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Abstract

Bloom �ltering is an important technique for space e�cient storage of

a conservative approximation of a set S. The set stored may have up to

some speci�ed number of �false positive� members, but all elements of S
are included. In this paper we consider lossy dictionaries that are also

allowed to have �false negatives�, i.e., leave out elements of S. The aim is

to maximize the weight of included keys within a given space constraint.

This relaxation allows a very fast and simple data structure making almost

optimal use of memory. Being more time e�cient than Bloom �lters, we

believe our data structure to be well suited for replacing Bloom �lters

in some applications. Also, the fact that our data structure supports

information associated to keys paves the way for new uses, as illustrated

by an application in lossy image compression.

1 Introduction

Dictionaries are part of many algorithms and data structures. A dictionary
provides access to information indexed by a set S of keys: Given a key, it
returns the associated information or reports that the key is not in the set. In
this paper we will not be concerned with updates, i.e., we consider the static

dictionary problem. The main parameters of interest are of course the space
used by the dictionary and the time for looking up information. We will assume
keys as well as the information associated with keys to have a �xed size.

A large literature has grown around the problem of constructing e�cient
dictionaries, and theoretically satisfying solutions have been found. Often a
slightly easier problem has been considered, namely the membership problem,
which is the dictionary problem without associated information. It is usually
easy to derive a dictionary from a solution to the membership problem, using
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extra space corresponding to the associated information. In this paper we are
particularly interested in dictionary and membership schemes using little mem-
ory. Let n denote the size of the key set S. It has been shown that when keys
are w-bit machine words, lookups can be performed in constant time in a mem-
bership data structure occupying B + o(B) bits of memory, where B = log

(2w

n

)
is the minimum amount of memory needed to be able to represent any subset of
size n [2] (logarithms in this paper are base 2). However, constant factors in the
lower order term and lookup time make this and similar schemes less than one
could hope for from an applied point of view. Also, di�culty of implementation
is an obstacle to practical use. In total, current schemes with asymptotically
optimal space usage appear to be mainly of theoretical interest.

If one relaxes the requirements to the membership data structure, allowing
it to store a slightly di�erent key set than intended, new possibilities arise.
A technique �nding many applications in practice is Bloom �ltering [1]. This
technique allows space-e�cient storage of a superset S′ of the key set S, such
that S′ \S is no more than an ε fraction of {0, 1}w . For n � 2w, about log(1/ε)
bits per key in S are necessary and su�cient for this [4]. This is a signi�cant
savings compared to a membership data structure using B ≈ n log(2we

n ) bits.
Lookup of a key using Bloom �ltering requires O(log(1/ε)) memory accesses,
and is thus relatively slow compared to other hashing schemes when ε is small.
Also, Bloom �ltering di�ers from most other hashing techniques in that it does
not yield a solution to the dictionary problem.

1.1 This Paper

In this paper we introduce the concept of lossy dictionaries that can have not
only false positives (like Bloom �lters), but also false negatives. That is, some
keys in S (with associated information) are thrown away when constructing the
dictionary. For false positives there is no guarantee on the associated informa-
tion returned. We let each key in S have a weight, and try to maximize the sum
of weights of keys in the dictionary under a given space constraint.

We study this problem on a unit cost RAM, in the case where keys are
machine words of w bits, examining a very simple and e�cient data structure
from a theoretical as well as an experimental point of view. Experimentally,
we �nd that our data structure has surprisingly good behavior with respect
to keeping the keys of largest weight. The experimental results are partially
explained by our theoretical considerations, under strong assumptions on the
hash functions involved. Speci�cally, we assume that in our RAM model, for
a number of random functions, arbitrary function values can be returned in
constant time by an oracle. We also show that our data structure is nearly
optimal with respect to space usage.

1.2 Applications

A cache can be seen as a dictionary that stores a small subset of a large key
set, plus associated information. It is thus inherently lossy. A lossy dictionary
allowed to discard a small fraction of a key set may thus in many cases be a quite
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acceptable implementation. If no wrong information is to be returned, we can
allow no false positives. Our lossy dictionary seems best suited for aplications
where the cache only changes periodically, as for example in Web caching.

Web cache sharing [7] is a technique for implementing cooperating caches,
for example Web proxies. When a request arrives at a proxy, it �rst checks
whether it can answer the request. If not, it can forward the request to other
proxies in the network. However, this increases tra�c and is rather expensive.
In cooperative caching each proxy keeps a summary of the content of all relevant
proxies available to it. To reduce space requirements, this summary is stored
with a small fraction of error using Bloom �ltering. Often this reduces network
tra�c dramatically, since there is no more than a small chance that an expensive
request forwarding is performed in vain. Lossy dictionaries with two-sided error
could be used as a summary rather than a Bloom �lter, since a small fraction
of false negatives (cache misses) is tolerable.

In fact, the general idea of using in-memory summaries to reduce the number
of expensive operations, such as I/O's, is well known in the database community.
It dates at least back to [18], which uses Bloom �ltering for e�cient management
of di�erent versions of databases.

Recently, interest in lossy (volume) data compression with fast random ac-
cess to decoded data has arisen [9, 11, 16, 17]. In [17] we show that lossy dictio-
naries are well suited for this purpose, providing lossy storage of the coe�cients
of wavelet transformed data. Compared to the previously best methods in the
literature [9, 16], our lossy dictionary based scheme typically performs 80% bet-
ter in terms of compression ratio, while signi�cantly reducing the random access
time.

1.3 Related Work

Most previous work on static dictionaries has considered the membership prob-
lem on a unit cost RAM with word size w. The �rst membership data structure
with worst case constant lookup time using O(n) words of space was constructed
by Fredman et al. [8]. For constant δ > 0, the space usage is O(B) when
2w > n1+δ, but in general the data structure may use Ω(Bw) bits of space. The
space usage has been lowered to B + o(B) bits by Brodnik and Munro [2]. The
lower order term was subsequently improved to o(n)+O(log w) bits by the �rst
author [13]. The main concept used in the latter paper is that of a quotient

function q of a hash function h, de�ned to be a function such that the mapping
k 7→ (h(k), q(k)) is injective.

The membership problem with false positives was �rst considered by Bloom [1].
He described a technique, now known as Bloom �ltering, where lookups return
the conjunction of a number of bits from a bit vector. The locations of the
bit probes are the values of a series of hash functions on the element to be
looked up. Apart from Bloom �ltering the paper presents a less space e�cient
data structure that is readily turned into a lossy dictionary with only false pos-
itives. However, the space usage of the derived lossy dictionary is not optimal.
Carter et al. [4] provided a lower bound of n log(1/ε) bits on the space needed to
solve membership with an ε fraction false positives, for n � 2w, and gave data
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structures with various lookup times matching or nearly matching this bound.
Though none of their membership data structures have constant lookup time,
such a data structure follows by plugging the abovementioned results on space
optimal membership data structures [2, 13] into a general reduction provided
in [4]. In fact, the dictionary of [13] can be easily modi�ed to a lossy dictio-
nary with false positives, thus also supporting associated information, using
O(n + log w) bits more than the lower bound.

Another relaxation of the membership problem was recently considered by
Buhrman et al. [3]. They store the set S exactly, but allow the lookup procedure
to use randomization and to have some probability of error. For two-sided
error ε they show that there exists a data structure of O(nw/ε2) bits in which
lookups can be done using just one bit probe. It was shown that to do the
same without false negatives, O(n2w/ε2) bits su�ce, and that this is essentially
optimal. Schemes using more bit probes and less space were also investigated.
If one �xes the random bits of the lookup procedure appropriately, the result
is a lossy dictionary with error ε. However, it is not clear how to e�ciently
guarantee the ε fraction of false positives in a reasonable model of computation,
so this does not immediately give rise to a lossy dictionary.

2 Lossy Dictionaries

Consider a set S containing keys k1, . . . , kn with associated information a1, . . . , an

and positive weights v1, . . . , vn. Suppose we are given an upper bound m on
available space and an error parameter ε > 0. The lossy dictionary problem

for ε = 0 is to store a subset of the keys in S and corresponding associated
information in a data structure of m bits, trying to optimize the sum of weights
of included keys. For general ε we also allow the dictionary to contain 2wε keys
from the complement of S. In this section we show the following theorem.

Theorem 1 Let a sequence of keys k1, . . . , kn ∈ {0, 1}w, associated information

a1, . . . , an ∈ {0, 1}l, and weights v1 ≥ · · · ≥ vn > 0 be given. Let r > 0 be an

even integer, and b ≥ 0 an integer. Suppose we have oracle access to random

functions h1, h2 : {0, 1}w → {1, . . . , r/2} and corresponding quotient functions

q1, q2 : {0, 1}w → {0, 1}s \ 0s. There is a lossy dictionary with the following

properties:

1. The space usage is r(s − b + l) bits (two tables with r/2 cells of s − b + l
bits).

2. The fraction of false positives is bounded by ε ≤ (2b − 1)r/2w.

3. The expected weight of the keys in the set stored is
∑n

i=1 pr,i vi where

pr,i ≥
{

1 − 52 r−1/( r
i − 2), for i < r/2

2 (1 − 2/r)i−1 − (1 − 2/r)2(i−1), for i ≥ r/2

is the probability that ki is included in the set (which is independent of vi).
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4. Lookups are done using at most two (independent) accesses to the tables.

5. The construction time is O(n log∗ n + rl/w).

As discussed in Section 2.1 there exist quotient functions for s = w −
log(r/2) + O(1) if the hash functions map approximately the same number of
elements to each value in {1, . . . , r/2}. The inequality in item 2 is satis�ed for
b = blog(2wε/r + 1)c, so for s = w − log r + O(1) an ε fraction of false positives
can be achieved using space r (log( 1

ε+r/2w ) + l + O(1)). As can be seen from

item 3, almost all of the keys {k1, . . . , kr/2} are expected to be included in the
set represented by the lossy dictionary. For i ≥ r/2 our bound on pi,r is shown
in Figure 5 of Section 3, together with experimentally observed probabilities.
If n ≥ r and if r is large enough, it can be shown by integration that, in the
expected sense, more than 70% of the keys from {k1, . . . , kr} are included in the
set (our experiments indicate 84%). We show in Section 2.5 that the amount of
space that we use to achieve this is within a small constant factor of optimal.

Note that by setting b = 0 we obtain a lossy dictionary with no false pos-
itives. Another point is that given a desired maximum space usage m and
false positive fraction ε, the largest possible size r of the tables can be usu-
ally be chosen e�ciently. Assume, for example, that we have quotient function
with range dlog(2w+1/r)e and consider the case b = 0. The memory usage is
r(dlog(2w+1/r)e + l). Whenever r is doubled, the number of bits per cell be-
comes one less. This means that the memory usage increases piecewise linearly
in r, with jumps when r is a power of two. By setting r = 2i for i = 1, 2, 3, . . .
we �nd the i for which m is �rst exceeded. The correct value of r can now
easily be found in the interval 2i−1 < r < 2i. For general b this becomes
more complicated, as we need to investigate more intervals, but �nding r is still
implementable in O(log m) time.

2.1 Preliminaries

The starting point for the design of our data structure is a static dictionary
recently described in [14]. In this dictionary, two hash tables T1 and T2 are
used together with two hash functions h1, h2 : {0, 1}w → {1, . . . , r/2}, where
r denotes the combined size of the hash tables, assumed to be even. A key
x ∈ S is stored in either cell h1(x) of T1 or cell h2(x) of T2. It was shown that
if r ≥ (2 + δ)n, for constant δ > 0, and h1, h2 are random functions, there
exists a way of arranging the keys in the tables according to the hash functions
with probability at least 1 − 52

δr . For small δ this gives a dictionary utilizing
about 50% of the hash table cells. The arrangement of keys was shown to be
computable in expected linear time.

Another central concept is that of quotient functions. Recall that a quo-
tient function q of a hash function h is a function such that the mapping
k 7→ (h(k), q(k)) is injective [13]. When storing a key k in cell h(k) of a hash
table, it is su�cient to store q(k) to uniquely identify k among all other elements
hashing to h(k). To mark empty cells, one needs a bit string not mapped to
by the quotient function, e.g. 0s for the quotient functions of Theorem 1. The
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q1(k4)

q1(k2)

q2(k3)

q2(k5)

q1(k1)

h1(k2)

h1(k4)

h1(k1)

h2(k3)

h2(k5)

Figure 1: Example of our data structure.

idea of using quotient functions is that storing q(k) may require fewer bits than
storing k itself. If a fraction O(1/r) of all possible keys hashes to each of r hash
table cells, there is a quotient function whose function values can be stored in
w − log r + O(1) bits. This approach was used in [13] to construct a dictionary
using space close to the information theoretical minimum.

Example We consider the hash function family from [6] mapping from
{0, 1}w to {0, 1}t, i.e., with r = 2t. It contains functions of the form ha(k) = (ak
mod 2w) div 2w−t for a odd and 0 < a < 2w. A corresponding family of quo-
tient functions is given by qa(k) = (ak mod 2w) mod 2w−t, whose function
values can be stored in w − log r bits.

2.2 Our Data Structure

The idea behind our lossy dictionary, compared to the static dictionary of [14]
described above, is to try to �ll the hash tables almost completely, working with
key sets of size similar to or larger than r. Each key has two hash table cells to
which it can be matched.

Thus, given a pair of hash functions, the problem of �nding a maximum
weight subset of S that can be arranged into the hash tables is a maximum
weight matching problem that can be solved in polynomial time, see e.g. [5].
In Section 2.3 we will present an algorithm that �nds such an optimal solution
in time O(n log∗ n). The term O(rl/w) in the time bound of Theorem 1 is the
time needed to copy associated information to the tables. Assume for now that
we know which keys are to be represented in which hash table cells.

For b = 0 we simply store quotient function values in nonempty hash table
cells and the value 0s in empty hash table cells, using s bits per cell, as shown
in Figure 1. For general, b we store only the �rst s − b bits. Observe that no
more than 2b keys with the same hash function value can share the �rst s − b
bits of the quotient function value. This means that there are at most 2b − 1
false positives for each nonempty cell. Since 0s is not in the range, this is also
true for empty cells. In addition to the s− b bits, we use l bits per cell to store
associated information.

We now proceed to �ll in the remaining details on items 3 and 5 of Theorem 1.
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2.3 Construction Algorithm

Recall that the task of constructing our data structure boils down to �nding
the largest weight arrangement of keys in the tables. Given hash functions
h1 and h2 and a key set K, we de�ne the bipartite graph G(K) with vertex
set {1, 2} × {1, . . . , r/2}, corresponding in a natural way to hash table cells,
and the multiset of edges {{(1, h1(k)), (2, h2(k))} | k ∈ K}, corresponding to
keys. Note that there may be parallel edges if several keys have the same pair
of hash function values. We will use the terms keys/edges and cells/vertices
synonymously. A connected component of G(K) is de�ned to be saturated if
the number of edges is greater than or equal to the number of vertices, i.e., if
it is not a tree. We have the following characterization of the key sets that can
be placed in the tables according to the given hash functions.

Lemma 1 The key set K can be placed in the tables if and only if each connected

component of G(K) is a tree, plus possibly an extra edge.

Proof. By Hall's theorem, K can be placed in the tables if and only if every
subset K ′ ⊆ K satis�es |h1(K ′)| + |h2(K ′)| ≥ |K ′|. This is true if and only
if every subset K ′ of edges in G(K) covers at least |K ′| vertices. Since it is
equivalent to quantify only over subsets of edges within a connected component,
the lemma follows. 2

By an optimal solution for a key set K we will understand a maximum
weight subset of K that can be placed in the tables.

Lemma 2 There is an optimal solution for {k1, . . . , ki} including key ki if and

only if for any optimal solution K ′ for {k1, . . . , ki−1}, the set K ′ ∪ {ki} can be

placed in the tables.

Proof. If K ′ ∪ {ki} can be placed in the tables for some solution K ′ optimal for
{k1, . . . , ki−1}, then K ′ ∪ {ki} must be optimal for {k1, . . . , ki}.

On the other hand, suppose that for some K ⊆ {k1, . . . , ki−1}, the key set
K ∪ {ki} can be placed in the tables and has optimal weight, and let K ′ be
an optimal solution for {k1, . . . , ki−1}. Consider the connected components of
(1, h1(ki)) and (2, h2(ki)) in G(K). By Lemma 1 and since K∪{ki} can be placed
in the tables, at least one of the (possibly identical) connected components must
be a tree, without loss of generality the component of (1, h1(ki)). Since K∪{ki}
is optimal, the connected component of (1, h1(ki)) in G({k1, . . . , ki−1}) must
also be a tree. (If there was a cycle, a key of higher weight could be substituted
for ki, contradicting the optimality of K ∪ {ki}.) In particular, the connected
component of (1, h1(ki)) in G(K ′) is a tree. Thus, by Lemma 1 the set K ′∪{ki}
can be placed in the tables. 2

The lemma implies that the following greedy algorithm �nds an optimal key
set S′ given keys sorted according to nonincreasing weight.

1. Initialize a union-�nd data structure for the cells of the hash tables.

2. For each equivalence class, set a �saturated� �ag to false.
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3. For i = 1, . . . , n:

(a) Find the equivalence classes c1 of cell h1(ki) in T1, and c2 of cell
h2(ki) in T2.

(b) If c1 or c2 is not saturated:

i. Include ki in the solution.

ii. Join c1 and c2 to form an equivalence class c.

iii. Set the saturated �ag of c if c1 = c2, or if the saturated �ag is
set for c1 or c2.

xi

Figure 2: The case where c1 = c2 and the component is nonsaturated. The component

becomes saturated.

ki

Figure 3: The case with one saturated and one nonsaturated component. The new compo-

nent becomes saturated.

ki

Figure 4: The case with two saturated components. The new element is not included.

In the loop, equivalence classes correspond to the connected components
of the graph G({k1, . . . , ki−1}). There is a simple implementation of a union-
�nd data structure for which operations take O(log∗ n) amortized time; see [19]
which actually gives an even better time bound. Figures 2 to 4 show three
possible cases in step 3b of the algorithm.

What remains is arranging the optimal key set S′ in the tables. Consider a
vertex in G(S′) of degree one. It is clear that there must be an arrangement such
that the corresponding cell contains the key of the incident edge. Thus, one can
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iteratively handle edges incident to vertices of degree one and (conceptually)
delete them. As we remove the same number of edges and vertices from each
connected component, the remaining graph consists of connected components
with no more edges than vertices and no vertices of degree one, i.e., cycles.
The arrangement of edges in a cycle follows as soon as one key has been put
(arbitrarily) into one of the tables. The above steps are easily implemented to
run in linear time. This establishes item 5 of Theorem 1.

2.4 Quality of Solution

We now turn to the problem of estimating the quality of the solution. Note that
the optimal key set returned by our algorithm does not depend on the actual
weights, but only on the sequence of hash function values. Thus, the expected
weight of our optimal solution is

∑n
i=1 pr,i vi, where pr,i is the probability that

the ith key is included in the returned optimal set of keys, which is independent
of the weights.

Our algorithm includes all keys {k1, . . . , ki} in the optimal solution returned
if they can all be accommodated under the given hash functions. Using the
result of [14] mentioned in Section 2.1 on {k1, . . . , ki} with δ = r/i− 2, we have
that for i < r/2 this happens with probability at least 1 − 52 r−1/(r/i − 2). In
particular, pr,i is at least this big.

For i ≥ r/2 we derive a lower bound on pr,i as follows. If one of the
vertices (1, h1(ki)) and (2, h2(ki)) in G({k1, . . . , ki−1}) is isolated, then ki is
in the optimal solution returned. The randomness assumption on our hash
functions implies that G({k1, . . . , ki−1}) has i− 1 randomly and independently
chosen edges. Thus, we have the bound pr,i ≥ 1 − (1 − (1 − 2/r)i−1))2 =
2(1 − 2/r)i−1 − (1 − 2/r)2(i−1) ≈ 2e−i/r − e−2i/r. This establishes item 3 of
Theorem 1 and concludes the proof.

2.5 A Lower Bound

This section gives a lower bound on the amount of memory needed by a lossy
dictionary with an ε fraction of false positives and γn false negatives. Our proof
technique is similar to that used for the lower bound in [4] for the case γ = 0.

Proposition 1 For 0 < ε < 1/2 and 0 < γ < 1, a lossy dictionary representing

a set S ⊆ {0, 1}w of n keys, 120 < n ≤ 2w−1, with at most 2wε false positives

and at most γn false negatives must use space of at least

(1 − γ)n log
(

1
ε + n/2w

)
− 5

2n bits.

Proof. We can assume without loss of generality that γn is integer (this only
gives a stronger space lower bound), and that 2wε is integer. Consider the set of
all data structures used for the various subsets of n elements from {0, 1}w. Any
of these data structures must represent a set of at most 2wε + n keys, in order
to meet the requirement on the number of false positives. Thus, the number of
n-element sets having up to γn keys outside the set represented by a given data
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structure is at most
∑γn

i=0

(2wε+n
n−i

)(2w

i

)
. Since ε < 1/2 and n ≤ 2w−1 we have

2wε + n ≤ 2w, and so the largest term in the summation is
(2wε+n

n−γn

)(2w

γn

)
. Thus

we have the upper bound n
(
2wε+n
n−γn

)(
2w

γn

)
.

We will use the inequalities (a
b )b ≤ (ab) < (ae

b )b, see e.g. [10, Proposition 1.3].
By the upper bound on the number of sets representable by each data structure,
we need, in order to represent all

(2w

n

)
key sets, space at least

log
(

2w

n

)
− log

(
n

(
2wε + n

(1 − γ)n

)(
2w

γn

))

≥ log
(

2w

n

)n

− log

(
n

(
(2wε + n)e
(1 − γ)n

)(1−γ)n (2we

γn

)γn
)

= n log
(

2w

n

(1 − γ)n
(2wε + n)e

)
− γn log

(
(1 − γ)n

(2wε + n)e
2we

γn

)
− log n

= n log
(

(1 − γ)/e
ε + n/2w

)
− γn log

(
1 − γ

γ(ε + n/2w)

)
− log n

= (1 − γ)n log
(

1
ε + n/2w

)
− (H(γ) + log e)n − log n

where H(γ) = −γ log γ − (1 − γ) log(1 − γ) ≤ 1 is the binary entropy function.
For n > 120 the sum of the last two terms is bigger than 5

2n. 2

In the discussion following Theorem 1 we noted that if there are quotient
functions with optimal range, the space usage of our scheme is n log( 1

ε+n/2w ) +
O(n) when tables of combined size n are used. The expected fraction γ of false
negatives is less than 3/10 by Theorem 1. This means that our data structure
uses within O(n) bits of 10/7 times the lower bound. The experiments described
in Section 3 indicate that the true factor is less than 6/5.

2.6 Using More Tables

We now brie�y look at a generalization of the two-table scheme to schemes with
more tables. Unfortunately the algorithm described in Section 2.3 does not seem
to generalize to more than two tables. An optimal solution can again be found
using maximum weight matching, but the time complexity of this solution is not
attractive. Instead we can use a variant of the cuckoo scheme described by the
authors in [15], greedily attempting to accommodate keys in order k1, . . . , kn.

For two tables an insertion attempt for ki works as follows: We store ki in
cell h1(ki) of T1, pushing the previous occupant, if any, away and thus making
it nestless. If cell h1(ki) was free we are done. Otherwise we insert the nestless
element in T2, possibly pushing out another element. This continues until we
either �nd a free cell or loop around unable to �nd a free cell, in which case
ki is discarded. It follows from [15] and the analysis in Section 2.3 that this
algorithm �nds an optimal solution, though, not as e�ciently as the algorithm
given in Section 2.2. When using three or more tables it is not obvious in which
of the tables one should attempt placing the �nestless� key. One heuristic that
works well is to simply pick one of the two possible tables at random. It is
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interesting to compare this heuristic to a random walk on an expander graph,
which will provably cross any large subset of the vertices with high probability.

The main drawback of using three tables is, of course, that another memory
probe is needed for lookups. Furthermore, as the range of the hash functions
must be smaller than when using two tables, the smallest possible range of
quotient functions is larger, so more space may be needed for each cell.

3 Experiments

An important performance parameter of our lossy dictionaries is the ability to
store many keys with high weight. We tested this ability for lossy dictionaries
using two and three tables. For comparison, we also tested the simple one-table
scheme that stores in each cell the key of greatest weight hashing to it. The
tests were done using truly random hash function values, obtained from a high
quality collection of random bits freely available on the Internet [12]. Figure 5
shows experimentally determined values of pr,αr, the probability that the key
with index i = αr is stored in the dictionary, determined from 104 trials. For
the experiments with one and two tables we used table size r = 2048 while
for the experiment with three tables we used r = 1536. We also tried various
other table sizes, but the graphs were almost indistinguishable from the ones
shown. From Figure 5 we see the signi�cant improvement of moving from one
to more tables. As predicted, nearly all of the r/2 heaviest keys are stored when
using two tables. For three tables this number increases to about .88r. Of the r
heaviest keys, about 84% are stored when using two tables, and 95% are stored
when using three tables.

Apart from asymptotically vanishing di�erences around the point where the
curves start falling from 1, the graphs of Figure 5 seem independent of r. For
two tables the observed value of pr,αr for α > 1/2 is approximately 3.5/9.6α and
for three tables it is approximately 8/33α for α > 0.95.

The gap to the two-table lower bound of Theorem 1 can be explained by the
fact that this lower bound considers only two cells of the hash tables, whereas
opportunities for storing keys may appear when considering more cells.

4 Conclusion

We have introduced the concept of lossy dictionaries and presented a simple and
e�cient data structure implementing a lossy dictionary. Our data structure
combines very e�cient lookups and near-optimal space utilization, and thus
seems a promising alternative to previously known data structures when a small
percentage of false negatives is tolerable, such as the examples in Section 1.2.

Though simple and e�cient hash functions seem to work well in practice
with our data structure, the challenge of �nding such families that provably work
well remains. Furthermore, the last two graphs in Figure 5 are not completely
understood. The same is true for the insertion heuristic for three or more tables.

Acknowledgment We thank Stephen Alstrup and Theis Rauhe for helpful
discussions on the construction of our two table data structure.
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Figure 5: The observed probability that the element with (αr)th highest weight is stored

when using one, two and three tables. For two tables our lower bound is shown.
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