
B
R

IC
S

R
S

-01-16
D

anvy
etal.:

N
orm

alization
by

E
valuation

w
ith

Typed
A

bstractS
yntax

BRICS
Basic Research in Computer Science

Normalization by Evaluation
with Typed Abstract Syntax

Olivier Danvy
Morten Rhiger
Kristoffer H. Rose

BRICS Report Series RS-01-16

ISSN 0909-0878 May 2001

Copyright c© 2001, Olivier Danvy & Morten Rhiger & Kristoffer H.
Rose.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/16/

Normalization by Evaluation

with Typed Abstract Syntax ∗

Olivier Danvy and Morten Rhiger

BRICS †

Department of Computer Science, University of Aarhus ‡

Kristoffer H. Rose

IBM T. J. Watson Research Center §

May 10, 2001

Abstract

We present a simple way to implement typed abstract syntax for the
lambda calculus in Haskell, using phantom types, and we specify normal-
ization by evaluation (i.e., type-directed partial evaluation) to yield this
typed abstract syntax. Proving that normalization by evaluation pre-
serves types and yields normal forms then reduces to type-checking the
specification.

Contents

1 A write-only typed abstract syntax 2

2 Normalization by evaluation preserves types 3

3 Normalization by evaluation yields normal forms 5

4 Conclusions and issues 6
∗To appear in the Journal of Functional Programming. (Extended version.)
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
E-mail: {danvy,mrhiger}@brics.dk
Home pages: http://www.brics.dk/~{danvy,mrhiger}

§30 Saw Mill River Road, Hawthorne, NY 10532, USA
E-mail: krisrose@us.ibm.com

1

1 A write-only typed abstract syntax

In higher-order abstract syntax, the variables and bindings of an object language
are represented by variables and bindings of a meta-language. Let us consider
the simply typed λ-calculus as object language and Haskell as meta-language.
For concreteness, we also throw in integers and addition, but only in this section.

data Term = INT Int | ADD Term Term
| APP Term Term | LAM (Term → Term)

The constructors are typed as follows.

INT :: Int → Term
ADD :: Term → Term → Term
APP :: Term → (Term → Term)
LAM :: (Term → Term) → Term

They do not prevent us from forming ill-typed terms. For example, in the scope
of these constructors, evaluating LAM(λx→APP x x) yields a value of type Term.

We can, however, provide a typed interface to these constructors preventing
us from forming ill-typed terms.

newtype Exp t = EXP Term

int :: Int → Exp Int
int i = EXP (INT i)

add :: Exp Int → Exp Int → Exp Int
add (EXP e1) (EXP e2) = EXP (ADD e1 e2)

app :: Exp (a → b) → (Exp a → Exp b)
app (EXP e1) (EXP e2) = EXP (APP e1 e2)

lam :: (Exp a → Exp b) → Exp (a → b)
lam f = EXP (LAM (λx → let EXP b = f (EXP x) in b))

The type Exp is parameterized over a type t but does not use it: t is a phantom
type.

These typeful constructors prevent us from forming ill-typed terms. For
example, in the scope of these constructors, evaluating lam(λx→app x x) yields
a type error. Conversely, if a term has the simple type t then its typed abstract-
syntax representation has type Exp t, which can be illustrated as follows.

λx → x + 5 :: Int → Int
lam (λx → add x (int 5)) :: Exp (Int → Int)

We intend to use this typed abstract syntax to show that normalization
by evaluation preserves types (Section 2) and yields normal forms (Section 3)
for the pure and simply typed λ-calculus. Therefore, we are only interested in
constructing abstract syntax. (To convert a constructed term into first-order
abstract syntax where variables are represented as strings, one needs to add
another constructor to Term for free variables.) Furthermore, such a write-only

2

typed abstract syntax does not solve the basic problem of programming higher-
order abstract syntax in Haskell, which is that the function space in the LAM
summand is “too big” in the sense that it allows both non-strict and non-total
functions. But again, this representation is sufficient for our purpose here. In
the remainder of this pearl, Term and Exp are restricted to the pure λ-calculus.

2 Normalization by evaluation preserves types

Normalization by evaluation is a technique for strongly normalizing closed λ-
terms. Source terms are represented as meta-language values and a normaliza-
tion function maps these values into a syntactic representation of their normal
form.

Normalization by evaluation is extensional and reduction-free. It is exten-
sional instead of intensional because the source terms are (higher-order) values,
not (first-order) symbolic representations. It is reduction-free because all the
β-reductions needed to yield a normal form are carried out implicitly by the un-
derlying implementation of the meta-language. For this reason, it runs at native
speed and thus is more efficient than traditional, symbolic normalization.

Normalization by evaluation uses two type-indexed and mutually recursive
functions. One, reify, traditionally noted ↓, maps a value into its representation
and the other, reflect, traditionally noted ↑, maps a representation into a value.
These two functions are canonically defined as follows, for the simply typed
λ-calculus.

t ::= α | t1 → t2

↓α = λv.v

↓t1→t2 = λv.λx.↓t2 @ (v @ (↑t1 @ x))
↑α = λe.e

↑t1→t2 = λe.λx.↑t2 @ (e @ (↓t1 @ x))

where overlined λ and @ denote meta-level abstractions and applications, resp-
ectively, and underlined λ and @ denote object-level abstractions and applica-
tions.

A simply typed term is normalized by reifying its value. For example, let us
consider Church numbers.

zero = λs.λz.z

succ = λn.λs.λz.s @ (n @ s @ z)
three = succ @ (succ @ (succ @ zero))
add = λm.λn.λs.λz.m @ s @ (n @ s @ z)

Reifying three yields λs.λz.s @ (s @ (s @ z)), i.e., the representation in normal
form of 3. Similarly, reifying add@zero yields λn.λs.λz.n @ (λn′.s @ n′) @ z, i.e.,
the representation in long βη-normal form of the identity function over Church
numbers, reflecting that zero is neutral for addition. Finally, reifying add @three

3

yields the representation in normal form of a function iterating the successor
function three times, i.e., λn.λs.λz.s @ (s @ (s @ (n @ (λn′.s @ n′) @ z))). The
source terms are values (i.e., with overlined λ and @) and, using ↓, we have
reified them into a syntactic representation of their normal form (i.e., with
underlined λ and @).

The type of a Church number is (a→a) → a → a. The type of its normal
form is Term, or, perhaps more vividly, Exp ((a → a) → a → a).

Normalization by evaluation is defined by induction on the structure of types,
which makes it a natural candidate to be expressed with type classes. We thus
define a type class Nbe hosting two type-indexed functions, reify and reflect.
Representing object terms with the type Term of Section 1 would give us the
usual uninformative type t→Term for reify and Term→t for reflect. Instead,
let us use the parameterized type Exp of Section 1.

class Nbe a
where reify :: a → Exp a

reflect :: Exp a → a

The challenge now is to populate this type class with values of function type
and of base type implementing normalization by evaluation. If we can do that,
the type inferencer of Haskell will act as a theorem prover and will demonstrate
that this implementation of normalization by evaluation preserves types.

The canonical definition above dictates how to instantiate Nbe at function
type.

instance (Nbe a, Nbe b) ⇒ Nbe (a → b)
where reify v = lam (λx → reify (v (reflect x)))

reflect e = λx → reflect (app e (reify x))

For base types, reify and reflect are two identity functions. To be type
correct, however, reify must produce a term and reflect must consume a
term. We can ensure that reify produces a term when its argument is a term.
Similarly, we can ensure that reflect consumes a term when its result is a term.
Taking advantage of the fact that the type parameter of Exp is a phantom type,
we thus introduce the following two ‘phantom’ identity functions for the base
case.

coerce :: Exp (Exp a) → Exp a
coerce (EXP v) = EXP v

uncoerce :: Exp a → Exp (Exp a)
uncoerce (EXP e) = EXP e

instance Nbe (Exp a)
where reify = uncoerce

reflect = coerce

A value v is normalized by applying reify to it. In usual implementations of
normalization by evaluation, (a representation of) the type of v must be supplied
on par with v, as an input data. Here, because we use type classes, this type is

4

supplied as a cast, to resolve overloading. It is obtained by instantiating type
variables a with Exp a, in the original type. So for example, id . id has the
type a→a. Reifying it at type Exp a → Exp a yields λx→x, and reifying it at type
(Exp a → Exp a) → (Exp a → Exp a) yields λx→λx’→x x’.

3 Normalization by evaluation yields normal forms

In the simply typed λ-calculus, long βη-normal forms are closed terms without
β-redexes that are fully η-expanded with respect to their type. A closed term
e of type t and in normal form satisfies `nf e :: t, where terms in normal form
(and atomic form) are defined by the following rules.

∆, x :: t1 `nf e :: t2

∆ `nf (λx ::t1. e) :: t1 → t2
(Lam)

∆ `at e :: α

∆ `nf e :: α
(Coerce)

∆ `at e0 :: t1 → t2 ∆ `nf e1 :: t1

∆ `at e0 e1 :: t2
(App)

∆(x) = t

∆ `at x :: t
(Var)

No term containing β-redexes can be derived by these rules, and restricting the
Coerce rule to base types ensures that the derived terms are fully η-expanded.

As in Section 1, we provide a typed interface to the constructors of terms in
normal form, preventing us from forming ill-typed terms.

data NfTerm = COERCE AtTerm | LAM (AtTerm → NfTerm)
data AtTerm = APP AtTerm NfTerm

newtype NfExp a = NF NfTerm
newtype AtExp a = AT AtTerm

app’ :: AtExp (a → b) → (NfExp a → AtExp b)
app’ (AT e1) (NF e2) = AT (APP e1 e2)

lam’ :: (AtExp a → NfExp b) → NfExp (a → b)
lam’ f = NF (LAM (λx → let NF t = f (AT x) in t))

coerce’ :: AtExp (NfExp a) → NfExp a
coerce’ (AT v) = NF (COERCE v)

uncoerce’ :: NfExp a → NfExp (NfExp a)
uncoerce’ (NF e) = NF e

These declarations specialize the representation from Section 2 to reflect
that the represented terms are in normal form. As in Section 2, we provide two
phantom identity functions, coerce’ and uncoerce’, where coerce’ constructs
terms that arise from using the above Coerce rule.

Thus equipped, we can re-express normalization by evaluation in an imple-
mentation that yields a representation of λ-terms in normal form.

5

class Nbe’ a
where reify :: a → NfExp a

reflect :: AtExp a → a

Again, the challenge is to populate this type class with values of function
type and of base type implementing normalization by evaluation. If we can
do that, the type inferencer of Haskell will act as a theorem prover and will
demonstrate that this implementation of normalization by evaluation preserves
types and yields normal forms.

The instances use the constructors for terms in normal forms but are other-
wise defined as in Section 2.

instance (Nbe’ a, Nbe’ b) ⇒ Nbe’ (a → b)
where reify v = lam’ (λx → reify (v (reflect x)))

reflect e = λx → reflect (app’ e (reify x))

instance Nbe’ (NfExp a)
where reify = uncoerce’

reflect = coerce’

As earlier, reifying id . id at type NfExp a → NfExp a yields λx→x, and reifying
it at type (NfExp a → NfExp a) → (NfExp a → NfExp a) yields λx→λx’→x x’.

For a last example, here are the Haskell definitions of Church numbers men-
tioned in Section 2.

type Number a = (a → a) → a → a
zero = λs z → z
succ = λn s z → s (n s z)
three = succ (succ (succ zero))
add = λm n s z → m s (n s z)

Reifying three, add zero, and add three gives the text of their normal form
at type Number (Exp a) → Number (Exp a).

4 Conclusions and issues

We have presented a simple encoding of typed abstract syntax in Haskell, and
we have used this typed abstract syntax to demonstrate that normalization by
evaluation preserves simple types and yields residual programs in βη-normal
form. The encoding is write-only because it does not lend itself to programs
taking typed abstract syntax as input—as, e.g., a typed transformation into
continuation-passing style. Nevertheless, it is sufficient to establish two key
properties of normalization by evaluation automatically, using the Haskell type
inferencer as a theorem prover.

These two properties could be illustrated more directly in a language with
dependent types such as Martin-Löf’s type theory. In such a language, one
can directly embed simply typed λ-terms (in normal form or not), express nor-
malization by evaluation, and prove that it preserves types and yields normal
forms.

6

Related work: Normalization by evaluation takes its roots in type theory [7,
16], proof theory [4, 5, 6], logic [2], category theory [1, 8, 18], and partial eval-
uation [9, 12, 19, 21]. Long βη-normal forms were specified, e.g., in Huet’s
thesis [14]. The particular characterization we use originates in Pfenning’s work
on Logical Frameworks, and so does higher-order abstract syntax [17]. We use it
further to pair normalization by evaluation and run-time code generation [3, 20].
Our typed abstract syntax is akin to Leijen and Meijer’s embedding of SQL into
Haskell, which introduced phantom types [15]. Phantom types provide a typing
discipline for otherwise untyped values such as pointers in a foreign language
interface [13].

Acknowledgments: A preliminary and longer version of this article is avail-
able in the proceedings of FLOPS 2001 [11]. We would like to thank Simon
Peyton Jones for identifying phantom types in it. The present version has ben-
efited from Richard Bird’s editorial advice and from Ralf Hinze’s comments.

Part of this work was carried out while the second author was visiting Jason
Hickey at Caltech, in the summer and fall of 2000, and while the third author was
affiliated with BRICS, in 1996-1997. We are supported by the ESPRIT Working
Group APPSEM (www.md.chalmers.se/Cs/Research/Semantics/APPSEM/).

References

[1] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical
reconstruction of a reduction-free normalization proof. In David H. Pitt,
David E. Rydeheard, and Peter Johnstone, editors, Category Theory and
Computer Science, number 953 in Lecture Notes in Computer Science,
pages 182–199, Cambridge, UK, August 1995. Springer-Verlag.

[2] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Reduction-
free normalisation for a polymorphic system. In Proceedings of the Eleventh
Annual IEEE Symposium on Logic in Computer Science, New Brunswick,
New Jersey, July 1996. IEEE Computer Society Press.

[3] Vincent Balat and Olivier Danvy. Strong normalization by type-directed
partial evaluation and run-time code generation. In Xavier Leroy and At-
sushi Ohori, editors, Proceedings of the Second International Workshop on
Types in Compilation, number 1473 in Lecture Notes in Computer Science,
pages 240–252, Kyoto, Japan, March 1998. Springer-Verlag.

[4] Ulrich Berger. Program extraction from normalization proofs. In Marc
Bezem and Jan Friso Groote, editors, Typed Lambda Calculi and Applica-
tions, number 664 in Lecture Notes in Computer Science, pages 91–106,
Utrecht, The Netherlands, March 1993. Springer-Verlag.

[5] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Normalization
by evaluation. In Bernhard Möller and John V. Tucker, editors, Prospects

7

for hardware foundations (NADA), number 1546 in Lecture Notes in Com-
puter Science, pages 117–137. Springer-Verlag, 1998.

[6] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation
functional for typed λ-calculus. In Proceedings of the Sixth Annual IEEE
Symposium on Logic in Computer Science, pages 203–211, Amsterdam,
The Netherlands, July 1991. IEEE Computer Society Press.

[7] Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and
normalization proofs. Mathematical Structures in Computer Science, 7:75–
94, 1997.

[8] Djordje Čubrić, Peter Dybjer, and Philip Scott. Normalization and the
Yoneda embedding. Mathematical Structures in Computer Science, 8:153–
192, 1998.

[9] Olivier Danvy. Type-directed partial evaluation. In John Hatcliff, Tor-
ben Æ. Mogensen, and Peter Thiemann, editors, Partial Evaluation – Prac-
tice and Theory; Proceedings of the 1998 DIKU Summer School, number
1706 in Lecture Notes in Computer Science, pages 367–411, Copenhagen,
Denmark, July 1998. Springer-Verlag.

[10] Olivier Danvy and Peter Dybjer, editors. Preliminary Proceedings of
the 1998 APPSEM Workshop on Normalization by Evaluation, NBE ’98,
(Chalmers, Sweden, May 8–9, 1998), number NS-98-1 in BRICS Note Se-
ries, Department of Computer Science, University of Aarhus, May 1998.

[11] Olivier Danvy and Morten Rhiger. A simple take on typed abstract syn-
tax in Haskell-like languages. In Herbert Kuchen and Kazunori Ueda, ed-
itors, Fifth International Symposium on Functional and Logic Program-
ming, number 2024 in Lecture Notes in Computer Science, pages 343–358,
Tokyo, Japan, March 2001. Springer-Verlag. Extended version available as
the technical report BRICS RS-00-34.

[12] Andrzej Filinski. A semantic account of type-directed partial evaluation. In
Gopalan Nadathur, editor, Proceedings of the International Conference on
Principles and Practice of Declarative Programming, number 1702 in Lec-
ture Notes in Computer Science, pages 378–395, Paris, France, September
1999. Springer-Verlag. Extended version available as the technical report
BRICS RS-99-17.

[13] Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon Peyton Jones. Calling
hell from heaven and heaven from hell. In Peter Lee, editor, Proceedings
of the 1999 ACM SIGPLAN International Conference on Functional Pro-
gramming, pages 114–125, Paris, France, September 1999. ACM Press.

[14] Gérard Huet. Résolution d’équations dans les langages d’ordre 1, 2, ..., ω.
Thèse d’État, Université de Paris VII, Paris, France, 1976.

8

[15] Daan Leijen and Erik Meijer. Domain specific embedded compilers. In
Thomas Ball, editor, Proceedings of the 2nd USENIX Conference on
Domain-Specific Languages, pages 109–122, Austin, Texas, October 1999.

[16] Per Martin-Löf. About models for intuitionistic type theories and the no-
tion of definitional equality. In Proceedings of the Third Scandinavian Logic
Symposium, volume 82 of Studies in Logic and the Foundation of Mathe-
matics, pages 81–109. North-Holland, 1975.

[17] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
Mayer D. Schwartz, editor, Proceedings of the ACM SIGPLAN’88 Confer-
ence on Programming Languages Design and Implementation, SIGPLAN
Notices, Vol. 23, No 7, pages 199–208, Atlanta, Georgia, June 1988. ACM
Press.

[18] John C. Reynolds. Normalization and functor categories. In Danvy and
Dybjer [10].

[19] Morten Rhiger. Deriving a statically typed type-directed partial evaluator.
In Olivier Danvy, editor, Proceedings of the ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-Based Program Manipulation, Technical
report BRICS-NS-99-1, University of Aarhus, pages 25–29, San Antonio,
Texas, January 1999.

[20] Morten Rhiger. PhD thesis, BRICS PhD School, University of Aarhus,
Aarhus, Denmark, 2001. Forthcoming.

[21] Kristoffer Rose. Type-directed partial evaluation using type classes. In
Danvy and Dybjer [10].

9

Recent BRICS Report Series Publications

RS-01-16 Olivier Danvy, Morten Rhiger, and Kristoffer H. Rose. Nor-
malization by Evaluation with Typed Abstract Syntax. May 2001.
9 pp. To appear inJournal of Functional Programming.

RS-01-15 Luigi Santocanale.A Calculus of Circular Proofs and its Cate-
gorical Semantics. May 2001. 30 pp.

RS-01-14 Ulrich Kohlenbach and Paulo B. Oliva. Effective Bounds on
Strong Unicity inL1-Approximation. May 2001.

RS-01-13 Federico Crazzolara and Glynn Winskel. Events in Security
Protocols. April 2001.

RS-01-12 Torben Amtoft, Charles Consel, Olivier Danvy, and Karo-
line Malmkjær. The Abstraction and Instantiation of String-
Matching Programs. April 2001.

RS-01-11 Alexandre David and M. Oliver Möller. From Hierarichcal
Timed Automata toUPPAAL. March 2001.

RS-01-10 Daniel Fridlender and Mia Indrika. Do we Need Dependent
Types? March 2001. 6 pp. Appears inJournal of Functional
Programming, 10(4):409–415, 2000. Superseeds BRICS Report
RS-98-38.

RS-01-9 Claus Brabrand, Anders Møller, and Michael I. Schwartzbach.
Static Validation of Dynamically Generated HTML. February
2001. 18 pp.

RS-01-8 Ulrik Frendrup and Jesper Nyholm Jensen.Checking for Open
Bisimilarity in the π-Calculus. February 2001. 61 pp.

RS-01-7 Gregory Gutin, Khee Meng Koh, Eng Guan Tay, and Anders
Yeo. On the Number of Quasi-Kernels in Digraphs. January
2001. 11 pp.

RS-01-6 Gregory Gutin, Anders Yeo, and Alexey Zverovich. Travel-
ing Salesman Should not be Greedy: Domination Analysis of
Greedy-Type Heuristics for the TSP. January 2001. 7 pp.

RS-01-5 Thomas S. Hune, Judi Romijn, Marïelle Stoelinga, and
Frits W. Vaandrager. Linear Parametric Model Checking of
Timed Automata. January 2001. 44 pp. To appear in Margaria
and Yi, editors, Tools and Algorithms for The Construction and
Analysis of Systems: 7th International Conference, TACAS ’01
Proceedings, LNCS, 2001.

