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Abstract

We present a simple and e�cient dictionary with worst case constant

lookup time, equaling the theoretical performance of the classic dynamic

perfect hashing scheme of Dietzfelbinger et al. (Dynamic perfect hashing:

Upper and lower bounds. SIAM J. Comput., 23(4):738�761, 1994). The

space usage is similar to that of binary search trees, i.e., three words per

key on average. The practicality of the scheme is backed by extensive

experiments and comparisons with known methods, showing it to be quite

competitive also in the average case.

1 Introduction

The dictionary data structure is ubiquitous in computer science. A dictionary
is used to maintain a set S under insertion and deletion of elements (referred
to as keys) from a universe U . Membership queries (�x ∈ S?�) provide access
to the data. In case of a positive answer the dictionary also provides a piece of
satellite data that was associated with x when it was inserted.

A large literature, surveyed in Section 1.1, is devoted to practical and the-
oretical aspects of dictionaries. It is common to study the case where keys are
bit strings in U = {0, 1}w and w is the word length of the computer (for the-
oretical purposes modeled as a RAM). Section 2 discusses this restriction. It
is usually, though not always, clear how to return associated information once
membership has been determined. E.g., in all methods discussed in this paper,
the associated information of x ∈ S can be stored together with x in a hash
table. Therefore we disregard the time and space used to handle associated
information and concentrate on the problem of maintaining S. In the following
we let n denote |S|.

∗Partially supported by the IST Programme of the EU under contract number IST-1999-

14186 (ALCOM-FT). Work initiated while visiting Stanford University.
†Basic Research in Computer Science (www.brics.dk), funded by the Danish National Re-

search Foundation.
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The most e�cient dictionaries, in theory and in practice, are based on hash-
ing techniques. The main performance parameters are of course lookup time,
update time, and space. In theory there is no trade-o� between these. One
can simultaneously achieve constant lookup time, expected amortized constant
update time, and space within a constant factor of the information theoretical
minimum of B = log

(|U |
n

)
bits [5]. In practice, however, the various constant

factors are crucial for many applications. In particular, lookup time is a critical
parameter. It is well known that the expected time for all operations can be
made a within a factor of (1 + ε) from optimal (one universal hash function
evaluation, one memory lookup) if space O(n/ε) is allowed. Therefore the chal-
lenge is to combine speed with a reasonable space usage. In particular, we only
consider schemes using O(n) words of space.

The contribution of this paper is a new, simple hashing scheme called cuckoo

hashing. A description and analysis of the scheme is given in Section 3, showing
that it possesses the same theoretical properties as the dynamic dictionary of
Dietzfelbinger et al. [10]. That is, it has worst case constant lookup time and
amortized expected constant time for updates. A special feature of the lookup
procedure is that (disregarding accesses to a small hash function description)
there are just two memory accesses, which are independent and can be done
in parallel if this is supported by the hardware. Our scheme works for space
similar to that of binary search trees, i.e., three words per key in S on average.

Using weaker hash functions than those required for our analysis, cuckoo
hashing is very simple to implement. Section 4 describes such an implemen-
tation, and reports on extensive experiments and comparisons with the most
commonly used methods, having no worst case guarantee on lookup time. It
seems that an experiment comparing the most commonly used methods on a
modern multi-level memory architecture has not previously been described in
the literature. Our experiments show cuckoo hashing to be quite competitive,
especially when the dictionary is small enough to �t in cache. We thus believe it
to be attractive in practice, when a worst case guarantee on lookups is desired.

1.1 Previous Work on Linear Space Dictionaries

Hashing, �rst described in public literature by Dumey [12], emerged in the 1950s
as a space e�cient heuristic for fast retrieval of keys in sparse tables. Knuth
surveys the most important classical hashing methods in [17, Section 6.4]. These
methods also seem to prevail in practice. The most prominent, and the basis for
our experiments in Section 4, are Chained Hashing (with separate chaining),
Linear Probing and Double Hashing. A more recent scheme called Two-
Way Chaining will also be investigated. We detail our implementation in
Section 4.

1.1.1 Theoretical Work.

Early theoretical analysis of hashing schemes was typically done under the as-
sumption that hash function values were uniformly random and independent.
Precise analyses of the average and expected worst case behaviors of the above-

2



mentioned schemes have been made, see e.g. [14, 17]. We mention just a few
facts, disregarding asymptotically vanishing terms.

For Linear Probing the expected number of memory probes for succesful
and unsuccessful lookups are 1

2(1+ 1
1−α) and 1

2(1+ 1
(1−α)2

), respectively, where α

denotes the fraction of the table occupied by keys, 0 < α < 1. The longest probe
sequence is of expected length Ω(log n). In Double Hashing the expected cost
of successful and unsuccessful lookups are, respectively, ln( 1

1−α)/α and 1
1−α .

The longest successful probe sequence is expected to be of length Ω(log n), and
there is no bound on the length of unsuccessful searches. For Chained Hashing
lookups have expected cost 1 + α/2 and 1 + α2/2, respectively, for hash table
size n/α. The expected maximum chain length is Θ(log n/ log log n). In terms
of number of probes, the above implies that Chained Hashing is better than
Double Hashing, which is again better than Linear Probing. Note that
for these three schemes, an insertion corresponds to an unsuccessful lookup, and
that a deletion corresponds to a successful lookup.

Two-Way Chaining is an alternative to Chained Hashing that o�ers
O(log log n) expected maximal lookup time. The implementation that we con-
sider represents the lists by arrays of size O(log log n). To achieve linear space
usage, one must then use a hash table of size O(n/ log log n), implying that the
average chain length is Ω(log log n). Another scheme with expected O(log log n)
time per operation is Multilevel Adaptive Hashing [3]. However, lookups can be
performed in O(1) worst case time if O(log log n) hash function evaluations,
memory probes and comparisons are possible in parallel. This is similar to the
scheme described in this paper, though we use only two hash function evalua-
tions, memory probes and comparisons.

Though the results seem to agree with practice, the randomness assumptions
used for the above analyses are questionable in applications. Carter and Weg-
man [6] succeeded in removing such assumptions from the analysis of chained
hashing, introducing the concept of universal hash function families. When
implemented with a random function from Carter and Wegman's universal fam-
ily, chained hashing has constant expected time per dictionary operation (plus
an amortized expected constant cost for resizing the table). Constructions of
universal hash function families with very e�cient evaluation have since ap-
peared [7, 9, 25].

A dictionary with worst case constant lookup time was �rst obtained by
Fredman, Komlós and Szemerédi [13], though it was static, i.e., did not support
updates. It was later augmented with insertions and deletions in amortized
expected constant time by Dietzfelbinger et al. [10]. Dietzfelbinger and Meyer
auf der Heide [11] improved the update performance by exhibiting a dictionary
in which operations are done in constant time with high probability, namely
at least 1 − n−c, where c is any constant of our choice. A simpler dictionary
with the same properties was later developed [8]. When n = |U |1−o(1) a space
usage of O(n) words is not within a constant factor of the information theoretical
minimum. The dictionary of Brodnik and Munro [5] o�ers the same performance
as [10], using O(B) bits in all cases.
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1.1.2 Experimental Work.

Although the above results leave little to improve from a theoretical point of
view, large constant factors and complicated implementation hinder direct prac-
tical use. For example, in the �dynamic perfect hashing� scheme of [10] the up-
per bound on space is 35n words. The authors of [10] refer to a more practical
variant due to Wenzel that uses space comparable to that of binary search trees.

According to [16] the implementation of this variant in the LEDA library [20],
described in [26], has average insertion time larger than that of AVL trees for
n ≤ 217, and more than four times slower than insertions in chained hashing1.
The experimental results listed in [20, Table 5.2] show a gap of more than a
factor of 6 between the update performance of chained hashing and dynamic
perfect hashing, and a factor of more than 2 for lookups2.

Silverstein [24] reports that the space upper bound of the dynamic perfect
hashing scheme of [10] is quite pessimistic compared to what can be observed
when run on a subset of the DIMACS dictionary tests [19]. He goes on to explore
ways of improving space as well as time, improving both the observed time and
space by a factor of roughly three. Still, the improved scheme needs 2 to 3 times
more space than an implementation of linear probing to achieve similar time per
operation. Silverstein also considers versions of the data strucures with packed
representations of the hash tables. In this setting the dynamic perfect hashing
scheme was more than 50% slower than linear probing, using roughly the same
amount of space.

Is seems that recent experimental work on �classical� dictionaries (that do
not have worst case constant lookup time) is quite limited. In [16] it is reported
that chained hashing is superior to an implementation of dynamic perfect hash-
ing in terms of both memory usage and speed. Judging from leading textbooks
on algorithms, Knuth's selection of algorithms is in agreement with current
practice for implementation of general purpose dictionaries. In particular, the
excellent cache usage of Linear Probing makes it a prime choice on modern
architectures.

2 Preliminaries

We assume that keys from U �t exactly in a single machine word, that is,
U = {0, 1}w . A special value ⊥ ∈ U is reserved to signal an empty cell in hash
tables. For Double Hashing an additional special value is used to indicate a
deleted key.

Our algorithm uses hash functions from a universal family.

De�nition 1 A family {hi}i∈I , hi : U → R, is (c, k)-universal if, for any k
distinct elements x1, . . . , xk ∈ U , any y1, . . . , yk ∈ R, and uniformly random

i ∈ I, Pr[hi(x1) = y1, . . . , hi(xk) = yk] ≤ c/|R|k.
1On a Linux PC with an Intel Pentium 120 MHz processor.
2On a 300 MHz SUN ULTRA SPARC.
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A standard construction of a (2, k)-universal family for range R = {0, . . . , r−1}
and prime p > 2w is

{x 7→ ((
k−1∑

l=0

alx
l) mod p) mod r | 0 ≤ a0, a1, . . . , ak−1 < p} . (1)

If U is not too large compared to k, there exists a space-e�cient (2, k)-
universal family due to Siegel [23] that has constant evaluation time (however,
the constant factor of the evaluation time is rather high).

Theorem 1 (Siegel) There is a constant c such that for, k = 2Ω(w), there

exists a (2, k)-universal family, using space and initialization time kc, that can

be evaluated in constant time.

The restriction that keys are single words is not a serious one. Longer keys can be
mapped to keys of O(1) words by applying a random function from a (O(1), 2)-
universal family. There is such a family whose functions can be evaluated in
time linear in the number of input words [6]. It works by evaluating a function
from a (O(1), 2)-universal family on each word, computing the bitwise exclusive
or of the function values. (See [25] for an e�cient implementation). Such a
function with range {0, 1}2 log(n)+c will, with probability 1−O(2c), be injective
on S. In fact, with constant probability the function is injective on a given
sequence of Ω(2c/2n) consecutive sets in a dictionary of initial size n (see [10]).
When a collision between two elements of S occurs, everything is rehashed. If
a rehash can be done in expected O(n) time, the amortized expected cost of
this is O(2−c/2) per insertion. In this way we can e�ectively reduce the universe
size to O(n2), though the full keys still need to be stored to decide membership.
For c = O(log n) the new keys are of length 2 log n + O(1). For any ε > 0,
Theorem 1 then provides a family of constant time evaluable (2, nΩ(1))-universal
hash functions, whose functions can be stored using space nε.

3 Cuckoo Hashing

Cuckoo hashing is a dynamization of a static dictionary described in [21]. The
dictionary uses two hash tables, T1 and T2, of length r and two hash functions
h1, h2 : U → {0, . . . , r − 1}. Every key x ∈ S is stored in cell h1(x) of T1 or
h2(x) of T2, but never in both. Our lookup function is

function lookup(x)
return T1[h1(x)] = x ∨ T2[h2(x)] = x

end

Two table accesses are in fact optimal among all data structures using linear
space, except for special cases, see [21].

Remark: The idea of storing keys in one out of two places given by hash
functions previously appeared in [15] in the context of PRAM simulation, and
in [2] for Two-Way Chaining, mentioned in Section 1.1.1.
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It is shown in [21] that if r ≥ (1 + ε)n for some constant ε > 0 (i.e., the
tables are to be a bit less than half full), and h1, h2 are picked uniformly at
random from an (O(1), O(log n))-universal family, the probability that there is
no way of arranging the keys of S according to h1 and h2 is O(1/n). By the
discussion in Section 2 we may assume without loss of generality that there
is such a family, with constant evaluation time and negligible space usage. A
suitable arrangement was shown in [21] to be computable in linear time by a
reduction to 2-sat.

We now consider a simple dynamization of the above. Deletion is of course
simple to perform in constant time, not counting the possible cost of shrinking
the tables if they are becoming too sparse. As for insertion, it turns out that
the �cuckoo approach�, kicking other keys away until every key has its own
�nest�, works very well. Speci�cally, if x is to be inserted we �rst see if cell
h1(x) of T1 is occupied. If not, we are done. Otherwise we set T1[h1(x)] ← x
anyway, thus making the previous occupant �nestless�. This key is then inserted
in T2 in the same way, and so forth, see Figure 1(a). As it may happen that
this process loops, see Figure 1(b), the number of iterations is bounded by a
value �MaxLoop� to be speci�ed in Section 3.1. If this number of iterations is
reached everything is rehashed with new hash functions, and we try once again
to accommodate the nestless key. Using the notation x ↔ y to express that
the values of variables x and y are swapped, the following code summarizes the
insertion procedure.

y

z

v

x

T2T1

v

z

y

x

T2T1

x

y

zu

v

s t

T1 T2

(a) (b)

Figure 1: (a) Key x is successfully inserted by moving keys y and z to the other table.

(b) Key x cannot be accomodated and a rehash is necessary.

procedure insert(x)
if lookup(x) then return

loop MaxLoop times

if T1[h1(x)] = ⊥ then { T1[h1(x)]← x; return }
x↔ T1[h1(x)]
if T2[h2(x)] = ⊥ then { T2[h2(x)]← x; return }
x↔ T2[h2(x)]

end loop

rehash(); insert(x)
end
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The above procedure assumes that the tables remain larger than (1 + ε)n cells.
When no such bound is known, a test must be done to �nd out when a rehash
to larger tables is needed.

The lookup call preceding the insertion in the procedure ensures robustness
if the key to be inserted is already in the dictionary. A slightly faster imple-
mentation can be obtained if this is known not to occur.

Note that the insertion procedure is biased towards inserting keys in T1. As
will be seen in Section 4 this leads to faster successful lookups, due to more
keys being found in T1. The insertion time is only slightly worse than that of
a more symmetric implementation. This e�ect is even more pronounced if one
uses an asymmetric scheme where T1 is larger than T2. Another variant is to
use a single table for both hash functions, but this requires keeping track of
the hash function according to which each key is placed. In the following we
consider just the basic two table scheme.

3.1 Analysis

Our analysis has two main parts:

• In Section 3.1.1 we consider what happens if one tries arbitrarily long to
insert the new key, i.e., for MaxLoop =∞. We show that if the insertion
procedure does not terminate, it is not possible to accommodate all the
keys of the new set using the present hash functions, and a rehash is
necessary. In conjunction with the result from [21], this shows that the
insertion procedure loops without limit with probability O(1/n).

• In Section 3.1.2 we turn to the analysis for the case where insertion is pos-
sible, showing that the insertion procedure terminates in O(1) iterations,
in the expected sense.

This accounts for the claimed time bound, except for the cost of rehashing.
A rehash has no failed insertions with probability 1−O(1/n). In this case, the
expected time per insertion is constant, so the expected time is O(n). As the
probability of having to start over with new hash functions is bounded away from
1, the total expected time for a rehash is O(n). This implies that the expected
time for insertion is constant if r ≥ (1+ε)(n+1). Resizing of tables can be done
in amortized expected constant time per update by the usual doubling/halving
technique (see e.g. [10]).

3.1.1 The insertion procedure loops

Consider the sequence x1, x2, . . . of nestless keys in the in�nite loop. For i, j ≥ 1
we de�ne Xi,j = {xi, . . . , xj}. Let j be the smallest index such that xj ∈ X1,j−1,
and let l be the minimum index such that l + 1 > j and xl+1 ∈ X1,l.

We now argue that the �rst l steps of the insertion proceeds as depicted in
Figure 2. The topmost con�guration is the one preceeding the insertion of x1.
The con�guration just before xj becomes nestless for the second time is shown
in the middle. One step later we have that xk is now in the previous location of
xk+1, for 1 ≤ k < j. Let i < j be the index such that xi = xj . We now consider
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xj−2

xj−1

xi+2

xi+1

x1 = xi+j−1

xi+j

x2 = xi+j−2

x3 = xi+j−3

xi = xj

xl

xj−3

xj−2

xj−1

xi+1

xi = xj

xi−1 = xj+1

x2 = xi+j−2

x1 = xi+j−1

xi+j xl

xj−3

xj−2

xi+1

xj−1

xi = xj

x3 = xi+j−3

x2 = xi+j−2

x1 = xi+j−1

xj+i xl

Figure 2: Stages of an insertion of key x1. Boxes correspond to cells in either of the two

tables, and arcs indicate the other possible position of a key. Bold arcs show where

the nestless key is to be inserted.
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what happens towards the third stage. If i > 1 then xj reclaims its previous
location, occupied by xi−1. If i > 2 then xi−1 subsequently reclaims its previous
position, which is occupied by xi−2, and so forth. Thus we have xj+z = xi−z for
z = 0, 1, . . . , i− 1, and end up with x1 occurring again as xi+j−1. This is shown
in the third stage of the �gure. Note that the dotted cell must, by de�nition of
l, be identical to one of the other cells in the �gure.

It is now not hard to see that the number of cells is not su�cient to accommo-
date Xi,l for the current choice of hash functions. For a formal proof, we de�ne
sk = |h1[X1,k]|+ |h2[X1,k]|, i.e., sk is the number of table cells available to X1,k.
Obviously sk ≤ sk−1 + 1, as every key xi, i > 1, has either h1(xi) = h1(xi−1)
or h2(xi) = h2(xi−1). In fact, sj−1 = sj−2 ≤ j − 1, because the key xj found
in T1[h1(xj−1)] or T2[h2(xj−1)] occurred earlier in the sequence. As all of the
keys xj, . . . , xj+i−1 appeared earlier in the sequence, we have sj+i−2 = sj−2.
Similar to before we have sl = sl−1. In conclusion, |X1,l| = l + 1 − i and
sl = sl−1 ≤ sj+i−2 + (l − 1)− (j + i− 2) = sj−2 + l + 1− j − i < l + 1− i.

3.1.2 Successful insertion

Consider a pre�x x1, x2, . . . , xl of the sequence of nestless keys. The crucial fact
is that there must be a subsequence of at least l/3 keys without repetitions,
starting with an occurrence of the key x1, i.e., the inserted key. If there is no
repetion this is obvious. Otherwise the �rst l steps of the insertion proceeds as
in Figure 2. In particular, one of the sequences x1, . . . , xj−1 and xj+i−1, . . . , xl

is the desired one of length at least l/3.
Suppose that the insertion loop runs for at least t iterations. By the above

there is a sequence of distinct keys b1, . . . , bm, m ≥ (2t − 1)/3, such that b1 is
the key to be inserted, and such that for some β ∈ {0, 1}

h2−β(b1) = h2−β(b2), h1+β(b2) = h1+β(b3), h2−β(b3) = h2−β(b4), . . . (2)

Given b1 there are at most nm−1 sequences of m distinct keys. For any such
sequence and any β ∈ {0, 1}, if the hash functions were chosen from a (c,m)-
universal family, the probability that (2) holds is bounded by c r−(m−1). Thus,
the probability that there is any sequence of length m satisfying (2) is bounded
by 2c (n/r)m−1 ≤ 2c (1+ε)−(2t−1)/3+1 . Suppose we use a (c, 6 log1+ε n)-universal
family, for some constant c. Then the probability of more than 3 log1+ε n it-
erations is O(1/n2). Thus, we can set MaxLoop = 3 log1+ε n with a negligible
increase in the probability of a rehash. When there is no rehash the expected
number of iterations is at most

1+
∞∑

t=2

2c (1 + ε)−(2t−1)/3+1 (3)

= 1 + 2c(1 + ε)4/3
∞∑

t=0

((1 + ε)−2/3)t

= 1 + O( 1
1−(1+ε)−2/3 )

= O(1 + 1/ε) .
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4 Experiments

To examine the practicality of Cuckoo Hashing we experimentally compare it
to three well known hashing methods, as described in [17, Section 6.4]: Chained
Hashing (with separate chaining), Linear Probing and Double Hashing.
We also consider Two-Way Chaining [2].

The �rst three methods all attempt to store a key x at position h(x) in a
hash table. They di�er in the way collisions are resolved, i.e., what happens
when two or more keys hash to the same location.

Chained Hashing. A chained list is used to store all keys hashing to a given
location.

Linear Probing. A key is stored in the next empty table entry. Lookup of
key x is done by scanning the table beginning at h(x) and ending when
either x or an empty table entry is found. When deleting, some keys may
have to be moved back in order to �ll the hole in the lookup sequence,
see [17, Algoritm R] for details.

Double Hashing. Insertion and lookup are similar to Linear Probing, but
instead of searching for the next position one step at a time, a second hash
function value is used to determine the step size. Deletions are handled
by putting a �deleted� marker in the cell of the deleted key. Lookups skip
over deleted cells, while insertions overwrite them.

Two-Way Chaining can be described as two instances of Chained Hash-
ing. A key is inserted in one of the two hash tables, namely the one where it
hashes to the shortest chain. A cache-friendly implementation, as recently sug-
gested in [4], is to simply make each chained list a short, �xed size array. If a
longer list is needed, a rehash must be performed.

4.1 Data Structure Design and Implementation

We consider positive 32 bit signed integer keys and use 0 as ⊥. The data
structures are robust in that they correctly handle attempts to insert an element
already in the set, and attempts to delete an element not in the set. During
rehashes this is known not to occur and slightly faster versions of the insertion
procedure is used.

Our focus is on achieving high performance dictionary operations with a
reasonable space usage. By the load factor of a dictionary we will understand
the size of the set relative to the memory used3. As seen in [17, Figure 44] the
speed of Linear Probing and Double Hashing degrades rapidly for load
factors above 1/2. On the other hand, none of the schemes improve much for
load factors below 1/4. As Cuckoo Hashing only works when the size of each
table is larger than the size of the set, we can only perform a comparison for
load factors less than 1/2. To allow for doubling and halving of the table size,

3For Chained Hashing, the notion of load factor traditionally disregards the space used

for chained lists, but we desire equal load factors to imply equal memory usage.
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we allow the load factor to vary between 1/5 and 1/2, focusing especially on the
�typical� load factor of 1/3. For Cuckoo Hashing and Two-Way Chaining

there is a chance that an insertion may fail, causing a �forced rehash�. If the
load factor is larger than a certain threshold, somewhat arbitrarily set to 5/12,
we use the opportunity to double the table size. By our experiments this only
slightly decreases the average load factor.

Apart from Chained Hashing, the schemes considered have in common the
fact that they have only been analyzed under randomness assumptions that are
currently, or inherently, unpractical to implement (O(log n)-wise independence
or n-wise independence). However, experience shows that rather simple and
e�cient hash function families yield performance close to that predicted under
stronger randomness assumptions. We use a function family from [9] with range
{0, 1}q for positive integer q. For every odd a, 0 < a < 2w, the family contains
the function ha(x) = (ax mod 2w) div 2w−q. Note that evaluation can be done
very e�ciently by a 32 bit multiplication and a shift. However, this choice
of hash function restricts us to consider hash tables whose sizes are powers
of two. A random function from the family (chosen using C's rand function)
appears to work �ne with all schemes except Cuckoo Hashing. For Cuckoo
Hashing we experimented with various hash functions and found that Cuckoo
Hashing was rather sensitive to the choice of hash function. It turned out that
the exclusive or of three independently chosen functions from the family of [9]
was fast and worked well. We have no good explanation for this phenomenon.
For all schemes, various alternative hash families were tried, with a decrease in
performance.

All methods have been implemented in C. We have striven to obtain the
fastest possible implementation of each scheme. Speci�c choices made and de-
tails di�ering from the references are:

Chained Hashing. C's malloc and free functions were found to be a perfor-
mance bottleneck, so a simple �freelist� memory allocation scheme is used.
Half of the allocated memory is used for the hash table, and half for list
elements. If the data structure runs out of free list elements, its size is
doubled. We store the �rst element of each linked list directly in the hash
table. This often saves one cache miss. It also slightly improves mem-
ory utilization, in the expected sense. This is because every non-empty
chained list is one element shorter and bacause we expect more than half of
the hash table cells to contain a linked list for the load factors considered
here.

Double Hashing. To prevent the tables from clogging up with deleted cells,
resulting in poor performance for unsuccessful lookups, all keys are re-
hashed when 2/3 of the hash table is occupied by keys and �deleted�
markers. The fraction 2/3 was found to give a good tradeo� between the
time for insertion and unsuccessful lookups.

Linear Probing. Our �rst implementation, like that in [24], employed dele-
tion markers. However, we found that using the deletion method described
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in [17, Algoritm R] was considerably faster, as far fewer rehashes were
needed.

Two-Way Chaining. We allow four keys in each bucket. This is enough to
keep the probability of a forced rehash low for hundreds of thousands of
keys, by the results in [4]. For larger collections of keys one should allow
more keys in each bucket, resulting in general performance degradation.

Cuckoo Hashing. The architecture on which we experimented could not par-
allelize the two memory accesses in lookups. Therefore we only evaluate
the second hash function after the �rst memory lookup has shown unsuc-
cessful.

Some experiments were done with variants of Cuckoo Hashing. In par-
ticular, we considered Asymmetric Cuckoo, in which the �rst table is twice
the size of the second one. This results in more keys residing in the �rst table,
thus giving a slightly better average performance for successful lookups. For
example, after a long sequence of alternate insertions and deletions at load fac-
tor 1/3, we found that about 76% of the elements resided in the �rst table of
Asymmetric Cuckoo, as opposed to 63% for Cuckoo Hashing. There is
no signi�cant slowdown for other operations. We will describe the results for
Asymmetric Cuckoo when they di�er signi�cantly from those of Cuckoo
Hashing.

4.2 Setup

Our experiments were performed on a PC running Linux (kernel version 2.2)
with an 800 MHz Intel Pentium III processor, and 256 MB of memory (PC100
RAM). The processor has a 16 KB level 1 data cache and a 256 KB level 2 �ad-
vanced transfer� cache. As will be seen, our results nicely �t a simple model
parameterized by the cost of a cache miss and the expected number of probes
to �random� locations. They are thus believed to have signi�cance for other
hardware con�gurations. An advantage of using the Pentium III processor
for timing experiments is its rdtsc instruction which can be used to measure
time in clock cycles. This gives access to very precise data on the behavior of
functions. In our case it also supplies a way of discarding measurements signif-
icantly disturbed by interrupts from hardware devices or the process scheduler,
as these show up as a small group of timings signi�cantly separated from all
other timings. Programs were compiled using the gcc compiler version 2.95.2,
using optimization �ags -O9 -DCPU=586 -march=i586 -fomit-frame-pointer

-finline-functions -fforce-mem -funroll-loops -fno-rtti. As mentioned
earlier, we use a global clock cycle counter to time operations. If the number
of clock cycles spent exceeds 5000, and there was no rehash, we conclude that
the call was interrupted, and disregard the result (it was empirically observed
that no operation ever took between 2000 and 5000 clock cycles). If a rehash is
made, we have no way of �ltering away time spent in interrupts. However, all
tests were made on a machine with no irrelevant user processes, so disturbances
should be minimal. On our machine it took 32 clock cycles to call the rdtsc

instruction. These clock cycles have been subtracted from the results.
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4.3 Results

Dictionaries of Stable Size

Our �rst test was designed to model the situation in which the size of the dic-
tionary is not changing too much. It considers a sequence of mixed operations
generated at random. We constructed the test operation sequences from a col-
lection of high quality random bits publicly available on the Internet [18]. The
sequences start by insertion of n distinct random keys, followed by 3n times
four operations: A random unsuccessful lookup, a random successful lookup,
a random deletion, and a random insertion. We timed the operations in the
�equilibrium�, where the number of elements is stable. For load factor 1/3 our
results appear in Figure 3, which shows an average over 10 runs. As Linear
Probing was consistently faster than Double Hashing, we chose it as the
sole open addressing scheme in the plots. Time for forced rehashes was added
to the insertion time. Results had a large variance, over the 10 runs, for sets of
size 212 to 216. Outside this range the extreme values deviated from the average
by less than about 7%. The large variance sets in when the data structure starts
to �ll the level 2 cache. We believe it is due to other processes evicting parts of
the data structure from cache.

8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

log n

C
lo

ck
 C

yc
le

s

Successful Lookup

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

log n

C
lo

ck
 C

yc
le

s

Unsuccessful Lookup

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

350

400

450

log n

C
lo

ck
 C

yc
le

s

Insert

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

350

log n

C
lo

ck
 C

yc
le

s

Delete

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

Figure 3: The average time per operation in equilibrium for load factor 1/3.

As can be seen, the time for lookups is almost identical for all schemes as
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long as the entire data structure �ts in level 2 cache, i.e., for n < 216/3. After
this the average number of random memory accesses (with the probability of a
cache miss approaching 1) shows up. This makes linear probing an average case
winner, with Cuckoo Hashing and Two-Way Chaining following about 40
clock cycles behind. For insertion the number of random memory accesses again
dominates the picture for large sets, while the higher number of in-cache accesses
and more computation makes Cuckoo Hashing, and in particular Two-Way

chaining, relatively slow for small sets. The cost of forced rehashes sets in for
Two-Way Chaining for sets of more than a million elements, at which point
better results may have been obtained by a larger bucket size. For deletion
Chained Hashing lags behind for large sets due to random memory accesses
when freeing list elements, while the simplicity of Cuckoo Hashing makes it
the fastest scheme. We suspect that the slight rise in time for the largest sets
in the test is due to saturation of the bus, as the machine runs out of memory
and begins swapping.

Growing and Shrinking Dictionaries

The third test concerns the cost of insertions in growing dictionaries and dele-
tions in shrinking dictionaries. This will be di�erent from the above due to
the cost of rehashes. Together with Figure 3 this should give a fairly complete
picture of the performance of the data structures under general sequences of
operations. The �rst operation sequence inserts n distinct random keys, while
the second one deletes them. The plot is shown in Figure 4. For small sets
the time per operation seems unstable, and dominated by memory allocation
overhead (if minimum table size 210 is used, the curves become monotone). For
sets of more than 212 elements the largest deviation from the averages over 10
runs was about 6%. Disregarding the constant minimum amount of memory
used by any dictionary, the average load factor during insertions was within 2%
of 1/3 for all schemes except Chained Hashing whose average load factor was
about 0.31. During deletions all schemes had average load factor 0.28. Again
the fastest method is Linear Probing, followed by Chained Hashing and
Cuckoo Hashing. This is largely due to the cost of rehashes.

DIMACS Tests

Access to data in a dictionary is rarely random in practice. In particular, the
cache is more helpful than in the above random tests, for example due to re-
peated lookups of the same key, and quick deletions. As a rule of thumb, the
time for such operations will be similar to the time when all of the data structure
is in cache. To perform actual tests of the dictionaries on more realistic data,
we chose a representative subset of the dictionary tests of the 5th DIMACS im-
plementation challenge [19]. The tests involving string keys were preprocessed
by hashing strings to 32 bit integers, as described in Section 2. This preserves,
with high probability, the access pattern to keys. For each test we recorded the
average time per operation. The minimum and maximum of six runs can be
found in Tables 1 and 2, which also lists the average load factor. Linear probing
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Figure 4: The average time per insertion/deletion in a growing/shrinking dictionary for av-

erage load factor ≈ 1/3.

Joyce Eddington

Linear 42 - 45 (.35) 26 - 27 (.40)
Double 48 - 53 (.35) 32 - 35 (.40)
Chained 49 - 52 (.31) 36 - 38 (.28)
A.Cuckoo 47 - 50 (.33) 37 - 39 (.32)
Cuckoo 57 - 63 (.35) 41 - 45 (.40)
Two-Way 82 - 84 (.34) 51 - 53 (.40)

Table 1: Average clock cycles per operation and load factors for two DIMACS string tests.

is again the fastest, but mostly just 20-30% faster than the Cuckoo schemes.

The Number of Cache Misses During Insertion

We have seen that the number of random memory accesses (i.e., cache misses)
is critical to the performance of hashing schemes. Whereas there is a very
precise understanding of the probe behavior of the classic schemes (under suit-
able randomness assumptions), the analysis of the expected time for insertions
in Section 3.1 is rather crude, establishing just a constant upper bound. One
reason that our calculation does not give a very tight bound is that we use a

3.11-Q-1 Smalltalk-2 3.2-Y-1

Linear 99 - 103 (.30) 68 - 72 (.29) 85 - 88 (.32)
Double 116 - 142 (.30) 77 - 79 (.29) 98 - 102 (.32)
Chained 113 - 121 (.30) 78 - 82 (.29) 90 - 93 (.31)
A.Cuckoo 166 - 168 (.29) 87 - 95 (.29) 95 - 96 (.32)
Cuckoo 139 - 143 (.30) 90 - 96 (.29) 104 - 108 (.32)
Two-Way 159 - 199 (.30) 111 - 113 (.29) 133 - 138 (.32)

Table 2: Average clock cycles per operation and load factors for three DIMACS integer tests.
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Figure 5: The average number of random memory accesses for insertion.

pessimistic estimate on the number of key moves needed to accommodate a new
element in the dictionary. Often a free cell will be found even though it could
have been occupied by another key in the dictionary. We also pessimistically
assume that a large fraction of key moves will be spent backtracking from an
unsuccessful attempt to place the new key in the �rst table.

Figure 5 shows experimentally determined values for the average number
of probes during insertion for various schemes and load factors below 1/2. We
disregard reads and writes to locations known to be in cache, and the cost of
rehashes. Measurements were made in �equilibrium� after 105 insertions and
deletions, using tables of size 215 and truly random hash function values. It
is believed that this curve is independent of the table size (up to vanishing
terms). The curve for Linear Probing does not appear, as the number of
non-cached memory accesses depends on cache architecture (length of the cache
line), but it is typically very close to 1. The curve for Cuckoo Hashing seems
to be 2 + 1/(4 + 8α) ≈ 2 + 1/(4ε). This is in good correspondance with (3)
of the analysis in Section 3.1.2. As noted in Section 3, the insertion algorithm
of Cuckoo Hashing is biased towards inserting keys in T1. If we instead of
starting the insertion in T1 choose the start table at random, the number of cache
misses decreases slightly for insertion. This is because the number of free cells
in T1 increases as the load balance becomes even. However, this also means
a slight increase in lookup time. Also note that since insertion checks if the
element is already inserted Cuckoo Hashing uses at least two cache misses.
It should be remarked that the highest load factor for Two-Way Chaining is
O(1/ log log n).

Since lookup is very similar to insertion in Chained Hashing, one could
think that the number of cache misses would be equal for the two operations.
However, in our implementation, obtaining a free cell from the freelist may result
in an extra cache miss. This is the reason why the curve for Chained Hashing
in the �gure di�ers from a similar plot in Knuth [17, Figure 44].
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5 Model

In this section we look at a simple model of the time it takes to perform a
dictionary operation, and note that our results can be explained in terms of this
model. On a modern computer, memory speed is often the bottleneck. Since
the operations of the investigated hashing methods mainly perform reads and
writes to memory, we will assume that cache misses constitute the dominant
part of the time needed to execute a dictionary operation. This leads to the
following model of the time per operation.

Time = O + N · R · (1− C/T ) , (4)

where the parameters of the model are described by

• O � Constant overhead of the operation.

• R � Average number of memory accesses.

• C � Cache size.

• T � Size of the hash tables.

• N � Cost of a non-cache read.

The term R · (1 − C/T ) is the expected number of cache misses for the
operations with (1 − C/T ) being the probability that a random probe into the
tables results in a cache miss. Note that the model in not valid when the table
size T is smaller than the cache size C. The size C of the cache and the size
T of the dictionary are well known. From Figure 5 we can, for the various
hashing schemes and for a load factor of 1/3, read the average number R of
memory accesses needed for inserting an element. Note that several accesses to
consecutive elements in the hash table is counted as one random access, since
the other accesses are then in cache. The overhead of an operation, O, and the
cost of a cache miss, N , are unknown factors that we will estimate.

Performing experiments, reading and writing to and from memory, we ob-
served that the time for a read or a write to a location known not to be in cache
could vary dramatically depending on the state of the cache. For example, when
a cache line is to be used for a new read, the time used is considerably higher
if the old contents of the cache line has been written to, since the old contents
must �rst be moved to memory. For this reason we expect parameter N to
depend slightly on both the particular dictionary methods and the combination
of dictionary operations. This means that R and T are the only parameters not
dependent on the methods used.

Using the timings from Figure 3 and the average number of cache misses for
insert observed in Figure 5, we estimated N and O for the four hashing schemes.
As mentioned, we believe the slight rise in time for the largest sets in the tests
of Figure 3 to be caused by other non-cache related factors. So since the model
is only valid for T ≥ 216, the two parameters were estimated for time timings
with 216 ≤ T ≥ 223. The results are shown in Table 3. As can be seen from
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Method N O

Cuckoo 71 142
Two-Way 66 157
Chained 79 78
Linear 88 89

Average 76 -

Table 3: Estimated parameters according to the model for insertion.
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Figure 6: Model versus observed data.

the table, the cost of a cache miss varies slightly from method to method. The
largest deviation from the average is about 15%.

To investigate the accuracy of our model we plotted in Figure 6 the estimated
curves for insertion together with the observed curves used for estimating the
parameters. As can be seen, the simple model explains the observed values quite
nicely. The situation for the other operations is similar.

Having said this, we must admit that the values of N and O estimated for
the schemes cannot be accounted for. In particular, it is clear that the true
behavior of the schemes is more complicated than suggested by the model.

6 Conclusion

We have presented a new dictionary with worst case constant lookup time. It
is very simple to implement, and has average case performance comparable
to the best previous dictionaries. Earlier schemes with worst case constant
lookup time were more complicated to implement and had worse average case
performance. Several challenges remain. First of all an explicit practical hash
function family that is provably good for the scheme has yet to be found. For
example, future advances in explicit expander graph construction could make
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Siegel's hash functions practical. Secondly, we lack a precise understanding
of why the scheme exhibits low constant factors. In particular, the curve of
Figure 5 and the fact that forced rehashes are rare for load factors quite close
to 1/2 need to be explained. Another point to investigate is whether using
more tables yields practical dictionaries. Experiments in [22] suggest that space
utilization could be improved to more than 80%, but it remains to be seen how
this would a�ect insertion performance.
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