
B
R

IC
S

R
S

-01-12
A

m
toftetal.:

T
he

A
bstraction

and
Instantiation

ofS
tring-M

atching
P

rogram
s

BRICS
Basic Research in Computer Science

The Abstraction and Instantiation of
String-Matching Programs

Torben Amtoft
Charles Consel
Olivier Danvy
Karoline Malmkjær

BRICS Report Series RS-01-12

ISSN 0909-0878 April 2001

Copyright c© 2001, Torben Amtoft & Charles Consel & Olivier
Danvy & Karoline Malmkjær.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/12/

The Abstraction and Instantiation

of String-Matching Programs ∗

Torben Amtoft
Computer Science Department, Boston University

111 Cummington Street, MCS, Boston, MA 02215, USA

Charles Consel
LaBRI / ENSEIRB

351, cours de la Libération, F-33405 Talence Cedex, France

Olivier Danvy
BRICS†, Department of Computer Science, University of Aarhus

Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark

Karoline Malmkjær
Ericsson Telebit A/S

Skanderborgvej 232, DK-8260 Viby J, Denmark

April 2001 (this extended version: July 10, 2001)

Abstract

We consider a naive, quadratic string matcher testing whether a pat-
tern occurs in a text; we equip it with a cache mediating its access to the
text; and we abstract the traversal policy of the pattern, the cache, and
the text. We then specialize this abstracted program with respect to a
pattern, using the off-the-shelf partial evaluator Similix.

Instantiating the abstracted program with a left-to-right traversal pol-
icy yields the linear-time behavior of Knuth, Morris and Pratt’s string
matcher. Instantiating it with a right-to-left policy yields the linear-time
behavior of Boyer and Moore’s string matcher.

To Neil Jones, for his 60th birthday.

∗Extended version of an article to appear in Neil Jones’s Festschrift. Corresponding au-
thors: Torben Amtoft (tamtoft@cs.bu.edu) and Olivier Danvy (danvy@brics.dk).

†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

1

Contents

1 Background and introduction 4
1.1 Obtaining the KMP . 4
1.2 This work . 6
1.3 A note on program derivation and reverse engineering 7
1.4 Overview . 8

2 The abstracted string matcher 8
2.1 The cache and its operations . 8
2.2 The core program . 11

3 Partial evaluation 14
3.1 Binding-time analysis . 14
3.2 Polyvariant specialization . 15
3.3 Post-unfolding . 17

4 The KMP instances 17

5 The Boyer and Moore instances 18
5.1 The Boyer and Moore behavior 18
5.2 Pruning . 19

5.2.1 No pruning: . 19
5.2.2 Pruning once: . 19
5.2.3 More pruning: . 20

5.3 An example . 20

6 Related work 20
6.1 Explicit management of static information 20
6.2 Implicit management of static information 22
6.3 Other derivations of Knuth, Morris and Pratt’s string matcher . 22
6.4 Other derivations of Boyer and Moore’s string matcher 23

7 Conclusion and issues 23

A Total correctness of the generic string matcher 25
A.1 Notation and properties . 25
A.2 Invariants . 26
A.3 Total correctness . 27
A.4 Initialization . 28
A.5 Return conditions . 29
A.6 Preservation of invariants . 29
A.7 Termination . 32

2

List of Figures

1 The core quadratic string-matching program 12
2 Specialized version of Fig. 1 wrt. "aaa" à la Knuth, Morris and

Pratt . 18
3 Specialized version of Fig. 1 wrt. "abb" à la Boyer and Moore . . 21
4 Match-all counterpart of Fig. 3 24

3

1 Background and introduction

To build the first self-applicable partial evaluator [35, 36], Neil Jones, Peter
Sestoft and Harald Søndergaard simplified its domain of discourse to an ex-
treme: polyvariant specialization of symbolic first-order recursive equations.
Source programs were expressed as recursive equations, data were represented
as S-expressions, and the polyvariant-specialization strategy amounted to an
interprocedural version of Kildall’s constant-propagation algorithm [3, 15]: for
each of its calls, a recursive equation is specialized with respect to its known
arguments and the resulting specialized equation is indexed with these known
arguments and cached in a worklist. Specialization terminates once the worklist
is complete, and the specialized equations in the worklist form the specialized
program.

Since then, this basic framework has been subjected to many developments.
For example, not all calls need to be specialized and give rise to a specialized
recursive equation: many of them can merely be unfolded. Data need not be only
symbolic either—numbers, characters, strings, pairs, higher-order functions, etc.
can also be handled, and so can side effects. Finally, source programs need not
be mere recursive equations—e.g., block-structured programs are amenable to
partial evaluation as well.

Nevertheless, the basic strategy of polyvariant program-point specialization
remains the same: generating mutually recursive residual equations, each of
them corresponding to a source program point indexed by known values. In
1987, at the workshop on Partial Evaluation and Mixed Computation [9, 25],
this very simple specialization strategy was challenged. Yoshihiko Futamura said
that he had needed to design a stronger form of partial evaluation—Generalized
Partial Computation [26]—to be able to specialize a naive quadratic-time string
matcher into Knuth, Morris, and Pratt’s (KMP) linear-time string matcher [39].
He therefore asked the DIKU group whether polyvariant specialization was able
to obtain the KMP.

1.1 Obtaining the KMP

The naive matching algorithm tests whether the pattern is the prefix of one of
the suffixes of the text. Every time the pattern does not match a prefix of a
suffix of the text, the pattern is shifted by one position to try the next suffix.
In contrast, the KMP algorithm proceeds in two phases:

1. given the pattern, it constructs a ‘failure table’ in time linear in the size
of the pattern; and

2. it traverses the text linearly, using the failure table to determine how much
the pattern should be shifted in case of mismatch.

The first thing one could try is to specialize the traversal of the text with
respect to a failure table. Unsurprisingly, the result is a linear-time residual
program. In their article [39, page 330], Knuth, Morris and Pratt display a

4

similar program where the failure table has been “compiled” into the control
flow.

More in the spirit of Futamura’s challenge, one can consider the naive spec-
ification, i.e., a (known) pattern string occurs in an (unknown) text if it is the
prefix of one of its suffixes. On the left of each mismatch, the pattern and the
text are equal:

---->

Pattern +---------o-----------+

|||||||||* mismatch

Text +---------o---+

---->

Yet, the naive specification shifts the pattern one place to the right and re-scans
it together with the text up to the mismatch point and beyond:

----> ---->

Pattern +---------o-----------+

||||||||||||||

Text +---------o---+

----> ---->

Instead, one can match two instances of the pattern (the pattern and a prefix
of the pattern equal to the prefix of the text matched so far, with one character
chopped off) up to the point of mismatch and then resume scanning the pattern
and the text:

---->

Pattern +---------o

||||||||---->

Pattern +---------o-----------+

----> ||||||

Text o---+

---->

This staged program is equivalent to the original program. In particular, its
complexity is the same. But if one specializes it with respect to a pattern,
matching the pattern against itself is carried out at partial-evaluation time.
Furthermore, since the index on the text only increases, specializing this staged
program yields a string matcher that does not back up on the text and thus
operates in time linear in the text. Therefore part of the challenge is met:
polyvariant specialization can turn a (staged) quadratic string matcher into a
linear one.

But how does this linear string matcher compare to the KMP?
Short of a formal proof, one can compare, for given patterns, (1) the corre-

sponding residual string matchers and (2) the results of specializing the second
phase of the KMP with respect to the corresponding failure tables produced by
the first phase. It turns out that the resulting string matchers are indeed iso-
morphic, suggesting that mere polyvariant specialization can obtain the KMP
if the naive string matcher is staged as pictured above [18].

5

This experiment clarifies that linearity requires one to keep a static view of
the dynamic prefix of the text during specialization. This static view can be
kept explicitly in the source program, as above. Alternatively, a partial evalua-
tor could implicitly memoize the outcome of every dynamic test. (For example,
given a dynamic variable x, a conditional expression (if (odd? x) e1 e2), and
some knowledge about odd?, such a partial evaluator would know that x is odd
when processing e1 and that x is even when processing e2.) Futamura’s General-
ized Partial Computation is such a partial evaluator. Therefore, it automatically
keeps a static view of the dynamic prefix of the text during specialization and
thus obtains the KMP out of a naive, unstaged string matcher. So the key to
linearity is precisely the static view of the dynamic prefix of the text during
specialization.

To summarize, we need a static view of the dynamic prefix of the text during
specialization. Whether this view is managed implicitly in the partial evalua-
tor (as in Generalized Partial Computation) or explicitly in the source program
(as in basic polyvariant specialization) is a matter of convenience. If the man-
agement is implicit, the program is simpler but the partial evaluator is more
complex. If the management is explicit, the program is more complicated but
the partial evaluator is simpler.

That said, there is more to the KMP than linearity over the text—there is
also linearity over the pattern. Indeed, the KMP algorithm operates on a failure
table that is constructed in time linear in the size of the pattern, whereas in
general, a partial evaluator does not operate in linear time.

1.2 This work

We extend the construction of Section 1.1 to obtain Knuth, Morris, and Pratt’s
linear string matcher as well as string matchers in the style of Boyer and Moore
from the same quadratic string matcher.

To this end, we instrument the naive string matcher with a cache that keeps
a trace of what is known about the text, similarly to a memory cache on a
hardware processor. Any access to the text is mediated by an access to the
cache. If the information is already present in the cache, the text is not accessed.
If the information is not present in the cache, the text is accessed and the cache
is updated.

The cache has the same length as the pattern and it gives us a static view
of the text. We make it keep track both of what is known to occur in the text
and of what is known not to occur in the text. Each entry of the cache thus
contains either some positive information, namely the corresponding character in
the text, or some negative information, namely a list of (known) characters that
do not match the corresponding (unknown) character in the text. The positive
information makes it possible to test characters statically, i.e., without accessing
the text. The negative information makes it possible to detect statically when
a test would fail. Initially, the cache contains no information (i.e., each entry
contains an empty list of negative information).

6

By construction, the cache-based string matcher consults an entry in the
text either not at all or repeatedly until the entry is recognized. An entry in
the text can be left unconsulted because an adjacent character does not match
the pattern. Once an entry is recognized, it is never consulted again because
the corresponding character is stored in the cache. The entry can be consulted
repeatedly, either until it is recognized or until the pattern has shifted. Each
unrecognized character is stored in the cache and thus the number of times an
entry is accessed is at most the number of different characters in the pattern.
Therefore, each entry in the text is consulted a bounded number of times. The
specialized versions of the cache-based string matcher inherit this property, and
therefore their matching time is linear with respect to the length of the text.

On the other hand, the size of the specialized versions can be large: poly-
variant specialization yields residual equations corresponding to source program
points indexed by known values—here, specifically, the cache. In order to re-
duce the size of the residual programs, we allow ourselves to prune the cache
in the source string matcher. For example, two extreme choices are to remove
all information and to remove no information from the cache, but variants are
possible.

Finally, since the KMP compares the pattern and the text from left to right
whereas the Boyer and Moore compares the pattern and the text from right
to left, we also parameterize the string matcher with a traversal policy. For
example, two obvious choices are left to right and right to left, but variants are
possible.

Our results are that traversing the pattern from left to right yields the KMP
behavior, with variants, and that traversing the pattern from right to left yields
the Boyer and Moore behavior [13, 14], also with variants. (The variants are
determined by how we traverse the pattern and the text and how we prune the
cache.) These results are remarkable (1) because they show that it is possible to
obtain both the KMP linear behavior and the Boyer and Moore linear behavior
from the same source program, and (2) because even though it is equipped with
a cache, this source program is a naive quadratic string-matching program.

The first author is aware of these results since the early 1990s [5] and the
three other authors since the late 1980s [20]. Since then, these results have been
reproduced and extended by Queinnec and Geffroy [46], but otherwise they have
only been mentioned informally [19, Section 6.1].

1.3 A note on program derivation and reverse engineering

We would like to point out that we are not using partial evaluation to reverse-
engineer the KMP and the Boyer and Moore string matchers. What we are
attempting to do here is to exploit the simple observation that, in the naive
quadratic string matcher, and as depicted in Section 1.1, rematching can be
optimized away by partial evaluation.

In 1988, we found that the resulting specialized programs behave like the
KMP, for a left-to-right traversal. We then conjectured that for a right-to-
left traversal, the resulting specialized programs should behave like Boyer and

7

Moore—which they do. In fact, for any traversal, partial evaluation yields a
linear-time residual program (which may be sizeable), at least as long as no
pruning is done. We have observed that the method scales up to patterns with
wild cards and variables as well as to pattern matching in trees à la Hoffman
and O’Donnell [32]. For two other examples, the method has led Queinnec and
Geffroy to derive Aho and Corasick’s as well as Comments and Walter’s string
matchers [46].

1.4 Overview

The rest of this article is organized as follows. Section 2 presents the core
program and its parameters. Section 3 specifies the action of partial evaluation
on the core program. Section 4 describes its KMP instances and Section 5
describes its Boyer and Moore instances. Related work is reviewed in Section 6
and Section 7 concludes. A correctness proof of the core program can be found
in Appendix A.

Throughout, we use the programming language Scheme [37], or, more pre-
cisely, Petite Chez Scheme (www.scheme.com) and the partial evaluator Sim-
ilix [11, 12].

2 The abstracted string matcher

We first specify the operations on the cache (Section 2.1). Then we describe the
cache-based string matcher (Section 2.2).

2.1 The cache and its operations

The cache has the same size as the pattern. It holds a picture of what is currently
known about the text: either we know a character, or we know nothing about
a character, or we know that a character is not equal to some given characters.
Initially, we know nothing about any entry of the text. In the course of the
algorithm, we may get to know some characters that do not match an entry,
and eventually we may know this entry. We then disregard the characters
that do not match the entry, and we only consider the character that matches
the entry. Accordingly, each entry of the cache contains either some positive
information (one character) or some negative information (a list of characters,
possibly empty). We test this information with the following predicates.

(define pos? char?)

(define (neg? e)

(or (null? e) (pair? e)))

These two predicates are mutually exclusive.
We implement the cache as a list and we operate on it as follows.

8

• Given a natural number specifying the length of the pattern, cache-init
constructs an initial cache containing empty lists of characters.

(define (cache-init n)

(if (= n 0)

’()

(cons ’() (cache-init (- n 1)))))

• In the course of string matching, the pattern slides to the right of the text
by one character. Paralleling this shift, cache-shift maps a cache to the
corresponding shifted cache where the right-most entry is negative and
empty.

(define (cache-shift c)

(append (cdr c) (list ’())))

• Given an index, the predicates cache-ref-pos? and cache-ref-neg? test
whether a cache entry is positive or negative.

(define (cache-ref-pos? c i)

(pos? (list-ref c i)))

(define (cache-ref-neg? c i)

(neg? (list-ref c i)))

• Positive information is fetched by cache-ref-pos and negative information
by cache-ref-neg.

(define cache-ref-pos list-ref)

(define cache-ref-neg list-ref)

• Given a piece of positive information at an index, cache-extend-pos ex-
tends the cache with this positive information at that index. The result
is a new cache where the positive information supersedes any negative
information at that index.

(define (cache-extend-pos c i pos)

(letrec ([walk

(lambda (c i)

(if (= i 0)

(cons pos (cdr c))

(cons (car c) (walk (cdr c) (- i 1)))))])

(walk c i)))

• Given more negative information at an index, cache-extend-neg extends
the cache with this negative information at that index. The result is a
new cache.

9

(define (cache-extend-neg c i neg)

(letrec ([walk

(lambda (c i)

(if (= i 0)

(cons (cons neg (car c)) (cdr c))

(cons (car c) (walk (cdr c) (- i 1)))))])

(walk c i)))

• Given the cache, schedule-pc and schedule-pt respectively yield the series
of indices (represented as a list) through which to traverse the pattern
and the cache, and through which to traverse the pattern and the text,
respectively. The formal requirements on schedule-pc and schedule-pt

are stated in Appendix A.

1. The following definition of schedule-pc specifies a left-to-right traver-
sal of the pattern and the cache:

(define (schedule-pc c)

(letrec ([walk

(lambda (i c)

(cond

[(null? c)

’()]

[(pos? (car c))

(cons i (walk (+ i 1) (cdr c)))]

[else

(if (null? (car c))

(walk (+ i 1) (cdr c))

(cons i (walk (+ i 1) (cdr c))))]))])

(walk 0 c)))

For example, applying schedule-pc to an empty cache yields the
empty list. This list indicates that there is no need to compare the
pattern and the cache.
For another example, applying schedule-pc to a cache containing two
pieces of positive information, and then one non-empty piece of nega-
tive information, and then three empty pieces of negative information
yields the list (0 1 2). This list indicates that the pattern and the
cache should be successively compared at indices 0, 1, and 2, and
that the rest of the cache should be ignored.

2. The following definition of schedule-pt specifies a left-to-right traver-
sal of the pattern and of the text:

10

(define (schedule-pt c)

(letrec ([walk

(lambda (i c)

(cond

[(null? c)

’()]

[(pos? (car c))

(walk (+ i 1) (cdr c))]

[else

(cons i (walk (+ i 1) (cdr c)))]))])

(walk 0 c)))

For example, applying schedule-pt to an empty cache of size 3 (as
could be obtained by evaluating (cache-init 3)) yields the list (0

1 2). This list indicates that the pattern and the text should be
successively compared at indices 0, 1, and 2.
For another example, applying schedule-pt to a cache containing two
pieces of positive information, then one non-empty piece of negative
information, and then three empty pieces of negative information
yields the list (2 3 4 5). This list indicates that the pattern and
the text already agree at indices 0 and 1, and should be successively
compared at indices 2, 3, 4, and 5. (The negative information at
index 2 in the cache is of no use here.)

• Finally, we give ourselves the possibility of pruning the cache with cache-

prune. Pruning the cache amounts to shortening lists of negative infor-
mation and resetting positive information to the empty list of negative
information. For example, the identity function prunes nothing at all:

(define (cache-prune c)

c)

2.2 The core program

The core program, displayed in Figure 1, is a cache-based version of a naive
quadratic program checking whether the pattern occurs in the text, i.e., if the
pattern is a prefix of one of the successive suffixes of the text, from left to right.
The program is composed of two mutually recursive loops: a static one checking
whether the pattern matches the cache and a dynamic one checking whether the
pattern matches the rest of the text.

The main function, match: Initially, match is given a pattern p and a text t.
It computes their length (lp and lt, respectively), and after checking that there
is room in the text for the pattern, it initiates the dynamic loop with an empty
cache. The result is either −1 if the pattern does not occur in the text, or the
index of the left-most occurrence of the pattern in the text.

11

(define (match p t)

(let ([lp (string-length p)]) ;;; lp is the length of p

(if (= lp 0)

0

(let ([lt (string-length t)]) ;;; lt is the length of t

(if (< lt lp)

-1

(match-pt p lp (cache-init lp) t 0 lt))))))

(define (match-pc p lp c t bt lt)

;;; matches p[0..lp-1] and c[0..lp-1]

(letrec ([loop-pc

(lambda (z c is)

(if (null? is)

(let ([bt (+ bt z)] [lt (- lt z)])

(if (< lt lp)

-1

(match-pt p lp c t bt lt)))

(let ([i (car is)])

(if (if (cache-ref-pos? c i)

(equal? (string-ref p i)

(cache-ref-pos c i))

(not (member (string-ref p i)

(cache-ref-neg c i))))

(loop-pc z c (cdr is))

(let ([c (cache-shift c)])

(loop-pc (+ z 1) c (schedule-pc c)))))))])

(loop-pc 1 c (schedule-pc c))))

(define (match-pt p lp c t bt lt)

;;; matches p[0..lp-1] and t[bt..bt+lp-1]

(letrec ([loop-pt ;;; bt is the base index of t

(lambda (c is)

(if (null? is)

bt

(let* ([i (car is)] [x (string-ref p i)])

(if (equal? (string-ref t (+ bt i)) x)

(loop-pt (cache-prune

(cache-extend-pos c i x))

(cdr is))

(match-pc p lp

(cache-shift

(cache-extend-neg c i x))

t bt lt)))))])

(loop-pt c (schedule-pt c))))

Figure 1: The core quadratic string-matching program

12

The static loop, match-pc: The pattern is iteratively matched against the
cache using loop-pc. For each mismatch, the cache is shifted and loop-pc is
resumed. Eventually, the pattern agrees with (i.e., matches) the cache—if only
because after repeated iterations of loop-pc and shifts of the cache, the cache
has become empty. Then, if there is still space in the text for the pattern, the
dynamic loop is resumed.

In more detail, match-pc is passed the pattern p, its length lp, the cache
c, and also the text t, its base index bt, and the length lt of the remaining
text to match in the dynamic loop. The static loop checks iteratively (with
loop-pc) whether the pattern and the cache agree. The traversal takes place in
the order specified by schedule-pc (e.g., left to right or right to left). For each
index, loop-pc tests whether the information in the cache is positive or negative.
In both cases, if the corresponding character in the pattern agrees (i.e., either
matches or does not mismatch), loop-pc iterates with the next index. Otherwise
the cache is shifted and loop-pc iterates. In addition, loop-pc records in z how
many times the cache has been shifted (initially 1 since match-pc is only invoked
from the dynamic loop). Eventually, the pattern and the cache agree. The new
base and the new length of the text are adjusted with z, and if there is enough
room in the text for the pattern to occur, the dynamic loop takes over.

When the dynamic loop takes over, the pattern and the cache completely
agree, i.e., for all indices i:

• either the cache information is positive at index i and it contains the same
character as the pattern at index i;

• or the cache information is negative at index i and the character at index
i in the pattern does not occur in the list of characters contained in this
negative information.

The dynamic loop, match-pt: The pattern is iteratively matched against
the parts of the text that are not already in the cache, using loop-pt. At each
iteration, the cache is updated. If a character matches, the cache is updated with
the corresponding positive information before the next iteration of loop-pt. If a
character does not match, the cache is updated with the corresponding negative
information and the static loop (i.e., match-pc) is resumed with a shifted cache.

In more detail, match-pt is passed the pattern p, its length lp, the cache c,
and the text t, its base index bt, and the length lt of the remaining text to
match. The traversal takes place in the order specified by schedule-pt (e.g.,
left to right or right to left). For each index, loop-pt tests the corresponding
character in the text against the corresponding character in the pattern. If the
two characters are equal, then loop-pt iterates with an updated and pruned
cache. Otherwise, the static loop takes over with an updated and shifted cache.
If loop-pt runs out of indices, pattern matching succeeds and the result is the
base index in the text.

The cache: The cache is only updated (positively or negatively) during the
dynamic loop. Furthermore, it is only updated with a character from the pattern

13

and never with one from the text. Considering that the pattern is known (i.e.,
static) and that the text is unknown (i.e., dynamic), constructing the cache
with characters from the pattern ensures that it remains known at partial-
evaluation time. This selective update of the cache is the key for successful
partial evaluation.

We allow schedule-pt to return indices of characters that are already in the
cache and to return a list of indices with repetitions. These options do not
invalidate the correctness proof of the core program, but they make it possible
to reduce the size of residual programs, at the expense of redundant tests. This
information-theoretic weakening is common in published studies of the Boyer-
Moore string matcher [6, 33, 45]: the challenge then is to show that the weakened
string matcher still operates in linear time [47].

In the current version of Figure 1, we only prune the cache at one point:
after a call to cache-extend-pos. This lets us obtain a number of variants of
string matchers in the style of Boyer and Moore. But as noted in Section 5.2,
at least one remains out of reach.

3 Partial evaluation

Specializing the core string matcher with respect to a pattern takes place in
the traditional three steps: preprocessing (binding-time analysis), processing
(specialization), and postprocessing (unfolding).

3.1 Binding-time analysis

Initially, p is static and t is dynamic.
In match, lp is static since p is static. The first let expression and the first

conditional expression are thus static. Conversely, lt is dynamic since t is
dynamic. The second let expression and the second conditional expression are
thus dynamic. After binding-time analysis, match is annotated as follows.

(define (match ps td)

(lets ([lps (string-length ps)])

(ifs (= lps 0s)

0d

(letd ([ltd (string-length td)])

(ifd (< ltd lps)

-1d

(match-pt ps lps (cache-init lps) td 0d ltd))))))

In match-pc and in match-pt, p, lp and c are static, and t, bt, and lt are dy-
namic. (Therefore, 0 is generalized to be dynamic in the initial call to match-pt.
Similarly, since match returns a dynamic result, 0 and -1 are also generalized to
be dynamic.)

In loop-pc, c and is are static and—due to the automatic poor man’s gen-
eralization of Similix [34]—z is dynamic. Except for the conditional expression

14

testing (< lt lp) and its enclosing let expression, which are dynamic, all syn-
tactic constructs are static.

After binding-time analysis, match-pc and loop-pc are annotated as follows.

(define (match-pc ps lps cs td btd ltd)

(letrec ([loop-pc

(lambda (zd cs iss)

(ifs (null? iss)

(letd ([btd (+ btd zd)] [ltd (- ltd zd)])

(ifd (< ltd lps)

-1d

(match-pt ps lps cs td btd ltd)))

(lets ([is (car iss)])

(ifs (ifs (cache-ref-pos? cs is)

(equal? (string-ref ps is)

(cache-ref-pos cs is))

(not (member (string-ref ps is)

(cache-ref-neg cs is))))

(loop-pc zd cs (cdr iss))

(lets ([cs (cache-shift cs)])

(loop-pc (+ zd 1d) cs (schedule-pc cs)))))))])

(loop-pc 1d cs (schedule-pc cs))))

In loop-pt, c and is are static. Except for the conditional expression per-
forming an equality test, all syntactic constructs are static.

After binding-time analysis, match-pt and loop-pt are annotated as follows.

(define (match-pt ps lps cs td btd ltd)

(letrec ([loop-pt

(lambda (cs iss)

(ifs (null? iss)

btd

(let*s ([is (car iss)] [xs (string-ref ps is)])

(ifd (equal? (string-ref td (+ btd is)) xs)

(loop-pt (cache-prune

(cache-extend-pos cs is xs))

(cdr iss))

(match-pc ps lps

(cache-shift

(cache-extend-neg cs is xs))

td btd ltd)))))])

(loop-pt cs (schedule-pt cs))))

3.2 Polyvariant specialization

In Similix [12], the default specialization strategy is to unfold all function calls
and to treat every conditional expression with a dynamic test as a specialization
point. Here, since there is exactly one specialization point in loop-pc as well as
in loop-pt, without loss of generality, we refer to each instance of a specialization
point as an instance of loop-pc and an instance of loop-pt, respectively.

15

Each instance of loop-pc is given a base index in the text, the remaining
length of the text, and a natural number. The body of this instance is a clone
of the dynamic let expression and of the dynamic conditional expression in the
original loop-pc: it increments bt and decrements lt with the natural number,
checks whether the remaining text is large enough, and calls an instance of
loop-pt, as specified by the following template (where <lp> is a natural number
denoting the length of the pattern).

(define (loop-pc-... t bt lt z)

(let ([bt (+ bt z)] [lt (- lt z)])

(if (< lt <lp>)

-1

(loop-pt-... t bt lt))))

Each instance of loop-pt is given a base index in the text and the remaining
length of the text (their sum is always equal to the length of the text). It
tests whether a character in the text is equal to a fixed character. If so, it
either returns an index or branches to another instance of loop-pt. If not, it
branches to an instance of loop-pc with a fixed shift. (Below, <i> stands for
a non-negative integer, <n> stands for a natural number, and <c> stands for a
character.)

(define (loop-pt-... t bt lt)

(if (equal? (string-ref t (+ bt <i>)) <c>)

bt

(loop-pc-... t bt lt <n>)))

(define (loop-pt-... t bt lt)

(if (equal? (string-ref t (+ bt <i>)) <c>)

(loop-pt-... t bt lt)

(loop-pc-... t bt lt <n>)))

Therefore, a residual program consists of mutually recursive specialized ver-
sions of the two specialization points, and of a main function computing the
length of the text, checking whether it is large enough, and calling a specialized
version of loop-pt. The body of each auxiliary function is constructed out of
instances of the dynamic parts of the programs, i.e., it fits one of the templates
above [21, 42].

We have written the holes in the templates between brackets. The name of
each residual function results from concatenating loop-pc- and loop-pt- to a
fresh index. Each residual function is closed, i.e., it has no free variables.

Overall, the shape of a residual program is as follows.

(define (match-0 t)

(let ([lt (string-length t)])

(if (< lt ...)

-1

(loop-pt-1 t 0 lt))))

16

(define (loop-pc-1 t bt lt z) ...)

(define (loop-pc-2 t bt lt z) ...)

...

(define (loop-pt-1 t bt lt) ...)

(define (loop-pt-2 t bt lt) ...)

...

This general shape should make it clear how residual programs relate to (and
how their control flow could be “decompiled” into) a KMP-like failure table, as
could be obtained by data specialization [7, 16, 38, 41].

3.3 Post-unfolding

To make the residual programs more readable, Similix post-unfolds residual
functions that are called only once. It also defines the remaining functions
locally to the main residual function. (By the same token, it could lambda-drop
the variable t, as we do in the residual programs displayed in Sections 4, 5, and
7, for readability [23].)

So all in all, a specialized program is defined as a main function (an instance
of match) with many locally defined and mutually recursive auxiliary functions
(instances of loop-pc and loop-pt), each of which is called more than once.

4 The KMP instances

In the KMP style of string matching, the pattern and the corresponding prefix
of the text are traversed from left to right. Therefore, we define schedule-pt

so that match-pt proceeds from left to right. The resulting program is still
quadratic, but specializing it with respect to a pattern yields a residual program
traversing the text in linear time if the cache is not pruned. Furthermore, all
residual programs are independent of schedule-pc since it is applied at partial-
evaluation time. Since Consel and Danvy’s work [18], this traversal has been
consistently observed to coincide with the traversal of Knuth, Morris and Pratt’s
string matcher. (We are not aware of any formal proof of this coincidence, but
we expect that we will be able to show that the two matchers operate in lock
step.)

This ‘KMP behavior’ has been already described in the literature (see Sec-
tion 6), so we keep this section brief. In this instantiation, the cache is naturally
composed of three parts: a left part with positive information, a right part with
empty negative information, and between the left part and the right part, at
most one entry with non-empty negative information. This entry may or may
not be pruned away, which affects both the size of the residual code and its
runtime, as analyzed by Grobauer and Lawall [30].

17

(define (match-aaa t)

(define (loop-pc-1 bt lt z)

(let ([bt (+ bt z)] [lt (- lt z)])

(if (< lt 3)

-1

(loop-pt-1 bt lt))))

(define (loop-pt-1 bt lt)

(if (equal? (string-ref t (+ bt 0)) #\a)

(if (equal? (string-ref t (+ bt 1)) #\a)

(if (equal? (string-ref t (+ bt 2)) #\a)

bt

(loop-pc-1 bt lt 3))

(loop-pc-1 bt lt 2))

(loop-pc-1 bt lt 1)))

(let ([lt (string-length t)])

(if (< lt 3)

-1

(loop-pt-1 0 lt))))

• For all t, (match-aaa t) equals (match "aaa" t).

• For all z, (loop-pc-1 bt lt z) equals (loop-pc z ’(() () ()) ’())

evaluated in the scope of bt and lt.

• (loop-pt-1 bt lt) equals (loop-pt ’(() () ()) ’(0 1 2))

evaluated in the scope of bt and lt.

Figure 2: Specialized version of Fig. 1 wrt. "aaa" à la Knuth, Morris and Pratt

Figure 2 displays a specialized version of the core program in Figure 1 with
respect to the pattern string "aaa". This specialized version is renamed for
readability. We instantiated cache-prune to the identity function. The code for
loop-pt-1 reveals that a left-to-right strategy is indeed employed, in that the
text is addressed with offsets 0, 1, and 2.

5 The Boyer and Moore instances

5.1 The Boyer and Moore behavior

In the Boyer and Moore style of string matching, the pattern and the corre-
sponding prefix of the text are traversed from right to left. Therefore, we define
schedule-pt so that match-pt proceeds from right to left. The resulting program
is still quadratic, but specializing it with respect to a pattern yields a residual
program traversing the text in linear time if the cache is not pruned and again
independently of schedule-pc, which is executed at partial-evaluation time. We

18

have consistently observed that this traversal coincides with the traversal of
string matchers à la Boyer and Moore,1 provided that schedule-pt processes
the non-empty negative entries in the cache before the empty ones. Then there
will always be at most one entry with non-empty negative information.

Except for the first author’s PhD dissertation [5], this “Boyer and Moore
behavior” has not been described in the literature, so we describe it in some
detail here. Initially, in Figure 1, loop-pt iteratively builds a suffix of positive
information. This suffix is located on the right of the cache, and grows from
right to left. In case of mismatch, loop-pt punctuates the suffix with one (non-
empty) negative entry, shifts the cache to the right, and resumes match-pc. The
shift transforms the suffix into a segment, which drifts to the left of the cache
while loop-pt and loop-pc continue to interact. Subsequently, if a character
match is successful, the negative entry in the segment becomes positive, and
the matcher starts building up a new suffix. The cache is thus composed of
zero or more segments of positive information, the right-most of which may be
punctuated on the left by one negative entry. Each segment is the result of an
earlier unsuccessful call to loop-pt. The right-most segment (resp. the suffix),
is the witness of the latest (resp. the current) call to loop-pt. In the course of
string matching, adjacent segments can merge into one.

5.2 Pruning

5.2.1 No pruning:

Never pruning the cache appears to yield Knuth’s optimal Boyer and Moore
string matcher [39, page 346].

5.2.2 Pruning once:

Originally [13], Boyer and Moore maintained two tables. The first table indexes
each character in the alphabet with the right-most occurrence (if any) of this
character in p. The second table indexes each position in p with the rightmost
occurrence (if any) of the corresponding suffix, preceded by a different character,
elsewhere in p.

We have not obtained Boyer and Moore’s original string matcher because it
exploits the two tables in a rather unsystematic way. Nevertheless, the following
instantiation appears to yield a simplified version of Boyer and Moore’s original
string matcher, where only the first table is used (and hence where linearity
does not hold):

• cache-prune empties the cache;

• after listing the entries with non-empty negative information, schedule-pt
lists all negative entries, even those (zero or one) that are already listed.

1Again, we expect to be able to prove this coincidence by showing that the two traversals
proceed in lock step.

19

(This redundancy is needed in order to keep the number of residual func-
tions small, at the expense of redundant dynamic (residual) tests.)

Partsch and Stomp also observed that Boyer and Moore’s original string
matcher uses the two tables unsystematically [45]. A more systematic take led
them to formally derive the alternative string matcher hinted at by Boyer and
Moore in their original article [13, page 771]. It appears that this string matcher
can be obtained as follows:

• cache-prune removes all information except for the right-most suffix of
positive information (i.e., the maximal set of the form {j, . . . , lp− 1} with
all the corresponding entries being positive);

• after having listed the non-empty negative information, schedule-pt lists
all indices (including the positive ones).

5.2.3 More pruning:

The pruning strategy of Figure 1 is actually sub-optimal. A better one is to
prune the cache before reaching each specialization point. Doing so makes it
possible to obtain what looks like Horspool’s variant of Boyer and Moore’s string
matcher [33].

5.3 An example

Figure 3 displays a specialized version of the program in Figure 1 with respect
to the pattern string "abb". This specialized version is renamed for readability.
We used instantiations yielding Partsch and Stomp’s variant. The code for
loop-pt-1 reveals that a right-to-left strategy is indeed employed, in that the
text is addressed with offsets 2, 1, and 0. (NB. Similix has pretty-printed
successive if expressions into one cond expression.)

6 Related work

In his MS thesis [49, Sec. 8.2], Sørensen has observed that once the pattern is
fixed, the naive string matcher is de facto linear—just with a factor proportional
to the length of this pattern, lp. The issue of obtaining the KMP behavior is
therefore to produce a specialized program that runs in linear time with a factor
independent of lp. Since Consel and Danvy’s original solution [18], obtaining
the KMP behavior by partial evaluation (i.e., specialized programs that do not
backtrack on the text) has essentially followed two channels: managing static
information explicitly vs. managing static information implicitly.

6.1 Explicit management of static information

A number of variants of the naive string matcher have been published that keep
a static trace of the dynamic prefix explicitly [5, 34, 50, 51]. However, as the

20

(define (match-abb t)

(define (loop-pc-1 bt lt z)

(let ([bt (+ bt z)] [lt (- lt z)])

(if (< lt 3)

-1

(loop-pt-1 bt lt))))

(define (loop-pt-1 bt lt)

(if (equal? (string-ref t (+ bt 2)) #\b)

(if (equal? (string-ref t (+ bt 1)) #\b)

(if (equal? (string-ref t (+ bt 0)) #\a)

bt

(loop-pc-1 bt lt 3))

(let ([bt (+ bt 1)] [lt (- lt 1)])

(cond

[(< lt 3)

-1]

[(equal? (string-ref t (+ bt 0)) #\a)

(loop-pt-1 bt lt)]

[else

(loop-pc-1 bt lt 2)])))

(let ([bt (+ bt 2)] [lt (- lt 2)])

(cond

[(< lt 3)

-1]

[(equal? (string-ref t (+ bt 0)) #\a)

(loop-pt-1 bt lt)]

[else

(loop-pc-1 bt lt 1)]))))

(let ([lt (string-length t)])

(if (< lt 3)

-1

(loop-pt-1 0 lt))))

• For all t, (match-abb t) equals (match "abb" t).

• For all z, (loop-pc-1 bt lt z) equals (loop-pc z ’(() () ()) ’())

evaluated in the scope of bt and lt,

• (loop-pt-1 bt lt) equals (loop-pt ’(() () ()) ’(2 1 0))

evaluated in the scope of bt and lt.

Figure 3: Specialized version of Fig. 1 wrt. "abb" à la Boyer and Moore

21

first author put it in his PhD thesis, “it is not obvious that [the transformation]
preserves semantics” [5, page 176]. Indeed, experience has shown that the trans-
formation is error-prone. Therefore, in Appendix A, we have spelled out the
correctness proof of the generic string matcher. Also, recently, Grobauer and
Lawall have revisited how to obtain the KMP behavior by explicitly managing
the static prefix, and have proven its correctness [30].

Another concern is the size of specialized programs. As Consel and Danvy
put it, “there are no guarantees about the size of these programs, nor about
the time taken by the partial evaluator to produce them” [19]. But Grobauer
and Lawall have shown that specialized programs with the KMP behavior have
a size linear in the length of the pattern [30]. As for the resources (time and
space) taken by the partial evaluator, polyvariant specialization does not work
in linear time in general. Therefore, it does not produce the specialized program
in linear time, in contrast to Knuth, Morris and Pratt’s algorithm, which first
constructs a failure table in time linear to the pattern string.

6.2 Implicit management of static information

A number of partial evaluators have been developed that keep a static trace of
the dynamic prefix implicitly, making them able to pass the “KMP test” [49],
i.e., to specialize the original quadratic string-matching program into a KMP-
like residual program. Such partial evaluators include Futamura’s Generalized
Partial Computation [26], Smith’s partial evaluator for constraint logic pro-
gramming languages [48], Queinnec and Geffroy’s intelligent backtracking [46],
supercompilation [28, 29, 49, 50, 51], partial deduction [44], partial evaluators
for functional logic programs [4, 40], and the composition of a memoizing inter-
preter and a standard partial evaluator [27].

Like Similix, none of these partial evaluators has been proven correct and
there are no guarantees about the resources required to produce residual pro-
grams and the size of the residual programs. Nevertheless, all of them have been
tested to produce an output similar to the output of a simple partial evalua-
tor over a naive string matcher that keeps a static trace of the dynamic prefix
explicitly.

6.3 Other derivations of Knuth, Morris and Pratt’s string
matcher

Reconstructing the KMP appears to be a favorite in the program-transformation
community, in some sense following Knuth’s steps since he obtained the behavior
of the KMP by calculating it from Cook’s construction [39, page 338]. Examples
include Dijkstra’s use of invariants [24], Bird’s tabulation technique [8], Takeichi
and Akama’s equational reasoning [53], Colussi’s use of Hoare logic [17], and just
recently Hernández and Rosenblueth’s logic-program derivation [31]. Further
variants of the KMP can be found, e.g., in Watson’s PhD thesis [54] and in
Crochemore and Hancart’s chapter in the Handbook of Algorithms and Theory
of Computation [22].

22

6.4 Other derivations of Boyer and Moore’s string matcher

We have only found two reconstructions of Boyer and Moore’s string matcher
in the literature: Partsch and Stomp’s formal derivation [45] and just recently
Hernández and Rosenblueth’s logic-program derivation [31]. But as reviewed
in Aho’s chapter in the Handbook of Theoretical Computer Science [1], several
variants of Boyer and Moore’s string matcher exist (such as Sunday’s variant [52]
and Baeza-Yates, Choffrut, and Gonnet’s variant [6]), with recurrent concerns
about linearity in principle (e.g., Schaback’s work [47]) and in practice (e.g.,
Horspool’s work [33]).

7 Conclusion and issues

We have abstracted a naive quadratic substring program with a static cache,
and illustrated how specializing various instances of it with respect to a pat-
tern gives rise to KMP-like and Boyer-Moore-like linear-time string matchers.
This use of partial evaluation amounts to preprocessing the pattern by program
specialization. This preprocessing is not geared to be efficient, since we use an
off-the-shelf partial evaluator, but we find it illuminating as a guide for exploring
pattern matching in strings.

Generalizing, one can extend the core string matcher to yield the list of all the
matches instead of yielding (the index of) the left-most match. One can easily
show that the sizes of the specialized programs do not change, as witnessed by
Figure 4 that displays the match-all counterpart of the match-leftmost Figure 3.

Shifting perspective, one can also consider specializing the naive quadratic
substring program with respect to a text instead of with respect to a pattern.
One can then equip this program with a static cache, mutatis mutandis, and
specialize various instances of it with respect to a text, obtaining programs
that traverse the pattern in linear time. In the late 1980s [41, 43], Malmkjær
and Danvy observed that traversing the pattern and the text from left to right
yields a program representation of suffix trees [55], i.e., position trees [2], and
that suitably pruning the cache yields the smallest automaton recognizing the
subwords of a text [10]. Traversing the pattern and the text from right to left,
however, is not possible, since we are not given the pattern and thus we do not
know its length. Yet we can use the trick of enumerating its possible lengths, or
again, more practically, we can be given its length as an extra static information.
Partial evaluation then gives rise to a program representation of trees that are
to Boyer and Moore what position trees are to Knuth, Morris and Pratt.

23

(define (match-all-abb t)

(define (loop-pc-1 bt lt z)

(let ([bt (+ bt z)] [lt (- lt z)])

(if (< lt 3)

’()

(loop-pt-1 bt lt))))

(define (loop-pt-1 bt lt)

(if (equal? (string-ref t (+ bt 2)) #\b)

(if (equal? (string-ref t (+ bt 1)) #\b)

(if (equal? (string-ref t (+ bt 0)) #\a)

(cons bt (loop-pc-1 bt lt 3)) ; collection

(loop-pc-1 bt lt 3))

(let ([bt (+ bt 1)] [lt (- lt 1)])

(cond

[(< lt 3)

’()]

[(equal? (string-ref t (+ bt 0)) #\a)

(loop-pt-1 bt lt)]

[else

(loop-pc-1 bt lt 2)])))

(let ([bt (+ bt 2)] [lt (- lt 2)])

(cond

[(< lt 3)

’()]

[(equal? (string-ref t (+ bt 0)) #\a)

(loop-pt-1 bt lt)]

[else

(loop-pc-1 bt lt 1)]))))

(let ([lt (string-length t)])

(if (< lt 3)

’()

(loop-pt-1 0 lt))))

Figure 4: Match-all counterpart of Fig. 3

Getting back to the original motivation of this article, we would like to state
two conclusions.

1. The vision that partial evaluation ought to be able to produce the KMP
from a naive string matcher is due to Yoshihiko Futamura, who used it as
a guiding light to develop Generalized Partial Computation. We observe
that this vision also encompasses other linear string matchers.

2. Neil Jones envisioned that polyvariant specialization ought to be enough
to implement a self-applicable partial evaluator. We observe that this
vision also applies to the derivation of linear string matchers by partial
evaluation.

24

Acknowledgments: Each of the authors have benefited in one way or another
from the research environment established by Neil Jones at DIKU and from
his scientific approach to problem solving. Thanks are also due to Yoshihiko
Futamura for proposing the initial problem, in 1987; to David Wise for his
interest and encouragements, in 1989; and to Andrzej Filinski, Bernd Grobauer,
and Julia Lawall for comments. This article has also benefited from Torben
Mogensen’s proof-reading.

This work is supported by the NSF grant EIA-9806745 and by the ESPRIT
Working Group APPSEM (www.md.chalmers.se/Cs/Research/Semantics/APPSEM/).

A Total correctness of the generic string matcher

In order to prove the correctness of the algorithm, to be stated as Theorem 1,
we annotate the core program in Figure 1 with invariants.

A.1 Notation and properties

We use a teletype font to refer to the text of the core program and italics to
refer to what this text denotes. So for example p, the first parameter of match
in Figure 1, denotes a pattern p. We write Ip for the set {0, . . . , lp − 1}, where
lp denotes the length of p. Given a list of indices is , possibly with repetitions,
we write îs to denote the set of indices occurring in the list. Finally, for a base
index bt , and noting that in each run, the pattern p and the text t are fixed,
we write FailsBefore(bt) if p is not a prefix of any suffix of t starting (strictly)
before bt . (Therefore FailsBefore(0) holds vacuously.)

We write p[j] to denote the character in a pattern p at position j, starting
from 0, and t[bt+j] to denote the character in a text t at position bt+j. The two
functions cache-ref-pos? and cache-ref-neg? test whether an entry in the cache
is positive or negative, and the two functions cache-ref-pos and cache-ref-neg
project a positive entry and a negative entry into the corresponding character
and list of characters, respectively.

We introduce the following predicates to characterize the contents of the
cache.

• The predicate c |=j x (read ‘x agrees with c at j’) tells us that the character
x agrees with the cache c at index j:

c |=j x iff




cache-ref-pos?(c[j]) = true ⇒ cache-ref-pos(c[j]) = x

cache-ref-neg?(c[j]) = true ⇒ x /∈ ĵs , where
js = cache-ref-neg(c[j])

• The predicate c |= p (read ‘p agrees with c’) generalizes the previous one
in that it says that all the characters in a pattern p agree with the cache
c:

25

c |= p iff ∀j ∈ Ip . c |=j p[j]

• The predicate c |= p\ is (read ‘p agrees with c but for is ’) says that except
for the indices in is , all the characters in p agree with c:

c |= p \ is iff ∀j ∈ Ip \ îs . c |=j p[j]

• The predicate c |=bt t (read ‘t after bt agrees with c’) says that the next
lp characters in a text t after a base index bt agree with the cache c:

c |=bt t iff ∀j ∈ Ip . c |=j t[bt + j]

Note that if c is empty (i.e., contains only empty lists of negative information),
all the predicates above hold trivially. Moreover, if is is empty then c |= p \ is
implies c |= p. Finally, if îs = Ip then c |= p \ is holds vacuously.

We need the following assumptions about the auxiliary functions:

• schedule-pc returns a list of indices ranging over at least the non-empty
entries in Ip. That is, a list is such that ∀j ∈ Ip\ îs : cache-ref-neg?(c[j]) =
true with cache-ref-neg(c[j]) = nil .

• schedule-pt returns a list of indices including at least the negative entries
in the cache (i.e., a list is such that îs ⊆ Ip and satisfying ∀j ∈ Ip \
îs . cache-ref-pos?(c[j]) = true).

• If c′ = cache-prune(c) it must hold, for all j ∈ Ip and all x in the alphabet,
that c |=j x implies c′ |=j x, as will be the case if, e.g., c′ = c or if c′ is
the empty cache.

A.2 Invariants

Invariant 0: By definition, the pattern and the cache have the same length,
i.e.,

lp = length(p) = length(c).

Invariant 1: At the entry of match-pc, loop-pc, match-pt, and loop-pt, the
length of the pattern (lp) and of the rest of the text to match (lt) satisfy

0 < lp ≤ lt = length(t) − bt ≤ length(t).

Also, whenever loop-pt and loop-pc are invoked, it is with indices ranging in
the pattern and in the cache, i.e., îs ⊆ Ip. It follows from this invariant that
for all j ∈ Ip, t[bt + j] is well-defined.

26

Invariant 2: At the entry of match-pc,


FailsBefore(bt + 1)
c |=bt+1 t
cache-ref-neg?(c[lp − 1]) = true
cache-ref-neg(c[lp − 1]) = nil

In words: p is not a prefix of any suffix of t before bt + 1, t after bt + 1 agrees
with c, and the right-most entry of the cache is negative and empty.

Invariant 3: At the entry of loop-pc,


FailsBefore(bt + z)
c |= p \ is
c |=bt+z t
0 < z ≤ lp
cache-ref-neg?(c[lp − z]) = true, ..., cache-ref-neg?(c[lp − 1]) = true
cache-ref-neg(c[lp − z]) = nil , ..., cache-ref-neg(c[lp − 1]) = nil

In words: p is not a prefix of any suffix of t before bt + z, p agrees with c but
for is , t after bt + z agrees with c, lp − z is a valid index in p and c, and the z
right-most entries of the cache are negative and empty.

Invariant 4: At the entry of match-pt and loop-pt,


FailsBefore(bt)
c |= p
c |=bt t

In words: p is not a prefix of any suffix of t before bt, p agrees with c, and t
after bt agrees with c.

Invariant 5: At the entry of loop-pt,

∀j ∈ Ip \ îs . p[j] = t[bt + j]

In words: except for the indices in is , p equals t after bt. In particular, if is is
empty, there is a match starting at bt.

A.3 Total correctness

Theorem 1 The program in Figure 1, applied to a given p and a given t, ter-
minates and returns an integer bt. If bt ≥ 0, then

• bt is a match, that is for all j ∈ Ip : p[j] = t[bt + j], and

• bt is the first match, that is FailsBefore(bt) holds.

If bt < 0, then p is not a substring of t.

27

This result will clearly follow if we can prove the following properties:

Initialization: when match-pt is first called (from the main function match),
the invariants hold;

Return conditions: when a function returns (without invoking another func-
tion), the invariants imply that the return value has the desired property;

Preservation of invariants: when one function (apart from match) invokes
another function, the invariants are preserved; and

Termination: the program eventually terminates.

Let us address each of these issues in turn. First, however, it is convenient to
note that Invariant 0 is valid, which is trivial, and that Invariant 1 is also valid,
which follows since:

• lp does not change;

• if 0 < lp does not hold then the program stops without calling match-pt;

• the program checks lp ≤ lt both initially and each time lt changes, and
always stops if the test fails;

• the equation lt + bt = length(t) clearly holds initially, and continues to
hold since each time bt increases, lt decreases by the same amount; and

• bt ≥ 0, since bt is initially 0 and never decreases (since it is trivial to
verify, as done later, that z > 0).

From now on, we thus only need to focus on establishing Invariants 2–5. Let
us first state the following observation:

If c |=bt t then with c′ = cache-shift(c) the predicate c′ |=bt+1 t holds. (1)

We must show that for all j ∈ Ip, the predicate c′ |=j t[bt + 1 + j] holds. If
j = lp −1 this predicate trivially holds (since c′[lp −1] is empty), and otherwise
c′[j] = c[j + 1] so the predicate amounts to c |=j+1 t[bt + 1 + j] which follows
from c |=bt t.

A.4 Initialization

We must prove that when match calls match-pt, Invariant 4 is established, that
is with c = cache-init(lp) we have


FailsBefore(0)
c |= p
c |=0 t

which trivially holds.

28

A.5 Return conditions

The program may terminate in four places:

The function match returns 0: This return happens because p is empty. Then
∀j ∈ Ip : p[j] = t[0 + j] vacuously holds. Therefore, 0 is indeed the first
match.

The function match returns −1: This return happens because t is shorter than
p. Then clearly there cannot be a match.

The function loop-pt returns bt : This return happens because is is empty. In-
variant 5 thus reads ∀j ∈ Ip : p[j] = t[bt + j] so bt is a match; and since
Invariant 4 tells us that FailsBefore(bt) holds, we see that bt is indeed the
first match.

The function loop-pc returns −1: This return happens because lt − z < lp,
which by Invariants 0 and 1 implies that

length(t) = lt + bt = lt − z + bt + z < length(p) + bt + z

showing that there cannot be a match starting at bt + z or later. Since
Invariant 3 tells us that there cannot be a match starting strictly before
bt + z, we infer that p does indeed not occur in t.

A.6 Preservation of invariants

There are seven places in the program where a function (apart from the main
function match) invokes another function; for each of these places we must verify
that the invariants associated with the entry of the caller imply the invariants
associated with the entry of the callee. This is enough since the program is
tail-recursive, i.e., iterative.

The function match-pt calls loop-pt: Our assumption is that Invariant 4 holds
at the entry of match-pt, and that in particular,

c |= p and c |=bt t hold. (2)

Clearly Invariant 4 still holds at the entry of loop-pt; we are left with
showing that Invariant 5 also holds there. With is = schedule-pt(c), we
must establish that the following predicate holds:

for all j ∈ Ip \ îs : p[j] = t[bt + j]

For such a j, our assumptions on schedule-pt imply that cache-ref-pos?(c[j])
= true, and by (2) we infer that with x = cache-ref-pos(c[j]) we have
x = p[j] and x = t[bt + j], implying the desired p[j] = t[bt + j].

The function loop-pt calls loop-pt: This invocation takes place because

x = p[i] = t[bt + i]. (3)

29

We can assume that Invariants 4 and 5 hold at the beginning of the current
invocation, and we must show that these invariants are preserved. With
is ′ = cdr(is) and with c′′ = cache-prune(c′), where c′ = cache-extend-pos(c,
i, x), the non-trivial part is to establish that the following predicates hold:

c′′ |= p (4)
c′′ |=bt t (5)
∀j ∈ Ip \ îs ′ : p[j] = t[bt + j] (6)

For (6), we note that if j = i, the claim follows from (3), and that if j 6= i,
j ∈ Ip \ îs and the claim follows from Invariant 5.

To establish (4) and (5), we note that by definition of cache-extend-pos,
the predicate c′ |=i x is satisfied and therefore c′ |=i p[i] and c′ |=i t[bt + i]
are also satisfied. For j ∈ Ip \ {i}, we deduce from Invariant 4 that
the predicates c′ |=j p[j] and c′ |=j t[bt + j] are satisfied. Therefore the
predicates c′ |= p and c′ |=bt t are satisfied and the claim now follows from
our assumptions on cache-prune.

The function loop-pt calls match-pc: This invocation takes place because

x = p[i] 6= t[bt + i]. (7)

We can assume that Invariants 4 and 5 hold at the beginning of the current
invocation, and in particular that the following predicates hold:

FailsBefore(bt) (8)
c |=bt t (9)

With c′′ = cache-shift(c′) where c′ = cache-extend-neg(c, i, x), our task is
to show that the following predicates hold:

FailsBefore(bt + 1), (10)
c′′ |=bt+1 t, (11)
cache-ref-neg?(c′′[lp − 1]) = true, and
cache-ref-neg(c′′[lp − 1]) = nil .

The last two lines hold trivially, by definition of cache-shift. From (7) we
see that

• there is no match starting at bt , which together with (8) implies (10);
and that

• (9) can be strengthened to c′ |=bt t, which using (1) implies (11).

The function match-pc calls loop-pc: We can assume that Invariant 2 holds,
and we must show that Invariant 3 holds with z = 1 and is = schedule-pc(c).
This is trivial; in particular c |= p\is holds since if j ∈ Ip\îs then by our as-
sumptions on schedule-pc, cache-ref-neg?(c[j]) = true with cache-ref-neg(c[j])
= nil , and therefore c |=j p[j].

30

The function loop-pc calls match-pt: We can assume that Invariant 3 holds at
the entry of loop-pc. Therefore, and in particular, FailsBefore(bt +z) and
c |=bt+z t hold and c |= p\ is also holds, which is equivalent to c |= p since
is is empty. But this is just what is needed to show that Invariant 4 holds
at the entry of match-pt.

The function loop-pc invokes (loop-pc z c (cdr is)): The function loop-pc is
called because either

• cache-ref-pos?(c[i]) = true and p[i] = cache-ref-pos(c[i]), or

• cache-ref-neg?(c[i]) = true and p[i] /∈ cache-ref-neg(c[i]),

i.e., because

c |=i p[i]. (12)

We can assume that Invariant 3 holds at the entry of the current in-
vocation, and we must show that it holds also at the entry of the new
invocation. The only non-trivial case is to show that with is ′ = cdr(is)
we have c |= p\ is ′, i.e., for all j ∈ Ip \ îs ′ we must establish that c |=j p[j]
is satisfied. But if j = i this follows from (12), and if j 6= i then j ∈ Ip \ îs
and the claim follows from Invariant 3.

The function loop-pc invokes (loop-pc (+ z 1) c (schedule-pc c)): The func-
tion loop-pc is called because (cf. the above case)

c |=i p[i] does not hold. (13)

We can assume that Invariant 3 holds at the entry of the current invoca-
tion, and in particular that

FailsBefore(bt + z) (14)

c |=bt+z t (15)

cache-ref-neg?(c[lp − z]) = true,
..., and
cache-ref-neg?(c[lp − 1]) = true

(16)

cache-ref-neg(c[lp − z]) = nil ,
..., and
cache-ref-neg(c[lp − 1]) = nil

(17)

Let c′ = cache-shift(c) and is ′ = schedule-pc(c′). From (13) and (17) we
deduce that i < lp − z, implying z < lp and hence 0 < z + 1 ≤ lp. From
(16) and (17) we deduce, using the definition of cache-shift, that

31

cache-ref-neg?(c′[lp − z − 1]) = true,
...,
cache-ref-neg?(c′[lp − 1]) = true,
cache-ref-neg(c′[lp − z − 1]) = nil ,
..., and
cache-ref-neg(c′[lp − 1]) = nil

From (15) and (1) we infer c′ |=bt+z+1 t. Our assumptions about schedule-
pc tell us that if j ∈ Ip \ îs ′ then we have cache-ref-neg?(c′[j]) = true with
cache-ref-neg(c′[j]) = nil and therefore c′ |=j p[j], demonstrating that c′ |=
p \ is ′ holds. By (15) we see that c |=i t[bt + z + i] holds, which combined
with (13) tells us that t[bt + z + i] 6= p[i] so there is no match starting at
bt + z. From (14) we therefore deduce that FailsBefore(bt + z + 1) holds.
Collecting the above results, we see that Invariant 3 indeed holds at the
entry of the new invocation of loop-pc.

A.7 Termination

Assume that all calls to match-pt and match-pc have been unfolded, leaving
us with only loop-pt and loop-pc. We now assign a measure to each call as
follows: to each call of loop-pt the measure is the triple (lt, lp, length(is)); to
each call of loop-pc the measure is the triple (lt, lp − z, length(is)). Triples
are ordered lexicographically, yielding (as the invariants show) a well-founded
ordering with respect to which each iteration is strictly decreasing (as is easy
to see). Termination follows, concluding the proof of Theorem 1.

References

[1] Alfred V. Aho. Algorithms for finding patterns in strings. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume A,
chapter 5, pages 255–300. The MIT Press, 1990.

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1986.

[4] Maria Alpuente, Moreno Falaschi, Pascual Juliàn, and German Vidal. Spe-
cialization of inductively sequential functional logic programs. In Charles
Consel, editor, Proceedings of the ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, pages 151–162,
Amsterdam, The Netherlands, June 1997. ACM Press.

[5] Torben Amtoft. Sharing of Computations. PhD thesis, DAIMI, Department
of Computer Science, University of Aarhus, 1993. Technical report PB-453.

32

[6] Ricardo A. Baeza-Yates, Christian Choffrut, and Gaston H. Gonnet. On
Boyer-Moore automata. Algorithmica, 12(4/5):268–292, 1994.

[7] Guntis J. Barzdins and Mikhail A. Bulyonkov. Mixed computation and
translation: Linearisation and decomposition of compilers. Preprint 791,
Computing Centre of Siberian Division of USSR Academy of Sciences,
Novosibirsk, Siberia, 1988.

[8] Richard S. Bird. Improving programs by the introduction of recursion.
Communications of the ACM, 20(11):856–863, November 1977.

[9] Dines Bjørner, Andrei P. Ershov, and Neil D. Jones, editors. Partial Eval-
uation and Mixed Computation. North-Holland, 1988.

[10] Anselm Blumer, J. Blumer, David Haussler, Andrzej Ehrenfeucht, M. T.
Chen, and Joel I. Seiferas. The smallest automaton recognizing the sub-
words of a text. Theoretical Computer Science, 40:31–55, 1985.

[11] Anders Bondorf. Similix 5.0 manual. Technical report, DIKU, Computer
Science Department, University of Copenhagen, Copenhagen, Denmark,
1993. Included in the Similix 5.0 distribution.

[12] Anders Bondorf and Olivier Danvy. Automatic autoprojection of recur-
sive equations with global variables and abstract data types. Science of
Computer Programming, 16:151–195, 1991.

[13] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm.
Communications of the ACM, 20(10):762–772, 1977.

[14] Robert S. Boyer and J. Strother Moore. A Computational Logic. ACM
Monograph Series. Academic Press, 1979.

[15] Mikhail A. Bulyonkov. Polyvariant mixed computation for analyzer pro-
grams. Acta Informatica, 21:473–484, 1984.

[16] Sandrine Chirokoff, Charles Consel, and Renaud Marlet. Combining pro-
gram and data specialization. Higher-Order and Symbolic Computation,
12(4):309–335, 1999.

[17] Livio Colussi. Correctness and efficiency of pattern matching algorithms.
Information and Computation, 95:225–251, 1991.

[18] Charles Consel and Olivier Danvy. Partial evaluation of pattern matching
in strings. Information Processing Letters, 30(2):79–86, January 1989.

[19] Charles Consel and Olivier Danvy. Tutorial notes on partial evalua-
tion. In Susan L. Graham, editor, Proceedings of the Twentieth Annual
ACM Symposium on Principles of Programming Languages, pages 493–501,
Charleston, South Carolina, January 1993. ACM Press.

33

[20] Charles Consel, Olivier Danvy, and Karoline Malmkjær. The abstraction
and instantiation of string-matching programs. Unpublished manuscript,
December 1989, and talks given at Stanford University, Indiana University,
Kansas State University, Northeastern University, Harvard, Yale Univer-
sity, and INRIA Rocquencourt.

[21] Charles Consel and François Noël. A general approach for run-time special-
ization and its application to C. In Guy L. Steele Jr., editor, Proceedings of
the Twenty-Third Annual ACM Symposium on Principles of Programming
Languages, pages 145–156, St. Petersburg Beach, Florida, January 1996.
ACM Press.

[22] Max Crochemore and Christophe Hancart. Pattern matching in strings. In
Mikhail J. Atallah, editor, Algorithms and Theory of Computation Hand-
book, chapter 11. CRC Press, Boca Raton, 1998.

[23] Olivier Danvy and Ulrik P. Schultz. Lambda-dropping: Transforming re-
cursive equations into programs with block structure. Theoretical Computer
Science, 248(1-2):243–287, 2000.

[24] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[25] Andrei P. Ershov, Dines Bjørner, Yoshihiko Futamura, K. Furukawa, An-
ders Haraldsson, and William Scherlis, editors. Special Issue: Selected
Papers from the Workshop on Partial Evaluation and Mixed Computa-
tion, 1987, New Generation Computing, Vol. 6, No. 2-3. Ohmsha Ltd.
and Springer-Verlag, 1988.

[26] Yoshihiko Futamura and Kenroku Nogi. Generalized partial computation.
In Bjørner et al. [9], pages 133–151.

[27] Robert Glück and Jesper Jørgensen. Generating optimizing specializers. In
Henri Bal, editor, Proceedings of the Fifth IEEE International Conference
on Computer Languages, pages 183–194, Toulouse, France, May 1994. IEEE
Computer Society Press.

[28] Robert Glück and Andrei Klimov. Occam’s razor in metacomputation:
the notion of a perfect process tree. In Patrick Cousot, Moreno Falaschi,
Gilberto Filé, and Antoine Rauzy, editors, Proceedings of the Third In-
ternational Workshop on Static Analysis WSA’93, number 724 in Lecture
Notes in Computer Science, pages 112–123, Padova, Italy, September 1993.
Springer-Verlag.

[29] Robert Glück and Valentin F. Turchin. Application of metasystem transi-
tion to function inversion and transformation. In Proceedings of the inter-
national symposium on symbolic and algebraic computation, pages 286–287,
Tokyo, Japan, August 1990. ACM, ACM Press.

34

[30] Bernd Grobauer and Julia L. Lawall. Partial evaluation of pattern match-
ing in strings, revisited. Technical report BRICS-RS-00-31, DAIMI, De-
partment of Computer Science, University of Aarhus, Aarhus, Denmark,
November 2000.

[31] Manuel Hernández and David A. Rosenblueth. Development reuse and
the logic program derivation of two string-matching algorithms. In Har-
ald Søndergaard, editor, Proceedings of the Third International Confer-
ence on Principles and Practice of Declarative Programming, Firenze, Italy,
September 2001. ACM Press. To appear.

[32] Christoph M. Hoffman and Michael J. O’Donnell. Pattern matching in
trees. Journal of the ACM, 29(1):68–95, 1982.

[33] R. Nigel Horspool. Practical fast searching in strings. Software—Practice
and Experience, 10(6):501–506, 1980.

[34] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evalua-
tion and Automatic Program Generation. Prentice-Hall International, 1993.
Available online at http://www.dina.kvl.dk/~sestoft/pebook/pebook.
html.

[35] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. An experiment in
partial evaluation: The generation of a compiler generator. In Jean-Pierre
Jouannaud, editor, Rewriting Techniques and Applications, number 202 in
Lecture Notes in Computer Science, pages 124–140, Dijon, France, May
1985. Springer-Verlag.

[36] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. MIX: A self-
applicable partial evaluator for experiments in compiler generation. Lisp
and Symbolic Computation, 2(1):9–50, 1989.

[37] Richard Kelsey, William Clinger, and Jonathan Rees, editors. Revised5

report on the algorithmic language Scheme. Higher-Order and Symbolic
Computation, 11(1):7–105, 1998. Also appears in ACM SIGPLAN Notices
33(9), September 1998. Available online at http://www.brics.dk/~hosc/
11-1/.

[38] Todd B. Knoblock and Erik Ruf. Data specialization. In Proceedings of
the ACM SIGPLAN’96 Conference on Programming Languages Design and
Implementation, SIGPLAN Notices, Vol. 31, No 5, pages 215–225. ACM
Press, June 1996.

[39] Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast pattern
matching in strings. SIAM Journal on Computing, 6(2):323–350, 1977.

[40] Laura Lafave and John P. Gallagher. Constraint-based partial evaluation of
rewriting-based functional logic programs. In Norbert E. Fuchs, editor, 7th

35

International Workshop on Program Synthesis and Transformation, num-
ber 1463 in Lecture Notes in Computer Science, pages 168–188, Leuven,
Belgium, July 1997. Springer-Verlag.

[41] Karoline Malmkjær. Program and data specialization: Principles, appli-
cations, and self-application. Master’s thesis, DIKU, Computer Science
Department, University of Copenhagen, August 1989.

[42] Karoline Malmkjær. Abstract Interpretation of Partial-Evaluation Algo-
rithms. PhD thesis, Department of Computing and Information Sciences,
Kansas State University, Manhattan, Kansas, March 1993.

[43] Karoline Malmkjær and Olivier Danvy. Preprocessing by program special-
ization. In Uffe H. Engberg, Kim G. Larsen, and Peter D. Mosses, editors,
Proceedings of the 6th Nordic Workshop on Programming Theory, pages
266–268, Department of Computer Science, University of Aarhus, October
1994. BRICS NS-94-4.

[44] Jonathan Martin and Michael Leuschel. Sonic partial deduction. In Dines
Bjørner, Manfred Broy, and Alexander V. Zamulin, editors, Perspectives of
System Informatics, Third International Andrei Ershov Memorial Confer-
ence, number 1755 in Lecture Notes in Computer Science, pages 101–112,
Akademgorodok, Novosibirsk, Russia, July 1999. Springer-Verlag.

[45] Helmuth Partsch and Frank A. Stomp. A fast pattern matching algorithm
derived by transformational and assertional reasoning. Formal Aspects of
Computing, 2(2):109–122, 1990.

[46] Christian Queinnec and Jean-Marie Geffroy. Partial evaluation applied to
pattern matching with intelligent backtrack. In Proceedings of the Second
International Workshop on Static Analysis WSA’92, volume 81-82 of Bi-
gre Journal, pages 109–117, Bordeaux, France, September 1992. IRISA,
Rennes, France.

[47] Robert Schaback. On the expected sublinearity of the Boyer-Moore algo-
rithm. SIAM Journal on Computing, 17(4):648–658, 1988.

[48] Donald A. Smith. Partial evaluation of pattern matching in constraint
logic programming languages. In Paul Hudak and Neil D. Jones, editors,
Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, SIGPLAN Notices, Vol. 26, No 9,
pages 62–71, New Haven, Connecticut, June 1991. ACM Press.

[49] Morten Heine Sørensen. Turchin’s supercompiler revisited. an operational
theory of positive information propagation. Master’s thesis, DIKU, Com-
puter Science Department, University of Copenhagen, April 1994. DIKU
Rapport 94/17.

36

[50] Morten Heine Sørensen, Robert Glück, and Neil Jones. Towards unifying
partial evaluation, deforestation, supercompilation, and GPC. In Donald
Sannella, editor, Proceedings of the Fifth European Symposium on Program-
ming, number 788 in Lecture Notes in Computer Science, pages 485–500,
Edinburgh, Scotland, April 1994. Springer-Verlag.

[51] Morten Heine Sørensen, Robert Glück, and Neil D. Jones. A positive su-
percompiler. Journal of Functional Programming, 6(6):811–838, 1996.

[52] Daniel M. Sunday. A very fast substring search algorithm. Communications
of the ACM, 33(8):132–142, August 1990.

[53] Masato Takeichi and Yoji Akama. Deriving a functional Knuth-Morris-
Pratt algorithm. Journal of Information Processing, 13(4):522–528, 1990.

[54] Bruce W. Watson. Taxonomies and Toolkits of Regular Language Algo-
rithms. PhD thesis, Department of Mathematics and Computing Science,
Eindhoven University of Technology, Eindhoven, The Netherlands, 1995.

[55] Peter Weiner. Linear pattern matching algorithms. In IEEE Symposium
on Switching and Automata Theory, pages 1–11, New York, 1973.

37

Recent BRICS Report Series Publications

RS-01-12 Torben Amtoft, Charles Consel, Olivier Danvy, and Karo-
line Malmkjær. The Abstraction and Instantiation of String-
Matching Programs. April 2001. 37 pp.

RS-01-11 Alexandre David and M. Oliver Möller. From HUPPAAL to
UPPAAL : A Translation from Hierarchical Timed Automata to
Flat Timed Automata. March 2001. 40 pp.

RS-01-10 Daniel Fridlender and Mia Indrika. Do we Need Dependent
Types? March 2001. 6 pp. Appears inJournal of Functional
Programming, 10(4):409–415, 2000. Superseeds BRICS Report
RS-98-38.

RS-01-9 Claus Brabrand, Anders Møller, and Michael I. Schwartzbach.
Static Validation of Dynamically Generated HTML. February
2001. 18 pp.

RS-01-8 Ulrik Frendrup and Jesper Nyholm Jensen.Checking for Open
Bisimilarity in the π-Calculus. February 2001. 61 pp.

RS-01-7 Gregory Gutin, Khee Meng Koh, Eng Guan Tay, and Anders
Yeo. On the Number of Quasi-Kernels in Digraphs. January
2001. 11 pp.

RS-01-6 Gregory Gutin, Anders Yeo, and Alexey Zverovich. Travel-
ing Salesman Should not be Greedy: Domination Analysis of
Greedy-Type Heuristics for the TSP. January 2001. 7 pp.

RS-01-5 Thomas S. Hune, Judi Romijn, Marïelle Stoelinga, and
Frits W. Vaandrager. Linear Parametric Model Checking of
Timed Automata. January 2001. 44 pp. To appear in Margaria
and Yi, editors, Tools and Algorithms for The Construction and
Analysis of Systems: 7th International Conference, TACAS ’01
Proceedings, LNCS, 2001.

RS-01-4 Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim G.
Larsen, Paul Pettersson, and Judi Romijn. Efficient Guiding
Towards Cost-Optimality inUPPAAL. January 2001. 21 pp.
To appear in Margaria and Yi, editors, Tools and Algorithms
for The Construction and Analysis of Systems: 7th International
Conference, TACAS ’01 Proceedings, LNCS, 2001.

