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The Complexity of Constructing Evolutionary Trees

Using Experiments

Gerth Stølting Brodal∗ Rolf Fagerberg∗

Christian N. S. Pedersen∗ Anna Östlin†

Abstract

We present tight upper and lower bounds for the problem of construct-

ing evolutionary trees in the experiment model. We describe an algorithm

which constructs an evolutionary tree of n species in time O(nd logd n)
using at most ndd/2e(log2dd/2e−1 n + O(1)) experiments for d > 2, and
at most n(log n + O(1)) experiments for d = 2, where d is the degree

of the tree. This improves the previous best upper bound by a fac-

tor Θ(log d). For d = 2 the previously best algorithm with running time

O(n log n) had a bound of 4n logn on the number of experiments. By

an explicit adversary argument, we show an Ω(nd logd n) lower bound,

matching our upper bounds and improving the previous best lower bound

by a factor Θ(logd n). Central to our algorithm is the construction and

maintenance of separator trees of small height. We present how to main-

tain separator trees with height log n + O(1) under the insertion of new

nodes in amortized time O(log n). Part of our dynamic algorithm is an

algorithm for computing a centroid tree in optimal time O(n).
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1 Introduction

The evolutionary relationship for a set of species is commonly described by an

evolutionary tree, where the leaves correspond to the species, the root corre-

sponds to the most recent common ancestor for the species, and the internal

nodes correspond to the points in time where the evolution has diverged in dif-

ferent directions. The evolutionary history for a set of species is rarely known,

hence estimating the true evolutionary tree for a set of species from obtainable

information about the species is of great interest. Estimating the true evolu-

tionary tree computationally requires a model describing how to use available

information about species to estimate aspects of the true evolutionary tree.

Given a model, the problem of estimating the true evolutionary tree is often

referred to as constructing the evolutionary tree in that model.

In this paper we study the problem of constructing evolutionary trees in

the experiment model proposed by Kannan, Lawler and Warnow in [16]. In

this model the information about the species is obtained by experiments which

can yield the evolutionary tree for any triplet of species, cf. Figure 1. The

problem of constructing an evolutionary tree for a set of n species in the ex-

periment model is to construct a rooted tree with no unary internal nodes and

n leaves labeled with the species such that the topology of the constructed

tree is consistent with all possible experiments involving the species. Hence,

the topology of the constructed tree should be such that the induced tree for

any three species is equal to the tree returned by an experiment on those three

species.

The relevance of the experiment model depends on the possibility of per-

forming experiments. A standard way to express phylogenetic information

is by a distance matrix. A distance matrix for a set of species is a matrix

where entry Mij represents the evolutionary distance between species i and j,
measured by some biological method (see [16] for further details). For three

species a, b and c where Mab < min{Mac,Mbc} it is natural to conclude that

the least common ancestor of a and b is below the least common ancestor of a
and c, i.e. the outcome of an experiment on a, b and c can be decided by

inspecting Mab, Mac and Mbc. The consistency of experiments performed by

inspecting a distance matrix depends entirely on the distance matrix. Kan-

nan et al. in [16] de�ne a distance matrix as noisy-ultrametric if there exists

a rooted evolutionary tree such that for all triplets of species a, b and c it

holds that Mab < min{Mac,Mbc} if and only if the least common ancestor of a
and b is below the least common ancestor of a and c in the rooted evolutionary

tree. Hence, if a noisy-ultrametric distance matrix for the set of species can

be obtained, it can be used to perform experiments consistently. Another and

more direct method for performing experiments is DNA-DNA hybridization as

described by Sibley and Ahlquist in [23]. In this experimental technique one
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measures the temperature at which single stranded DNA from two di�erent

species bind together. The binding temperature is correlated to the evolution-

ary distance, i.e. by measuring the binding temperatures between DNA strands

from three species one can decide the outcome of the experiment by deciding

which pair of the three species bind together at the highest temperature.

Kannan et al. introduce and study the experiment model in [16] under

the assumption that experiments are �awless in the sense that they do not

contradict each other, i.e. it is always possible to construct an evolutionary

tree for a set of species that is consistent with all possible experiments in-

volving the species. They present algorithms for constructing evolutionary

trees with bounded as well as unbounded degree, where the degree of a tree

is the maximum number of children for an internal node. For constructing

binary evolutionary trees they present three di�erent algorithms with running

times O(n log n), O(n log2 n) and O(n2) respectively, using 4n log n, n log3/2 n
and n log n experiments respectively, where log n denotes log2 n. For con-

structing an evolutionary tree of degree d they present an algorithm with

running time O(n2) using O(dn log n) experiments. Finally, for the general

case they present an algorithm with running time O(n2) using O(n2) experi-
ments together with a matching lower bound. Kao, Lingas, and Östlin in [17]

present a randomized algorithm for constructing evolutionary trees of degree d
with expected running time O(nd log n log log n). They also prove a lower

bound Ω(n log n + nd) on the number of experiments. The best algorithm so

far for constructing evolutionary trees of degree d is due to Lingas, Olsson, and

Östlin, who in [19] present an algorithm with running time O(nd log n) using
the same number of experiments.

In this paper we present the �rst tight upper and lower bounds for the prob-

lem of constructing evolutionary trees of degree d in the experiment model.

We present an algorithm which constructs an evolutionary tree for n species

in time O(nd logd n) using at most ndd/2e(log2dd/2e−1 n + O(1)) experiments

for d > 2, and at most n(log n + O(1)) experiments for d = 2, where d is the

degree of the constructed tree. The algorithm is a further development of an

algorithm from [19]. Our construction improves the previous best upper bound

by a factor Θ(log d). For d = 2 the previously best algorithm with running

time O(n log n) had a bound of 4n log n on the number of experiments. The

improved constant factors on the number of experiments are important be-

cause experiments are likely to be expensive in practice, cf. Kannan et al. [16].

By an explicit adversary argument, we show an Ω(nd logd n) lower bound,

matching our upper bounds and improving the previous best lower bound by

a factor Θ(logd n).
Our algorithm also supports the insertion of new species with a running

time of O(md logd(n + m)) using at most mdd/2e(log2dd/2e−1(n + m) + O(1))
experiments for d > 2, and at most m(log(n + m) + O(1)) experiments for
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d = 2, where n is the number of species in the tree to begin with, m is the

number of insertions, and d is the maximum degree of the tree during the

sequence of insertions.

Central to our algorithm is the construction and maintenance of separator

trees of small height. We refer the reader to Section 2 for a detailed de�nition.

The special class of separator trees we in Section 2 denote 1/2-separator trees

can also be denoted centroid trees, since the separating nodes are then cen-

troids. A centroid of a tree is a node whose removal disconnects the tree into

components each containing at most half of the nodes in the tree. Jordan's

classical result establishes that any tree has either one or two centroid [15, 14].

Goldman [12] and Megiddo et al. [21] showed how to compute a centroid of

a tree in O(n) time. Recursively locating centroids for each resulting compo-

nent gives a centroid tree. By recursive applications of the algorithms from

[12, 21] it follows that a centroid tree can be constructed in time O(n log n)
(see Lemma 1 for further details). In Section 2, Lemma 2, we present an al-

gorithm for constructing centroid trees, i.e. 1/2-separator trees, with optimal

running time O(n). Schwarz, Smid and Snoeyink [22] describe how to compute

1/2-separator trees (in [22] denoted 1/2-decomposition trees) for the case of

binary trees in time O(n), by modifying the algorithm of Guibas, Hershberger,

Leven, Sharir and Tarjan [13] for computing centroid decompositions (in [13],

centroid refers to a centroid edge in a binary tree).

In general, separator trees are a relaxation of centroid trees where the

components resulting from deleting a node are not required to contain at most

half of the nodes. Schwarz et al. [22] showed how to maintain 3/4-separator

trees in amortized time O(log n) per insertion for the case of binary trees.

The height of a 3/4-separator tree is bounded by log4/3 n. In Section 2 we

show how to maintain separator trees in amortized logarithmic time under the

insertion of new nodes, such that the height of the separator tree is bounded by

log n+O(1). Our main result for the dynamic case is summarized in Theorem 2.

Inequality (1) is the essential bound required in the analysis of the number of

experiments performed in our application to evolutionary trees.

The basic idea of transforming a tree into a new tree with logarithmic

height is a fundamental approach used in many algorithms. For designing dy-

namic algorithms on trees several other general tree transformation techniques

exist: Frederickson's topology trees [10, 11], Sleator and Tarjan's dynamic

trees [24], and Alstrup et al.'s top trees [1, 2]. One application of such a tree

transformation is in Cohen and Tamassia's algorithm for dynamic expression

tree evaluation [7]. For parallel algorithms on trees related techniques exist,

e.g. the centroid decomposition technique of Megiddo [20] and the accelerated

centroid decomposition technique of Cole and Vishkin [8] (in [8, 20], centroid

refers to the centroid paths in a tree).

The rest of this paper is organized as follows. In Section 2 we de�ne
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Figure 1: The four possible outcomes of an experiment for three species a, b
and c.

separator trees and describe how to construct and e�ciently maintain separator

trees of small height. In Section 3 we present our algorithm for constructing

and maintaining evolutionary trees. In Section 4 and 5 the lower bound is

proved using an explicit adversary argument. The adversary strategy used is

an extension of an adversary used by Borodin, Guibas, Lynch, and Yao [5]

for proving a trade-o� between the preprocessing time of a set of elements

and membership queries, and Brodal, Chaudhuri, and Radhakrishnan [6] for

proving a trade-o� between the update time of a set of elements and the time

for reporting the minimum of the set.

2 Separator Trees

In this section we de�ne separator trees and present e�cient algorithms for

their constructing and maintenance.

De�nition 1 Let T be an unrooted tree with n nodes. A separator tree ST

for T is a rooted tree on the same set of nodes, de�ned recursively as follows:

The root of ST is a node u in T , called the separator node. The removal of u
from T disconnects T into disjoint trees T1, . . . , Tk, where k is the number of

edges incident to u in T . The children of u in ST are the roots of separator

trees for T1, . . . , Tk.

Clearly, there are many possible separator trees ST for a given tree T . An
example is shown in Figure 2.

For later use, we note the following facts for separator trees:

Fact 1 Let ST be a separator tree for T , and let v be a node in T . If Sv

denotes the subtree of ST rooted at v, then:

1. The subgraph Tv induced by the nodes in Sv is a tree, and Sv is a separator

tree for Tv.

2. For any edge from T with exactly one endpoint in Tv, the other endpoint

is an ancestor of v in ST , and each ancestor of v can be the endpoint of

at most one such edge.
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Figure 2: A tree T (left) and a separator tree ST for T (right).

The main point of a separator tree ST is that it may be balanced, even

when the underlying tree T is not balanced for any choice of root. The notion

of balanced separator trees is contained in the following de�nition, where the

size |T | of a tree T denotes the number of nodes in T , and where Ti refers to

the trees T1, . . . , Tk from De�nition 1.

De�nition 2 A separator tree is a t-separator tree, for a threshold t ∈ [1/2, 1],
if |Ti| ≤ t|T | for each Ti and the separator tree for each Ti is also a t-separator
tree.

Note that a t-separator tree is also a t′-separator tree for all t′ ≥ t. In

Section 2.1 we �rst show how to construct 1/2-separator trees in linear time.

Such a tree has height at most blog nc. We then in Section 2.2 consider dynamic

separator trees and show how to maintain separators trees with small height in

logarithmic time per insertion. A simple algorithm yields height O(log n) and
a more involved algorithm improves the height bound to log n+O(1). Finally,
we in Section 2.3 show how to extend the algorithms with a speci�c ordering of

the children facilitating the use in Section 3 of separator trees for the e�cient

construction and maintenance of evolutionary trees in the experiment model.

2.1 Constructing Separator Trees

In Lemma 1 below we �rst give a simple algorithm for constructing 1/2-

separator trees in time O(n log n). In Lemma 2 we then improve the running

time of the algorithm to O(n) by adopting additional data structures.

We need the following de�nitions for our algorithms. For a node v in a

rooted tree T , we de�ne the size of v, denoted |v|, to be the number of nodes

in the subtree rooted at v. We let the heavy-child of a node be a child of

maximum size, where ties are broken arbitrarily. The edges to the heavy-

children de�ne a decomposition of T into disjoint heavy-paths. All nodes on a

heavy-path, except the �rst node, are heavy-children, and the last node is a

leaf.
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Lemma 1 Given a tree T with n nodes, a 1/2-separator tree for T can be

constructed in time O(n log n).

Proof. We �rst make T a rooted tree by letting an arbitrary node of T be the

root. For all nodes v in T we compute |v| and identify the heavy-paths in T
in one traversal of T in time O(n). We identify the root of the 1/2-separator

tree ST as follows: We start at the root r of T and follow the heavy-path

from r to the lowest node u where |u| ≥ n/2 (possibly u = r), i.e. |v| < n/2
for all children v of u. The node u becomes the root of ST . By removing u
from T , the tree T splits into disjoint trees T1, . . . , Tk, where each tree Ti has

size ni ≤ n/2, since the tree Tj containing the parent of u has size at most

n − |u| ≤ n/2. We recursively compute 1/2-separator trees for each Ti. The

root of each recursively constructed 1/2-separator tree becomes a child of u
in ST .

Locating u takes time O(n) since the heavy-path starting at the root of T
contains at most n nodes. This implies that the construction time is bounded

by T (n), where T (n) is given by the recurrence

T (n) ≤ cn +
k∑

i=1

T (ni) ,

for some positive constant c, where
∑k

i=1 ni = n − 1 and ni ≤ n/2 for all

i = 1, . . . , k. By induction it follows that T (n) ≤ cn(log n + 1). 2

The algorithm of Lemma 1 recomputes the sizes of all nodes and the heavy-

paths for each recursive call. Furthermore it does not exploit that the sizes

along a heavy-path is monotonically decreasing when searching for the root

of the separator tree. The following lemma shows how to exploit these two

observations to reduce the construction time to O(n).

Lemma 2 Given a tree T with n nodes, a 1/2-separator tree for T can be

constructed in time O(n).

Proof. The basic algorithm is identical to the algorithm described in the

proof of Lemma 1. To improve the search for separator nodes we keep track

of the heavy-paths as balanced search trees. Each heavy-path is stored in a

search tree where the elements are the nodes on the heavy-path and the keys

are the sizes of the nodes. The search trees should support the operations:

key, join, split, successor, and addpathcost. Given a pointer to an element, key

returns the key of the element. The operation join concatenates two search

trees, provided that the keys in one search tree are all smaller than the keys in

the other search tree, and split splits a search tree at a particular element. The

operation addpathcost adds the same value to all keys in a search trees. Given

7



· · ·

T1

Rbot

Rtop

r

w3

z

w2

w1

u

T2 Tk

Figure 3: The separator node u on the heavy-path R = Rtop ∪ {u}∪Rbot , and

the nodes w1, . . . , w` where to update the left-to-right order of the children.

a key, successor �nds the element with the smallest key larger than, or equal to,

the given key. As described by Tarjan [25, Chapter 5], all these operations can

be supported in time O(log n), where n is the number of elements in the search

tree. Given a sorted list, the corresponding search tree can be constructed in

linear time.

Initially, we make T rooted, compute |v| for all nodes v in T , identify
heavy-paths in T , and construct a search tree for each heavy path. In total

this takes time O(n). At each node which is the head of a heavy-path, we

store a link to the search tree storing the heavy-path starting at that node.

For each node we store a link to a priority queue which stores the children

of the node, except the heavy-child, with priorities equal to their sizes. The

priority queues should support insertion of an element with arbitrary priority

and deletion of the element with maximum priority in logarithmic time, and

construction of a queue in linear time, as e.g. binary heaps [9, 26] do. The

total time for constructing the initial priority queues at the nodes is O(n).
We �nd the root of the 1/2-separator tree ST using the search tree R storing

the heavy-path starting at the root r of T . We �rst observe that |r| is the
maximal key in R, which can be found in time O(log n) by the operation key.

To �nd the root of ST we perform the query successor(|r|/2) on R, which by

construction locates a node u in T where |u| ≥ |r|/2 and all children v of u
have |v| < |r|/2, i.e. u is a valid node for the root of ST . Removing u from T
splits T into disjoint trees T1, . . . , Tk, where each subtree Ti has size ni ≤ n/2.
See Figure 3. We recursively compute a 1/2-separator tree for each Ti. The root

of each constructed 1/2-separator tree becomes a child of u in the separator

tree ST .
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To avoid recomputing the heavy-paths for each of the recursive calls we

update the already computed heavy-paths, and corresponding search trees, as

described below in time O(log2 n). This implies that the total construction

time is bounded by O(n + T (n)), where

T (n) ≤ c(1 + blog nc2) +
k∑

i=1

T (ni) ,

for some positive constant c, where
∑k

i=1 ni = n − 1 and ni ≤ n/2 for all

i = 1, . . . , k. By induction it follows that T (n) ≤ cn + cn
∑blog nc

i=0 i2/2i ≤ 7cn,
since

∑∞
i=0 i2/2i = 6. We conclude that the total construction time is O(n).

To update the heavy-paths, we start by splitting the search tree R con-

taining u into three parts, Rtop , u, and Rbot , where Rtop stores the part of the

heavy-path above u, and Rbot stores the part of the heavy-path below u. See
Figure 3. This can be done in time O(log n) by applying the split operation

twice. By adding a link from the heavy child of u in T , i.e. the node in Rbot

with maximum key, to the search tree Rbot , it follows that for all the Ti trees

that were rooted at the children of u the heavy-paths are correctly stored as

search trees.

What remains is to update the search trees storing the heavy-paths in the

tree Tj that contains the parent of u from T , i.e. the part of T above u. First
we update the keys (i.e. sizes) of all nodes in Rtop by subtracting the size of the

subtree of T that was rooted at u, i.e. the key of u. This takes time O(log n) by
the addpathcost operation, and ensures that the keys of all nodes in Tj equal

their new sizes. What remains is to reorder the search trees for the paths

in Tj such that they represent the heavy-paths in Tj, i.e. to identify the new

heavy-children of the nodes in Rtop.

We de�ne nodes w1, w2, . . . , w` as follows. Let w1 be the parent of u in T ,
and wi+1 the ancestor of wi in Rtop determined by successor(2 |wi|), where
|wi| = key(wi). See Figure 3. Since |wi+1| ≥ 2 |wi| and |Tj | ≤ n/2, it follows
that |wi| ≥ 2i−1 and ` ≤ log n. We now argue that w1, . . . , w` are the only

nodes in Rtop where the child also in Rtop is no longer a heavy-child. Consider

a node z in Rtop between wi and wi+1. Since |wi| < |z| < 2 |wi|, it follows that
the child of z in Rtop is still the heavy child of z in Tj since it has at least size

|wi| > |z|/2, i.e. the children of z are correctly placed.

Now consider wi. Let x be the heaviest child of wi in T and let Q be the

priority queue storing the remaining children of wi. If Q is empty no updates

are necessary at wi. Otherwise let y be the child of wi with maximum key in Q,

i.e. the second heaviest child of wi in T . If i = 1, then x = u and y becomes

the new heavy child of w1. We delete the maximum element y from Q; join

Rtop with the search tree storing the heavy-path starting in y; and let Rtop be

the resulting search tree. We continue recursively updating Rtop at wi+1.

9



Otherwise i ≥ 2. If |x| ≥ |y| in Tj , i.e. if |x| is larger than or equal to the

key of y in Q, then x is also the heavy-child of wi in Tj . Otherwise, x is not the

heavy-child of wi in Tj, and we must update the heavy-paths accordingly. First,

we split Rtop between x and wi, this results in two search trees R′
top, storing the

nodes on the path from the root to wi, and R′′
top , storing the heavy-path which

starts at x. We then delete the maximum element y from Q; insert x into Q;

and let x have a pointer to R′′
top . The node y is the new heavy-child of wi.

We join R′
top with the search tree storing the heavy-path starting at y, and

let Rtop be the resulting search tree. We continue recursively updating Rtop

at wi+1.

It takes time O(log n) to �nd each wi, and at each wi we use time O(log n)
to update the heavy child information. Since ` ≤ log n, the total time for

reestablishing the heavy-paths is O(log2 n), which concludes the proof. 2

2.2 Maintaining Separator Trees

In this section, we �rst discuss how to insert new nodes into a tree T and its

corresponding separator tree ST , and then present methods for maintaining

balance and height in a separator tree ST during such insertions.

We allow two types of node insertions in T : Type 1, which is the addition

of a new leaf node connected to an existing node in T by a new edge, and

Type 2, which is the addition of a new node by breaking an existing edge into

two edges. Figure 4 shows a tree before and after one addition of each type,

with new nodes in bold.

d

c

a

e f

b

g

i

h → x

d

c

a

e f

v

y g

i

h

Figure 4: Insertions into a tree T .

In the separator tree ST for T , we for a Type 1 insertion insert the new

node as a child of the single node in T to which it is connected, and for a

Type 2 insertion we insert the new node as a child of the deepest node in ST

among the two nodes in T to which it is connected. The two nodes are on the

same root to leaf path follows from 2. in Fact 1 The resulting tree is easily seen

to be a separator tree for the updated tree T . Figure 5 shows the insertions

into ST corresponding to the insertions into T shown in Figure 4.

The methods we now present for maintaining balance and height in sepa-

rator trees during insertions of new nodes are based on rebuilding of subtrees,

and are inspired by methods of Andersson and Lai described in [3, 4] for main-
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Figure 5: Insertions into ST corresponding to Figure 4.

taining small height in binary search trees. We �rst show how the linear time

construction algorithm for 1/2-separator trees from Lemma 2 leads to a sim-

ple algorithm for keeping separator trees well balanced. The height bound

achieved by this algorithm is O(log n), using O(log n) amortized time per up-

date. We then use a two-layered structure to improve the height bound to

log n+O(1) without sacri�cing the time bound. The improved constant factor

in the height bound is signi�cant for our use of separator trees for maintaining

evolutionary trees in the experiment model, since the number of experiments

for an insertion of a new species will turn out to be proportional to the height

of the separator tree. Furthermore, this height bound is within an additive

constant of the best bound possible, as trees exist where any separator tree

must have height at least blog nc, e.g. a tree which is a single path.

Statements about amortized complexity for data structures normally as-

sume an initially empty structure�this is a special case of the statements

below.

Lemma 3 For any 0 < ε < 1/4, a (1/2 + ε)-separator tree can be maintained

in amortized time O((log n)/ε) per insertion, provided that the initial tree is a

1/2-separator tree.

Proof. We let each node v in the separator tree store the size |v| of its subtree
(its number of descendants in the separator tree, including v itself), as well as

its depth (the number of edges on the path to the root in the separator tree).

During insertions, we update this information along the path to the root,

and check for violations of the threshold. If any violating nodes are found, we

rebuild the subtree rooted at the highest node v among these, using Lemma 2,

and then restore the size and depth information by a traversal of the rebuilt

subtree. Let u denote the largest child of v just before the rebuild. We have

|u| > (1/2 + ε)|v|. Immediately after the last time we did a rebuild involv-

ing v, either u was not present, or we had |u|then ≤ |v|then/ 2 ≤ |v|now/ 2. As
|u|now > (1/2 + ε)|v|now, at least ε|v|now insertions have taken place below v
since then. Charging these insertions O(1/ε) each will cover the O(|v|now)
cost for rebuilding the subtree of v and restoring the information at the nodes.

11



Thus, if an insertion is charged O(1/ε) for each node on the path from the new

node to the root, the cost of all rebuildings are covered. Since the height of

the separator tree is at most log1/(1/2+ε) n, which is O(log n) by ε < 1/4, the
stated time bound follows. 2

Lemma 4 A
(

1
2 + 1

3dlog ne
)
-separator tree can be maintained with a height

bound of dlog ne in amortized time O(log2 n) per insertion, provided that the

initial tree is a 1/2-separator tree.

Proof. In the method of Lemma 3, we maintain ε = 1
3dlog Ne , where N denotes

a power of two larger than or equal to n. Initially N = 2dlog ne+1, i.e. the

smallest power of two larger than or equal to 2n. Whenever n exceeds N , we

double N , which causes ε to change, and we rebuild the entire separator tree as

a new 1/2-separator tree by applying the algorithm of Lemma 2. Note that n
must at least be doubled before the �rst rebuild can occur and between two

rebuilds, i.e. we can charge the preceding insertions the cost of a rebulding

For a separator tree with threshold t, the size of a subtree rooted at depth i
is at most n · ti. Using the standard inequality (1 + x/y)y ≤ ex, we have

n

(
1
2

+
1

3dlog Ne
)dlog ne

≤ n
1

2dlog ne

(
1 +

2
3dlog ne

)dlog ne
≤ e2/3 < 2 ,

i.e. a subtree rooted at depth dlog ne must be a single node. It follows that

the height of a separator tree is at most dlog ne.
By Lemma 3 the amortized time for insertions is O((log n)/ε) = O(log2 n),

as the amortized cost of the global rebuildings isO(1) per insertion by Lemma 2.

2

In the next theorem, we reduce the amortized time bound to O(log n).

Theorem 1 Let T be an unrooted tree initially containing n nodes. After O(n)
time preprocessing, a separator tree for T with a height bound of log(n+m)+5
can be maintained during m insertions in time O(m log(n + m)).

Proof. We use a two-layered rebalancing mechanism to reduce the time bound

from Lemma 4 by a factor of Θ(log n). The top rebalancing scheme will work

on a sample U of the nodes of the underlying tree T . If the nodes in U and

all the edges with which they are incident are removed from T , it will break
into a set of connected components. We denote these the components induced

by U .

We maintain the following invariants on U , where ∆ is a multiple of four

within Θ(log n).

1. Each component induced by U contains less than ∆ nodes.
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2. Each component induced by U is connected to at most two nodes from U .

We view U as a graph by letting two nodes in U be connected by an edge if

they in T are connected to the same induced component, or if they are already

neighbors in T . By Invariant 2, each component is connected to either one or

two nodes in U (unless U is empty, in which case T itself is a single component).

The components connected to only one node in U we denote leaf components.

The components connected to two nodes in U may be associated with the

corresponding edge in U , and we denote these edge components. Assigning an

empty edge component to edges in T which connect two nodes in U , we obtain

a one-to-one correspondence between the edges of U and the edge components.

Using this, it is easy to see that since T is a tree, U is also a tree.

The separator tree for T will be a separator tree for U where separator trees

for the induced components are attached as extra children of the nodes. The

separator tree for a leaf component is attached as a child of the single node in

U to which it is connected in T . The separator tree for an edge component

is attached as a child of the node of largest depth in the separator tree for U ,

among the two nodes in U to which it is connected in T .
We remark that this combined structure really does constitute a separator

tree for T : removing the root r of the structure (i.e. the root of the separator

tree for U) from T breaks T into pieces, of which the pieces containing no

nodes from U exactly are the leaf components attached as children of r, and
the pieces containing nodes from U are in one-to-one correspondence with the

pieces of U left when removing r from U . Continuing recursively proves the

remark true.

We now discuss how to update the separator tree for T after an insertion

into T . For a Type 1 insertion, the existing node to which the new node is

connected may belong to U . In this case, the new node will form a new leaf

component of size one, which is added to the structure. For all other insertions,

an existing (but possibly empty) leaf or edge component C will grow by exactly

one node. After inserting into C, the component is rebuilt to threshold 1/2 by

the algorithm from Lemma 2. If the number of nodes in C has reached ∆ due

to the insertion, it is now split into components of size at most ∆/2 by adding

the root v of the separator tree for C to the sample U . For edge components,

one of the new components formed by the split may be connected to three

nodes in U . Speci�cally, this happens if and only if v is not located on the

unique path in T between the two nodes u1, u2 ∈ U to which C is connected.

To maintain Invariant 2, we also add to U the node w located where the paths

from v to u1 and from v to u2 separate. In total, this splits the violating

component into three or more components each being connected to at most

two nodes in U , reestablishing the invariant.

We build a 1/2-separator tree for each of the components which arise by

the inclusion of w in U , let these components be children of w, and let w be
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the single child of v in the separator tree for U .

The addition of v and w into U constitutes two insertions into the separator

tree for U , below the node of which C was a child. To maintain balance in the

separator tree for U after these insertions, we use the rebalancing scheme from

Lemma 4.

After a rebuild of a subtree S in the separator tree for U during such

rebalancing, the depth of each node in S may have changed. As said, an edge

component in the separator tree for T should be a child of the node of largest

depth in the separator tree for U , among the two nodes in U to which it is

connected (these nodes are ancestors of each other in the separator tree for U ,

as follows from Fact 1). Therefore, for edge components connected to at least

one node in S we must after the rebuild check the updated depth information

of these nodes, and change parent of the component if necessary. This is done

by a traversal of S during which we inspect all edge components connected to

nodes in it. By the one-to-one correspondence between edge components and

edges of U , the number of components to inspect is equal to the number of

edges in U with at least one endpoint in S. By Fact 1, this number is bounded
by |S|− 1 plus the depth of the root of S in the separator tree for U . Thus, by

the height bound in Lemma 4, inspection of edge components will only add an

additive logarithmic term to the rebalancing cost for the separator tree for U ,

which therefore remains amortized O(log2 |U |).
To maintain the value of ∆, we rebuild the entire structure whenever n has

doubled, setting ∆ to 4d(log n)/4e. We now discuss how to perform such a

global rebuilding in O(n) time. The same algorithm is also used as preprocess-

ing to construct the separator tree for the initial tree T . Thus, preprocessing
takes O(n) time.

To construct the separator tree for some existing tree τ , we �rst generate
the sample U and its induced components. We then use the algorithm from

Lemma 2 to construct a separator tree for U and for each component. Finally,

we attach each leaf component to the single node from U to which it is con-

nected, and attach each edge component as a child of the lowest of the two

nodes in U to which it is connected. In the case of the preprocessing, we will

need the generated U to ful�ll Invariant 1 with a value of ∆/2 instead of ∆ in

order to obtain the stated time bound for the �rst n insertions. We use this

value in the description here.

The sample U is generated by a traversal of τ using e.g. a depth �rst

search, during which we maintain a sample and its induced components for

the part of τ traversed so far. The algorithm for this is similar to the insertion

procedure described above, except that no separator trees are maintained for

neither U nor the edge and leaf components. Speci�cally, when a new node v
is encountered during the traversal, we consider the node w from which it was

reached. If w is in U , we start a new component. If not, v is added to the
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component of w. If the number of nodes in a component reaches ∆/2, we split
it into components containing at most ∆/4 nodes each by adding one of its

nodes to U . To locate this node, we use the method described in the �rst lines

of the proof of Lemma 1. If necessary, we also split one of the new components

to maintain Invariant 2.

When a component over�ows, at least ∆/4 nodes have been inserted into it

since it was created by a component split or by the start of a new component.

Hence, at most 4n/∆ over�ows can occur during the generation of U . As each

over�ow can be handled in time O(∆), the generation of U can be performed

in time O(n). By the time bound from Lemma 2, the entire separator tree

for τ can be constructed in O(n) time. This concludes our description of the

global rebuilding of the structure.

We now analyze the time for m insertions in the separator tree. Clearly, we

only need to consider the case m < n, as the rebalancing scheme is reset by a

global rebuild each time n has doubled, and as each such rebuild except the ini-

tial construction amounts to O(1) amortized work per insertion. The insertion

into an induced component and the rebuilding of its separator tree by Lemma 2

takes O(∆) = O(log n) time, including any splitting of the component due to

over�ow. Each over�owing component gives rise to at most two insertions into

the separator tree for U . When a component is created by a component split

or by the start of a new component, it contains at most ∆/2 nodes. The size

of the components after the construction of the initial separator tree is also

bounded by ∆/2. Hence, after m insertions, at most 2m/∆ over�ows of com-

ponents can have occurred. Each over�ow gives rise to at most two insertions

into the separator tree for U , each of which costs O(log2 |U |) = O(log2 n).
The total cost of these insertions is then O((m log2 n)/∆) = O(m log n). The
stated time bound follows.

To prove the stated height bound, note that in the initial tree, U contains

at most 8n/∆ nodes. At most 2m/∆ over�ows of components have occurred

during insertions, each of which inserts at most two more nodes into U . Hence,

the size of U is bounded by 8(n + m)/∆. By Lemma 4, the height of the

separator tree for U is most log(8(n + m)/∆) + 1 = log(n + m) + 4 − log ∆.

By Invariant 1, the height of the separator trees for the induced components

is at most log ∆, as these are 1/2-separator trees. Adding one to the height to

account for the edges connecting the root of the separator trees for components

to nodes in the separator tree for U gives the stated height bound. 2

2.3 Ordered Separator Trees

We now extend the separator trees maintained by the algorithm from Theo-

rem 1 with a speci�c ordering of the children, facilitating our use of separator

trees in Section 3 for �nding insertion points for new species in evolutionary
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trees. The basic idea is to speed up the search in the separator tree by consid-

ering the children of the nodes in decreasing size-order. This ensures a larger

reduction of subtree size in the case that many children have to be considered

before the subtree to proceed the search in is found.

The below lemma shows that size order can be assumed after a rebuild of

a separator tree.

Lemma 5 A separator tree of size n can be processed in time O(n) such that

children of nodes are sorted in decreasing size-order.

Proof. We �rst traverse the separator tree in linear time and compute the size

of all nodes. Since the sizes are bounded by n, a list of all nodes can be sorted

in decreasing size order in linear time using bucket-sort [18]. By scanning

through the sorted list of nodes in increasing size order making the nodes

visited the �rst child of their respective parents, we in linear time update the

order of children at each node in the separator tree such that they are sorted

in decreasing size-order. 2

However, for the two layered structure from Theorem 1, further details are

needed to achieve the following.

Theorem 2 Let T be an unrooted tree initially containing n nodes. After O(n)
time preprocessing, an ordered separator tree for T can in time O(m log(n+m))
be maintained during m insertions in a way such that the height is bounded by

log(n + m) + 5 and such that for any path (v1, v2, . . . , v`) from the root v1 to a

node v` in the separator tree, it holds that

∏
di≤2

2 ·
∏

di>2

di < 16d(n + m) , (1)

where di is the number which vi+1 has in the ordering of the children of vi,

for 1 ≤ i < `, and d is max{d1, . . . , d`−1}.

Proof. The proof is by an extension of the construction from Theorem 1, and

familiarity with the proof of this theorem is assumed here.

We extend the construction by an ordering of the children of the nodes of

the separator tree as follows. For a node v in U , the children which belong to U
will be �rst in the ordering, followed by the the children not in U . Furthermore,

the children belonging to U will be in decreasing order in terms of the size of

their subtrees in the separator tree for U (which is not the same as the size of

their subtrees in the entire separator tree for T ). For a node v in U , we do not

de�ne any particular order among the children not in U . For a node v not in U ,

the children (none of which can be in U), will be in decreasing order in terms

of the size of their subtree in the separator tree for the induced component in

which they are contained.
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The above ordering must be maintained during insertions and rebalancing

of the structure. Whenever an insertion occurs in an induced component, it

is completely rebuilt by the algorithm from Lemma 2. This algorithm is also

used as the fundamental operation in the rebalancing of the separator tree

for U . After an invocation of this algorithm, the order order can be restored

without a�ecting the time bound, by Lemma 5. When an insertion into U
occurs due to the splitting of a component, the ordering may have to change

among children of nodes on the path from the insertion point to the root in the

separator tree for U . With a proper linked list representation of the children of

a node in groups of children with equal size, this can be done in constant time

per node on the path, as the size of only one child per node changes, and the

increase in size is only one. Thus, this takes time proportional to the height

of the separator tree of U . All in all, the ordering can be maintained without

a�ecting the time bound from Theorem 1. The height bound also follows from

Theorem 1.

To prove the last claim of the lemma, i.e. inequality (1), note that a path

(v1, v2, . . . , v`) will �rst pass through nodes from U , then through nodes from

a single induced component. Let vj be the last node from U on the path.

We �rst consider the part (v1, v2, . . . , vj) of the path lying within the

separator tree for U . This separator tree by Lemma 4 has a threshold of
1
2 + 1

3dlog |U |e . For di ≥ 2, a descent into the di'th child must reduce by a factor

of at least di the number of nodes in the current subtree of the separator tree

for U . For di = 1, we can only claim a factor given by the threshold of the

separator tree. Since this part of the path ends at the latest when there is a

single node left in the subtree of the separator tree for U , we have the following

for this part of the path:

1 ≤ |U | ·
(

1
2

+
1

3dlog |U |e
)k

·
∏

di≥2

i<j

1
di

,

where k = |{i < j | di = 1}|. From Lemma 4 the height of the separator tree

for U is bounded by dlog |U |e. Using this and the inequality (1 + x/y)y ≤ ex,

we get

(
1
2

+
1

3dlog |U |e
)k

≤ 1
2k

·
(

1 +
2

3dlog |U |e
)dlog |U |e

≤ 1
2k

· e2/3 <
2
2k

.

Recalling that |U | ≤ 8(n + m)/∆, we get

1 < 16(n + m)/∆ · 1
2k

·
∏

di≥2

i<j

1
di

. (2)
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The part (vj+1, . . . , v`) of the path lies within a separator tree for an in-

duced component, which has a threshold of exactly 1/2. By a similar but

simpler argument, we get

1 ≤ ∆ · 1
2k′ ·

∏
di≥2

i>j

1
di

, (3)

where k′ = |{i > j | di = 1}|.
At vj, the ordering of the children not in U is arbitrary, and the measure

of size in the above argument changes, hence the above argument is not valid.

By de�nition we have the inequality

dj ≤ d . (4)

Multiplying left sides and right sides in the inequalities (2), (3) and (4), and

rearranging the result proves (1). 2

3 Algorithm for Constructing and Maintaining Evo-

lutionary Trees

In this section we describe an algorithm for constructing an evolutionary tree T
in the experiment model for a set of n species in time O(nd logd n), where d
is the degree of the tree. Note that d is not known by the algorithm in ad-

vance. The algorithm is a further development of an algorithm by Lingas et al.

in [19]. Our algorithm also supports the insertion of new species with running

time O(md logd(n + m)) using at most mdd/2e(log2dd/2e−1(n + m)+ O(1)) ex-
periments for d > 2, and at most m(log(n+m)+O(1)) experiments for d = 2,
where n is the number of species in the tree to begin with, m is the number

of insertions, and d is the maximum degree of the tree during the sequence of

insertions.

The construction algorithm inserts one species at the time into the tree

in time O(d logd n) until all n species have been inserted. Figure 6 shows the

three possible changes to an evolutionary tree when inserting a new species:

(i) The new species is a leaf below an existing node; (j) the species causes a

new root to be created; (h) an existing edge is split by creating a new internal

node.

The search for the insertion point of a new species a is guided by a separator

tree ST for the internal nodes of the evolutionary tree T for the species inserted

so far. The search starts at the root of ST . In a manner to be described below,

we decide by experiments which subtree, rooted at a child of the root in ST ,

the search should continue in. This is repeated recursively until the correct
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Figure 6: The three possible changes to an evolutionary tree when inserting a

new species i, j or h.

insertion point in T for a is found. We keep links between corresponding nodes

in ST and T for switching between the two trees. To facilitate the experiments,

we for each internal node in T maintain a pointer to an arbitrary leaf in its

subtree. When inserting a new internal node in T this pointer is set to point

to the new leaf which caused the insertion of the node.

We say that the insertion point of a is incident to a node v, if

1. a should be inserted directly below v, or

2. a should split an edge which is incident to v by creating a new internal

node on the edge and make a a leaf below the new node, or

3. if v is the root of T , a new root of T should be created with a and v as

its two children.

The invariant for the search is the following. Assume we have reached

node v in the separator tree for the internal nodes in T , and let Sv be the

internal nodes of T which are contained in the subtree of ST rooted at v
(including v). Then the insertion point of the new species a is incident to a

node in Sv.

Let v be the node in ST for which we want to decide if the insertion point

for the new species a is in the subtree above v in T ; if it is in a subtree rooted

at a child of v in T ; or if a should be inserted as a new child of v. We denote

by u1, . . . , uk the children of v in T , where u1, . . . , uk′ are nodes in distinct

subtrees T1, . . . , Tk′ below v in ST , whereas uk′+1, . . . , uk are leaves in T or are

nodes above v in ST . The order of the subtrees T1, . . . , Tk′ below v in ST is

given by the ordered separator tree ST and determines the order of u1, . . . , uk′ .

The remaining children uk′+1, . . . , uk of v may appear in any order.

We perform at most dk/2e experiments at v. The i'th experiment is on

the species a, b and c, where b and c are leaves in T below u2i−1 and u2i

respectively. The leaves b and c can be located using the pointers stored

at u2i−1 and u2i. Note that the least common ancestor of b and c in T is v.
If k is odd then the species b and c in the dk/2e'th experiment is chosen as
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leaves in T below uk and u1 respectively, and note that the two leaves are

distinct because k ≥ 2 by de�nition. There are four possible outcomes of

the i'th experiment corresponding to Figure 1:

1. (a, b, c) implies that the insertion point for a is incident to a descendent

of uj , where b and c are not descendents of uj , or a is a new leaf below v.

2. ((a, b), c) implies that the insertion point for a is incident to a descendent

of u2i−1, since the least common ancestor of a and b is below v in T .

3. ((a, c), b) is symmetric to the above case and the insertion point of a is

incident to a descendent of u2i (u1 for the dk/2e'th experiment if k odd).

4. ((b, c), a) implies that the insertion point of a is in the subtree above v,
since the least common ancestor of a and b is above v. If v is the present

root of T , a new root should be created with children a and v.

We perform experiments for increasing i until we get an outcome di�erence

from Case 1, or until we have performed all dk/2e experiments all with outcome

cf. Case 1. In the latter case species a should be inserted directly below v
in T as a new child. In the former case, when the outcome of an experiment is

di�erent from Case 1, we know in which subtree adjacent to v in T the insertion

point for species a is located. If there is no corresponding subtree below v in

ST , then we have identi�ed the edge incident to v in T which the insertion

of species a should split. Otherwise we continue recursively searching for the

insertion point for species a at the child of v in ST which roots the separator

tree for the subtree adjacent to v which has been identi�ed to contain the

insertion point for a. When the insertion point for species a is found, we insert

one leaf and at most one internal node into T , and ST is updated according to

Theorem 2.

Lemma 6 Given an evolutionary tree T for n species with degree d, and

a separator tree ST for T according to Theorem 2, then a new species a
can be inserted into T and ST in amortized time O(d logd n) using at most

dd/2e(log2dd/2e−1 n + O(1)) experiments for d > 2, and at most log n + O(1)
experiments for d = 2.

Proof. Let v1, . . . , v` be the nodes in ST (and T ) visited by the algorithm

while inserting species a, where v1 is the root of ST and vj+1 is a child of vj

in ST . De�ne di by vi+1 being the di'th child of vi in ST , for 1 ≤ i < `.
For d = 2 we perform exactly one experiment at each vi. The total number

of experiments is thus bounded by the height of the separator tree. By Theo-

rem 2 it follows that the number of experiments is bounded by log n + O(1).
In the following we consider the case where d ≥ 3.
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For i < `, let xi denote the number of experiments performed at node vi.

We have xi ≤ dd/2e and di ≥ 2xi − 1, since each experiment considers two

children of vi in T and the �rst experiment also identi�es if a should be inserted

into the subtree above vi. At v` we perform at most dd/2e experiments.

For d1, . . . , d`−1 we from Theorem 2 have the constraint
∏

di≤2 2·∏di>2 di ≤
16dn, since |ST | ≤ n−1. To prove the stated bound on the worst case number

of experiments we must maximize
∑`

i=0 xi under the above constraints. We

have

log(16dn) ≥
∑
di≤2

1 +
∑
di>2

log di

≥
∑
xi=1

1 +
∑
xi>1

log di

≥
∑
xi=1

xi +
∑
xi>1

xi
1
xi

log(2xi − 1)

≥ 1
dd/2e log(2dd/2e − 1)

`−1∑
i=1

xi ,

where the second inequality holds since xi > 1 implies di ≥ 3. The last

inequality holds since for f(x) = 1
x log(2x − 1) we have 1 > f(2) > f(3) and

f(x) is decreasing for x ≥ 3, i.e. f(x) is minimized when x is maximized.

We conclude that
∑`−1

i=1 xi ≤ dd/2e log2dd/2e−1(16dn), i.e. for the total num-

ber of experiments we have
∑`

i=1 xi ≤ dd/2e(log2dd/2e−1(16dn) + 1).
The time needed for the insertion is proportional to the number of experi-

ments performed plus the time to update ST . By Theorem 2 the total time is

thus O(d logd n). 2

From Lemma 6 and Theorem 2 we get the following bounds for constructing

and maintaining an evolutionary tree under the insertion of new species in the

experiment model.

Theorem 3 After O(n) preprocessing time an evolutionary tree T for n species

can be maintained under m insertions in time O(dm logd(n + m)) using at

most mdd/2e(log2dd/2e−1(n + m) + O(1)) experiments for d > 2, and at most

m(log(n + m) + O(1)) experiments for d = 2, where d is the maximum degree

of the tree during the sequence of insertions.

4 Adversary for Constructing Evolutionary Trees

To prove a lower bound on the number of experiments required for construct-

ing an evolutionary tree of n species with degree at most d, we describe an

adversary strategy for deciding the outcome of experiments. The adversary is
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required to give consistent answers, i.e. the reported outcome of an experiment

is not allowed to contradict the outcome of previously performed experiments.

A construction algorithm is able to construct an unambiguous evolutionary

tree based on the performed experiments when the adversary is not able to

answer any additional experiments in such a way that it contradicts the con-

structed evolutionary tree. The role of the adversary is to force any construc-

tion algorithm to perform provably many experiments in order to construct an

unambiguous evolutionary tree.

To implement the adversary strategy for deciding the outcome of exper-

iments in a consistent way, the adversary maintains a rooted in�nite d-ary
tree, D, where each of the n species are stored at one of the nodes, allowing

nodes to store several species. Initially all n species are stored at the root. For

each experiment performed, the adversary can move the species downwards

by performing a sequence of moves, where each move shifts a species from the

node it is currently stored at to a child of the node.

By deciding the outcome of experiments, the adversary reveals information

about the evolutionary relationships between the species to the construction

algorithm performing the experiments. The distribution of the n species on D
represents the information revealed by the adversary (together with the for-

bidden and con�icting lists introduced below). The evolutionary tree T to be

established by the construction algorithm will be a connected subset of nodes

of D including the root. Initially, when all species are stored at the root, the

construction algorithm has no information about the evolutionary relation-

ships. The evolutionary relationships revealed to the construction algorithm

by the current distribution of the species on D corresponds to the tree formed

by the paths from the root of D to the nodes storing at least one species.

More precisely, the correspondence between the �nal evolutionary tree T and

the current distribution of the species on D is that if v is a leaf of T labeled a
then species a is stored at some node on the path in D from the root to the

node v.
Our objective is to prove that if an algorithm computes T , then the n species

on average must have been moved Ω(logd n) levels down by the adversary, and

that the number of moves by the adversary is a fraction O(1/d) of the number
of experiments performed. These two facts imply the Ω(nd logd n) lower bound
on the number of experiments required.

To control its strategy for moving species on D, the adversary maintains

for each species a a forbidden list F(a) of nodes and a con�icting list C(a) of
species. If a is stored at node v, then F(a) is a subset of the children c1, . . . , cd

of v, and C(a) is a subset of the other species stored at v. If ci ∈ F(a), then a
is not allowed to be moved to child ci, and if b ∈ C(a) then a and b must be

moved to two distinct children of v. It will be an invariant that b ∈ C(a) if

and only if a ∈ C(b). Initially all forbidden and con�icting lists are empty.
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The adversary maintains the forbidden and con�icting lists such that the size

of the forbidden and con�icting lists of a species a is bounded by the invariant

|F(a)| + |C(a)| ≤ d − 2 . (5)

The adversary uses the sum |F(a)| + |C(a)| to decide when to move a

species a one level down in D. Whenever the invariant (5) becomes violated

because |F(a)|+|C(a)| = d−1, for a species a stored at a node v, the adversary
moves a to a child ci /∈ F(a) of v. Since |F(a)| ≤ d − 1, such a ci /∈ F(a) is

guaranteed to exist. When moving a from v to ci, the adversary updates the

forbidden and con�icting lists as follows: For all b ∈ C(a), a is deleted from C(b)
and ci is inserted into F(b). If ci was already in F(b), the sum |F(b)| + |C(b)|
decreases by one, if ci was not in F(b) the sum remains unchanged. Finally,

F(a) and C(a) are assigned the empty set.

For two species a and b, we de�ne their least common ancestor, LCA(a, b),
to be the least common ancestor of the two nodes storing a and b in D. We

denote LCA(a, b) as �xed if it cannot be changed by future moves of a and b
by the adversary. If LCA(a, b) is �xed then the least common ancestor of the

two species a and b in T is the node LCA(a, b). If a is stored at node va and b
is stored at node vb, it follows that LCA(a, b) is �xed if and only if one of the

following four conditions is satis�ed.

1. va = LCA(a, b) = vb and a ∈ C(b) (and b ∈ C(a)).

2. va 6= LCA(a, b) = vb and ci ∈ F(b), where ci is the child of vb such that

the subtree rooted at ci contains va.

3. va = LCA(a, b) 6= vb and ci ∈ F(a), where ci is the child of va such that

the subtree rooted at ci contains vb.

4. va 6= LCA(a, b) 6= vb.

In Case 1, species a and b are stored at the same node and cannot be moved

to the same child because a ∈ C(b), i.e. LCA(a, b) is �xed as the node which

currently stores a and b. Cases 2 and 3 are symmetric. In Case 2, species a
is stored at a descendant of a child ci of the node storing b, and b cannot

be moved to ci because ci ∈ F(b), i.e. LCA(a, b) is �xed as the node which

currently stores b. Finally, in Case 4, species a and b are stored at nodes in

disjoint subtrees, i.e. LCA(a, b) is already �xed.

The operation Fix(a, b) ensures that LCA(a, b) is �xed as follows:

1. If va = LCA(a, b) = vb and a /∈ C(b) then insert a into C(b) and insert b
into C(a).

2. If va 6= LCA(a, b) = vb and ci /∈ F(b), where ci is the child of vb such

that the subtree rooted at ci contains va, then insert ci into F(b).
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3. If va = LCA(a, b) 6= vb and ci /∈ F(a), where ci is the child of va such

that the subtree rooted at ci contains vb, then insert ci into F(a).

Otherwise Fix(a, b) does nothing. If performing Fix(a, b) increases |F(a)| such
that |F(a)| + |C(a)| = d − 1, then a is moved one level down as described

above. Similarly, if |F(b)| + |C(b)| = d − 1 then b is moved one level down.

After performing Fix(a, b) we thus have that |F(a)| + |C(a)| ≤ d − 2 and

|F(b)| + |C(b)| ≤ d − 2, which ensures that the invariant (5) is not violated.

When the construction algorithm performs an experiment on three species

a, b and c, the adversary decides the outcome of the experiment based on the

current distribution of the species on D and the content of the con�icting and

forbidden lists. To ensure the consistency of future answers, the adversary

�rst �x the least common ancestors of a, b and c by applying the operation

Fix three times: Fix(a, b), Fix(a, c) and Fix(b, c). After having �xed LCA(a, b),
LCA(a, c), and LCA(b, c), the adversary decides the outcome of the experiment

by examining LCA(a, b), LCA(a, c), and LCA(b, c) in D as described below.

The four cases correspond to the four possible outcomes of an experiment cf.

Figure 1.

1. If LCA(a, b) = LCA(b, c) = LCA(a, c) then return (a, b, c).

2. If LCA(a, b) 6= LCA(b, c) = LCA(a, c) then return ((a, b), c).

3. If LCA(a, c) 6= LCA(a, b) = LCA(b, c) then return ((a, c), b).

4. If LCA(b, c) 6= LCA(a, b) = LCA(a, c) then return ((b, c), a).

5 Lower Bound Analysis

We will argue that the above adversary strategy forces any construction algo-

rithm to perform at least Ω(nd logd n) experiments before being able to con-

clude unambiguously the evolutionary relationships between the n species.

Theorem 4 Constructing an evolutionary tree of n species requires Ω(nd logd n)
experiments, where d is the degree of the constructed tree.

Proof. We �rst observe that an application of Fix(a, b) at most increases the

size of the two con�icting lists, C(a) and C(b), by one, or the size of one of

the forbidden list, F(a) or F(b), by one. If performing Fix(a, b) increases the

sum |F(a)| + |C(a)| to d − 1, then species a is moved one level down in D
and F(a) and C(a) are emptied, which causes the overall sum of the sizes of

forbidden and con�icting lists to decrease by d − 1. This implies that a total

of k Fix operations, starting with the initial con�guration where all con�icting

and forbidden lists are empty, can cause at most 2k/(d − 1) moves. Since an
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experiment involves three Fix operations, we can bound the total number of

moves during m experiments by 6m/(d − 1).
Now consider the con�guration, i.e. the distribution of species and the

content of con�icting and forbidden lists, when the construction algorithm

computing the evolutionary tree terminates. Some species may have nonempty

forbidden lists or con�icting lists. By forcing one additional move on each of

these species as described in Section 4, we can guarantee that all forbidden and

con�icting lists are empty. At most n additional moves must be performed.

Let T ′ be the tree formed by the paths in D from the root to the nodes

storing at least one species. We �rst argue that all internal nodes of T ′ have at
least two children. If a species has been moved to a child of a node, then the

forbidden list or con�icting list of the species was nonempty. If the forbidden

list was nonempty, then each of the forbidden subtrees already contained at

least one species, and if the con�icting list was nonempty there was at least one

species on the same node that was required to be moved to another subtree,

at the latest by the n additional moves. It follows that if a species has been

moved to a child of a node then at least one species has been moved to another

child of the node, implying that T ′ has no node with only one child.

We next argue that all n species are stored at the leaves of T ′ and that

each leaf of T ′ stores either one or two species. If there is a non-leaf node

in T ′ that still contains a species, then this species can be moved to at least

two children already storing at least one species in the respective subtrees,

implying that the adversary can force at least two distinct evolutionary trees

which are consistent with the answers returned. This is a contradiction. It

follows that all species are stored at leaves of T ′. If a leaf of T ′ stores three
or more species, then an experiment on three of these species can generate

di�erent evolutionary trees, which again is a contradiction. We conclude that

each leaf of T ′ stores exactly one or two species, and all internal nodes of T ′

store no species. It follows that T ′ has at least n/2 leaves.

For a tree with k leaves and degree d, the sum of the depths of the leaves is

at least k logd k. Since each leaf of T ′ stores at most two species, the n species

can be partitioned into two disjoint sets of size dn/2e and bn/2c such that in

each set all species are on distinct leaves of T ′. The sum of the depths of all

species is thus at least dn/2e logddn/2e+ bn/2c logdbn/2c ≥ n logd(n/2). Since
the depth of a species in D is equal to the number of times the species has

been moved one level down in D, and since m experiments generate at most

6m/(d − 1) moves and we perform at most n additional moves, we get the

inequality

n logd(n/2) ≤ 6m/(d − 1) + n ,

from which the lower bound m ≥ (d − 1)n(logd(n/2) − 1)/6 follows. 2
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