Rationally additive semiring
possess enough infinite sums to solve any finite system of linear fixed point equa-
tions. They are a common generalization of (ω)-complete and (ω-)continuous
semirings [see Eilenberg 1974, Kuich 1987, Sakarovitch 1987, Kuich 1997] in which
all (countable) sums exist. Two prime examples of rationally additive semirings
are the semiring of rational (or regular) sets in A∗, where A is any set, and the
semiring N rat

∞ 〈〈A∗〉〉 of rational power series over A with coefficients in N∞, the
semiring of natural numbers with a top element ∞.

In our main result, Theorem 10, we prove that every rationally additive semir-
ing is an iteration semiring. This fact extends a result of [Hebisch 1990] by which
every complete semiring is a Conway semiring. Iteration semirings appear implic-
itly in [Conway 1971]. They were explicitly defined in [Bloom, Ésik 1993a, 1993b].
Conway conjectured that a complete axiomatization of the equational theory of
rational (regular) languages consists of the Conway semiring equations, defined
below, together with the equation 1∗ = 1 and an equation associated with each
finite group. Conway’s conjecture was confirmed in [Krob 1991], see also [Ésik
1999]. In [Bloom, Ésik 1997], the authors conjectured that the valid equations of

1 Partially supported by BRICS, Aalborg, Denmark, grant no. T30511 from the Na-
tional Foundation of Hungary for Scientific Research, grant no. A-4/1999 from the
Austrian-Hungarian Bilateral Research and Development Fund, and by a grant from
the Austrian-Hungarian Action Foundation.

2 Partially supported by grant no. A-4/1999 from the Austrian-Hungarian Bilateral
Research and Development Fund and by a grant from the Austrian–Hungarian Ac-
tion Foundations.

1



rational power series with coefficients in N∞, the semiring of natural numbers
equipped with a top element, can be axiomatized by the iteration semiring equa-
tions and the equation 1∗ = 1∗∗. This conjecture is still open. In Theorem 15,
we characterize the semirings of rational power series with coefficients in N∞ as
the free rationally additive semirings.

2 Conway semirings and iteration semirings

A ∗-semiring is a semiring [see Kuich, Salomaa 1986, Golan 1992] S = (S, +, ·, 0, 1)
equipped with a star operation ∗ : S → S. A Conway semiring [Bloom, Ésik
1993b] is a ∗-semiring S which satisfies the sum-star and product-star equations

(x + y)∗ = (x∗y)∗x∗ (1)
(xy)∗ = 1 + x(yx)∗y. (2)

Note that the fixed point equation

x∗ = 1 + xx∗ (3)

holds in any Conway semiring. (Substitute 1 for y in (2).)
Suppose that S is a ∗-semiring and n ≥ 0. We turn the matrix semiring

Sn×n into a ∗-semiring. Let M ∈ Sn×n. When n = 0, M∗ is the unique 0 × 0
matrix, and when M = [a ], then M∗ = [a∗ ]. Suppose now that n > 1. Write

M =
[

a b
c d

]
, where a is (n − 1) × (n − 1) and d is 1 × 1. We define

M∗ =
[
α β
γ δ

]
(4)

where

α = (a + bd∗c)∗

β = αbd∗

γ = δca∗

δ = (d + ca∗b)∗.

Theorem 1. [Conway 1971, Bloom, Ésik 1993] If S is a Conway semiring, then
so is each matrix semiring Sn×n. Moreover, the above matrix formula (4) holds

for each way of splitting M into four blocks M =
[
a b
c d

]
such that a and d are

square matrices.

Suppose that G is a finite group of order n with elements g1, . . . , gn. For each
gi, let xi denote a variable associated with gi. We define MG = [(MG)ij ], where
(MG)ij is the variable associated with the group element g−1

i gj, i.e., (MG)ij = xk

where gk = g−1
i gj. The matrix M∗

G is defined as in (4) above, so that each entry
of M∗

G is a term in the variables x1, . . . , xn.
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The group-equation associated with G [see Conway 1971] is the equation

e · M∗
G · u = (x1 + . . . + xn)∗,

where e is the 1 × n row matrix whose first entry is 1 and whose other entries
are 0, and where u is the n × 1 column matrix whose entries are all 1. (Under
the Conway semiring equations (1) and (2), the particular order g1, . . . , gn of the
group elements is irrelevant.)

An iteration semiring [see Bloom, Ésik 1993, Ésik 1999] is a Conway semiring
satisfying all group-equations.

Proposition2. [Bloom, Ésik 1993b] Any Conway semiring S satisfying the
functorial implication

AC = CB ⇒ A∗C = CB∗,

for all matrices A ∈ Sn×n, B ∈ Sm×m and C ∈ Sn×m, is an iteration semiring.

Notation For each nonnegative integer n, we denote the set {1, . . . , n} by
[n]. Thus, [0] is another name for the empty set.

For any set Σ, we denote by Σ∗ the free monoid of all words over Σ including
the empty word ε. When S is semiring, S〈〈A∗〉〉 denotes the semiring of all power
series over A with coefficients in S. Moreover, we let S〈A〉 denote the collection
of all finite sums of terms of the form sa with s ∈ S and a ∈ Σ.

3 Rationally additive semirings

A weak rationally additive semiring is a semiring S equipped with a partial
summation

∑
i∈I si defined on countable families si ∈ S, i ∈ I subject to the

following conditions:

– Ax1. When si ∈ S for i ∈ F and F is finite, then
∑

i∈F si is the sum of the
si as defined in the semiring S.

– Ax2. For each s ∈ S, the geometric sum
∑∞

n=0 sn exists.
– Ax3. If

∑
i∈I si exists, then so do

∑
i∈I ssi and

∑
i∈I sis, for each s ∈ S,

moreover,

s(
∑
i∈I

si) =
∑
i∈I

ssi

(
∑
i∈I

si)s =
∑
i∈I

sis.

– Ax4. Suppose that the countable set I is the disjoint union of the sets Ij , j ∈
J . Then for any family si ∈ S, i ∈ I, if rj =

∑
i∈Ij

si exists for each j ∈ J ,
and if r =

∑
j∈J rj exists, then

∑
i∈I si also exists and equals r.

A rationally additive semiring is a weak rationally additive semiring S that
satisfies:

3



– Ax5. Suppose that the countable set I is the disjoint union of the sets Ij , j ∈
J . Then for any family si ∈ S, i ∈ I, if s =

∑
i∈I si exists and rj =

∑
i∈Ij

si

exist, for all j ∈ J , then
∑

j∈J rj exists and equals s.

Proposition3. Suppose that S is a weak rationally additive semiring.

– For any countable families si, i ∈ I and rj , j ∈ J , if
∑

i∈I si = s and∑
j∈J rj = r exist, then so does

∑
(i,j)∈I×J sirj . Moreover,

∑
(i,j)∈I×J sirj =

sr.
– For any countable families si ∈ S and s′j ∈ S with i ∈ I and j ∈ J , if there

is a bijection π : I → J with si = s′iπ, for all i ∈ I, then
∑

i∈I si exists iff∑
j∈J s′j does, in which case the two sums are equal.

– Any countable sum
∑

i∈I s exists. Moreover,
∑

i∈I 0 = 0, i.e., any countable
sum of 0 with itself is 0.

– For any countable family si, i ∈ I, if
∑

j∈J sj = r exists, where J is the set
of all i ∈ I with si 6= 0, then

∑
i∈I si exists and equals r.

Proof. The first claim follows from Ax3 and Ax4. For the second, suppose that∑
i∈I si = s exists. Let Ji = {iπ}, for each i ∈ I. Thus the sets Ji determine a

partition of J . Each sum
∑

k∈Ji
s′k = s′iπ = si exists, moreover,

∑
i∈I si exists.

Thus, by Ax4, we have that
∑

j∈J s′j exists and equals
∑

i∈I si. In the same way,
it follows that if

∑
j∈J s′j exists then

∑
i∈I si also exists. For the third claim,

assume first that s = 1. If I is finite with n elements, then
∑

i∈I s =
∑

i∈I 1
exists by Ax1, and equals the usual n-fold sum of 1 with itself. Assume now that
I is infinite. Then

∑
i∈I s =

∑
i∈I 1 =

∑∞
i=0 1i exists by Ax2. Thus for any s,

we have that
∑

i∈I s =
∑

i∈I(s · 1) = s(
∑

i∈I 1) exists. When s is 0, this sum is
also 0. The last claim now follows from Ax4. 2

Remark. When S is rationally additive, the converse of the last fact also holds,
so that using the same notation,

∑
j∈J sj exists iff

∑
i∈I si exists.

Suppose that S and S′ are (weak) rationally additive semirings. A homo-
morphism h : S → S′ is a semiring homomorphism that preserves all existing
countable sums. Thus, if

∑
i∈I si exists, where si ∈ S for each i ∈ I, then so

does
∑

i∈I sih and (
∑

i∈I si)h =
∑

i∈I sih.

Example 1. A countably additive (or ω-complete) semiring is a rationally addi-
tive semiring S such that

∑
i∈I si exists for all countable families si ∈ S, i ∈ I.

For example, the power set semiring of a semiring is countably additive, where
summation is defined by set union. An example of a rationally additive semiring
which is not countably additive is the semiring of regular sets in A∗, where A
is any set. In this semiring only those sums (unions) exist that are regular lan-
guages. An ω-continuous (or just continuous) semiring is a countably additive
semiring which is naturally ordered and such that

∑
i∈I si is the supremum of

the finite sums
∑

i∈F si, for all finite subsets F ⊆ I. Since any countably addi-
tive semiring is rationally additive, so is any ω-continuous semiring. For more
on complete and continuous semirings, the reader is referred to [Eilenberg 1974,
Kuich 1987, Sakarovitch 1987, Kuich 1997].
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Example 2. A prime example of a countably additive semiring is the semiring
N∞ = {0, 1, . . . ,∞} obtained by adding a top element to the natural numbers
N equipped with the following summation. For all ni ∈ N∞, i ∈ I, where I is
countable, define

∑
i∈I ni = ∞ if ni = ∞ for some i, or if ni > 0 for infinitely

many numbers i. Otherwise let
∑

i∈I ni be the ordinary sum. Note that all
countable sums exist in N∞. Moreover, we have x ·∞ = ∞·x = ∞ for all x 6= 0.
We call the above countably additive structure on N∞ the standard countably
additive structure.

Remark. The same semiring S may sometimes be turned into a weak rationally
additive semiring in several different ways. Suppose that we have a weak ra-
tionally additive structure on S with summation denoted

∑
. Then there is a

smallest weak rationally additive structure on S contained in
∑

. If we denote
the summation operation of this structure by

∑′, we have that
∑′

i∈I si exists iff
I is finite, or there is an element s ∈ S such that for some linear order i0, i1, . . .
of the set I, we have that sin = sn, for all n ≥ 0, or there is a family s′i, i ∈ I
and an element s′ ∈ S such that either si = s′is

′ for all i or si = s′s′i for all i,
or there exist disjoint sets Ij , j ∈ J with I = ∪j∈JIj such that rj =

∑′
i∈Ij

sj

exists for each j ∈ J and
∑′

j∈J rj exists. In either case,
∑′

i∈I si, when exists, is
defined to be

∑
i∈I si. In the same way, each rationally additive structure on S

contains a least rationally additive structure.

Remark. There exists a weak rationally additive semiring which is not rationally
additive. For one example, take the (standard) countably additive semiring N∞
defined above. It will be shown below in Corollary 14 that N∞ has no other
rationally additive structure properly included in the standard structure. On the
other hand, consider the least weak rationally additive structure contained in it.
Let

∑′ denote the corresponding summation. Then there is only a countable
number of sets K ⊆ N such that

∑′
k∈K k exists. Hence this weak additive

semiring structure is not the standard countably additive structure.

In any (weak) rationally additive semiring, we define

∗ : S → S

s 7→
∞∑

n=0

sn.

It is clear that morphisms of (weak) rationally additive semirings preserve the
∗-operation.

Proposition4. Any weak rationally additive semiring S is a Conway semiring.

Proof. Suppose that a, b ∈ S and let a and b denote distinct letters corresponding
to a and b, respectively. Below we will use regular languages in (a + b)∗ as index
sets. For any word w ∈ (a + b)∗, let w denote the corresponding element in S.
Since (a + b)∗ =

∑∞
n=0(a + b)n exists, it follows by Ax4 that

∑
w∈(a+b)∗ w also

exists, and (a + b)∗ =
∑

w∈(a+b)∗ w. Let us partition (a + b)∗ into the disjoint
union of the sets Lk = (a∗b)ka∗, k ≥ 0. It follows by Ax2 and Ax3 that each

5



sum
∑

w∈Lk
w exists, and

∑
w∈Lk

w = (a∗b)ka∗. Thus, again by Ax2 and Ax3,∑∞
k=0(a

∗b)ka∗ = (a∗b)∗a∗ exists. Since for each k we have
∑

w∈Lk
w = (a∗b)ka∗,

it follows from Ax4 that
∑

w∈L w = (a∗b)∗a∗. Hence (a + b)∗ =
∑

w∈L w =
(a∗b)∗a∗.

Also,
∑∞

k=0 a(ba)kb = a(
∑∞

k=0(ba)k)b = a(ba)∗b exists, hence by Ax4, (ab)∗ =∑∞
k=0(ab)k = 1 +

∑∞
k=0 a(ba)kb = 1 + a(ba)∗b. 2

Corollary 5. The fixed point equation (3) holds in any weak rationally additive
semiring.

Proposition6. Any weak rationally additive semiring S satisfies 1∗ = 1∗∗,
1∗1∗ = 1∗ and 1∗ + 1∗ = 1∗.

Proof. Equation 1∗ + 1∗ = 1∗ follows from Ax4. By Proposition 3,

1∗1∗ = (
∞∑

i=0

1)(
∞∑

i=0

1) =
∞∑

i,j=0

1 =
∞∑

k=0

1 = 1∗,

and by Ax3,

1∗1∗ =
∞∑

i=0

∞∑
j=0

1.

Hence, (1∗)n = 1∗, for all n ≥ 1. Moreover,

1∗∗ = 1 +
∞∑

n=1

(1∗)n = 1 +
∞∑

n=0

1∗ = 1 +
∞∑

n=0

∞∑
m=0

1 = 1 + 1∗ = 1∗,

where the last step follows from the fixed point equation. 2

Remark. In fact, the equations 1∗1∗ = 1∗ and 1∗ + 1∗ = 1∗ hold in any Conway
semiring satisfying 1∗∗ = 1∗.

Suppose that S is a weak rationally additive semiring. Then, as shown above,
S is a Conway semiring. Thus, by Theorem 9, the semirings Sn×n, n ≥ 0 are
also Conway semirings. Moreover, for each decomposition of a matrix A ∈ Sn×n

in the form A =
[

a b
c d

]
, where a and d are square matrices, we have

A∗ =
[

α β
γ δ

]
(5)

where

α = (a + bd∗c)∗

β = αbd∗

γ = δca∗

δ = (d + ca∗b)∗.

Suppose now that S is rationally additive. We turn Sn×n into a rationally ad-
ditive semiring. Suppose that Ai ∈ Sn×n, i ∈ I where I is countable. We say

6



that
∑

i∈I Ai exists if
∑

i∈I(Ai)jk exists for all j, k ∈ [n]. Moreover, we define
(
∑

i∈I Ai)jk =
∑

i∈I(Ai)jk, for each j, k ∈ [n]. We define the summation on
countable families of matrices in Sn×m, for n, m ≥ 0 in the same way.

Proposition7. Suppose that S is rationally additive. If Ai ∈ Sn×m, i ∈ I
such that

∑
i∈I Ai exists, then for any B ∈ Sm×p,

∑
i∈I AiB exists and equals

(
∑

i∈I Ai)B.

Proof. It suffices to prove the proposition for p = 1. We argue by induction on
m. The case that m = 0 is trivial. When m = 1, the proposition holds by Ax3.
Suppose now that m > 1. Then let m = m1 +m2, where m1, m2 < m, and let us

write Ai = [ai bi ], i ∈ I, and B =
[

x
y

]
, where ai is n×m1, etc. Let a =

∑
i∈I ai

and b =
∑

i∈I bi, so that A =
∑

i∈I Ai = [a b ]. By the induction assumption,
both

∑
i∈I aix and

∑
i∈I biy exist, moreover,

∑
i∈I aix = ax and

∑
i∈I biy = by.

Since Ax5 holds in S, it follows that
∑

i∈I(aix + biy) exists and equals ax + by.
Thus,

∑
i∈I AiB = (

∑
i∈I Ai)B exists. Note that only a weak form of Ax5 was

used: the case when each set Ij is finite. 2

In the same way, we have:

Proposition8. Suppose that S is rationally additive. If Ai ∈ Sn×m, i ∈ I
such that

∑
i∈I Ai exists, then for any B ∈ Sp×n,

∑
i∈I BAi exists and equals

B(
∑

i∈I Ai).

Theorem 9. When S is rationally additive, so is Sn×n, for any n ≥ 0. More-
over, for the star operation defined in (5), we have

A∗ =
∞∑

k=0

Ak.

Proof. Our claims are clear for n = 0, 1. We proceed by induction on n. Assume
that n > 1. It is clear that Ax1, Ax4 and Ax5 hold in Sn×n. The fact that Ax3

holds was shown above.

Suppose now that A =
[
a b
c d

]
∈ Sn×n, where a, b, c, d are submatrices of A

such that a and d are square matrices of size smaller than n. We want to show
that

∑∞
k=0 Ak = A∗, i.e., that

∑∞
k=0 Ak exists and
∞∑

k=0

Ak =
[
α β
γ δ

]

where α, β, γ and δ were given as above. We will only show that the submatrix
of

∑∞
k=0 Ak at the left upper corner exists and equals α.

Consider the regular language L = (a + bd
∗
c)∗. Then L is the union of the

disjoint sets Lk
1 , k ≥ 0, where L1 = a + bd

∗
c. By the induction assumption,

a + bd∗c = a + b(
∞∑

j=0

dj)c = a +
∞∑

j=0

bdjc = a +
∑

w∈bd
∗
c

w =
∑

w∈L1

w.
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Hence, by Proposition 7 and Proposition 8,

(a + bd∗c)2 = (
∑

w∈L1

w)(
∑

w∈L1

w) =
∑

u,v∈L1

uv =
∑

w∈L2
1

w,

since each word in L2
1 has a unique factorization as a product of two words in

L1. In the same way, it follows that

(a + bd∗c)k =
∑

w∈Lk
1

w,

for all k ≥ 0. Thus, by the induction assumption,

(a + bd∗c)∗ =
∞∑

k=0

(a + bd∗c)k =
∞∑

k=0

∑
w∈Lk

w =
∑
w∈L

w.

In particular,
∑

w∈L w exists. Now let us write Ak =
[
ak bk

ck dk

]
, k ≥ 0. To com-

plete the proof, we need show that
∑∞

k=0 ak exists and equals
∑

w∈L w. But for
each k, ak =

∑
w∈L, |w|=k w. Thus, since Ax5 holds by the induction assump-

tion,
∑∞

k=0 ak exists and equals
∑

w∈L w. (Again note that only the weak form
of Ax5 when the sets Ij are finite has been used.) 2

Theorem 10. Any rationally additive semiring S is an iteration semiring sat-
isfying 1∗ = 1∗∗.

Proof. We have already proved that any rationally additive semiring S is a Con-
way semiring and satisfies 1∗ = 1∗∗. The fact that the group-equations hold
follows from the functorial implication, see Proposition 2, which can be estab-
lished as follows. Suppose that A ∈ Sn×n, B ∈ Sm×m and C ∈ Sn×m with
AC = CB. Then AkC = CBk, for all k ≥ 0. Thus, by Propositions 7 and 8,

A∗C = (
∞∑

k=0

Ak)C =
∞∑

k=0

AkC =
∞∑

k=0

CBk = C(
∞∑

k=0

Bk) = CB∗.

2

Assume that S is a rationally additive semiring and A is a set. We turn
the power series semiring S〈〈A∗〉〉 into a rationally additive semiring. For any
countable family ri ∈ S〈〈A∗〉〉, i ∈ I, we say that

∑
i∈I ri is defined if the sum∑

i∈I(ri, u) is defined for all u ∈ A∗. Moreover, in this case, we let (
∑

i∈I ri, u) =∑
i∈I(ri, u).

Proposition11. Suppose that S is a rationally additive semiring and A is a
set. Then S〈〈A∗〉〉 is also a rationally additive semiring.
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Proof. We only show that Ax2 and Ax3 hold in S〈〈A∗〉〉. So suppose that r ∈
S〈〈A∗〉〉. We clearly have that

∞∑
n=0

(rn, ε) =
∞∑

n=0

(r, ε)n = (r, ε)∗.

Suppose now that u 6= ε. Then (rn, u) =
∑

u1...un=u(r, u1) . . . (r, un). Thus,
by Ax5,

∑∞
n=0(r

n, u) exists if the sum
∑

u1...un=u, n≥0(r, u1) . . . (r, un) does.
But this latter sum indeed exists. This can be seen as follows. For each fixed
u1, . . . , uk 6= ε with u1 . . . uk = u,

∑
m0,...,mk≥0

(r, ε)m0(r, u1) . . . (r, uk)(r, ε)mk = (r, ε)∗(r, u1) . . . (r, uk)(r, ε)∗

exists. Since
∑

u1...un=u(r, u1) . . . (r, un) is just a finite sum of sums of this form,
it follows by Ax4 that this sum also exists. Again, only a weak form of Ax5 has
been used. 2

The following fact is clear.

Proposition12. Suppose that S is a (weak) rationally additive semiring and
S′ is a subsemiring of S which is closed under ∗. Say that

∑
i∈I si exists in S′,

where si ∈ S′ for all i ∈ I, if
∑

i∈I si exists in S and belongs to S′, and in that
case, let the sum in S′ be the same as in S. Then S′ is also a (weak) rationally
additive semiring.

When S is a ∗-semiring and B ⊆ S, the B-rational elements of S are those
contained in the ∗-semiring generated by B. Thus the B-rational elements form
a ∗-semiring denoted RatS(B), or just Rat(B). Let S be rationally additive and
let A be a set. Then, as shown above, S〈〈A∗〉〉 is also rationally additive and each
a ∈ A and s ∈ S can be conveniently identified with a series in S〈〈A∗〉〉. We
denote Srat〈〈A∗〉〉 = RatS〈〈A∗〉〉(A ∪ S).

The countably additive semiring N∞ was defined above.

Proposition13. Suppose that S is rationally additive. Then there is a unique
morphism N∞ → S.

Proof. Clearly, any morphism h : N∞ → S is forced to map each integer n to
the n-fold sum of 1 with itself and ∞ to 1∗. The fact that this function is in
turn a morphism will follow by Remark 3 once we prove that for any countably
infinite family ni, i ∈ I of nonzero elements of N∞, the sum

∑
i∈I nih exists in

S and equals 1∗. But this follows by Proposition 3. 2

Corollary 14. There exits no rationally additive semiring structure on N∞
properly included in the standard structure.

Theorem 15. For each set A, N rat∞ 〈〈A∗〉〉 is freely generated by A in the class of
rationally additive semirings.
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Proof. We need to show that if S is a rationally additive semiring and h is a
function A → S, then h has a unique extension to a morphism h] : N rat∞ 〈〈A∗〉〉 →
S of rationally additive semirings. Suppose that r ∈ N rat

∞ 〈〈A∗〉〉. We are forced to
define

rh] =
∑

(r,u) 6=0

(r, u)uh, (6)

where for any word u = a1 . . . an ∈ A∗ of length n, we define uh = (a1h) ·
. . . · (anh). Note that the coefficient (r, u) of uh in (6) is taken in S. This is
meaningful, since to each integer n there corresponds in S the n-fold sum of 1
with itself, and to ∞ the element 1∗. See Proposition 13.

In a natural way, we may extend h to a function N∞〈A〉 → S, and then to
a function (N∞〈A〉)n×n → Sn×n, for each n ≥ 0. For each n ∈ N∞ and a ∈ A
we define (na)h = n(ah). For a finite sum

∑
i∈F niai, we define (

∑
i∈F niai)h =∑

i∈F ni(aih).
We must show that the sum on the right-hand side of (6) exists. Since r

is rational, by (a generalization of) Schützenberger’s theorem [see Bloom, Ésik
1993b], there exists α ∈ N1×n

∞ , M ∈ N∞〈A〉n×n and β ∈ Nn×1
∞ with r =

αM∗β. Now, by Theorem 9 and Propositions 7 and 8, we have that α(Mh)∗β =∑∞
k=0 α(Mh)kβ exists. But for each k,

α(Mh)kβ =
∑

|u|=k, (r,u) 6=0

(r, u)uh.

Thus, by Ax4, the right-hand side of (6) exists and equals α(Mh)∗β.
Note that for any finite set B ⊆ A such that u ∈ B∗ holds for all words u ∈ A∗

with (r, u) 6= 0, i.e., such that supp(r) ⊆ B∗, we have that rh] =
∑

u∈B∗(r, u)uh.
We use this fact in our proof that h] preserves all existing sums. Suppose that
ri ∈ N rat∞ 〈〈A∗〉〉, i ∈ I such that

∑
i∈I ri exists in N rat∞ 〈〈A∗〉〉, so that

∑
i∈I ri

is rational. Since r =
∑

i∈I ri is rational, there is a finite set B ⊆ A with
supp(r) ⊆ B∗. Clearly then, supp(ri) ⊆ B∗ for all i ∈ I. By Ax4 and Ax5, the
fact that

∑
i∈I rih

] exists and equals rh] will follow if we can show that the sum∑
u∈B∗, i∈I(ri, u)uh exists and equals rh]. This in turn will hold if for each fixed

u ∈ B∗, ∑
i∈I

(ri, u)uh = (
∑
i∈I

(ri, u))uh

exists and is equal to (r, u)uh. But by Proposition 13, the sum
∑

i∈I(ri, u) exists
in S, and equals (r, u). 2

Corollary 16. There is no rationally additive structure on N rat
∞ 〈〈A∗〉〉 properly

contained in the rationally additive structure inherited from the countably addi-
tive structure on N∞〈〈A∗〉〉.

References
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