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Abstract

We present a simple way to implement typed abstract syntax for the
lambda calculus in Haskell, using phantom types, and we specify normal-
ization by evaluation (i.e., type-directed partial evaluation) to yield this
typed abstract syntax. Proving that normalization by evaluation pre-
serves types and yields normal forms then reduces to type-checking the
specification.
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1 A write-only typed abstract syntax

In higher-order abstract syntax, the variables and bindings of an object language
are represented by variables and bindings of a meta-language. Let us consider
the simply typed λ-calculus as object language and Haskell as meta-language.
For concreteness, we also throw in integers and addition, but only in this section.

data Term = INT Int | ADD Term Term
| APP Term Term | LAM (Term → Term)

The constructors are typed as follows.

INT :: Int → Term
ADD :: Term → Term → Term
APP :: Term → (Term → Term)
LAM :: (Term → Term) → Term

They do not prevent us from forming ill-typed terms. For example, in the scope
of these constructors, evaluating LAM(λx→APP x x) yields a value of type Term.

We can, however, provide a typed interface to these constructors preventing
us from forming ill-typed terms.

newtype Exp t = EXP Term

int :: Int → Exp Int
int i = EXP (INT i)

add :: Exp Int → Exp Int → Exp Int
add (EXP e1) (EXP e2) = EXP (ADD e1 e2)

app :: Exp (a → b) → (Exp a → Exp b)
app (EXP e1) (EXP e2) = EXP (APP e1 e2)

lam :: (Exp a → Exp b) → Exp (a → b)
lam f = EXP (LAM (λx → let EXP b = f (EXP x) in b))

The type Exp is parameterized over a type t but does not use it: t is a phantom
type.

These typeful constructors prevent us from forming ill-typed terms. For
example, in the scope of these constructors, evaluating lam(λx→app x x) yields
a type error. Conversely, if a term has the simple type t then its typed abstract-
syntax representation has type Exp t, which can be illustrated as follows.

λx → x + 5 :: Int → Int
lam (λx → add x (int 5)) :: Exp (Int → Int)

We intend to use this typed abstract syntax to show that normalization
by evaluation preserves types (Section 2) and yields normal forms (Section 3)
for the pure and simply typed λ-calculus. Therefore, we are only interested in
constructing abstract syntax. (To convert a constructed term into first-order
abstract syntax where variables are represented as strings, one needs to add
another constructor to Term for free variables.) Furthermore, such a write-only
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typed abstract syntax does not solve the basic problem of programming higher-
order abstract syntax in Haskell, which is that the function space in the LAM
summand is “too big” in the sense that it allows both non-strict and non-total
functions. But again, this representation is sufficient for our purpose here. In
the remainder of this pearl, Term and Exp are restricted to the pure λ-calculus.

2 Normalization by evaluation preserves types

Normalization by evaluation is a technique for strongly normalizing closed λ-
terms. Source terms are represented as meta-language values and a normaliza-
tion function maps these values into a syntactic representation of their normal
form.

Normalization by evaluation is extensional and reduction-free. It is exten-
sional instead of intensional because the source terms are (higher-order) values,
not (first-order) symbolic representations. It is reduction-free because all the
β-reductions needed to yield a normal form are carried out implicitly by the un-
derlying implementation of the meta-language. For this reason, it runs at native
speed and thus is more efficient than traditional, symbolic normalization.

Normalization by evaluation uses two type-indexed and mutually recursive
functions. One, reify, traditionally noted ↓, maps a value into its representation
and the other, reflect, traditionally noted ↑, maps a representation into a value.
These two functions are canonically defined as follows, for the simply typed
λ-calculus.

t ::= α | t1 → t2

↓α = λv.v

↓t1→t2 = λv.λx.↓t2 @ (v @ (↑t1 @ x))
↑α = λe.e

↑t1→t2 = λe.λx.↑t2 @ (e @ (↓t1 @ x))

where overlined λ and @ denote meta-level abstractions and applications, resp-
ectively, and underlined λ and @ denote object-level abstractions and applica-
tions.

A simply typed term is normalized by reifying its value. For example, let us
consider Church numbers.

zero = λs.λz.z

succ = λn.λs.λz.s @ (n @ s @ z)
three = succ @ (succ @ (succ @ zero))
add = λm.λn.λs.λz.m @ s @ (n @ s @ z)

Reifying three yields λs.λz.s @ (s @ (s @ z)), i.e., the representation in normal
form of 3. Similarly, reifying add@zero yields λn.λs.λz.n @ (λn′.s @ n′) @ z, i.e.,
the representation in long βη-normal form of the identity function over Church
numbers, reflecting that zero is neutral for addition. Finally, reifying add @three
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yields the representation in normal form of a function iterating the successor
function three times, i.e., λn.λs.λz.s @ (s @ (s @ (n @ (λn′.s @ n′) @ z))). The
source terms are values (i.e., with overlined λ and @) and, using ↓, we have
reified them into a syntactic representation of their normal form (i.e., with
underlined λ and @).

The type of a Church number is (a→a) → a → a. The type of its normal
form is Term, or, perhaps more vividly, Exp ((a → a) → a → a).

Normalization by evaluation is defined by induction on the structure of types,
which makes it a natural candidate to be expressed with type classes. We thus
define a type class Nbe hosting two type-indexed functions, reify and reflect.
Representing object terms with the type Term of Section 1 would give us the
usual uninformative type t→Term for reify and Term→t for reflect. Instead,
let us use the parameterized type Exp of Section 1.

class Nbe a
where reify :: a → Exp a

reflect :: Exp a → a

The challenge now is to populate this type class with values of function type
and of base type implementing normalization by evaluation. If we can do that,
the type inferencer of Haskell will act as a theorem prover and will demonstrate
that this implementation of normalization by evaluation preserves types.

The canonical definition above dictates how to instantiate Nbe at function
type.

instance (Nbe a, Nbe b) ⇒ Nbe (a → b)
where reify v = lam (λx → reify (v (reflect x)))

reflect e = λx → reflect (app e (reify x))

For base types, reify and reflect are two identity functions. To be type
correct, however, reify must produce a term and reflect must consume a
term. We can ensure that reify produces a term when its argument is a term.
Similarly, we can ensure that reflect consumes a term when its result is a term.
Taking advantage of the fact that the type parameter of Exp is a phantom type,
we thus introduce the following two ‘phantom’ identity functions for the base
case.

coerce :: Exp (Exp a) → Exp a
coerce (EXP v) = EXP v

uncoerce :: Exp a → Exp (Exp a)
uncoerce (EXP e) = EXP e

instance Nbe (Exp a)
where reify = uncoerce

reflect = coerce

A value v is normalized by applying reify to it. In usual implementations of
normalization by evaluation, (a representation of) the type of v must be supplied
on par with v, as an input data. Here, because we use type classes, this type is
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supplied as a cast, to resolve overloading. It is obtained by instantiating type
variables a with Exp a, in the original type. So for example, id . id has the
type a→a. Reifying it at type Exp a → Exp a yields λx→x, and reifying it at type
(Exp a → Exp a) → (Exp a → Exp a) yields λx→λx’→x x’.

3 Normalization by evaluation yields normal forms

In the simply typed λ-calculus, long βη-normal forms are closed terms without
β-redexes that are fully η-expanded with respect to their type. A closed term
e of type t and in normal form satisfies `nf e :: t, where terms in normal form
(and atomic form) are defined by the following rules.

∆, x :: t1 `nf e :: t2

∆ `nf (λx ::t1. e) :: t1 → t2
(Lam)

∆ `at e :: α

∆ `nf e :: α
(Coerce)

∆ `at e0 :: t1 → t2 ∆ `nf e1 :: t1

∆ `at e0 e1 :: t2
(App)

∆(x) = t

∆ `at x :: t
(Var)

No term containing β-redexes can be derived by these rules, and restricting the
Coerce rule to base types ensures that the derived terms are fully η-expanded.

As in Section 1, we provide a typed interface to the constructors of terms in
normal form, preventing us from forming ill-typed terms.

data NfTerm = COERCE AtTerm | LAM (AtTerm → NfTerm)
data AtTerm = APP AtTerm NfTerm

newtype NfExp a = NF NfTerm
newtype AtExp a = AT AtTerm

app’ :: AtExp (a → b) → (NfExp a → AtExp b)
app’ (AT e1) (NF e2) = AT (APP e1 e2)

lam’ :: (AtExp a → NfExp b) → NfExp (a → b)
lam’ f = NF (LAM (λx → let NF t = f (AT x) in t))

coerce’ :: AtExp (NfExp a) → NfExp a
coerce’ (AT v) = NF (COERCE v)

uncoerce’ :: NfExp a → NfExp (NfExp a)
uncoerce’ (NF e) = NF e

These declarations specialize the representation from Section 2 to reflect
that the represented terms are in normal form. As in Section 2, we provide two
phantom identity functions, coerce’ and uncoerce’, where coerce’ constructs
terms that arise from using the above Coerce rule.

Thus equipped, we can re-express normalization by evaluation in an imple-
mentation that yields a representation of λ-terms in normal form.
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class Nbe’ a
where reify :: a → NfExp a

reflect :: AtExp a → a

Again, the challenge is to populate this type class with values of function
type and of base type implementing normalization by evaluation. If we can
do that, the type inferencer of Haskell will act as a theorem prover and will
demonstrate that this implementation of normalization by evaluation preserves
types and yields normal forms.

The instances use the constructors for terms in normal forms but are other-
wise defined as in Section 2.

instance (Nbe’ a, Nbe’ b) ⇒ Nbe’ (a → b)
where reify v = lam’ (λx → reify (v (reflect x)))

reflect e = λx → reflect (app’ e (reify x))

instance Nbe’ (NfExp a)
where reify = uncoerce’

reflect = coerce’

As earlier, reifying id . id at type NfExp a → NfExp a yields λx→x, and reifying
it at type (NfExp a → NfExp a) → (NfExp a → NfExp a) yields λx→λx’→x x’.

For a last example, here are the Haskell definitions of Church numbers men-
tioned in Section 2.

type Number a = (a → a) → a → a
zero = λs z → z
succ = λn s z → s (n s z)
three = succ (succ (succ zero))
add = λm n s z → m s (n s z)

Reifying three, add zero, and add three gives the text of their normal form
at type Number (Exp a) → Number (Exp a).

4 Conclusions and issues

We have presented a simple encoding of typed abstract syntax in Haskell, and
we have used this typed abstract syntax to demonstrate that normalization by
evaluation preserves simple types and yields residual programs in βη-normal
form. The encoding is write-only because it does not lend itself to programs
taking typed abstract syntax as input—as, e.g., a typed transformation into
continuation-passing style. Nevertheless, it is sufficient to establish two key
properties of normalization by evaluation automatically, using the Haskell type
inferencer as a theorem prover.

These two properties could be illustrated more directly in a language with
dependent types such as Martin-Löf’s type theory. In such a language, one
can directly embed simply typed λ-terms (in normal form or not), express nor-
malization by evaluation, and prove that it preserves types and yields normal
forms.
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Related work: Normalization by evaluation takes its roots in type theory [7,
16], proof theory [4, 5, 6], logic [2], category theory [1, 8, 18], and partial eval-
uation [9, 12, 19, 21]. Long βη-normal forms were specified, e.g., in Huet’s
thesis [14]. The particular characterization we use originates in Pfenning’s work
on Logical Frameworks, and so does higher-order abstract syntax [17]. We use it
further to pair normalization by evaluation and run-time code generation [3, 20].
Our typed abstract syntax is akin to Leijen and Meijer’s embedding of SQL into
Haskell, which introduced phantom types [15]. Phantom types provide a typing
discipline for otherwise untyped values such as pointers in a foreign language
interface [13].
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