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Abstract

We illustrate a variety of programming problems that seemingly re-
quire two separate list traversals, but that can be efficiently solved in
one recursive descent, without any other auxiliary storage but what
can be expected from a control stack. The idea is to perform the
second traversal when returning from the first.

This programming technique yields new solutions to traditional prob-
lems. For example, given a list of length 2n or 2n + 1, where n is
unknown, we can detect whether this list is a palindrome in n + 1
recursive calls and no heap allocation.
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1 Introduction

Ever since the inception of functional programming [1, 3], lists have stood as
a consistent source of inspiration for functional programmers, encouraging skill
and even exuberance to the point of fostering striking new discoveries as well as
hiding simple solutions. In this article, we substantiate this observation with a
series of examples that are traditionally used to illustrate higher-order functions,
list iterators, linearly-ordered continuations, etc. and that typically require one
to copy or to reverse the input list. We show that each of these examples can
also be solved using a simple, first-order recursive descent that gets us there
(i.e., to the base case) and back again (with the result).

Overview: Section 2 starts off with the classical problem of segmenting a list
of characters into a list of words. Our final solution is first-order, traverses the
input list recursively, and constructs the result as it returns. It uses no other
auxiliary space than what is ordinarily provided by a control stack. Section 3
presents a convolution subroutine for multiplying polynomials or numbers. Our
final solution is first-order, traverses the first list of digits, and processes both
lists as it returns. Section 4 addresses the problem of detecting whether a list
of length 2n or 2n + 1, where n is unknown, is a palindrome, i.e., equal to its
reverse. Our final solution is first-order, traverses the input list in n + 1 calls,
and tests both halves of the list as it returns. Section 5 concludes.

2 Segmenting a string into words

Let us revisit the classical fields function segmenting a list of characters into a
list of words. To simplify the presentation, we consider it a function mapping a
list of integers into a list of lists of integers, and we consider that zero is a sepa-
rator in the input list. So our fields function maps the list [0,1,2,0,3,4,5,0,6]
to the list [[1,2],[3,4,5],[6]].

2.1 A higher-order solution

Fifteen years ago, John Hughes chose the fields function to illustrate his novel
representation of lists [8]. Given a curried list constructor, Hughes’s solution
reads in ML [10] as follows.

fun cons x xs (* ’a -> ’a list -> ’a list *)

= x :: xs

fun fields_novel xs (* int list -> int list list *)

= let fun fields nil

= nil

| fields (0 :: xs)

= fields xs

| fields (x :: xs)

= word (cons x) xs
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and word c nil

= (c nil) :: nil

| word c (0 :: xs)

= (c nil) :: (fields xs)

| word c (x :: xs)

= word (c o (cons x)) xs

in fields xs

end

Description: fields traverses the input list, skipping zeroes. When it en-
counters a non-zero entry, it delegates the traversal to word, which accumulates
a list constructor until it meets either zero or the end of the list, at which point
it unleashes the list constructor by applying it to the empty list. If the input list
is non-empty, fields is resumed and eventually the final result is constructed.

Analysis: The input list is traversed either by fields or by word. When word

is in action, it carries an element of the monoid of functions from lists to lists and
incrementally extends it to the right. When word completes, it maps the element
of the monoid of functions to the corresponding element of the monoid of lists
by applying it to the empty list. Hughes’s general point is that concatenation
exercises a constant cost in the monoid of functions (where it is implemented by
function composition) whereas it has a linear cost in the monoid of lists (where it
is implemented by append). Hughes’s specific point is that his solution departs
from the traditional solution that accumulates words in reverse order and then
reverses them when they are complete.

But why turn to a higher-order representation of data when a higher-order
representation of control can give the same benefit? We can write word in
continuation-passing style (CPS) for the same effect as follows. (See Appendix A
for a systematic derivation of fields c from fields novel.)

2.2 A CPS solution

fun fields_c xs (* int list -> int list list *)

= let fun fields nil

= nil

| fields (0 :: xs)

= fields xs

| fields (x :: xs)

= word xs (fn (w, r) => (x :: w) :: (fields r))

and word nil k

= k (nil, nil)

| word (0 :: xs) k

= k (nil, xs)

| word (x :: xs) k

= word xs (fn (w, r) => k (x :: w, r))

in fields xs

end

4



Description: fields traverses the input list, skipping zeroes. When it en-
counters a non-zero entry, it delegates the traversal to word with a continuation
that will resume the traversal on the rest of the input list and eventually con-
struct the final result. Whereas fields is in direct style, word is in CPS. It
traverses the input list until it meets either zero or the end of the list, at which
point it sends an empty word and the rest of the list to its continuation. This
continuation incrementally extends the word to the left and eventually resumes
fields.

Analysis: The input list is traversed recursively by fields and iteratively
by word. When word is in action, it carries a continuation and incrementally
extends it while traversing the input list. When word completes, it activates its
continuation. Like Hughes’s, this solution involves no list concatenation and no
list reversal.

But why turning to higher-order continuation-passing style when first-order
direct style gives the same result? We write word in direct style for the same
effect as follows.

2.3 A direct-style solution

fun fields_d xs (* int list -> int list list *)

= let fun fields nil

= nil

| fields (0 :: xs)

= fields xs

| fields (x :: xs)

= let val (w, r) = word xs

in (x :: w) :: (fields r)

end

and word nil

= (nil, nil)

| word (0 :: xs)

= (nil, xs)

| word (x :: xs)

= let val (w, r) = word xs

in (x :: w, r)

end

in fields xs

end

Description: fields traverses the input list, skipping zeroes. When it en-
counters a non-zero entry, it entrusts word to traverse the list and to return
both the next word and the rest of the list. Both fields and word are in direct
style and recursive: word traverses the input list until it meets either zero or the
end of the list, at which point it returns an empty word and the rest of the list.
Each of its intermediate results consists of an incomplete word (which is then
extended to the left) and the rest of the list.
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Analysis: The input list is traversed recursively by both fields and word.
When fields returns, it is to construct the result list. When word returns, it
is to construct a word. Like its CPS counterpart, this solution involves no list
concatenation and no list reversal.

2.4 Assessment

Let us compare the space requirements of the three solutions. Hughes’s novel
solution and the CPS solution allocate heap space to represent the auxiliary list
constructors and continuations. Indeed, defunctionalizing them (in the sense
of John Reynolds [6, 14]) readily shows that in effect both solutions construct
an intermediate copy of the reversed words, as in the traditional solution. It
would take an optimizing compiler to detect that the list constructors and the
continuations are ordered linearly [7, 13, 17] and thus that they can be allo-
cated LIFO. In contrast, the direct-style version only uses cons to construct the
result, and all its intermediate results are held on the control stack if one uses
Chez Scheme (http://www.scheme.com), OCaml (http://caml.inria.fr), or
another derivative of ALGOL 60.

3 A convolution

We consider the problem of zipping a list and the reverse of another list of the
same length. Typically this is done in two iterations—one to reverse one list
(rev below), and one to traverse both lists (zip below):

fun convolution_t (xs, ys) (* ’a list * ’b list -> (’a * ’b) list *)

= let fun zip (nil, nil)

= nil

| zip (xs, ys)

= (hd xs, hd ys) :: (zip (tl xs, tl ys))

in zip (xs, rev ys)

end

As in Section 2.2, however, we can traverse one of the lists (walk below),
build a list iterator (the second parameter of walk), and eventually apply it to
the other list to traverse it and construct the result:

fun convolution_c (xs, ys) (* ’a list * ’b list -> (’a * ’b) list *)

= let fun walk nil k

= k (nil, ys)

| walk (x :: xs) k

= walk xs (fn (zs, ys) => k ((x, hd ys) :: zs, tl ys))

in walk xs (fn (zs, _) => zs)

end

Defunctionalizing the continuations [6, 14] precisely yields the program reversing
a list and traversing the other together with the reversed list.

Alternatively, as in Section 2.3, we can traverse the first list recursively (calls)
and then the second (returns) to implement the convolution in direct style:
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fun convolution_d (xs, ys) (* ’a list * ’b list -> (’a * ’b) list *)

= let fun walk nil

= (nil, ys)

| walk (x :: xs)

= let val (zs, ys) = walk xs

in ((x, hd ys) :: zs, tl ys)

end

val (zs, _) = walk xs

in zs

end

This discrete convolution can be used, e.g., to multiply polynomials or num-
bers. It was used very early in the history of mathematics (see Appendix C).

4 Detecting palindromes

Say that we need to detect whether a list is a palindrome (and thus is of length
2n or 2n + 1, for some n). (The situation easily generalizes to a list being built
as the multiple concatenation of the same list and of its reverse.) Can we solve
this problem with n + 1 recursive calls?

The answer is positive. We can traverse the entire list in n+1 recursive calls
with two pointers—one going twice as fast as the other. After n + 1 calls, the
fast one points to the empty list and the slow one points to the middle of the list.
We can then return the second half of the list and use the chain of returns to
traverse it, incrementally comparing each of its elements with the corresponding
element in the first half. There is no need to test for the end of the list, since
by construction, there are precisely enough returns to scan both halves of the
input list. Using CPS, the returns manifest themselves as a function traversing
a list, i.e., as a list iterator.

4.1 A CPS solution

fun pal_c xs (* ’’a list -> bool *)

= let fun walk (xs1, nil, k)

= k xs1 (* even length *)

| walk (xs1, _ :: nil, k)

= k (tl xs1) (* odd length *)

| walk (xs1, _ :: xs2, k)

= walk (tl xs1, tl xs2, fn ys => hd xs1 = hd ys

andalso k (tl ys))

in walk (xs, xs, fn _ => true)

end

Description: The local function walk is passed the original list twice and a
constant continuation, and it traverses the list recursively. For the i-th call to
walk (starting at 0), the three parameters are the i-th tail of the original list,
the 2i-th tail, and the continuation. Eventually, the continuation is sent the
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second half of the list, which is of length n. The continuation of the i-th call is
only invoked if listing the n− i right-most elements of the first half of the input
list and the n + i left-most elements of the second half of the input list forms a
palindrome.

Analysis: pal c constructs a list iterator for scanning the second half of the
input list. This iterator either completes the traversal and yields true, or it
aborts and yields false.

The continuation is not used linearly and therefore mapping this program
back to direct style requires a control operator [5]. Using an exception would do,
but since walk is written in CPS rather than returning a disjoint sum, we choose
to use call/cc [4], which Standard ML of New Jersey provides in SMLofNJ.Cont.

4.2 A direct-style solution

fun pal_d xs0 (* ’’a list -> bool *)

= callcc (fn k => let fun walk (xs1, nil)

= xs1 (* even length *)

| walk (xs1, _ :: nil)

= tl xs1 (* odd length *)

| walk (xs1, _ :: xs2)

= let val ys = walk (tl xs1, tl xs2)

in if hd xs1 = hd ys

then tl ys

else throw k false

end

in let val _ = walk (xs0, xs0)

in true

end

end)

This direct-style version demonstrates that one can detect whether a list is
a palindrome in one (and a half) traversal, with no list reversal, and using no
other space than what is provided by a traditional control stack—a solution
that is more efficient than the traditional solutions from transformational pro-
gramming [12, Example 3]. Specifically [11, Section 2, page 410], if a list has
length m, Pettorossi and Proietti count 2m hd-operations, 2m tl-operations, m
cons-operations, and m closures for their solution and for Bird’s solution [2]. In
contrast, our solution requires m hd-operations if m is even and m − 1 if m is
odd, 2m tl-operations, 0 cons-operations, and 0 closures.

In Appendix B, we reproduce the code of our solution in Scheme [9]. This
code does not use pattern matching and thus it makes explicit all the occurrences
of the hd- and tl-operations (i.e., in Scheme, car and cdr).
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5 Conclusion and issues

Processing a list does not merely reduce to traversing it iteratively. A recursive
descent provides just enough expressive power to traverse another list iteratively,
at return time. To put it otherwise, a list can be traversed at call time, and
another one can be traversed at return time. As an added incentive to using
recursive descent, the infrastructure for running recursive programs is geared to
hold multiple intermediate results without having to represent them explicitly,
e.g., in an auxiliary list.

In this article, we have put these observations to use in three situations. In
the two first examples (segmenting a list and computing a discrete convolution)
we have avoided constructing an intermediate list for the sole purpose of revers-
ing it. In the third example, we have avoided constructing an intermediate list
for the sole purpose of traversing it again. This last example has led us to a
new solution for the traditional palindrome problem.

A From higher-order lists to continuations

In some sense, the word function in Hughes’s solution (see Section 2.1) is mostly
in CPS, in that it is iterative and accumulates what to do next by composing
the list constructor as if it were a continuation. The only hitch is the base
case, where the list constructor is not used tail recursively. We can, however,
express the base case as the composition of the list constructor and of a continue

function as follows.

fun fields_novel’ xs (* int list -> int list list *)

= let fun fields nil

= nil

| fields (0 :: xs)

= fields xs

| fields (x :: xs)

= word (cons x) xs

and continue w xs

= w :: (fields xs)

and word c nil

= (continue o c) nil nil

| word c (0 :: xs)

= (continue o c) nil xs

| word c (x :: xs)

= word (c o (cons x)) xs

in fields xs

end

Now, since function composition is associative, we can relocate continue to the
initialization of the list constructor.
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fun fields_novel’’ xs (* int list -> int list list *)

= let fun fields nil

= nil

| fields (0 :: xs)

= fields xs

| fields (x :: xs)

= word (continue o (cons x)) xs

and continue w xs

= w :: (fields xs)

and word c nil

= c nil nil

| word c (0 :: xs)

= c nil xs

| word c (x :: xs)

= word (c o (cons x)) xs

in fields xs

end

The result is a word function in CPS. Inlining function composition, uncurrying
the continuation, and swapping the two parameters of word yield the definition
displayed in Section 2.2.

B Palindrome detection in Scheme

(define pal_d

(lambda (xs)

(call/cc

(lambda (k)

(letrec ([walk (lambda (xs1 xs2)

(if (null? xs2)

xs1

(let ([xs3 (cdr xs2)])

(if (null? xs3)

(cdr xs1)

(let ([ys (walk (cdr xs1) (cdr xs3))])

(if (equal? (car xs1) (car ys))

(cdr ys)

(k #f)))))))])

(begin (walk xs xs) #t))))))

C Background: Vedic mathematics

The early stage of the mathematical heritage of India is known as Vedic Math-
ematics [16]. Much of Vedic mathematics concerns algorithms for computing
common number-theoretic functions in ways that require writing down little or
no intermediate results. Therefore, computations can generally be carried out
mentally [15, Chapter 10, page 110].
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Computing s0:
q

x2

q

x1

q

x0

q

y2

q

y1

q

y0
s0 = x0 · y0

z0 = (s0 + c0) mod 10
c1 = b(s0 + c0)/10c

Computing s1:
q

x2

q

x1

q

x0

q

y2

q

y1

q

y0

@
@
�

�
s1 = x0 · y1 + x1 · y0

z1 = (s1 + c1) mod 10
c2 = b(s1 + c1)/10c

Computing s2:
q

x2

q

x1

q

x0

q

y2

q

y1

q

y0

HHHH
���� s2 = x0 · y2 + x1 · y1 + x2 · y0

z2 = (s2 + c2) mod 10
c3 = b(s2 + c2)/10c

Computing s3:
q

x2

q

x1

q

x0

q

y2

q

y1

q

y0

@
@
�

�
s3 = x1 · y2 + x2 · y1

z3 = (s3 + c3) mod 10
c4 = b(s3 + c3)/10c

Computing s4
q

x2

q

x1

q

x0

q

y2
q

y1
q

y0
s4 = x2 · y2

z4 = (s4 + c4) mod 10
c5 = b(s4 + c4)/10c

The diagrams depict how s0, . . . , s4 are computed when mul-
tiplying the two 3-digit numbers x2 · 100 + x1 · 10 + x0 and
y2 · 100 + y1 · 10 + y0. Note that numbers are written left-to-right
in “big-endian” fashion, so the coefficients of the lower powers are
to the right. The number x2 · 100 + x1 · 10 + x0 is thus written as
the concatenation of the three digits x2, x1, and x0, and similarly
the product is computed right-to-left starting from s0.

Figure 1: Computing s0, . . . , s4 out of x0, x1, x2 and y0, y1, y2
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In one of the classical expositions on the subject of Vedic Mathematics [16,
Chapter 3], the author describes an algorithm for computing products of num-
bers digit-by-digit, that is, one digit at a time, starting with the lower powers.
Given the numbers X, Y with respective digits x0, x1, . . . , xn, and y0, y1, . . . , yn,
the product Z (with digits z0, z1, . . . , z2n+1) is computed as follows. Starting
with the lower powers, the 0-based k-th digit of the product, zk, is computed
from the sum sk of all the products of ai, bj such that k = i + j:

sk =
∑

i,j:i+j=k

ai · bj

Let ck be the k-th carry, then

zk = (sk + ck) mod 10
ck+1 = b(sk + ck)/10c

where c0 = 0, z2n+1 = c2n. The originality of this algorithm is that (1) at any
point in computing a product, one only needs to remember the information nec-
essary for computing the next digit, and (2) this information can be maintained
via a single accumulator, which amounts to remembering the partial sum used
for computing sk. (See Figure 1.)

The process of computing sn is known in Vedic Mathematics as Ūrdhva
Tiryagbhyām, which is Sanskrit for “vertically and crosswise”, The process
can be thought of as a discrete convolution, or a dot product of the list of
digits (x0, x1, . . . , xn) and the reverse of the list of digits (y0, y1, . . . , yn), i.e.,
(yn, . . . , y1, y0).
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