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Ćaccam

o
&

W
inskel:

A
H

igher-O
rder

C
alculus

forC
ategories

BRICS
Basic Research in Computer Science

A Higher-Order Calculus for Categories

Mario Jose Cáccamo
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A Higher-Order Calculus for Categories

Mario Cáccamo Glynn Winskel

June, 2001

Abstract

A calculus for a fragment of category theory is presented. The
types in the language denote categories and the expressions func-
tors. The judgements of the calculus systematise categorical argu-
ments such as: an expression is functorial in its free variables; two
expressions are naturally isomorphic in their free variables. There
are special binders for limits and more general ends. The rules
for limits and ends support an algebraic manipulation of univer-
sal constructions as opposed to a more traditional diagrammatic
approach. Duality within the calculus and applications in proving
continuity are discussed with examples. The calculus gives a basis
for mechanising a theory of categories in a generic theorem prover
like Isabelle.

1 Introduction

A language for category theory [11] together with a calculus to derive
natural isomorphisms are presented. We systematise categorical judge-
ments of the kind: an expression is functorial in its free variables; there is
an isomorphism between two expressions natural in their free variables.
The resulting logic gives the foundations for a mechanisation of category
theory in a generic theorem prover like Isabelle [15].

The language is based on the simply typed λ-calculus [2] where types
denote categories and expressions functors between categories. We in-
troduce constants, for hom-sets, for example, and binders for ends and
coends. Ends are a generalisation of limits and play a central role in the
calculus in increasing its expressive power.

The rules of the calculus enable a mechanical manipulation of for-
mulae with ends and their dual coends. This gives a more calculational
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approach to categories than is usual, and less dependence on diagrams.
This approach supplies tools for proving preservation of limits and col-
imits.

One motivation behind this work is the increasing use of the machin-
ery of category theory in denotational semantics. There categories are
often seen as generalised domains. An application of special interest to
us is the use of presheaf categories as models for concurrency. A central
result there is that functions between presheaf categories which preserve
colimits, a form of continuity, preserve open-map bisimulation [9] (see [7]
for details).

2 The Language

2.1 Categories as Types

In general, a category C consists of a class of objects and a class of
arrows between any pair of objects A,B, written C(A,B), which support
composition and have identities. If the class of arrows between any pair
of objects is a set we say that C is locally small and call C(A,B) the
hom-set for A,B. We will concentrate on locally small categories.

Locally small categories together with functors, arrows between cat-
egories, themselves form the large category CAT. Furthermore, given
two locally small categories C and D, the functors from C to D also form
a category in which the objects are the functors and the arrows between
them are natural transformations. We can summarise the rich structure
of CAT in the diagram

C
F

""

G

<<θ
�� D

where F and G are functors between locally small categories C and D,
and θ is a natural transformation from F to G.1 We shall be particularly
concerned with those natural transformations between functors which are
isomorphisms, so-called natural isomorphisms.

The structure of CAT suggests a language. Its types will denote
locally small categories; so we expect judgements which express the le-
gitimate ways to build up types. Its expressions with free variables will

1In fact, making CAT an example of a 2-category.
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denote functors from the category where the variables range to the cate-
gory where the expression belongs; there will be judgements saying that
expressions are functorial in their free variables. The diagram above
suggests terms and judgements for constructing natural transformations.
Here we will however restrict attention to just the judgements of there
being a natural isomorphism between functors denoted by expressions.
We plan to extend this work to a notation for natural transformations.
Despite just considering natural isomorphisms, the calculus is surpris-
ingly useful, allowing us to derive, for example, results on preservation
of limits.

The constructors for types are interpreted as operations over cate-
gories. Given the categories C and D,

• the opposite Cop is the category whose objects are the objects of C
and whose arrows are the arrows in C reversed, i.e., Cop(A,B) =
C(B,A) for any pair of objects A,B;

• the product C × D is the category whose objects and arrows are
ordered pairs of objects and arrows in C and D;

• the sum C +D is the category whose objects and arrows are given
by the disjoint union of objects and arrows in C and D; and

• the functor category [C,D] is the category of functors from C to D
and the natural transformation between them.

Observe that a functor category built out of locally small categories is
not necessarily locally small (Crole discusses this point in [8, page 61]).
We constrain the use of functor categories [C,D] to the case where C is
small. A locally small category is small when the collection of objects
is a set. Simple examples of small categories are 0 and 1, the empty
and singleton categories respectively. We write C,D, I, J, · · · for small
categories.

The syntax for types as locally small categories is

C ::= Set | 0 | 1 | Cop | C1 × C2 | C1 + C2 | [C, C] .

Thus, for the language locally small category and type are synonymous.
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2.2 Syntax for Expressions

The expressions E1, E2, · · · are defined by

E ::=X | 1 | λXC.E | E1(E2) | C(E1, E2) | (E1, E2) |
fst(E) | snd(E) | inl(E) | inr(E) | caseC+D(E1, E2, E3) |
E1 ×E2 | E1 + E2 |

∫
XC

op
,Y C

E | ∫ XC
op
,Y C

E

where C, D and C are types, and X is drawn from a countably infinite
set of variables. The constant 1 stands for the singleton set.

The syntax is that of the simply typed λ-calculus à la Church with
products and sums. To simplify the notation we sometimes ommit the
type annotations in the lambda abstractions. The “integral” binders
denote ends and coends. Ends extend the concept of limit to functors of
mixed variance with domain of the form Cop×C. The treatment of ends
given in this work supports a mechanical manipulation of these binders
whose properties resemble the properties of the integral in mathematical
analysis. Ends are discussed later – they are a central notion of the
language for categories.

2.3 Functoriality

Not all possible expressions in the language give rise to functors. An ex-
ample of a non-functorial expression is C(X,X) for a nontrivial category
C; there is no action over arrows matching the action over objects. Well-
typed expressions in the language represent those expressions functorial
in their free variables.

The syntactic judgement X1 : C1, · · · , Xn : Cn ` E : C says that the
expression E of type C is functorial in the free variables occurring in the
context X1 : C1, · · · , Xn : Cn; i.e. it denotes a functor from C1 × . . .× Cn
to C. A context is a finite sequence of variable declarations. In informal
mathematical usage one says E(X1, · · · , Xn) is functorial in X1, · · · , Xn.
Thus, an expression-in-context has two possible readings: as an object
when the free variables are interpreted as objects, and as an arrow when
the free variables are interpreted as arrows.

From the typing rules we derive well-typed expressions enforcing func-
toriality. One example is the rule for hom-expressions:

hom
Γ ` E1 :C Γ′ ` E2 :C
Γop,Γ′ ` C(E1, E2) :Set
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where Γ and Γ′ are contexts2 and Γop is obtained from Γ by replacing
each occurrence of a type C by Cop. We insist, also in the syntax, that
(Cop)op = C and that forming the opposite category respects the type
constructions so e.g. (C × D)op = Cop ×Dop and [C,D]op = [Cop,Dop].

The rule for lambda abstraction introduces functor categories:

lam
Γ, X :C ` E :D

Γ ` λXC.E : [C,D]

with the assumption that C is small. If E is an expression with free vari-
ablesW,Z, we abbreviate λXC×D.E[fst(X)/W, snd(X)/Z] as λWC, ZD.E.

There is a symmetric rule for eliminating functor categories:

app
Γ ` F : [C,D] Γ′ ` E :C

Γ,Γ′ ` F (E) :D.
The derivation below shows X :C ` λY Cop

.C(Y,X) : [Cop,Set] which
denotes the so-called Yoneda functor for C:

Y :C ` Y :C
ass

X :C ` X :C
ass

X :C, Y :Cop ` C(Y,X) :Set
hom + exc

X :C ` λY Cop
.C(Y,X) : [Cop,Set]

lam

where the rule (exc) allows us to permute the variables in the contexts
(there are rules for weakening and contraction as well).

2.4 Naturality

Given two expressions E1(X1, · · · , Xn) and E2(X1, · · · , Xn) functorial
in the variables X1, · · · , Xn it is sensible to ask whether the associated
functors are naturally isomorphic. When they are, one says

E1(X1, · · · , Xn) ∼= E2(X1, · · · , Xn)

natural in X1, · · · , Xn. More formally, the syntactic judgement Γ ` E1
∼=

E2 :C says the expressions E1 and E2, where Γ ` E1 : C and Γ ` E2 : C,
are naturally isomorphic in the variables of Γ. The judgement Γ ` E1

∼=
2The variables that appear in a context are distinct and different contexts have

disjoint set of variables; any conflict is avoided by renaming.
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E2 :C asserts the existence of a natural isomorphism between the functors
denoted by E1 and E2.

The relation defined by isomorphism is an equivalence, and there are
rules for reflexivity, symmetry and transitivity. The rules for isomor-
phisms encode useful facts in category theory. There are, for example,
rules for the Yoneda lemma and its corollary:

Theorem 2.1 (Yoneda lemma) Let C be a locally small category. Then

[Cop,Set]
(
λX.C(X,C), F

) ∼= F (C)

natural in C ∈ C and F ∈ [Cop,Set].

A special case of the Yoneda lemma is expressed by the rule

yon
Γ, X :Cop ` E :Set

Γ, Z :Cop ` E[Z/X] ∼= [Cop,Set](λXC
op
.C(X,Z), λXC

op
.E) :Set .

That the Yoneda functor is full and faithful follows by replacing F
in Theorem 2.1 with the functor λX.C(X,D) for some D in C. This, to-
gether with the fact that full and faithful functors preserve isomorphisms,
gives:

Corollary 2.2 C ∼= D iff λX.C(X,C) ∼= λX.C(X,D) for C,D ∈ C.
This is encoded in the calculus by the rule:

rep
Γ, X :Cop ` C(X,E1) ∼= C(X,E2) :Set

Γ ` E1
∼= E2 :C

with the assumption that X is not free in E1 or E2. A complete presen-
tation of the rules is postponed until section 4.

3 Ends and Coends

3.1 Representability

The manipulation of ends relies on the theory of representable functors.

Definition 3.1 (Representable Functor) A functor F : Cop → Set
is representable if for some object C in C there is an isomorphism

C(X,C) ∼= F (X)

natural in X.
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A representation for F : Cop → Set is a pair (C, θ) such that

C(X,C)
θX∼= F (X)

natural in X. A trivial example of a representable functor is λX.C(X,A)
for some object A in C. There is a dual definition for G : C → Set: a
representation for G is a pair (D,ψ) such that

C(D,X)
ψX∼= G(D)

natural in X. Below we see that limits and more generally ends are
representations for special functors. The next result is a consequence of
the Yoneda functor being full and faithful (see [6] for a proof):

Theorem 3.2 (Parametrised Representability) Let F : A×Bop →
Set be a functor such that for every object A in A there exists a repre-
sentation (B(A), θA) for the functor λX.F (A,X), then there is a unique
extension of the mapping A 7→ B(A) to a functor λX.B(X) : A → B
such that

B(X,B(A))
(θA)X∼= F (A,X)

is natural in A ∈ A and X ∈ Bop.

This result shows that representations are functorial in their param-
eters; this will be crucial in justifying the typing rules for end formulae.

3.2 Limits and Ends as Representations

Definition 3.3 (Limit) A limit of a functor F : I→ C is a representa-
tion (L, θ) for λX.[I, C](λY.X, F ) : Cop → Set, i.e.,

C(X,L)
θX∼= [I, C](λY.X, F ) (1)

natural in X ∈ Cop.

The object L in (1) is often written in the literature as lim←−I F and called
the limit of F . The right hand side of (1) is the set of natural transfor-
mations from the constant functor λY.X to F . Given γ ∈ [I, C](λY.X, F )
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and an arrow u : I → J in I the naturality condition ensures that the
diagram

F (I)

F (u)

��
X

γI
44iiiiiiiiiii

γJ

**UUUUUUUUUUU

F (J)

commutes. A natural transformation of this kind is a cone from X to
F . The isomorphism θX in (1) establishes a one-to-one correspondence
between arrows from X to L and cones from X to F . From the naturality
condition on X we recover the more concrete definition of limits where
θL(idL) is the universal cone. Dually, a colimit for F : I → C is a
representation for the functor λX.[I, C](F, λY.X) : C → Set.

The notion of end extends that of limit to functors of mixed-variance,
e.g. with domain Iop× I. In this setting, cones are generalised to wedges.
Given a functor G : Iop × I → D, a wedge β from X to G is a family of
arrows 〈βI : X → G(I, I)〉I∈I in D such that for any arrow u : I → J in
I the diagram

G(I, I) G(idI ,u)

++WWWWWWWWWWW

X

βI 44iiiiiiiiiii

βJ
**UUUUUUUUUUU G(I, J)

G(J, J)
G(u,idJ )

33gggggggggg

commutes. Just as cones are natural transformations, so are wedges di-
natural transformations – see [11, page 218] for the definition of dinatural
transformations. Dinatural transformations do not compose in general,
but they do compose with natural transformations. So there is a functor

λF,G.Dinat
(
F,G

)
: [Iop × I,D]op × [Iop × I,D]→ Set

where Dinat
(
F,G

)
is the set of dinatural transformations from F to G.

A wedge from X to G is an element in Dinat
(
λY.X,G

)
.

Definition 3.4 (End) An end of a functor G : Iop × I→ D is a repre-
sentation (E, θ) for λX.Dinat

(
λY.X,G

)
: Dop → Set, i.e.,

D(X,E)
θX∼= Dinat

(
λY.X,G

)
(2)

natural in X ∈ Dop.
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Following a similar analysis to that with limits, we may recover a more
concrete definition for ends where θE(idE) is the universal wedge. In the
language for categories the object E in (2) is written as

∫
XI

op
,Y I
G(X, Y ),

and more informally, and economically, as
∫
ZI
G(Z−, Z+) where Z− : Iop

and Z+ : I.
Dually, a coend of G : Iop × I → C is a representation for the func-

tor λX.Dinat
(
G, λY.X

)
. We write

∫ XI
op
,Y I
G(X, Y ) for the coend of G

(more informally,
∫ ZI

G(Z−, Z+)).

3.3 Ends with Parameters

A special case of parametrised representability arises when considering
ends as representations. Suppose the functor F : A×Iop×I→ B such that
for any object A in A the induced functor λX, Y.F (A,X, Y ) : Iop×I→ B
has as end the representation (

∫
ZI
F (A,Z−, Z+), θA). Then the mapping

A 7→ ∫
ZI
F (A,Z−, Z+) extends uniquely to a functor from A to B such

that

B(X,
∫
ZI
F (A,Z−, Z+))

(θA)X∼= [Iop× I,B]
(
(λY,W.X), (λY,W.F (A, Y,W ))

)

natural in A ∈ A and X ∈ Bop. This is just Theorem 3.2 applied to the
functor λA,X.[Iop× I,B]

(
(λY,W.X), (λY,W.F (A, Y,W ))

)
. We conclude

that the process of taking ends does not disturb functoriality over the
variables which remain free. This justifies the rule for ends:

int
Γ, X :Cop, Y :C ` E :D

Γ ` ∫
XC

op
,Y C

E :D
where D is complete, i.e., D has all ends (and equivalently, all limits).

Limits correspond to ends where the functor is extended with a dummy
argument.3 Thus, by using the rules (int), weakening (wea) and exchange
(exc) we can form the derivation:

Γ, Y :C ` E :D
Γ, X :Cop, Y :C ` E :D

wea + exc

Γ ` ∫
XC

op
,Y C

E :D .
int

3Conversely, an end can be regarded as a limit: given a functor F : Iop × I → C
there is a category I§ together with a functor d§ : I§ → Iop×I such that

∫
II F (I−, I+) ∼=

lim←−I
(F ◦ d§); for the details of this construction see [6, 11].
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As the variableX is not free in the expression E the last judgement might
be abbreviated as just Γ ` ∫

Y C
E :D. Hence, we can use the integral for

both ends and limits.

3.4 Complete Categories

We restrict the application of rules for ends to complete categories. A
category is complete when it has all limits. The category Set, for exam-
ple, is complete.

The set of natural transformations from F to G is characterised by
an end expression, the so-called naturality formula:

[I,D](F,G) ∼= ∫
II
D(
F (I−), G(I+)

)

natural in F ∈ [I,D]op and G ∈ [I,D]. This isomorphism is explained by
giving a concrete choice for the end in Set (see [6, 11] for details). In the
calculus there is a rule for this formula:

nat
Γ, X :C ` E1 :D Γ′, Y :C ` E2 :D

Γop,Γ′ ` [C,D](λXC.E1, λY
C.E2) ∼=

∫
XC

op
,Y C
D(
E1, E2

)
:Set .

Similarly, there is an end expression for dinatural transformations:

Dinat
(
F,G

) ∼= ∫
II
D(
F (I+, I−), G(I−, I+)

)
(3)

natural in F ∈ [Iop × I,D]op and G ∈ [Iop × I,D]. By composing the
isomorphism for the definition of ends (2) with an instance of the dinat-
urality formula (3) where F is a constant functor, we obtain the isomor-
phism:

D(
X,

∫
II
G(I−, I+)

) ∼= ∫
II
D(
X,G(I−, I+)

)
(4)

natural in X ∈ Dop and G ∈ [Iop × I,D]. This formula shows how ends
can be moved outside of a hom-expression. To avoid the introduction of
special syntax for dinaturals in the language for categories we adopt (4)
as the definition for ends:

end
Γ, X :Cop, Y :C ` E :D

Γ,W :Dop ` D(
W,

∫
XC

op
,Y C

E
) ∼= ∫

XC
op
,Y C
D(W,E) :Set

where D is complete.
The definition of limits is derivable from (end), (nat) and weakening

(wea). First we derive a special case of the naturality formula:
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W :D `W :D
ass

W :D, X :C ` W :D
wea

....
Γ, Y :C ` E :D

Γ,W :Dop ` [C,D](λXC.W, λY C.E) ∼= ∫
XC

op
,Y C
D(W,E) :Set .

nat + exc

This is combined by means of transitivity of isomorphism with

Γ,W :Dop ` D(W,
∫
XC

op
,Y C

E) ∼= ∫
XC

op
,Y C
D(W,E) :Set .

Finally (with some rewriting):

Γ,W :Dop ` D(W,
∫
Y C
E) ∼= [C,D](λXC.W, λXC.E) :Set .

An important result in reasoning about ends is the Fubini theorem:

fub
Γ, X :Iop, Y :I,W :Jop, Z :J ` E :D

Γ ` ∫
XI

op
,Y I

∫
W Jop ,ZJ

E ∼= ∫
W Jop ,ZJ

∫
XI

op
,Y I
E :D

where D is complete.

3.5 Duality: Coend Formulae

In CAT, any functor F : C → D is mirrored by its dual, a functor
F ∗ : Cop → Dop which acts, as a function, in exactly the same way as F on
objects and arrows. This dual view also involves natural transformations
and is given by applying the 2-functor (−)∗ : CAT→ CAT, which acts

C
F

""

G

<<θ
�� D

� // Cop

F ∗
''

G∗
77

θ∗
KS
Dop ,

where the components of θ∗ are opposites of the components of θ. Note
that dualising twice gives the identity. (Although (−)∗ reverses natural
transformations, this does not have a direct effect in the calculus since
we are only concerned with natural isomorphisms.)

Like a mirror, dualising affects our view of things and the way we
describe them. A judgement Γ ` E : D denotes a functor whose dual
is described by a dual form of judgement, Γop ` E∗ : Dop, where E∗

is the expression obtained by turning ends into coends and coends into
ends in E, adjusting the types of the bound variables. For example, the

dual form of Z : C ` ∫
XI

op
,Y I
E : D is Z : Cop ` ∫ Y I

op
,XI

E∗ : Dop where

11



E is an expression with free variables amongst X, Y, Z. The dual form
of a product E1 × E2 in Set is the sum E∗

1 + E∗
2 in Setop. It follows

that (E∗)∗ = E. In a similar way we can dualise judgements about
the existence of natural isomorphisms, and so embody dualisation in the
rules:

dua
Γ ` E :D

Γop ` E∗ :Dop
duaI

Γ ` E1
∼= E2 :D

Γop ` E∗
1
∼= E∗

2 :Dop.

We can now, for example, derive the rule (int*) for typing coends:

Γ, X :Cop, Y :C ` E :D
Γop, Y :Cop, X :C ` E∗ :Dop

dua + exc

Γop ` ∫
Y C

op
,XC

E∗ :Dop
int

Γ ` ∫ XC
op
,Y C

E :D.
dua

A judgement for Γop,Γ′ ` C(E1, E2) : Set where Γ ` E1 : C and
Γ′ ` E2 : C denotes the composition of the functor C(−,+) : Cop ×
C → Set with the functors E∗

1 : Γop → Cop and E2 : Γ → C. Notice
that, in keeping with practice, an expression occurring on the left of
a hom-expression is implicitly dualised. This affects the definition of
substitution of expressions for free variables.

The substitution E1[E2/X] replaces the negative occurrences of the
free variable X (on the left in an odd number of hom-expressions) by
E∗

2 and other occurrences by E2. Formally, a substitution E1[E2/X] is
defined by induction on the structure of E1 where the defining clause for
hom-expressions is

C(E ′, E′′)[E2/X] = C(E ′[E∗
2/X], E ′′[E2/X]).

Because C(X, Y ) ∼= Cop(Y,X), for X : Cop, Y : C, by substitution and
dualisation we obtain the rule

opp
Γ ` E1 :C Γ′ ` E2 :C

Γop,Γ′ ` C(E1, E2) ∼= Cop(E∗
2 , E

∗
1) :Set.

Thus, there is a derivation

12



0 small 1 small

C small

Cop small

C small D small

C × D small

C small D small

C +D small

Set complete

D complete

[C,D] complete

Figure 1: Some rules for smallness and completeness.

Γ, X :Cop, Y :C ` E :D
Γop, Y :Cop, X :C ` E∗ :Dop

dua + exc

Γop,W :D ` Dop(W,
∫
Y C

op
,XC

E∗) ∼= ∫
Y C

op
,XC
Dop(W,E∗) :Set.

end

Using (opp) twice and transitivity we obtain the derived rule

end*
Γ, X :Cop, Y :C ` E :D

Γop,W :D ` D(
∫ XC

op
,Y C

E,W ) ∼= ∫
Y C

op
,XC
D(E,W ) :Set.

We have chosen to formalise dualisation in rules and then derive rules
for coends. By starting out with sufficient extra rules for coends we could
eliminate the dualisation rules from any derivation.

4 The Calculus

4.1 Rules for Typing

To avoid the set-theoretic paradoxes, categories are classified according to
their size as small and locally small. The formalisation of this distinction
demands a form of judgement for types: C is small where C is any type.
Similarly, the rules involving end expressions make assumptions about
completeness asking for judgements: C is complete and C is cocomplete
where C is any type.

With a view to keeping the presentation of the rules compact, as-
sumptions about types have been presented rather informally. In Fig. 1,
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however, the basic set of formal rules is shown. Rules for other constants
than Set should be added. This point is not elaborated here; a natural
extension to this work is to design a richer language for types.

In Fig. 2 we show the typing rules for expressions. These rules are
interpreted as operations on functors, taking the functors denoted by the
premises to that denoted by the conclusion. Such an interpretation yields
a categorical semantics in the usual sense (see [1, 5, 8]).

The rule for assumption (ass) is interpreted as the identity functor
which exists for any category. The interpretation of the rule for weaken-

ing (wea) takes the functor Γ
E−→ C denoted by the premise of the rule

to the composition Γ×Γ′ πΓ−→ Γ
E−→ C which denotes the conclusion. We

can interpret the rules for exchange and contraction similarly.
The rule for pairs (pai) corresponds to the application of the product

functor − × − : CAT×CAT → CAT to the interpretation of E1 and
E2. The projections (fst) and (snd) are just the composition with the
projection arrows associated to the product. The rules for introduction
and elimination of sums are interpreted through the functor − + − :
CAT×CAT→ CAT in a similar fashion. The rule (dua) expresses the

application of the functor (−)∗ to Γ
E−→ C.

The abstraction rule (lam) is interpreted by “currying” the functor
denoted by E, i.e., a variable from the context is shifted into the expres-
sion. Symmetrically the evaluation functor justifies the rule (app). The
rule for substitution (sub) corresponds to the composition of functors;
recall substitution may involve dualisation – see § 3.5.

The rules (ten) and (uni) have a special status. Products in Set are
introduced with a view to a more general model given by V-enriched
categories, where V is a monoidal closed category equipped with a tensor
product ⊗. In the case of Set, the tensor product is the categorical
product.

4.2 Rules for Natural Isomorphisms

The rules for natural isomorphisms are listed in Fig. 3. The structural
rules for weakening, exchange and contraction are defined as usual and
not shown. The rules describe how to build natural isomorphisms. For
example, the premise of the rule (lamI)

X1 :C1, · · · , Xn :Cn, X :C ` E1
∼= E2 :D
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ass
X :C ` X :C

dua
Γ ` E :D

Γop ` E∗ :Dop

wea
Γ ` E :C

Γ, Γ′ ` E :C
exc

Γ ` E :C
Π(Γ) ` E :C

Π permutation

con
Γ, X :C, Y :C ` E :D

Γ, Z :C ` E[Z/X, Z/Y ] :D
Z is fresh

fst
Γ ` E :C × D
Γ ` fst(E) :C

snd
Γ ` E :C × D
Γ ` snd(E) :D

pai
Γ ` E1 :C Γ′ ` E2 :D
Γ, Γ′ ` (E1, E2) :C × D

inl
Γ ` E :C

Γ ` inl(E) :C +D
inr

Γ ` E :D
Γ ` inr(E) :C +D

cas
Γ ` E1 :C +D Γ′ ` E2 :E Γ′′ ` E3 :E

Γ, Γ′, Γ′′ ` caseC+D(E1, E2, E3) :E

lam
Γ, X :C ` E :D C small

Γ ` λXC .E : [C,D]
app

Γ ` F : [C,D] Γ′ ` E :C C small

Γ, Γ′ ` F (E) :D

hom
Γ ` E1 :C Γ′ ` E2 :C

Γop, Γ′ ` C(E1, E2) :Set
sub

Γ, X :C ` E1 :D Γ′ ` E2 :C
Γ, Γ′ ` E1[E2/X ] :D

uni
` 1:Set

ten
Γ ` E1 :Set Γ′ ` E2 :Set

Γ, Γ′ ` E1 × E2 :Set

int
Γ, X :Cop, Y :C ` E :D D complete C small

Γ ` ∫
XCop

,Y C E :D

Figure 2: Typing rules.
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ref
Γ ` E :C

Γ ` E ∼= E :C
sym

Γ ` E1
∼= E2 :C

Γ ` E2
∼= E1 :C

tra
Γ ` E1

∼= E2 :C Γ ` E2
∼= E3 :C

Γ ` E1
∼= E3 :C

subI
Γ, X :C ` E1

∼= E2 :D Γ′ ` E :C
Γ, Γ′ ` E1[E/X ] ∼= E2[E/X ] :D

appI
Γ ` F ∼= G : [C,D] Γ′ ` E :C C small

Γ, Γ′ ` F (E) ∼= G(E) :D
lamI

Γ, X :C ` E1
∼= E2 :D C small

Γ ` λXC .E1
∼= λXC .E2 : [C,D]

intI
Γ, X :Cop, Y :C ` E1

∼= E2 :D C small D complete

Γ ` ∫
XCop

,Y C E1
∼= ∫

XCop
,Y C E2 :D

end
Γ, X :Cop, Y :C ` E :D C small D complete

Γ, W :Dop ` D(
W,

∫
XCop

,Y C E
) ∼= ∫

XCop
,Y C D(W, E) :Set

nat
Γ, X :C ` E1 :D Γ′, Y :C ` E2 :D C small

Γop, Γ′ ` [C,D](λXC .E1, λY C .E2) ∼=
∫

XCop
,Y C D

(
E1, E2

)
:Set

fub
Γ, X :Cop, Y :C, W :Dop, Z :D ` E :E C small D small E complete

Γ ` ∫
XCop ,Y C

∫
WDop ,ZD E ∼= ∫

WDop ,ZD
∫

XCop ,Y C E :E

duaI
Γ ` E1

∼= E2 :D
Γop ` E∗

1
∼= E∗

2 :Dop
opp

Γ ` E1 :C Γ′ ` E2 :C
Γop, Γ′ ` C(E1, E2) ∼= Cop(E∗

2 , E∗
1 ) :Set

uniI
Γ ` E :Set

Γ ` 1× E ∼= E :Set
com

Γ ` E1 :Set Γ′ ` E2 :Set

Γ, Γ′ ` E1 × E2
∼= E2 × E1 :Set

clo
Γ ` E1 :Set Γ′ ` E2 :Set Γ′′ ` E3 :Set

Γop, (Γ′)op, Γ′′ ` [E1 × E2, E3] ∼= [E1, [E2, E3]] :Set

yon
Γ, X :Cop ` E :Set C small

Γ, Z :Cop ` E[Z/X ] ∼= [Cop,Set](λXCop

.C(X, Z), λXC.E) :Set

rep
Γ, X :Cop ` C(X, E1) ∼= C(X, E2) :Set

Γ ` E1
∼= E2 :C

X 6∈ FV (E1) ∪ FV (E2)

cur
Γ, X :C, Y :D ` E1 :E Γ′, X :C, Y :D ` E2 :E C small D small

Γop, Γ′ ` [C × D, E ](λXC , Y D.E1, λXC , Y D.E2

) ∼= [C, [D, E ]](λXC.λY D.E1, λXC.λY D.E2

)
:Set

Figure 3: Rules for natural isomorphisms.
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means in more informal mathematical notation that there is an isomor-
phism

E1(X1, · · · , Xn, X)
θX1,··· ,Xn,X∼= E2(X1, · · · , Xn, X)

natural in X1, · · · , Xn, X.
Thus we can abstract on the variable X to obtain an isomorphism

λX.E1(X1, · · · , Xn, X)
〈θX1,··· ,Xn,X〉X∼= λX.E2(X1, · · · , Xn, X)

natural in X1, · · · , Xn. This justifies the conclusion of the rule (lamI).
The rules for end, duality and application are interpreted in a similar
way, their soundness resting on the earlier discussion. Just as we could
derive the dual rule (end*) in § 3.5, we can derive dual rules (intI*), (rep*)
and (fub*).

We can derive dual rules (intI*), (rep*) and (fub*) in a similar manner
to the derivation of (end*).

The rules (clo) and (com) arise from the closed structure of Set.
Notice that we abbreviate hom-expressions over Set by using brackets,
e.g. [A,B] instead of Set(A,B). The “closed” structure of CAT gives
the rule (cur) for currying. A rule for swapping arguments in functors is
derivable from (cur), (nat) and (fub).

We can derive a rule for the covariant version of the Yoneda lemma.
Take the small category C in the premise of the rule (yon) to be an
opposite category Dop to obtain:

Γ, Z : (Dop)op ` E[Z/X] ∼= [(Dop)op,Set](λX(Dop)op .Dop(X,Z), λX(Dop)op .E) :Set

By applying (opp), (lamI) and (homI) (and rewriting) we get:

Γ, Z :D ` E[Z/X] ∼= [D,Set](λXD.D(X,Z), λXD.E) :Set.

5 Examples

5.1 Continuity

The two driving notions in the previous sections have been functoriality
and natural isomorphism. The example below shows that the calculus is
rich enough to prove continuity.
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Definition 5.1 (Preservation of Limits) Let F : I → C be a functor
with limiting cone 〈kI : lim←−I F → F (I)〉I∈I, a functor G : C → D pre-
serves the limit of F iff 〈G(kI) : G(lim←−I F ) → G(F (I))〉I∈I is a limiting
cone in D. Preservation of colimits is defined dually.

We say that G preserves I-index limits if G preserves the limits of all
functors in [I, C]. A functor which preserves all limits is called continuous.

One might expect to prove that a given functor preserves limits by
showing an isomorphism of objects. This gives, however, a necessary but
not sufficient condition.4 The situation improves when the isomorphism
is sufficiently natural however:

Theorem 5.2 Assume that the categories C and D have limits for all
functors with domain I. The functor G : C → D preserves I-indexed
limits iff

lim←−
I

(G ◦ F ) ∼= G(lim←−
I

F ),

natural in F ∈ [I, C] (see [6] for a proof.).

This theorem supplies the key to proving continuity within the calculus.
For example, that C(C,X) preserves limits in X is a direct consequence
of the naturality formula.

Another result we can prove in the calculus is that right adjoints
preserve limits. Given the judgements

X :C ` E1 :D and Y :D ` E2 :C
respectively denoting functors E1 : C → D and E2 : D → C, an adjunc-
tion where, as functors, E1 is the left adjoint and E2 is the right adjoint
consists of an isomorphism

X :Cop, Y :D ` D(
E1, Y

) ∼= C(X,E2) :Set.

By Theorem 5.2 it is enough to prove

H : [I,D] ` E2[
∫
II
H/Y ] ∼= ∫

II
E2[H(I)/Y ] :C

where
∫
II
H(I) is the limit of H . The proof proceeds backwards, using

(rep) to obtain the goal:

C(X,E2[
∫
II
H(I)/Y ]

) ∼= C(X, ∫II E2[H(I)/Y ]
)

4There are examples of functors which preserve limiting objects but don’t preserve
the limiting cones, see [3, ex. 5.3.16(4)].
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The derivation of this goal is sketched in the chain of isomorphisms:

C(X,E2[
∫
II
H(I)/Y ]

) ∼= D(
E1,

∫
II
H(I)

)
by the adjunction,

∼= ∫
II
D(
E1, H(I)

)
by (end),

∼= ∫
II
C(X,E2[H(I)/Y ]

)
by the adjunction,

∼= C(X, ∫II E2[H(I)/Y ]
)

by (end).

We conclude that the functor denoted by Y :C ` E2 :D preserves limits.
The dual result, i.e. left adjoints preserve colimits, follows from the

rules opp and duaI. From the definition of adjunction and by applying
the rule opp twice together with transitivity we get

X :Cop, Y :D ` Cop(E∗
2 , X) ∼= Dop

(
Y,E∗

1

)
:Set

i.e. an adjunction where the functor denoted by E∗
1 is the right adjoint.

From the derivation above we can conclude

H : [Iop, Cop] ` E∗
1 [

∫
II

op H(I)/X] ∼= ∫
II

op E∗
1 [H(I)/X] :Dop

and by applying the rule duaI

H : [I, C] ` E1[
∫ II

H(I)/X] ∼= ∫ II
E1[H(I)/X] :D.

5.2 Pointwise Limits

Assuming a complete category C and given a judgement

Γ, X :I, Y :J ` E :C

we can derive the expression

Γ ` λY J. ∫
XI
E ∼= ∫

XI
λY J.E : [J, C]. (5)

In other words, limits in functor categories are obtained pointwise.5

We first show

[J, C](H, λY J. ∫
XI
E

) ∼= [I, [J, C]](λX I.H, λX I.λY J.E)

5That is provided the pointwise limits exist, but we assume C complete.
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where H:[J, C]op. A derivation for this judgement is sketched in the fol-
lowing chain of isomorphisms:

[J, C](H, λY J. ∫
XI
E

) ∼= ∫
Y J,ZJop

C(H Z,
∫
XI
E

)
by (nat),

∼= ∫
Y J,ZJ

op

∫
XI
C(H Z,E

)
by (end),

∼= ∫
XI

∫
Y J,ZJ

op C(H Z,E
)

by (fub),

∼= ∫
XI

[J, C](H, λY J.E)
by (nat),

∼= [I, [J, C]](λX.H, λX.λY.E)
by (nat).

Now from the definition of limit (see § 3.4) we obtain

[J, C](H, λY. ∫
XI
E

) ∼= [J, C](H, ∫
XI
λY.E

)

and by (rep) we can conclude (5). From this and by using the rules (dua)
and (duaI) we can derive the dual result: colimits in functor categories
are obtained pointwise.

5.3 The Density Formula

Functor categories of the form [Cop,Set] have a number of important
properties that give them a special rank in the calculus.6 From the rules
(yon) and (nat), a functor X : [Cop,Set] is expressible as the end formula:

X(W ) ∼= ∫
Y C

op

[
C(Y −,W ), X(Y +)

]
. (6)

There is also a coend formula for X, the so-called density formula:

X(W ) ∼= ∫ Y C
C(W,Y +)×X(Y −) . (7)

The chain of isomorphisms below sketches a derivation for this for-
mula:

[Cop,Set]
(
λWCop

.
∫ Y C

C(W,Y +)×X(Y −), Z
)

∼= ∫
WCop [(

∫ Y C
C(W−, Y +)×X(Y −), Z(W +)] by (nat),

∼= ∫
WCop

∫
Y C

op [C(W−, Y +)×X(Y −), Z(W +)] by (end*) and (intI),
∼= ∫

Y Cop

∫
WCop [C(W−, Y +)×X(Y −), Z(W +)] by (fub),

∼= ∫
Y Cop

∫
WCop

[
X(Y −), [C(W−, Y +), Z(W +)]

]
by (com) and (clo)

∼= ∫
Y Cop

[
X(Y −),

∫
WCop [C(W−, Y +), Z(W +)]

]
by (end) and (intI),

∼= ∫
Y C

op [X(Y −), Z(Y +)] by (6) and (intI),

∼= [Cop,Set]
(
X,Z

)
by (nat).

6Such categories are called presheaf categories.
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The next step applies the rule (rep*) to yield the isomorphism (7).

6 Implementation in Isabelle

As part of ongoing research we are carrying out the implementation of
the calculus in the theorem prover Isabelle. The calculus is implemented
in several user-defined theories which extend the initial theory Pure.
Basically, Pure gives the built-in higher-order logic [14] on top of which
we define the object-logic for categories.

There are two meta-level types: cat and exp for the types and the ex-
pressions of the language respectively. The types constructors are defined
as constants, for example:

Set :: cat

One :: cat

Op :: cat => cat ("_^op" [10] 10)

FunCat :: [cat, cat] => cat ("[_,_]") .

The syntax for the expressions is defined similarly, for example:

Hom :: [cat,exp,exp]=> exp

Lam :: (exp=>exp) => exp (binder "LAM" 10)

Into :: (exp=>exp) => exp (binder "INTO" 10)

Int :: (exp=>exp) => exp (binder "INT" 10) .

where Lam, Into and Int give the definition for the binders λ and
∫
.

There are two special constants to encode assertions for types and natural
isomorphisms:

":" :: [exp,cat] => o (infixl 7)

NatIso :: [exp,exp,cat] => o ("_~_:_" [5,5,5] 5) .

The constant “:” takes a term and a type as input and returns a truth
value, similarly NatIso takes two terms and a type a returns a truth
value.

The judgements of the calculus correspond to theorems in the meta-
logic. For example, X : Cop, Y : C ` C(X, Y ) : Set is written in the
object-logic for categories as

!! X Y. [| X:C^op; Y:C |] ==> Hom(C,X,Y):Set .
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Notice that the universal quantification prevents a possible instantiation
of the meta-variables X and Y enforcing their treatment as variables in
the object-logic level. The manipulation of the contexts in the rules is
done through lifting. Thus, the definition of the rules is only concerned
with the part of the context which changes. For example, the rule for
typing end formulae is:

int " ( !!X Y. [| X:C^op ; Y:C; C Small |] ==> E(X,Y):D)

==> INTO X. INT Y. E(X,Y):D".

This approach gives the structural rules for free; the rule (ass) corre-
sponds to a proof by assumption, exchange to rotating the assumptions
in a subgoal, and so on. We are currently developing an alternative
implementation of the calculus in Isabelle/HOL [12] where the contexts
are defined explicitly as sets of pairs. This approach should ease the
implementation of duality.

7 Conclusions, Related Work and Future

Directions

A calculus which formalises an expressive fragment of category theory
has been presented. The rules of the calculus support a calculational ap-
proach to universality where the manipulation of ends and coends plays a
central role. We have shown how to formalise judgements about functo-
riality and how to verify isomorphisms. In this setting, we have explored
duality and studied applications to encode and prove results on contin-
uous functors. An implementation of the calculus in the theorem prover
Isabelle has been outlined briefly.

Previous work in the automation of category theory has followed a
somewhat different tack. Takeyama [18] presents a computer checked lan-
guage with the goal of supplying a categorical framework for type theory
and includes an implementation in the theorem prover Lego [16]. This
follows in spirit the work of Rydeheard and Burstall [17] on formalising
universal constructions in ML. Beylin and Dybjer [4] formalise monoidal
categories and present a proof of the Mac Lane’s coherence theorem in
Martin Löf’s type theory [13].

The interpretation of the rules suggests a language for natural isomor-
phisms. Observe that in theorem provers like Isabelle where a goal may
contain unknowns, a witness for a natural isomorphism may be given as
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output of the proof search. More generally, a further extension to the
calculus is to introduce expressions for natural transformations.

A richer language for types may be considered by adding new con-
structors like recursion and lifting. For recursive definition of categories
we need to extend the language for types to allow expressions with vari-
ables. The lifted type C⊥ would be interpreted as the category C with an
initial object ⊥ freely adjoined.

The utility of end and coend notation was demonstrated in the pi-
oneering work of Kelly and others in enriched category theory [10]. In
emphasising a calculus for categories, a goal has been to make working
with functor categories routine. The formalisation here should lend itself
to enriched category theory.

Acknowledgments: This work was inspired by Martin Hyland’s Cam-
bridge part III lecture course on category theory and its emphasis on end
and coend manipulation.
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[5] T. Braüner. An Axiomatic Approach to Adequacy. PhD thesis,
BRICS PhD School, 1996.
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