
B
R

IC
S

R
S

-01-11
D

avid
&

M
öller:

F
rom

H
ierarichcalT

im
ed

A
utom

ata
to

U
P

P
A

A
L

BRICS
Basic Research in Computer Science

From HU PPAAL to UPPAAL

A Translation from

Hierarchical Timed Automata to

Flat Timed Automata

Alexandre David
M. Oliver M öller

BRICS Report Series RS-01-11

ISSN 0909-0878 March 2001

Copyright c© 2001, Alexandre David & M. Oliver M öller.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/11/

From HUppaal to Uppaal

A translation from hierarchical timed automata to flat
timed automata

Alexandre David∗ and M. Oliver Möller†

∗ Uppsala University † BRICS
Department of Computer Systems Department of Computer Science
Uppsala University University of Aarhus
Box 325 Ny Munkegade, building 540
SE - 75105 Uppsala DK - 8000 Århus C, Denmark
adavid@docs.uu.se omoeller@brics.dk

Version: Vanilla-1 March, 2001

Abstract

We present a hierarchical version of timed automata, equipped with data types,
hand-shake synchronization, and local variables. We describe the formal semantics of
this hierarchical timed automata (HTA) formalism in terms of a transition system.

We report on the implementation of a flattening algorithm, that translates our
formalism to a network of Uppaal timed automata. We establish a correspondence
between symbolic states of an HTA and its translations, and thus are able to make use
of Uppaal’s simulator and model checking engine.

This technique is exemplified with a cardiac pacemaker model. Here, the overhead
introduced by the translation is tolerable. We give run-time data for deadlock checking,
timed reachability, and timed response analysis.

1 Introduction

Hierarchical structures are a powerful mechanism to describe complex systems. They benefit
from concepts like modularity and encapsulation and scale up well in industrial settings.
Modeling languages—like UML [BRJ98]—use hierarchical structures to organize design

and specifications in different views of a system, meeting the needs of developers, customers,
and implementors. In particular, they capture a notion of correctness, in terms of require-
ments the system has to meet. Formal methods typically address model correctness, for they
operate on a (possibly very close) mathematical formalization of the model. This makes it
possible to prevent errors inexpensively at early design stages. Of particular interests are
statechart-like models [Har87,HG97], that describe a behavioral view and allow execution
of a model on a high level.
Our ambition is to build a hierarchical real-time formalism—called hierarchical timed

automata model or HTA model for short—, that can be used as input for model-checking
tools. Correctness requirements are expressed in a dialect of the TCTL [HNSY94] logic.
If we want to preserve decidability, this dictates restrictions on the expressiveness of the
model. We need a formal definition of the semantics of this formalism to define the set of
legal executions.
HTAs are based on preliminary work done by Wang and David [DY00], but apply some

significant changes. In HTAs, both entries and exits of superstates as immediate and non-
blocking. In order to give a clear semantics, our abstract—and concrete XML—syntax
contains strong well-formedness constraints. These do not weaken the expressiveness, but
make the task of constructing models more tedious in practice. As a remedy for the user, a
sufficiently smart editor can operate on a less restrictive input-language, that is pre-compiled
to our XML syntax, while possibly asking the user to resolve all ambiguities on demand.
For the real-time aspect, we use constructs from timed automata theory, i.e., formal

clocks, clock resets, and invariants.
The multitude of modeling elements in hierarchical structures makes it subtle to con-

struct a both clean and usable model-checking engine. Algorithms formulated for simpler
structures tend to be more reliable, better analyzed, and tuned for efficiency in many cases.
To experiment with our formalism, we describe a translation of HTAs to (flat) Uppaal timed
automata, and use this as a test-bed for our formalism. To represent HTAs physically, we
use a XML document type definition [XML], that shapes the internal model representation
of a fictitious tool (nicknamed HUppaal).

Plan This report is organized as follows. Section 2 gives a informal description of our
hierarchical timed automata model. Section 3 contains the formal syntax of HTAs. Section 4
gives a formal semantics for the HTA model. Section 5 describes our implementation of
a flattening procedure. In Section 6 we exemplify our flattening procedure on a cardiac
pacemaker model and give run-times for applying Uppaal’s model checking engine on the
translation. Section 7 lists unresolved issues and future work. The Appendix contains the
full document type definitions of (hierarchical) HUppaal and (flat) Uppaal, and finishes
with a small glossary.

2

2 Hierarchical Timed Automata: Informal Overview

This section contains an informal description of hierarchical timed automata. They find
physical representation through the XML document type definition in Appendix A.

Elements of the HTA Structure

Hierarchical timed automata are basically hierarchical state machines, that can be put in
parallel on various levels. The basic units of control are called locations, which may be
basic states or superstates, i.e., itself a (hierarchical) state machine. In the latter case, the
contained locations are called substates. At any point, a location is either active or inactive.
Superstates can be of type XOR (where exactly one substate is active, if the superstate is
active) or of type AND (where every substate is active if the superstate is active).

Transitions connect locations. If source or target of a transitions is a superstate, the tran-
sition connects to distinguished entries and exits. These are auxiliary structures and some-
times referred to as pseudo-locations. Pseudo-locations are different from ordinary (proper)
locations, since they mark intermediated steps in a more complex transition, and cannot be
part of a proper configurations, see below.
Transitions can be equipped with guards, assignments and at most one synchronization.

Transitions are enabled, if their guards evaluate to true (in the current configuration), the
synchronization (if any) is possible and they can reach a target configuration. A transition is
not enabled, if taking it would lead to a configuration where a location invariant is violated.
As auxiliary constructs, pseudo-transitions (〈connector〉s1) are used. At least one end of

a pseudo-transition connects to a pseudo-location. Pseudo-transitions cannot be augmented
with synchronizations, but in special situations may carry guards and/or assignments, as
explained in Section 3 in detail.
Integer variables are shared (multi-read, multi-write), and may occur in guards and

assignments. As a real-time construct, hierarchical timed automata are equipped with clocks.
Clocks are understood as real-valued variables that change continuous and synchronous as
time passes. Clocks can be reset to 0 on transitions, but not set to specific values. Clock
values can occur in guards in a syntactically restricted fashion2. They can also occur in
invariants, but only downwards closed, i.e., either as an expression x < c or x ≤ c, where c
is an integer constant.
Hand-shake communication exits between parallel superstates by means of sending (!)

or receiving (?) a signal on a channel. Two parallel automata can synchronize on transi-
tions by executing them at the same instant. If they are equipped with conflicting variable
assignments, the one of the transition labeled with “!” is executed first. Channels may be
declared locally, restricting the potential participants in a hand-shake communication. We
have to assure, that the control situation remains valid after processing both transitions. A

1The 〈ElementName〉 notation refers to the Element names in Appendix A.
2To be more precise, clocks x and y may occur in expressions x− y � c and x � c, where c is an integer

constant and � ∈ {<,>,=,≤,≥}.

3

transition t originating in a superstate S cannot synchronize with a transition inside S, for
processing t corresponds to rendering S inactive.
There is a top level, where a parallel composition of fundamental superstates is specified.

They are understood as running in parallel, but not put together in an AND superstate for
ease of usage: we assume, that system designers will frequently change this part, e.g., to test
a controller with respect to different environments put in parallel. Therefore, this parallel
composition is realized textually via the 〈system〉 tag. For the fundamental superstates, an
initial entry has to be declared (〈globalinit〉). Moreover, they are allowed to terminate if
specified so (canexit attribute in 〈globalinit〉), i.e., they can reach a special halt situation
that can never be revoked.3

In the following, we describe entry and exit of superstates.

Entries Every superstate has a set of entries, that build part of its interface to the outside
world. They are denoted by a stub, or alternatively, by a bullet: •. Transitions connect to
superstates via entries.

Default Entry Optionally, a superstate S can have one entry, that is declared to be the
default entry. If a transition on the next higher level ends at the border of S, without
pointing to an explicit entry, it is assumed to lead to this default entry. In the case that no
default entry is declared, such a transition is an error in the model.

History Entry A superstate may be declared to be a history-superstate, by equipping it
with a special history entry, designated by a capital H in a circle, H©. If the superstate is
entered via this, the last control location this superstate was in (before it became inactive)
is restored. Additionally, all locally declared variables are restored. The locally declared
clocks are not reset, but kept running. Only clocks explicitly declared as forgetful clock

are set to 0 on entry via a history entry.
A history entry has to be equipped with a default history location, which is entered, if

this is the first time the superstate becomes active. This location may be non-basic itself.
Every non-basic substate of S of a history superstate H is constrained to have either a

history entry or a default-entry. If H is entered via the history entry, and the control points
to S, then S is entered either via its history entry, or via the default entry, if S has no history
entry.
There is no explicit deep history entry, that guarantees to instantiate the history of all

enclosed substates as well. However, this can be expressed explicitly, by adding a history
entry to all such substates and their descendants.

Forks Forks split the control to parallel substates. A fork can carry assignments and clock
resets, but no guards or synchronization. Forks may trigger a cascade of other forks, that

3In general, this can violate deadlock freedom. However, it corresponds very much to a situation where
a part of the system simply crashes. This aspect is useful, if the model explicitly specifies redundancy.

4

are all part of the same transition step. For simplicity, we treat here every entry of an AND
superstate as a fork, i.e., it is required to have an outgoing transition to every substate and
these transition are understood to be taken in parallel.

Local Clocks Clocks may be declared local to a superstate S. The first time S becomes
active, these clocks are set to 0. On re-entry, local clocks are re-set to 0 as well, with one
exception: ordinary local clocks are not re-set, if S is entered via an history entry. They can
be thought of as kept running when S becomes inactive. Their value increases in accordance
to the global clock. In general, it is not predictable whether it will be re-entered via a history
entry or not.
The local clocks declared to be forgetful clock are always reset on entry, even this

happens via a history entry.

Location Invariants Transitions t to locations carrying an invariant can only be taken, if
the invariant evaluates to true (after possible clock resets executed along t). This generalizes
in the situation, where a transition points to a non-basic location: it can only be taken, if
the invariants of all reached locations (in case of a fork, there can be several) evaluate to
true after executing the run-to-completion step.

Exits Explicit exits are denoted by a stub, or—alternatively—by a bullseye (•©). Pseudo-
transitions leading to an exit can only be taken, if the transition step associated with it can
be taken as a whole. (This is in conformance with the UML notion of run-to-completion
steps.) For notational convenience, various copies of explicit exits can be present in the same
superstate. They are identified by sharing the same name.
As a well-formedness constraint, every exit that is reached by a transition, has to be

connected to a transition or pseudo-transition on the next-higher level. [guard]

Figure 1:
Default Exit.

Default Exits The understanding of a default exit is a specially des-
ignated exit, that can be reached either unconditionally or guarded from
every enclosed location. This implies, that all non-basic substates are
required to have default exits as well. If the guard is identical to true,
this explicitly denotes a superstate to be interrupt-able, since it can be
left in any case (provided it can synchronize on exit with parallel substates; typically, one of
them will trigger the interrupt).
From the inside, they are not visible in general. But they can be indicated by an unlabeled

general exit, see Figure 1.

Joins Joins are auxiliary constructs in AND superstates, that move control upward one
level, after all substates became inactive. A join can carry guards, but no synchronization,
clock resets, or assignments. Joins may be required to synchronize with other joins, that are
all part of the same transition. In our notion, either all or none of them are taken.

5

We make the simplifying assumption, that every join can be associated with exactly one
exit. Therefore we treat exits of AND superstates as joins.4

A configuration describes a snapshot of the system. In particular, every configuration

1. marks every location of the system as active or inactive
2. denotes one control location for every active XOR superstate
3. defines a value for every global variable and clock, and every local variable and clock
of active superstate

4. defines a value for every local variable and local clock for every active superstate and
the inactive ones, that contains a history entry

We call a configuration proper, if it does not contain pseudo-locations. A run-to-completion
step is a tuple consisting of a proper source configuration, a step (that is either a proper tran-
sition or a sequence containing one proper transition and arbitrary many pseudo-transitions),
and a proper target configuration (that is reached from the source configuration via execution
of this step).

Dynamics of Transitions

An execution step of the model is either an action step or a delay step. An action step
corresponds to executing one run-to-completion step, or—in case of synchronization—two
synchronizing run-to-completion steps in an atomic fashion. A run-to-completion step is
composed from one proper transition and arbitrary many pseudo transitions. The latter
ones can, e.g., encode forks, joins, entries, or exits of substates. A run-to-completion step is
only enabled, if

1. all the guards in the participating transition parts evaluate to true
2. the invariant(s) of the subsequent target location(s) hold after execution of assignments
and clock resets

Syntactic restrictions guarantee, that 1. is always equivalent to the case, that the conjunction
of these guards are true.
A delay step amounts to incrementing all clock variables by a real number d > 0, such

that no invariant is violated.

Synchronization on Entry If an AND superstate is entered, every substate is entered
immediately. This might trigger a cascade of entries, since substates are allowed to be AND
superstates themselves.

4Our implementation deals with the more general case, that every exit can be reached by an arbitrary
number of joins. However, the semantics is easier to desrcibe for this simplified setting, that does not restrict
the expressiveness of our modeling formalism.

6

Synchronization on Exit A tree of joins is understood as an indivisible step, i.e., once it
is started, it is executed, including the transition following immediately, called root transition
of this join. There are no interleavings with other transitions or time delays. If the root
transition synchronizes with another transition t, both are taken in parallel.
Pseudo-transitions to exits are allowed to have guards, but no assignment, clock-resets or

synchronization labels. This guarantees that, given the conjunction of the guards evaluates
to true in this configuration, the join can be executed to completion.

Urgency Urgency is a property of transitions and marks them as having priority over
delay. If an urgent transition is enabled, the system is not allowed to delay, but must take
an action transition as the next step.
Urgency cannot be only be used to resolve conflicts between action transitions and delay

transition. An urgent action transition does not have priority over a non-urgent one, if both
of them are enabled.

Lax Input Language

For notational convenience, it makes sense to allow a user to draw statechart diagrams in a
more liberal way. In most cases, this can be safely translated to an explicit formulation. Some
examples of this are given in Figure 2. Note that arrows on the left-hand side are sometimes
replaced by sequences, that contain pseudo-states (stubs), pseudo-transitions, and exactly
one ordinary transition. This is the one, where guards, assignments and synchronizations
are attached. Following the UML notion of run-to-completion steps, the understanding of
the explicit notation is identical with the (usual) interpretation of the lax notation.
In case of ambiguity, we expect a model editor to be clever enough to resolve the choices

explicitly. In the following we always assume to have the explicit format, for this makes the
task of formalizing the semantics easier.

3 Formal Syntax of HTAs

In this section we define the formal syntax of hierarchical timed automata. This is split up
in the data parts, the structural parts, and a set of well-formedness constraints.

3.1 Data Components

We introduce the data components of hierarchical timed automata, that are used in guards,
synchronizations, resets, and assignment expressions. Some of this data is kept local to a
generic location, denoted by l.

Integer variables Let V be a finite set of integer variables. V (l) ⊆ V is the set of integer
variables local to a superstate l.

7

label1

label2

=⇒

label2

label1

exit

Center

=⇒

Center

exit

A B

exit=enter

=⇒

exit=enter

BA

Figure 2: Translation of a lax entry formulation to the explicit form.

Clocks Let C be a finite set of clock variables. The set C(l) ⊆ C denotes the clocks local to
a superstate l. If l has a history entry, C(l) contains only clocks, that are explicitly declared
as forgetful. Other locally declared clocks of l belong to C(root).

Channels Let Ch a finite set of synchronization channels. Ch(l) ⊆ Ch is the set of channels
that are local to a superstate l, i.e., there cannot be synchronization along a channel c ∈ Ch(l)
between one transition inside l and one outside l.

8

Synchronizations Ch gives rise to a finite set of channel synchronizations, called Sync.
For c ∈ Ch, c?, c! ∈ Sync. For s ∈ Sync, s̄ denotes the matching complementary, i.e., c̄! = c?
and c̄? = c!.

Guards and invariants A data constraints is a boolean expressions of the form A ∼ A,
where A is an arithmetic expression over V and ∼∈ {<,>,=,≤,≥}. A clock constraints
is an expressions of the form x ∼ n or x − y ∼ n, where x, y ∈ C and n ∈ N with ∼∈ {<
,>,=,≤,≥}. A clock constraint is downward closed, if ∼∈ {<,=,≤}. A guard is a finite
conjunction over data constraints and clock constraints. An invariant is a finite conjunction
over downward closed clock constraints. Guard is the set of guards, Invariant is the set of
invariants. Both contain additionally the constants true and false.

Assignments A clock reset is of the form x := 0, where x ∈ C. A data assignment is of
the form v := A, where v ∈ V and A an arithmetic expression over V . Reset is the set of
clock resets and data assignments.

3.2 Structural Components

We give now the formal definition of our hierarchical timed automaton.

Definition 1 A hierarchical timed automaton is a tuple 〈S, S0, δ, σ, V, C,Ch, T 〉 where

• S is a finite set of locations. root ∈ S is the root.
• S0 ∈ S is a set of initial locations.
• δ : S → 2S. δ maps l to all possible substates of l. δ is required to give rise to a tree
structure with root root. We readily extend δ to operate on sets of locations in the
obvious way.

• σ : S → {AND,XOR,BASIC,ENTRY,EXIT,HISTORY} is a type function on loca-
tions.

• V, C,Ch are sets of variables, clocks, and channels. They give rise to Guard, Reset,
Sync, and Invariant as described in Section 3.1.

• Inv : S → Invariant maps every locations l to an invariant, possibly to the constant
true.

• T ⊆ S × (Guard × Sync × Reset × {true, false}) × S is the set of transitions. A
transition connects two locations l and l′, has a guard g, an assignment r (including

clock resets), and an urgency flag u. We use the notation l
g,s,r,u−−−→ l′ for this and omit

g, s, r, u, when they are necessarily absent (or false, in the case of u).

Notational conventions We use the predicate notation TYPE(l) for TY PE ∈ {AND,
XOR,BASIC,ENTRY,EXIT,HISTORY }, l ∈ S. E.g., AND(l) is true, exactly if σ(l) = AND.
The type HISTORY is a special case of an entry. We use HENTRY(l) to capture simple
entry or history entry, i.e., HENTRY(l) stands for ENTRY(l) ∨ HISTORY(l).

9

We define the parent function

δ−1(l)
def
=

{
n, where l ∈ δ(n) if l �= root
⊥ otherwise

We use δ∗(l) to denote the set of all nested locations of a superstate l, including l. δ−∗ is

the set of all ancestors of l, including l. Moreover we use δ×(l)
def
= δ∗(l) \ {l}.

We introduce δ̃ to refer to the children, that are proper locations.

δ̃(l)
def
= {n ∈ δ(l) | BASIC(n) ∨ XOR(n) ∨ AND(n)}

We use V +(l) to denote the variables in the scope of location l: V +(l) =
⋃

n∈δ−∗(l) V (l).

C+(l) and Ch+(l) are defined analogously.

3.3 Well-Formedness Constraints

We give the rules to ensure consistency of a given hierarchical timed automaton.

Location constraints We require a number of sanity properties on locations and struc-
ture.
The function δ has to give rise to a proper tree rooted at root, and S = δ∗(root).
Basic nodes are empty: BASIC(l) ⇔ δ(l) = ∅.
Substates of AND superstate are not basic: AND(l) ∧ n ∈ δ(l) ⇒ ¬BASIC(n).
Invariants of pseudo-locations are trivial: HENTRY(l) ∨ EXIT(l) ⇒ Inv(l) = true.

Initial location constraints S0 has to correspond to a consistent and proper control
situation, i.e., root ∈ S0 and for every l ∈ S0 it the following holds:

(i) BASIC(l) ∨ XOR(l) ∨ AND(l),
(ii) l = root ∨ δ−1(l) ∈ S0,
(iii) XOR(l) ⇒ |δ(l) ∩ S0| = 1, and
(iv) AND(l) ⇒ δ(l) ∩ S0 = δ̃(l).

Variable constraints We explicitly disallow conflict in assignments in synchronizing tran-
sitions:

It holds that l1
g,c!,r,u−−−−→ l′1, l2

g′,c?,r′,u′
−−−−−→ l′2 ∈ T ⇒ vars(r) ∩ vars(r′) = ∅, where vars(r) is the

set of integer variables occurring in r. We require an analogous constraint to hold for the
pseudo-transitions originating in the entry of an AND superstate.
Static scope: For l

g,s,r,u−−−→ l′ ∈ T , g, r are defined over V +(δ−1(l)) ∪ C+(δ−1(l)) and s is
defined over Ch+(δ−1(l)).

10

Entry constraints Let e ∈ S, HENTRY(e). If XOR(δ−1(l)), then T contains exactly one
transition e

r−→ l′. If AND(δ−1(l)), then T contains exactly one transitions e
r−→ ei for every

proper substate li ∈ δ̃(δ−1(l)), and ei ∈ δ(li).
In case of HISTORY(e), outgoing transitions declare the default history locations.
If a superstate s has a history entry, then every substate l of s has to provide either a

history entry or a default entry.

Transition constraints Transitions have to respect the structure given in δ and cannot
cross levels in the hierarchy, except via connecting to entries or exits. The set of legal
transitions is given in Table 1 Note that transitions cannot lead directly from entries to
exits.
Transitions l

g,s,r,u−−−→ l′ with HENTRY(l) or EXIT(l′) are called pseudo-transitions. They
are restricted in the sense, that they cannot carry synchronizations or urgency flags, and
only either guards or assignments. For HENTRY(l), only pseudo-transition of the form

l
r−→ l′ are allowed. For EXIT(l′), only pseudo-transition of the form l

g−→ l′ are allowed. For
EXIT(l) ∧ EXIT(l′), this is further restricted to be of the form l −→ l′.

Intern
transitions

Entering
transitions

Exiting
transitions

Changing
transitions

Comment l l′ Constraint
BASIC BASIC

Intern BASIC EXIT δ−1(l) = δ−1(l′)
HENTRY BASIC

Entering BASIC HENTRY
and fork HENTRY HENTRY δ−1(l) = δ−2(l′)
Exiting EXIT BASIC(l)
and join EXIT EXIT δ−2(l) = δ−1(l′)
Changing EXIT HENTRY δ−2(l) = δ−2(l′)

Table 1: Overview over all legal transitions l
g,s,r,u−−−→ l′.

4 Operational Semantics of HTAs

We present the operational semantics of our hierarchical timed automaton model. A con-
figuration captures a snapshot of the system, i.e., the active locations, the integer variable
values, the clock values, and the history of some superstates. Configurations are of the form
(ρ, µ, ν, θ), where

• ρ : S → 2S captures the control situation. ρ can be understood as a partial, dynamic
version of δ, that maps every superstate s to the set of active substates. If a superstate

s is not active, ρ(s) = ∅. We define Active(l)
def
= l ∈ ρ×(root), where ρ×(l) is the set

of all active sub-states of l. Notice that Active(l)⇔ l ∈ ρ(δ−1(l)).

11

• µ : S → (Z)∗. µ gives the valuation of the local integer variables of a superstate l
as a finite tuple of integer numbers. If ¬Active(l) then µ(l) = λ (the empty tuple).
If Active(l) then we require that |µ(l)| = |V (l)| and µ is consistent with respect to
the value of shared variables (i.e., always maps to the same value). We use µ(l)(a) to
denote the value of a ∈ V (l). When entering a non-basic location, local variables are
added to µ and set to an initial value (0 by default). We use the shorthand 0V (l) for
the tuple (0, 0 . . . 0) with arity |V (l)|.

• ν : S → (R+)∗. ν gives the real valuation of the clocks C(l) visible at location l, thus
|ν(l)| = |C(l)|. If ¬Active(l) then ν(l) = λ.

• θ reflects the history, that might be restored by entering superstates via history entries.
It is split up in the two functions θstate and θvar , where θstate(l) returns the last visited
substate of l—or an entry of the substate, in the case where the substate is not basic—
(to restore ρ(l)), and θvar (l) returns a vector of values for the local integer variables.
There is no history for clocks at the semantics level, all non-forgetful clocks belong to
C(root).

History We capture the existence of a history entry with the predicate HasHistory(l)
def
= ∃n ∈

δ(l). HISTORY(n). If HasHistory(l) holds, the term HEntry(l) denotes the unique history
entry of l. If HasHistory(l) does not holds, the term HEntry(l) denotes the default entry of
l. If l is basic HEntry(l) = l. If none of the above is the case, then HEntry(l) is undefined.
Initially, ∀l ∈ S.HasHistory(l)⇒ θstate(l) = HEntry(l) ∧ θvar (l) = 0

V (l).

Reached locations by forks In order to denote the set of locations reached by following
a fork, we define the function Targetsθ : 2

S → 2S relative to θ.

Targetsθ(L)
def
= L ∪

⋃⋃⋃
l∈L

{n | n ∈ θstate(l) ∧ HISTORY(l)} ∪ {n | l r−→ n ∧ ENTRY(l)}

We use the notation Targetsθ(l) for Targetsθ({l}), if the argument is a singleton. Targets∗θ is
the reflexive transitive closure of Targetsθ.

Configuration vector transformation Taking a transition t : l
g,s,r,u−−−→ l′ entails in gen-

eral 1. executing a join to exit l, 2. taking the proper transition t itself, and 3. executing a
fork at l′. If l (respectively l′) is a basic location, part 1. (respectively 3.) is trivial. Together,
this defines a run-to-completion step. We represent a run-to-completion step formally by a
transformation function Tt, which depends on a particular transition t. The three parts of
this step are described as follows.

1. join:
(ρ, µ, ν, θ) is transformed to (ρ1, µ1, ν1, θ1) as follows:
ρ is updated to ρ1 := ρ[∀n ∈ ρ×(l). n → ∅].
µ is updated to µ1 := µ[∀n ∈ ρ×(l). n → λ].

12

ν is updated to ν1 := ν[∀n ∈ ρ×(l). n → λ].

If EXIT(l), the history is recorded. Let H be the set of superstates h ∈ ρ×(δ−1(l)),
where HasHistory(h) holds. Then

θ1
state := θstate [∀h ∈ H. h → HEntry(ρ(h))] and
θ1
var := θvar [∀h ∈ H. h → µ(h)].

If ¬EXIT(l) or H = ∅, then θ1 := θ.
2. proper transition part:
(ρ1, µ1, ν1, θ1) is transformed to (ρ2, µ2, ν2, θ2) := (ρ1[l′/l], r(µ1), r(ν1), θ1). r(µ1) de-
notes the updated values of the integers after the assignments and r(ν1) the updated
clocks after the resets.

3. fork:
(ρ2, µ2, ν2, θ2) is transformed to (ρ3, µ3, ν3, θ3) by moving the control to all proper
locations reached by the fork, i.e., those in Targets∗θ2(l′). Note that ρ2(n) = ∅ for all
n ∈ δ×(l′). Thus we can compute ρ3 as follows:

ρ3 := ρ2

Forall n ∈ Targets∗θ2(l′)

If ENTRY(n)

Then ρ3(δ−2(n)) := ρ3(δ−2(n)) ∪ {δ−1(n)}
Else ρ3(δ−1(n)) := {n} /* BASIC */

µ3 is derived from µ2 by first initializing all local variables of the superstates s in
Targets∗θ2(l′), i.e., µ3(V (s)) := 0V (s). If HasHistory(s), θvar(s) is used instead of 0

V (s).
Then all variable assignments and clock-resets along the pseudo-transitions belonging
to this fork are executed to update µ3 and ν3. The history does not change, θ3 is
identical to θ2.

Note that parts 1. and 3. correspond to the identity transformation, if l and l′ are basic
locations.
We define the configuration vector transformation Tt for a transition t : l

g,s,r,u−−−→ l′:

Tt(ρ, µ, ν, θ)
def
= (ρ3, µ3, ν3, θ3)

If the context is unambiguous, we use ρTt and νTt for the parts ρ3 respectively ν3 of the
transformed configuration corresponding to transition t.

Starting points for joins A superstate s can only be exited, if all its parallel substates
can synchronize on this exit. For an exit l ∈ δ(s) we recursively define the family of sets of
exits PreExitSets(l). Each element X of PreExitSets(l) is itself a set of exits. If transitions
are enabled to all exits in X, then all substates can synchronize.

13

PreExitSets(l)
def
=

⋃
n1,...,nk

�
1≤i≤k

PreExitSets(ni), where

k = |δ̃(δ−1(l))|, {n1, . . . , nk} ⊆ δ×(δ−1(l)),
∀i.EXIT(ni) ∧ ni −→ l ∈ T

δ−1({n1, . . . , nk}) = δ̃(l)

if
EXIT(l)∧
AND(δ−1(l))

⋃
m∈δ(δ−1(l))

PreExitSets(m), where m
g,r−→ l ∈ T

∪ {{l}}

 if

EXIT(l)∧
XOR(δ−1(l))

{} if BASIC(l)

Here, the operator � : (22
S
) × (22S

) → 22
S
is a product over families of sets, i.e., it maps

({A1, . . . , Aa}, {B1, . . . , Bb}) to {A1 ∪ B1, A1 ∪ B2, . . . , Aa ∪Bb} and is extended to operate
on an arbitrary finite number of arguments in the obvious way.

Rule predicates To give the rules, we need to define predicates that evaluate conditions
on the dynamic tree ρ. We introduce the set set of active leaves (in the tree described by ρ),
which are the innermost active states in a superstate l:

Leaves(ρ, l)
def
= {n ∈ ρ×(l) | ρ(n) = ∅}

The predicate expressing that all the substates of a state l can synchronize on a join is:

JoinEnabled(ρ, µ, ν, l)
def
= BASIC (l) ∨

∃X ∈ PreExitSets(l). ∀n ∈ Leaves(ρ, l). ∃n′ ∈ X. n
g−→ n′ ∧ g(µ, ν)

Note that JoinEnabled is trivially true for a basic location l.
For the invariants of a location we use a function Invν : S → {true, false}, that evaluates

the invariant of a given location with respect to a clock evaluation ν. We use the predicate
Inv(ρ, ν) to express, that for control situation ρ and clock valuation ν all invariants are
satisfied.

Inv(ρ, ν)
def
=

∧
n∈ρ×(root)

Invν(n)

We introduce the predicate TransitionEnabled over transitions t : l
g,s,r,u−−−→ l′, that evalu-

ates to true, if t is enabled.

TransitionEnabled(t : l
g,s,r,u−−−→ l′, ρ, µ, ν)

def
=

g(µ, ν) ∧ JoinEnabled(ρ, µ, ν, l) ∧ Inv(ρTt , νTt) ∧ ¬EXIT(l′)

Since urgency has precedence over delay, we have to capture the global situation, where
some urgent transition is enabled. We do this via the predicate UrgentEnabled over a con-
figuration.

14

UrgentEnabled(ρ, µ, ν)
def
= ∃t : l g,r,u−−→ l′. TransitionEnabled(t, ρ, µ, ν) ∧ u

∨ ∃t1 : l1
g1,s,r1,u1−−−−−→ l′1, t2 : l2

g2,s̄,r2,u2−−−−−→ l′2.
TransitionEnabled(t1, ρ, µ, ν) ∧
TransitionEnabled(t2, ρ, µ, ν) ∧ (u1 ∨ u2)

Rules We give now the action rule. It is not possible to break it in join, action, and fork
because the join can be taken only if the action is enabled and the action is taken only if the
invariants still hold after the fork.

TransitionEnabled(t : l
g,r,u−−→ l′, ρ, µ, ν)

action
(ρ, µ, ν, θ)

t−→ Tt(ρ, µ, ν, θ)

Here g is the guard of the transition and r the set of resets and assignments. The urgency flag
u has no effect here. This rule applies for action transitions between basic locations as well
as superstates. In the later case, this includes the appropriate joins and/or fork operations.
The delay transition rule is:

Inv(l)(ρ, ν + d) ¬UrgentEnabled(ρ, µ, ν)
delay

(ρ, µ, ν, θ)
d−→ (ρ, µ, ν + d, θ)

where ν + d stands for the current clock assignment plus the delay for all the clocks. Time
elapses in a configuration only when all invariants are satisfied and there is no urgent tran-
sition enabled.
The last transition rule reflects the situation, where two action transitions synchronize

via a channel c.

TransitionEnabled(t1 : l1
g1,c!,r1,u1−−−−−→ l′1, ρ, µ, ν) l1 �∈ δ×(l2)

TransitionEnabled(t2 : l2
g2,c?,r2,u2−−−−−−→ l′2, ρ, µ, ν) l2 �∈ δ×(l1)

sync
(ρ, µ, ν, θ)

t1,t2−−→ Tt2 ◦ Tt1(ρ, µ, ν, θ)

We choose a particular order here but it is not crucial since our well-formedness constraints
ensure, that the assignments cannot conflict with each other.
If no action transition is enabled or becomes enabled when time progresses, we have a

deadlock configuration, which is typically a bad thing. If in addition time is prevented to
elapse, this is a time stopping deadlock. Usually this is an error in the model, since it does
not correspond to any real world behavior.
Our rules describe all legal sequences of transitions. A trace is a finite or infinite sequence

of legal transitions, that start at the initial configuration S0, with all variables and clocks set
to 0. For our purposes it suffices to associate a hierarchical timed automaton semantically
with the (typically infinite) set of all derivable traces.

15

5 From Hierarchical Timed Automata to Uppaal

In this section we give a detailed description of our flattening procedure, that translates
our hierarchical timed automaton model to to a parallel composition of (flat) Uppaal timed
automata [LPY97]. For both models we have a syntactic representation via a XML document
type definition. The Document Type Definition in Appendix A describes the HTA syntax.
Appendix B contains the document type definition for Uppaal timed automata syntax.
The latter serves as a valid input format for the Uppaal verification tool from version
3.2 on. Our flattening procedure translates XML documents according to Appendix A to
XML documents according to Appendix B. It is implemented in Java, making use of XML
technology [XML] to ease lexing and parsing. Code and Java documentation can be found
at http://www.brics.dk/~omoeller/hta/vanilla-1/. Since this amounts to 9359 lines of
documented code, we strive to give a concise description here.
The fundamental concept of our flattening algorithm is the translation of every hierarchi-

cal superstate into one Uppaal automaton. All these automatons are put in parallel. This
can lead to an exponential blow-up in terms of templates, or in other words, of the model
size. This is a consequence of the fact that hierarchical models can be exponentially more
concise [AKY99]. Some auxiliary structures have to be introduced in order to mimic the
behavior of hierarchical machines adequately.

Outline of the Flattening Algorithm The basic concept of the procedure is the trans-
lation of instantiated templates. For every superstate occurring in the HTA model, one
Uppaal template is constructed. However, this cannot be done in an transducer fashion.
Since parallel states synchronize on exit, information about exits depends on other parts,
that may not have been translated yet.
Thus the translation has three phases: collection of instantiations, computation of global

joins, and post-processing channel communication.
For sake of clarity, we choose to omit various thinkable optimizations. For example, XOR

substates of XOR superstates or AND substates of AND superstates are not lifted, even if
there are no local variables on the lower levels.

5.1 Phase I: Collection of Instantiations

In this phase, the (implicit) hierarchical instantiation tree is traversed and for every hierar-
chical superstate, the skeleton of a (flat) template is constructed.
Initially, the direct children of the root are on the stack, i.e., the fundamental superstates

as contained in the 〈system〉 element.
How exactly the superstates I are translated is dependent on their type, that is either XOR
or AND .

16

http://www.brics.dk/~omoeller/hta/vanilla-1/

Algorithm: PHASE I: instantiateTemplates

input: Stack S of superstates to translate
output: Set T of (flat) timed automata

Set GJ of global join starting points

T := {Global Kickoff automaton for s ∈ S}
GJ := ∅

While notempty(S)
I := pop(S)
C := {non-basic locations in I}
Forall c ∈ C

push(S, [c in I])
/ [c in I] inherits all invariants attached to I /
create a location ĉ in Î
Ec := {set of entries of c in I}
Forall e ∈ Ec

create a committed location ĉe in Î
create a transition from ĉe to ĉ in Î
/ this transition carries a synchronization “enter ĉ via e!” /

If type(I) =XOR Then

GJ := GJ ∪ {c in I}

T := T ∪ {translation Î of superstate I, depending on type(I)}

XOR: – we have basic locations and transitions
– possibly, it contains superstates (〈component〉s)
– there is at least one 〈entry〉
– there might be 〈exit〉s, possibly declared default
– entries are connected to locations or entries of substates
– exits are reached from locations or exits of substates

AND: – there are no basic locations, no transitions
– there are two or more 〈component〉s
– there is at least one 〈entry〉
– entries correspond to 〈fork〉s
– there may be 〈exit〉s
– exits correspond to 〈join〉s

Translation of XOR Superstates. In a hierarchical XOR template X, at most one
location is active at the same point in time. To represent the situation that none is active,
we introduce —in the translation X̂—the special location X_IDLE, which is also the initial
state. All entries are translated by a transition from X_IDLE.

17

For every substate S of X we introduce a location S_ACTIVE_IN_X in X̂. In Figure 6,
the XOR superstate X has only one substate S. X and S are translated to the two timed
automatons in Figures 9 and 10.5

Moreover, for every entry e of S we introduce an auxiliary location in X̂, called X_AUX_S_e.
These are declared committed and are connected to S_ACTIVE_IN_X with a transition, that
synchronizes on a signal enter_S_in_X_via_e. Transitions leading originally to a S-entry
e in X are represented in the translation by leading to X_AUX_S_e and trigger—without
interleaving with other components—the activation of the substate S.
Exits of this substate S are more complicated, for they are only possible, if all non-basic

substates of S can exit. This is described as global joins, see Section 5.2.
If superstate X is inactivated, this is realized in the translation X̂ by transitions to

IDLE_X, that are triggered by an exit_X synchronization channel. If the superstate X has
a default exit, every non-auxiliary location in X̂ has a transition to IDLE_X.

Translation of AND Superstates. A hierarchical AND machine A is a parallel com-
position of sub-machines, where either none or all of them are active. In the translation Â
(Figure 3), these situations are represented by the locations A_IDLE and A_ACTIVE. If A is
activated, this is always specific to a designated entry ei of A. The sub-machines Si of A
are all entered, but the signals enter_Si_via_ej depend on the choice of ej. Therefore,
for every entry there is a separate chain leading from A_IDLE to A_ACTIVE. The auxiliary
locations in between are declared committed (marked by a c), thus there are no time delays
possible.
The exit of A is represented in Â via a transition from A_ACTIVE to A_IDLE, which carries

the synchronization signal exit_A.

5.2 Phase II: Computation of Global Joins

Transitions originating from superstates are a subtle issue, for they may require a cascade
of substate exits—called global join—in order to be taken.

5Vanilla-1 uses the un-prefixed component name Detail instead of the equivalent to S ACTIVE IN X,
because the length of names is limited.

c

c

c

cc

c

A IDLE enter Sn via eA,m!enter S1 via eA,m!

enter S1 via eA,1!enter A via e1?

A ACTIVEenter A via em?

exit A?

enter Sn via eA,1!

Figure 3: Translation of entering and exiting an AND component.

18

[sync]

L1

Sn

S2

S1

S3

LOC

[guard]

[assign]

L2

L3a

L3b

c

c

[sync]

LOC’

exit Sub Sn!

exit sub S1!

sub S1 ACTIVE in X

(trigger == N) ∧ [guard]

[assign]

(a) Part of hierarchical timed automaton X (b) Translation a the global join in X̂

Figure 4: The exit of S1 in superstate X gives rise to a number of global joins.

In Figure 4 (a), the substates S1, S2, and S3 have to be exited, before LOC can be reached.
If Sn is active in S2, it has to be exited as well. In phase I of our flattening algorithm, the
output GJ collects the topmost components, that have to be exited, if a transition (like to
LOC in Figure 4) has to be translated. One entry in GJ can give rise to a number of global
joins, possibly exponential in the depth of hierarchical structure. In Figure 4, the locations
L3a and L3b can be treated uniformly, but the location L1 has to be encoded in a different
global join, where there is no exit of substate Sn.
Every possible global join is translated to a sequence like in Figure 4 (b). The auxiliary

variable trigger keeps track of the number of active basic locations, that are connected to
this global join via a transition to an exit. It has to reach the threshold value N to enable the
first transition. Moreover, it has to be possible to mimic the transition to LOC, i.e., the guard
(if any) has to be satisfied and synchronization (if any) has to be possible. Synchronization
is not possible with transitions inside S1. If this situation arises in the given HTA model, we
introduce new channels to avoid this conflict and duplicate transitions accordingly, see 5.3.
Roughly this can be described with the pseudo-code expandGlobalJoins.

5.3 Phase III: Post-processing Channel Communication

If a transition in the hierarchical timed automaton formalism starts at a non-basic state S
and carries a synchronization, it cannot synchronize with a transition inside S. Since the
substate/superstate relation is lost in the translation, we have to resolve this scope conflict
explicitly. In Vanilla-1 we do this by introducing duplications of channels and transitions.
We start with a priority queue Q over transitions that possibly can cause a conflict. These

elements were collected during the construction of the global joins. Q is sorted obeying the
partial order introduced by the substate/superstate relation on instantiations. Then the

19

Algorithm: PHASE II: expandGlobalJoins
input: Set GJ of global join starting points
output: Auxiliary constructions: counters and guarded transitions

JoinTrees := ∅

Forall gj ∈ GJ
collect all trees t of control locations, that can synchronize to gj;
the leaves of t are sets of basic locations, that share transitions to exits x.

/
These sets are singletons, if x is an ordinary exit
and span over all basic locations in the superstate otherwise

/

JoinTrees := JoinTrees ∪ {t}
Forall tree ∈ JoinTrees

let L̂ := {l̂
∣∣ l is element in a basic location set of tree}

declare the counter triggertree

Forall l̂ ∈ L̂

Forall transitions k̂ → l̂

add the assignment triggertree := triggertree + 1 to k̂ → l̂

Forall transitions l̂ → m̂
add the assignment triggertree := triggertree − 1 to l̂ → m̂

let N := number of leaf sets in tree
let Stree := substates occurring in tree

Forall transition t starting at root(tree)
create a chain of transitions, starting with t̂,

corresponding to exiting every s ∈ Stree

/ see Figure 4 (b); note the additional guard triggertree==N /

post-processing can be described as in the pseudo-code snip-let postprocessChannels.

5.4 Correctness of the Translation

Starting at the root level, we can define a correspondence between every legal global state
of the HTA model and its translation into Uppaal timed automata.
Every superstate S in the hierarchical timed automaton model corresponds exactly to

one Uppaal timed automaton Ŝ. For proper configurations, we can relate ρ in the hierar-
chical timed automaton model to a control vector ρ̂ in the Uppaal model. For an Uppaal
automaton U , ρ̂(U) denotes the active location of U . For all XOR superstates X, ρ̂ contains
at position X̂ either a translation of a basic state l̂, sub_S_active_in_X, or IDLE, depending
on whether ρ(X) maps to a basic state, to a substate S, or to ∅. For AND superstate A,
ρ̂(Â) =IDLE if ρ(A) = ⊥ and ρ̂(Â) = {Ŝ |S parallel substate of A} otherwise. The value of
the introduced auxiliary variables is completely determined by the current control location,
i.e., it is redundant for the configuration and only serves to enable or disable transitions.

20

Algorithm: PHASE III: postprocessChannels

input: priorityQueue Q over (syncSignal, transition, instantiation)

While notempty(Q)
(syncSignal, transition, instantiation) := pop(Q)
If ∃ transition t with match(syncSignal) in instantiation:

create a new channel c
replace channel(syncSignal) on transition by c

Forall transitions t′ with match(syncSignal) outside instantiation
create a copy of t′, where channel(syncSignal) is replaced by c
if there is an entry of t′ in Q, add an entry for the created copy to Q

Proposition A hierarchical state s = (ρ, u) is reachable if and only if a corresponding
state ŝ = (ρ̂, u) is reachable.

Since entries and exits in the Uppaal translation are guaranteed to take place without
time delay (due to encoding with committed locations), data and clock evaluations u carries
over without changes. If a hierarchical trace t exits, it can be mimiced by the translation
in each step. Likewise, if a translation t̂ of a hierarchical trace is legal in the Uppaal
model, this is due to a sound sequence of entries and exits and corresponds to a trace in the
hierarchical timed automaton formalism.

21

6 Example: Translation of a Cardiac Pacemaker

In this section we apply our flattening procedure on a hierarchical timed automaton version
of a cardiac pacemaker model. This model is strongly motivated by the often-used UML
design example, see e.g. [Dou99]. The pacemaker is put in parallel with a model of a human
heart and a programmer, who changes operation modes on the pacemaker. We translate
the hierarchical timed automaton model of this composition to an equivalent (flat) Uppaal
timed automata model and explain the obtained automata in detail. Additionally, we report
on run-time data of the formal verification of this translation with respect to safety and
response properties.

Waiting

Pacing

Refractory

Ventricular

Waiting

Pacing

Refractory

Ventricular

A_Pacing

Refractory

Waiting

A_Pacing

Refractory

Waiting

Sensed

ToIdle?
ToInhibited?

Inhibited

RefractDone!

t==RefTime

ToOff?ToOn?

inAVI

ToTriggered?

Triggered

t:=0

V_Sense?

inIdle

AVI

t==Pulse_Width
VPace!

t:=0

t==senseTime

t:=0APace!

Atrial

RefractDone?

sense?
x:=0

x<=0

V_Sense!

APace?

VPace?

Ventricular

ToAVI?
Off

On

Self Inhibited

Idle

Self Triggered

Figure 5: Overview of a HTA model describing a functional component from a cardiac
pacemaker, notice the basic location Off and the superstate On. Initially, the VVI mode
(ventricular, self-triggered) is entered.

22

6.1 The Cardiac Pacemaker Model

The main component of the pacemaker is a XOR superstate with the two sub-states Off and
On. If the pacemaker is on, it can in the different modes Idle, AAI, AAT, VVI, VVT, and
AVI. The first letter indicates, to which chamber of the heart an electrical pacing pulse is
sent (articular or ventricular). The second letter indicates, which chamber of the heart is
monitored (articular or ventricular). In the Self Inhibited (I) modes, a naturally occurring
heartbeat blocks a pulse from being sent, whereas in the Self Triggered (T) modes a pacing
pulse will always occur, either triggered by a timeout or by the heart contraction itself.
For simplicity, we restrict to the operation modes Idle, VVT, VVI, and AVI. Of partic-

ular interest is the AVI mode, which is described as an AND superstate with two parallel
substates. Thus, in our example only the ventricular chamber is observed, but a pace signal
may be sent either to the ventricular or articular chamber.

APace?

VPace?

t := 0

t := 0

X

S

t ≤ DELAY AFTER V

t ≤ DELAY AFTER A

t == delay after A

t ≤ noncritical heartstop FLATLINE

t := 0

t == delay after Vt := 0

t := 0

t == noncritical heartstop

entry A

entry V

VSense!
listening == 1

t ≤ 0

t ≤ 0

listening == 0

Figure 6: A simplified model of the human heart.

Heart Model. We use a simplified model of a human heart, that might require pac-
ing (Figure 6). The human heartbeat is in fact a complex sequence of chamber contractions,
in this model we consider two chambers the (left) atrial and ventricular. A healthy heart
will contract those in a steady rhythm, dictated by the time delays DELAY AFTER V and
DELAY AFTER A. We use the local clock t to model this rhythm. Since in our example we
only monitor the ventricular chamber, this one synchronizes on VSense, in case that anybody
is listening (indicated by listening == 1).
After the contraction of the ventricular chamber, our model might non-deterministically

stop beating on own account. If it does so for too long, the critical state Flatline is reached.

23

The pacemaker can send an impulse either to the atrial or ventricular chamber, i.e.,
synchronize on channels APace or VPace.
The particular heart chamber then is scheduled for contraction in the very next moment,

no matter when these signals occur. This is modeled by using the default exit and re-entering
at one of the leftmost locations.

Programmer Model. The signals commandedOn!, commandedOff!, toIdle!, toVVI!,
toVVT!, and toAVI! are issued by a medical person, called the programmer in our con-
text. We do not make assumptions, on how or in which order she issues these signals,
but require a time delay of at least DELAY_AFTER_MODESWITCH after each signal. If one of
the signals commandedOff! or toIdle! was issued, this is recorded in the binary variable
wasSwitchedOff. Note that we equipped the pacemaker with default exits, thus it can al-
ways synchronize with these signals. The programmer is modeled by a two-state machine.
In the first state, Modeswitch, any signal can be issued while entering the second state. The
second state is left after exactly DELAY_AFTER_MODESWITCH time units. We introduced two
extra states Random and Idle, to encode alternative behavior that is not relevant here.
Additionally, we allow the programmer to terminate at some point, i.e., reach a spe-

cific stop state that can never be revoked. We use our global exit construction for this.
Termination is possible, whenever the programmer is in the Modeswitch state.

6.2 Translation to Uppaal Timed Automata

In the HTA model, the Programmer, Heart, and Pacemaker are put in parallel. Only the
Programmer is allowed to terminate.
In the translation, this yields

• one automaton to start the three parts (Figure 7)
• one automaton for the Programmer (Figure 8)
• two automata for the Heart, a top-level (Figure 9), where exit and re-entry happens
and one for the substate (Figure 10), where the heart is beating

• seven automata for the Pacemaker, put together as
– one automaton for the top-level (Figure 11), where the pacemaker is either On or

Off
– one automaton for the VVI operation mode (Figure 13)
– one automaton for the VVT operation mode (Figure 14)
– three automata for the AVI operation mode, one for the AND superstate (Fig-
ure 15) and two for the substates listening to the ventricular chamber (Figure 16)
and pacing the articular chamber (Figure 17)

Over all, the increase in terms of model size was noticable, but moderate. Table 2 lists
this data in detail. A large number of committed locations were introduced to encode entry
and global joins. However, these forks and joins are triggering a deterministic sequence of
actions and thus do not significantly increase the state space. A similar observation holds

24

start

L11 L12

L13
L14

PcAVIENTRYtrpcmkr2!

PrgrmmrMdswtchENTRYtrprgrmmrsm3!

HrtACtrctENTRYtrhrtsm4!

triggerVar1 == 1

xtSglNR3!

Figure 7: The KickOff automaton starts the three fundamental superstates. The transitions
on the far right correspond to the Programmer becoming inactive.

Idle

Random

Modeswitch ModeswitchDelay

PROGRAMMER_TIME <= MODE_SWITCH_DELAY

IDLE

PrgrmmrMdswtchENTRYtrprgrmmrsm3?
triggerVar1 := triggerVar1 + 1

PrgrmmrRdmENTRYtrprgrmmrsm3?

PrgrmmrIdlENTRYtrprgrmmrsm3?

commandedOn!

ALLOW_SWITCH_OFF == 1

commandedOff!

toInhibited!

toTriggered!

toInhibited!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1 toTriggered!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

ALLOW_SWITCH_OFF == 1

commandedOff! PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

commandedOn!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

toAVI!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

ALLOW_SWITCH_OFF == 1
toIdle!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

PROGRAMMER_TIME == MODE_SWITCH_DELAY
triggerVar1 := triggerVar1 + 1 xtSglNR3?

triggerVar1 := triggerVar1 - 1

Figure 8: Translation of the XOR superstate Programmer. In our context, the entry is
set to the Modeswitch state, where it is possible to issue control signals and move to the
ModeswitchDelay state. The programmer can terminate itself by taking the transition to
IDLE.

25

Detail

L1

L2

IDLE

L15

L16

HrtDtlVCtrctENTRYtrhrtsm4Dtl5!

HrtDtlACtrctENTRYtrhrtsm4Dtl5!

HrtACtrctENTRYtrhrtsm4?

HEART_TIME := 0

HrtVCtrctENTRYtrhrtsm4?
HEART_TIME := 0

xtSglNR4?

triggerVar2 == 1
APace?

HEART_TIME := 0, HEART_TIME := 0xtSglNR5!

triggerVar2 == 1
VPace?

HEART_TIME := 0, HEART_TIME := 0xtSglNR5!

Figure 9: Translation of the XOR top level superstate modeling the heart. Here we find the
entries and exits triggered by APace? and VPace?.

VContraction
HEART_TIME <= 0

AContraction
HEART_TIME <= 0

AfterVContraction
HEART_TIME <= HEART_DELAY_AFTER_V_CONTRACTION

AfterAContraction

HEART_TIME <= HEART_DELAY_AFTER_A_CONTRACTION

Stopped
HEART_TIME <= HEART_ALLOWED_STOP_TIME

Flatline

IDLE

HrtDtlACtrctENTRYtrhrtsm4Dtl5?

triggerVar2 := triggerVar2 + 1

HrtDtlVCtrctENTRYtrhrtsm4Dtl5?

triggerVar2 := triggerVar2 + 1

HEART_TIME == HEART_DELAY_AFTER_A_CONTRACTION

HEART_TIME := 0

V_listening == 0

V_listening == 1
VentricularChamberSense!

HEART_TIME == HEART_DELAY_AFTER_V_CONTRACTION

HEART_TIME := 0

HEART_TIME := 0

HEART_TIME == HEART_ALLOWED_STOP_TIME
HEART_TIME := 0

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

Figure 10: Translation of the XOR superstate, that encodes the beating heart. It can
nondeterministically take a transition to Stopped and—after some time delay—further to
Flatline. The exit transition to IDLE is triggered by a signal from the automaton in
Figure 9.

26

Off

subComponent

L3

L4

L5

L6

L7

IDLE

L17

L18

L19

L20

L21

L22 L23

L24L25

L26L27

L28L29

L30L31

L32 L33

L34L35

L36L37

L38L39

L40L41

L42 L43 L44 L45

L46
L47L48

L49

L50L51L52L53

L54L55L56L57

L58L59L60L61

PcOdfltENTRYtrpcmkr2sbCmpt6!

PcOIdlENTRYtrpcmkr2sbCmpt6!

PcOVVIENTRYtrpcmkr2sbCmpt6!
PcOVVTENTRYtrpcmkr2sbCmpt6!

PcOAVIENTRYtrpcmkr2sbCmpt6!

PcOffENTRYtrpcmkr2?

PcIdlENTRYtrpcmkr2?

PcVVTENTRYtrpcmkr2?

VVT_TIME := 0

PcVVIENTRYtrpcmkr2?

VVI_TIME := 0

PcAVIENTRYtrpcmkr2?

AVI_A_TIME := 0, AVI_V_TIME := 0

commandedOn?

VVI_TIME := 0

triggerVar3 == 1

commandedOff?
V_listening := 0, wasSwitchedOff := 1xtSglNR6!

triggerVar3 == 1

toIdle?

V_listening := 0, wasSwitchedOff := 1

xtSglNR6!

triggerVar3 == 1

toInhibited?

V_listening := 0, VVI_TIME := 0xtSglNR6!
triggerVar3 == 1 toTriggered?

V_listening := 0, VVT_TIME := 0

xtSglNR6!

triggerVar3 == 1

toAVI?

V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR6!

triggerVar4 == 1
commandedOff?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR7!
xtSglNR6!

triggerVar4 == 1

toIdle?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR7!

xtSglNR6!

triggerVar4 == 1

toInhibited?

V_listening := 0, V_listening := 0, VVI_TIME := 0xtSglNR7!

xtSglNR6!

triggerVar4 == 1

toTriggered?

V_listening := 0, V_listening := 0, VVT_TIME := 0

xtSglNR7!

xtSglNR6!

triggerVar4 == 1

toAVI?
V_listening := 0, V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR7!
xtSglNR6!

triggerVar5 == 1
commandedOff?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0
xtSglNR8!

xtSglNR6!

triggerVar5 == 1

toIdle?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR8!

xtSglNR6!

triggerVar5 == 1

toInhibited?

V_listening := 0, V_listening := 0, VVI_TIME := 0

xtSglNR8!

xtSglNR6!

triggerVar5 == 1

toTriggered?

V_listening := 0, V_listening := 0, VVT_TIME := 0

xtSglNR8!

xtSglNR6!

triggerVar5 == 1

toAVI?

V_listening := 0, V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR8!

xtSglNR6!

triggerVar7 == 2
commandedOff?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2

toIdle?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2

toInhibited?

V_listening := 0, V_listening := 0, VVI_TIME := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2

toTriggered?

V_listening := 0, V_listening := 0, VVT_TIME := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2
toAVI?

V_listening := 0, V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

Figure 11: Translation of the XOR superstate, that captures the topmost level of the pace-
maker. You can distinguish four entry pseudo-states on the left: the locations L4, L5, L6,
and L7 are correspond to entering the modes Idle, VVIMode, VVTMode, and AVIMode. The
pacemaker is on, when it control resides in subComponent and off, when the control is at Off
(far right). The outgoing chains from subComponent correspond to global joins and lead to
(committed) entry pseudo-states.

27

Idle

VVIModeL8

VVTModeL9

AVIModeL10

IDLE

PcOVVIdfltENTRYtrpcmkr2sbCmpt6VVIMd7!

PcOVVTdfltENTRYtrpcmkr2sbCmpt6VVTMd8!

PcOAVIdfltENTRYtrpcmkr2sbCmpt6AVIMd9!

PcOAVIENTRYtrpcmkr2sbCmpt6?
AVI_A_TIME := 0, AVI_V_TIME := 0

PcOVVTENTRYtrpcmkr2sbCmpt6?
VVT_TIME := 0

PcOVVIENTRYtrpcmkr2sbCmpt6?
VVI_TIME := 0

PcOIdlENTRYtrpcmkr2sbCmpt6?
triggerVar3 := triggerVar3 + 1

PcOdfltENTRYtrpcmkr2sbCmpt6?
VVI_TIME := 0

xtSglNR6?
triggerVar3 := triggerVar3 - 1

xtSglNR6?

xtSglNR6?

xtSglNR6?

Figure 12: Translation of the XOR superstate, where the pacemaker is active. It can reside
in the locations Idle, VVIMode, VVTMode, and AVIMode. There are no direct transitions
between these modes, the superstate has to be exited to change in between them.

Refractory

VVI_TIME <= REFRACTORY_TIME WaitingforSense
VVI_TIME <= SENSE_TIMEOUT

WaitingforSenseAU
VVI_TIME <= 0

Pacing
VVI_TIME <= 0

IDLE

PcOVVIdfltENTRYtrpcmkr2sbCmpt6VVIMd7?
triggerVar4 := triggerVar4 + 1

VVI_TIME == REFRACTORY_TIME
VVI_TIME := 0, V_listening := 1

VentricularChamberSense?
VVI_TIME := 0

VVI_TIME == SENSE_TIMEOUT
VVI_TIME := 0, V_listening := 0

VPace!
VVI_TIME := 0

xtSglNR7?
triggerVar4 := triggerVar4 - 1 xtSglNR7?

triggerVar4 := triggerVar4 - 1

xtSglNR7?
triggerVar4 := triggerVar4 - 1

xtSglNR7?
triggerVar4 := triggerVar4 - 1

Figure 13: Translation of the XOR superstate corresponding to the VVI Mode.

28

Refractory

VVT_TIME <= REFRACTORY_TIME WaitingforSense
VVT_TIME <= SENSE_TIMEOUT

WaitingforSenseAU
VVT_TIME <= 0

Pacing
VVT_TIME <= 0

IDLE

PcOVVTdfltENTRYtrpcmkr2sbCmpt6VVTMd8?
triggerVar5 := triggerVar5 + 1

VVT_TIME == REFRACTORY_TIME
VVT_TIME := 0, V_listening := 1

VentricularChamberSense?

VVT_TIME := 0,V_listening := 0
VVT_TIME == SENSE_TIMEOUT

VVT_TIME := 0, V_listening := 0

VPace!
VVT_TIME := 0

xtSglNR8?
triggerVar5 := triggerVar5 - 1 xtSglNR8?

triggerVar5 := triggerVar5 - 1

xtSglNR8?
triggerVar5 := triggerVar5 - 1

xtSglNR8?
triggerVar5 := triggerVar5 - 1

Figure 14: Translation of the XOR superstate corresponding to the VVT Mode.

IDLE ACTIVE

pacemaker2subComponent6AVIMode9PaceOnAVIdefaultENTRYfork1
pacemaker2subComponent6AVIMode9PaceOnAVIdefaultENTRYfork2

PcOAVIVPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9VPrt11!

PcOAVIAPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9APrt10!

PcOAVIdfltENTRYtrpcmkr2sbCmpt6AVIMd9?

xtSglNR9?

Figure 15: Translation of the AND superstate corresponding to the AVI mode. Merely the
two substates AVI-A and AVI-V are activated.

Refractory

Waiting

WaitingAU
AVI_V_TIME <= 0

APacing

IDLE
PcOAVIVPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9VPrt11?
triggerVar7 := triggerVar7 + 1

AVI_Refractory_Done?

V_listening := 1

VentricularChamberSense?
AVI_V_TIME := 0, V_listening := 0

A_LISTENING_TO_V == 0
V_listening := 1

AVI_Sense_from_V!
V_listening := 1

AVI_APace?
V_listening := 0

AVI_APace_Done?
xtSglNR11?

triggerVar7 := triggerVar7 - 1
xtSglNR11?
triggerVar7 := triggerVar7 - 1

xtSglNR11?
triggerVar7 := triggerVar7 - 1

xtSglNR11?
triggerVar7 := triggerVar7 - 1

Figure 16: Translation of the XOR superstate AVI-V.

29

Refractory

AVI_A_TIME <= REFRACTORY_TIME Waiting
AVI_A_TIME <= SENSE_TIMEOUT

APacing
AVI_A_TIME <= 0

APacingAU
AVI_A_TIME <= 0

IDLE

PcOAVIAPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9APrt10?
triggerVar7 := triggerVar7 + 1

AVI_A_TIME == REFRACTORY_TIME
AVI_Refractory_Done!
A_LISTENING_TO_V := 1, AVI_A_TIME := 0

AVI_Sense_from_V?
AVI_A_TIME := 0

AVI_A_TIME == SENSE_TIMEOUT
APace!

A_LISTENING_TO_V := 0, AVI_A_TIME := 0

AVI_APace!
AVI_A_TIME := 0

AVI_APace_Done!

AVI_A_TIME := 0

xtSglNR10?
triggerVar7 := triggerVar7 - 1

xtSglNR10?
triggerVar7 := triggerVar7 - 1

xtSglNR10?
triggerVar7 := triggerVar7 - 1

xtSglNR10?
triggerVar7 := triggerVar7 - 1

Figure 17: Translation of the XOR superstate AVI-A.

HTA model Uppaal model
XML tags 564 1191

proper control locations 35 45
pseudo-states / committed locations 33 63

transitions 47 177
variables and constants 33 72

formal clocks 6 6

Table 2: Translations of a hierarchical timed automaton description to an equivalent flat
Uppaal model. Both data formats are described in terms of XML grammars.

for the introduced auxiallary variables: The values of variables triggering global joins are
completely determined by the current control state. The auxillary channels introduced to
switch components from IDLE to ACTIVE and vice versa does not increase the complexity
significantly.

6.3 Model-Checking the Uppaal Model

We used the translation as input to the Uppaal tool. The system as described is not
deadlock free: when the programmer terminates after switching off the pacemaker, and
the heart stops beating, a configuration is reached where time can delay indefinetley. In
one variation, the programmer was explicitly disallowed to exit. In a second variation, the
pacemaker could not be switched off. In both variations, deadlock freedom was established
via a run of the model-checking engine on a true invariant with switch settings -Aa (convex
hull approxiation and active clock reduction switched on), and took 3.50 respectively 1.75
seconds.
We verified two desirable properties in the (non-variated) obtained hierarchical timed

automaton model.

30

(i) A[] (heart_sub.FLATLINE => (wasSwitchedOff == 1))

(ii) A[] (heart_Sub.AfterAContraction => A<> heart_Sub.AfterVContraction)

REFRACTORY_TIME = 50
SENSE_TIMEOUT = 15

DELAY_AFTER_V = 50
DELAY_AFTER_A = 5

HEART_ALLOWED_STOP_TIME = 135

MODE_SWITCH_DELAY = 66

Figure 18: Constants that yield property (i).

Property (i) is a safety property and
states, that the heart never stops for too
long, unless the pacemaker was switched off
by the programmer (in which case we cannot
give any guarantees). Property (ii) is a re-
sponse property and states, that after an ar-
ticular contraction, there will inevitably fol-
low a ventricular contraction. In particular
this guarantees, that no deadlocks are possi-
ble between these control situations.
The latest version of the Uppaal tool6 is

able to perform the model-checking of both
properties successfully in 11.83 repectively
4.26 seconds. The verification of the typically more expensive property (ii) is faster, since
here it is possible to apply a property preserving convex hull over-approximation, that is not
preservative with respect to property (i). We use a Sun Enterprise 450 with UltraSPARC-II
processors, 300 MHz, and made use of Uppaal’s rich set of optimization options. In par-
ticular the active clock reduction gives drastic improvements in model-checking time in this
example.
It is worthwhile to mention, that validity of property (i) is strongly dependent on the

parameter setting of the model. We use the constants from Figure 18. If the programmer
is allowed to swich between modes very fast, it is possible that she prevents the pacemaker
from doing its job. E.g., for MODE_SWITCH_DELAY = 65 the property (i) does not hold any
more. In practice it is often a problem to find parameter settings, that entail a safe or correct
operation of the system. In related work, an extended version of Uppaal is used to derive
parameters yieling property satisfaction automatically, see [HRSV01].

6A release version that supports—among other new features—the possibiliby to model-check response
properties is expected to be available in April 2001.

31

7 Summary

We defined a hierarchical timed automaton formalism and equipped it with a formal seman-
tics in terms of a transition system. We present a translation to Uppaal timed automata.
Our formalism is realized via the XML grammar in Appendix A. We implemented

our translation procedure in Java as a transformation from XML documents according to
Appendix A to XML documents according to Appendix B. The later is an input format
to the Uppaal tool. Our experimental data indicates, that the overhead introduced in the
translation is tolerable in terms of model size and run-times of the model-checking engine
on the translation.
The XML document type definition in A is designed to be flexible and extensible. It is

based on a template/instantiation mechanism and uses purely textual data for parts that sup-
posedly change frequently during model design, like the elements 〈declaration〉 or 〈system〉.
It is intended to eventually replace the Uppaal document format, thus the hierarchical fea-
tures are optional. In fact, if a document does not contain a 〈component〉 element, the only
difference between a document of type grammar Appendix A and a document of type gram-
mar Appendix B is, that the former declares initial states via 〈globalinit〉 element, whereas
the latter uses the 〈init〉 tag.

Future Work

Though we have a working prototype for a grammar and a translation, it is to be considered
work in progress. We made the implementation accessible for future reference as frozen
version at http://www.brics.dk/~omoeller/hta/vanilla-1/.
The translation Vanilla-1 is documented as a milestone to make experiments with. It

is not able to translate some powerful modeling constructs, though they are already present
syntactically.
Unresolved Issues in Vanilla-1 are in particular local declarations, scope overriding, his-

tory entries, synchronization mechanisms other than handshake communication, and param-
eterized templates.
In near future, it is planed to implement an editor for the hierarchical grammar in the

Uppaal tool. Simulation and verification of hierarchical models, however, are done on flat
Uppaal timed automata, constructed by future versions of Vanilla-1.
There is a strong correspondence between hierarchical and flat traces. However, the

imperative of introducing fresh and unambiguous names for flattened constructs makes it
difficult for a human user to see this immediately, compare Section 6. One possible remedy
for this is to equip the Uppaal simulator with the appropriate mapping, so it can display
names as specified in the hierarchical system. We feel that it is also necessary to provide
a translation of TCTL formulas to corresponding ones in the flattened version. This seems
to be purely syntactical, but strongly dependent on the mapping of local and global variables.

Looking ahead, we believe that there is a great potential for exploiting the hierarchical

32

http://www.brics.dk/~omoeller/hta/vanilla-1/

structure directly in terms of shaping more efficient model checking algorithms. Since we
want this to work in practice, we consider it crucial for this enterprise to get the hierarchical
modeling formalism right.

References

[ABB+] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio, Alexan-
dre David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet, Kim G. Larsen,
M. Oliver Möller, Paul Pettersson, Carsten Weise, , and Wang Yi. Uppaal -
Now, Next, and Future. To appear in Proceedings of the Summer School on
Modelling and Verification of Parallel Processes (MOVEP’2k), Nantes, France,
June 19 to 23, 2001. Available at http://www.docs.uu.se/~paupet/.

[AKY99] Rajeev Alur, Sampath Kannan, and Mihalis Yannakakis. Communicating Hier-
archical State Machines. In Proc. of the 26th International Colloquium on Au-
tomata, Languages, and Programming, volume 1644 of Lecture Notes in Computer
Science, pages 169–178. Springer–Verlag, 1999.

[BRJ98] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-
guage User Guide. Addison-Wesley, 1998.

[Dou99] Bruce Powel Douglass. Real-Time UML, Second Edition - Developing Efficitnt
Objects for Embedded Systems. Addison-Wesley, 1999.

[DY00] Alexandre David andWany Yi. Hierarchical Timed Automata. unpublished draft,
dated: April 23. Contact the authors adavid@DoCS.uu.se, yi@DoCS.uu.se, 2000.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 1987.

[HG97] David Harel and Eran Gery. Executable Object Modeling with Statecharts. IEEE
Computer, 7(30):31–42, July 1997.

[HNSY94] Thomas. A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Sym-
bolic Model Checking for Real-Time Systems. Information and Computation,
111(2):193–244, 1994.

[HRSV01] Thomas S. Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager.
Linear parametric model checking of timed automata. Research Series RS-01-5,
BRICS, Department of Computer Science, University of Aarhus, January 2001.
44 pp.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Jour-
nal on Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

33

http://www.docs.uu.se/~paupet/
http://www.docs.uu.se/~paupet/

[XML] Extensible Markup Language (XML) 1.0 (Second Edition), according to the W3C
Recommendation 6 October 2000, see http://www.w3.org/TR/REC-xml.

A The XML grammar huppaal-0.6

1 <!-- ~~~ -->
2 <!-- Tentative hierarchical document definition -->
3 <!-- -->
4 <!-- Synopsis: -->
5 <!-- XML, hierarchical Uppaal -->
6 <!-- ~~~ -->
7 <!-- @TABLE OF CONTENTS: [TOCD : 16:30 20 Feb 2001] -->
8 <!-- -->
9 <!-- [1] modified elements here -->

10 <!-- [2] classical things below -->
11 <!-- ~~ -->
12 <!-- @FILE: huppaal-0.6. dtd -->
13 <!-- @FORMAT: XML Document Type Definition -->
14 <!-- @AUTHOR: M. Oliver M’o’ller <omoeller@brics.dk> -->
15 <!-- @BEGUN : Wed Oct 18 14:02:43 2000 -->
16 <!-- @VERSION V0.6 Sun Apr 8 18:18:50 2001 -->
17 <!-- ~~~ -->
18

19 <!ELEMENT hta (imports?, declaration?, template+, instantiation?, system,
20 globalinit*)>
21 <!ELEMENT imports (#PCDATA)>
22 <!ELEMENT declaration (#PCDATA)>
23 <!-- notes on template:
24 1. components seem to be a generalization of locations;
25

26 -->
27 <!ELEMENT template (name,
28 parameter?,
29 declaration?,
30 entry+,
31 fork*,
32 exit*,
33 join*,
34 location*,
35 component*,
36 transition*
37)>
38 <!ATTLIST template type CDATA #IMPLIED> <!-- NN -->
39 <!-- the type is intended to be "XOR" (default) or "AND"
40 "XOR" means:
41 * we have locations and transitions
42 * possibly, we have ’ components’ as generalisations of transitions
43 * there is an < entry>
44 * there might be an < exit>

34

http://www.w3.org/TR/REC-xml

45 * there is no fork
46 * there is no join
47

48 "AND" means:
49 * there are no locations, no transitions
50 * there are two or more < component> tags
51 * there is a fork
52 * there is a <entry>
53 * every <entry> points to a <fork>, thus there is a fork
54 * every fork/join connects * every* component, that is present
55 * optionally, there is an <exit> location
56 * optionally, there is a join
57

58 -->
59 <!-- " history" is not specified explicitly in this grammar.
60 The reason for this is, that having a history is not an isolated
61 property, but requires a designated < entry> that has the
62 attribute type="history".
63 this will serve as a defintion. -->
64

65 <!-- the instantiates attribute refers to the (textual) NAME of the template
66 (this makes imports easier)
67 The optional labels include invariants, and (possibly) comments. -->
68 <!ELEMENT component (name, label *)>
69 <!ATTLIST component instantiates CDATA #REQUIRED
70 withparameters CDATA #IMPLIED
71 id ID #REQUIRED
72 x CDATA #IMPLIED
73 y CDATA #IMPLIED>
74 <!-- A connection from here has no source ; the target is the location of fork
75 it leads to.
76 Multiple connections correspond to non-deterministic branching.
77 The type-attribute is uses to denote entries history (or default?) -->
78 <!ELEMENT entry (name, connection*, entrypoint?)>
79 <!ATTLIST entry id ID #REQUIRED
80 type CDATA #IMPLIED
81 x CDATA #IMPLIED
82 y CDATA #IMPLIED>
83

84 <!-- if an entrypoint is defined, it * replaces* the entry graphically, if the
85 inside of the component is shown
86 (thus, the transition from it is nicer to display).
87 The notation for this is a small bar (stub) with outgoing arrow and
88 a name
89 (no name means " default entry "; an alternative notation for this is a
90 small bullet)
91 There can be at most one entrypoint per entry -->
92 <!ELEMENT entrypoint EMPTY>
93 <!ATTLIST entrypoint x CDATA #IMPLIED
94 y CDATA #IMPLIED>
95

35

96 <!-- connections from a fork do not have source , but only a target -->
97 <!ELEMENT fork (name?, connection*)>
98 <!ATTLIST fork id ID #REQUIRED
99 x CDATA #IMPLIED

100 y CDATA #IMPLIED>
101

102 <!-- the connection to an exit does not have a target , only a source;
103 the type-attribute is used to declare an exit " default-exit"
104 default-exits are only allowed in XOR templates.
105 -->
106 <!ELEMENT exit (name?, connection*, exitpoint*)>
107 <!ATTLIST exit id ID #REQUIRED
108 type CDATA #IMPLIED
109 x CDATA #IMPLIED
110 y CDATA #IMPLIED>
111

112 <!-- exitpoints are a notational convenience, and semantically identical
113 with the exit they point to (exit attribute).
114 there can be arbitrary many exitpoints corresponding to the same exit -->
115 <!ELEMENT exitpoint EMPTY>
116 <!ATTLIST exitpoint id ID #REQUIRED
117 x CDATA #IMPLIED
118 y CDATA #IMPLIED>
119

120 <!-- connections to joins do not have a target , only a source -->
121 <!ELEMENT join (name?, connection*)>
122 <!ATTLIST join id ID #REQUIRED
123 x CDATA #IMPLIED
124 y CDATA #IMPLIED>
125

126 <!-- point to an entry in a global system component, i.e., an instantiation
127 and an entry (ref) of it.
128 the attibute CDATA is by default "no", other values are
129 "all" or " specified".
130 In the "all" case, every exit is a possible starting point.
131 In the " specified" case, the connection elements point to the relevant
132 exits and can also carry synchronisations/guards/assignments.
133 -->
134 <!ELEMENT globalinit (connection)*>
135 <!ATTLIST globalinit instantiationname CDATA #REQUIRED
136 ref IDREF #IMPLIED
137 canexit CDATA #IMPLIED>
138

139 <!-- ~~ connections, aka pseudo-transitions ~~~~~~~~~~~~~~~~ -->
140 <!ELEMENT connection (source ?, target ?, label *, nail*)>
141 <!ATTLIST connection type CDATA #IMPLIED
142 x CDATA #IMPLIED
143 y CDATA #IMPLIED>
144

145 <!-- ~~ -->
146 <!-- [1] modified elements here -->

36

147 <!-- ~~ -->
148

149

150 <!-- if source points to a component, then
151 exitref: points to an exit or exitpoint
152 of the template the component instantiates -->
153 <!ELEMENT source EMPTY>
154 <!ATTLIST source ref IDREF #REQUIRED
155 exitref IDREF #IMPLIED>
156

157 <!-- if target points to a component, then
158 entryref: points to an entry or entrypoint
159 of the template the component instantiates -->
160 <!ELEMENT target EMPTY>
161 <!ATTLIST target ref IDREF #REQUIRED
162 entryref IDREF #IMPLIED>
163

164 <!-- ~~ -->
165 <!-- [2] classical things below -->
166 <!-- ~~ -->
167

168 <!ELEMENT name (#PCDATA)>
169 <!ATTLIST name x CDATA #IMPLIED
170 y CDATA #IMPLIED>
171 <!ELEMENT parameter (#PCDATA)>
172 <!ATTLIST parameter x CDATA #IMPLIED
173 y CDATA #IMPLIED>
174 <!ELEMENT location (name, label *, urgent ?, committed?)>
175 <!ATTLIST location id ID #REQUIRED
176 x CDATA #IMPLIED
177 y CDATA #IMPLIED>
178 <!ELEMENT urgent EMPTY>
179 <!ELEMENT committed EMPTY>
180

181 <!-- kind: " assignment", " guard ", " synchronisation", " invariant" -->
182 <!ELEMENT label (#PCDATA)>
183 <!ATTLIST label kind CDATA #REQUIRED
184 x CDATA #IMPLIED
185 y CDATA #IMPLIED>
186 <!ELEMENT nail EMPTY>
187 <!ATTLIST nail x CDATA #REQUIRED
188 y CDATA #REQUIRED>
189 <!ELEMENT instantiation (#PCDATA)>
190 <!ELEMENT system (#PCDATA)>
191

192 <!ELEMENT transition (source , target , label *, nail*)>
193 <!ATTLIST transition x CDATA #IMPLIED
194 y CDATA #IMPLIED>

37

B The XML grammar uppaal-1.4

1 <!-- ~~~ -->
2 <!-- dtd distributed by Gerd on 19 Feb 2001 as part of -->
3 <!-- Uppaal -3.1.39 -->
4 <!-- -->
5 <!-- Now with < label> tag, using JAXP 1.1 (final version) -->
6 <!-- -->
7 <!-- Synopsis: -->
8 <!-- XML, hierarchical Uppaal -->
9 <!-- ~~~ -->

10 <!-- @FILE: uppaal -1.4.dtd -->
11 <!-- @FORMAT: XML Document Type Definition -->
12 <!-- @AUTHOR: Gerd Behrmann <behrmann@cs.auc.dk> -->
13 <!-- @BEGUN : Wed Feb 19 14:52:05 2001 -->
14 <!-- @VERSION: Mon Feb 19 20:45:53 2001 -->
15 <!-- ~~~ -->
16

17 <!ELEMENT nta (imports?, declaration?, template+, instantiation?, system)>
18 <!ELEMENT imports (#PCDATA)>
19 <!ELEMENT declaration (#PCDATA)>
20 <!ELEMENT template (name, parameter?, declaration?, location*, init?,
21 transition*)>
22 <!ELEMENT name (#PCDATA)>
23 <!ATTLIST name x CDATA #IMPLIED
24 y CDATA #IMPLIED>
25 <!ELEMENT parameter (#PCDATA)>
26 <!ATTLIST parameter x CDATA #IMPLIED
27 y CDATA #IMPLIED>
28 <!ELEMENT location (name?, invariant?, urgent ?, committed?)>
29 <!ATTLIST location id ID #REQUIRED
30 x CDATA #IMPLIED
31 y CDATA #IMPLIED>
32 <!ELEMENT init EMPTY>
33 <!ATTLIST init ref IDREF #IMPLIED>
34 <!ELEMENT invariant (#PCDATA)>
35 <!ATTLIST invariant x CDATA #IMPLIED
36 y CDATA #IMPLIED>
37 <!ELEMENT urgent EMPTY>
38 <!ELEMENT committed EMPTY>
39 <!ELEMENT transition (source , target , label *, nail*)>
40 <!ATTLIST transition x CDATA #IMPLIED
41 y CDATA #IMPLIED>
42 <!ELEMENT source EMPTY>
43 <!ATTLIST source ref IDREF #REQUIRED>
44 <!ELEMENT target EMPTY>
45 <!ATTLIST target ref IDREF #REQUIRED>
46 <!ELEMENT label (#PCDATA)>
47 <!ATTLIST label kind CDATA #REQUIRED
48 x CDATA #IMPLIED

38

49 y CDATA #IMPLIED>
50 <!ELEMENT nail EMPTY>
51 <!ATTLIST nail x CDATA #REQUIRED
52 y CDATA #REQUIRED>
53 <!ELEMENT instantiation (#PCDATA)>
54 <!ELEMENT system (#PCDATA)>

39

Glossary

configuration A configuration is a snapshot of the system, where every location is either
active or inactive and every variable and clock is set to one specific value. A
configuration is proper, if all active basic locations are proper.

entry A pseudo-location, that is passed to activate the corresponding superstate.
entry point Copy of an entry, displayed as bullet (•), annotated with the name of the

entry.
This is a notational/graphical convenience with the semantics of an alias.

exit A pseudo-location, that is passed to inactivate the corresponding superstate.
exit point Copy of an exit, displayed as bullseye (•©).

This is a notational/graphical convenience with the semantics of an alias.
fork Auxiliary structure used in AND superstates.

A fork connects an entry of the superstate with the entries of the parallel
substates, thus activating them.

global join Synchronous exit of various parallel superstates.
A global join gives rise to a tree of joins (connected via exits), that is specific
to a root transition (the one that is executed immediately after the join).
A global join can only be started, if all participants can synchronize on their
exit. It is executed without interruption, including the execution of the root
transition. (In the Uppaal translation, this requires special constructions, see
Section 5.2.)

join Auxiliary structure used in AND superstates.
A join connects exits from each of the enclosed superstates with an exit of the
superstate itself.

location The basic unit of control.
A location can be basic or a superstate, i.e., itself a hierarchical timed au-
tomaton. Basic locations are either proper or pseudo-locations. At any time,
a location is either active or inactive.

pseudo-location Auxiliary location to encode complex transitions.
Though physically a (committed) location, this does usually not correspond to
a state the modeled system can be in and exists solely for modeling purposes,
typically to encode forks, joins, or multi-synchronization.

pseudo-transitions Auxiliary transition to encode a part of a run-to-completion step, e.g., to en-
code entry, exit, or multi-synchronization.
Pseudo-transitions are connected to at least one committed location. Restric-
tions on allowed guards, assignments, and synchronizations apply.

pre-exit A location that has a transition to an exit.
run-to-completion step A sequence of transitions, containing one proper transition and arbitrary many

pseudo-transitions.
This amounts to a macro-transition leading from one proper configuration to
to a subsequent proper configuration.

superstate A non-basic location.
We distinguish XOR superstates (exactly one of the substates is active, if the
superstate is active) and AND superstates (parallel composition: all substates
are active, if the superstate is active).

transition A transition connects two locations, carrying guards, assignments, and syn-
chronization.
If these are non-basic, the transition connects to specific entries or exits. A
transition is either proper or pseudo.

Recent BRICS Report Series Publications

RS-01-11 Alexandre David and M. Oliver Möller. From HUPPAAL to
UPPAAL : A Translation from Hierarchical Timed Automata to
Flat Timed Automata. March 2001. 40 pp.

RS-01-10 Daniel Fridlender and Mia Indrika. Do we Need Dependent
Types? March 2001. 6 pp. Appears inJournal of Functional
Programming, 10(4):409–415, 2000. Superseeds BRICS Report
RS-98-38.

RS-01-9 Claus Brabrand, Anders Møller, and Michael I. Schwartzbach.
Static Validation of Dynamically Generated HTML. February
2001. 18 pp.

RS-01-8 Ulrik Frendrup and Jesper Nyholm Jensen.Checking for Open
Bisimilarity in the π-Calculus. February 2001. 61 pp.

RS-01-7 Gregory Gutin, Khee Meng Koh, Eng Guan Tay, and Anders
Yeo. On the Number of Quasi-Kernels in Digraphs. January
2001. 11 pp.

RS-01-6 Gregory Gutin, Anders Yeo, and Alexey Zverovich. Travel-
ing Salesman Should not be Greedy: Domination Analysis of
Greedy-Type Heuristics for the TSP. January 2001. 7 pp.

RS-01-5 Thomas S. Hune, Judi Romijn, Marïelle Stoelinga, and
Frits W. Vaandrager. Linear Parametric Model Checking of
Timed Automata. January 2001. 44 pp. To appear in Margaria
and Yi, editors, Tools and Algorithms for The Construction and
Analysis of Systems: 7th International Conference, TACAS ’01
Proceedings, LNCS, 2001.

RS-01-4 Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim G.
Larsen, Paul Pettersson, and Judi Romijn. Efficient Guiding
Towards Cost-Optimality inUPPAAL. January 2001. 21 pp.
To appear in Margaria and Yi, editors, Tools and Algorithms
for The Construction and Analysis of Systems: 7th International
Conference, TACAS ’01 Proceedings, LNCS, 2001.

