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Democratic Consensus and
the Local Majority Rule

Nabil H. Mustafa∗ Aleksandar Pekeč†

Abstract

In this paper we study a rather generic communication/ co-
ordination/ computation problem: in a finite network of agents,
each initially having one of the two possible states, can the major-
ity initial state be computed and agreed upon (i.e., can a demo-
cratic consensus be reached) by means of iterative application of
the local majority rule. We show that this task is failure-free only
in the networks that are nowhere truly local. In other words, the
idea of solving a truly global task (reaching consensus on major-
ity) by means of truly local computation only (local majority rule)
is doomed for failure.

We also show that even well connected networks of agents that
are nowhere truly local might fail to reach democratic consensus
when the local majority rule is applied iteratively. Structural
properties of democratic consensus computers, i.e., the networks
in which iterative application of the local majority rule always
yields consensus in the initial majority state, are presented.

1 Introduction

Attempting to solve a complex problem by a simultaneous coordinated
activity of local agents is an idea that arises naturally in a variety of
contexts. For example, this idea is fundamental in frameworks as diverse
as distributed computing and neural networks. While methods of local

∗Department of Computer Science, Duke University, Durham, NC 27708, USA,
nabil@cs.duke.edu

†The Fuqua School of Business, Duke University, Durham, NC 27708, USA,
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computation and decision-making are often effective in dealing with com-
plex tasks, the successful implementation of such methods often raises
a new breed of problems related to coordination and communication of
local agents.

In this paper we study a rather generic communication/ coordina-
tion/ computation problem: in a finite network of agents, each initially
having one of the two possible states, can the majority initial state be
computed and agreed upon by means of local computation only? Our
simple model assumes bidirectional communication among agents (agent
i knows the agent j’s state if and only if agent j knows agent i’s state)
and a synchronous, discrete time, democratic local decision-making pro-
cedure (an agent changes its state at time t+1 if and only if the majority
of agents it communicates with are in the opposite state at time t). We
describe the architecture of networks that are always capable of reaching
the consensus on the majority initial state of its agents. In particular, we
show that, for any truly local network of agents, there are instances in
which the network is not capable of reaching such consensus. Thus, ev-
ery local computation approach that requires reaching consensus among
agents’ results is not failure-free.

A precise formulation of the model will be given in the next section.
Informally, the vertices of a graph G = (V, E) represent the agents and
the edges of G represent all (bidirectional) communication links between
pairs of agents. Initially, at time t = 0, each agent is in one of the
two possible states, e.g., colored red or blue (voted Yes or No, having
value 0 or 1, . . . ). Then the local majority rule is applied synchronously
and iteratively: an agent has different colors at time t and t + 1 if and
only if the agent’s color at time t is not a majority color in the agent’s
neighborhood in G at time t. We call this discrete time, memoryless,
synchronous dynamic process, local majority process on G.

The local majority process (and some of its natural extensions) has
been studied in frameworks as diverse as social influence [H59, F56, D74,
PS83, PT86a, PT86b] and neural networks [GO81, G080, G86, GM90].
Recently, the local majority process has reappeared (under the name
polling process) in several papers motivated by certain distributed com-
puting problems [P98, B99, FLLPS98, FLLPS99, H98, HP99, HP00,
LPS99, NIY99, NIY00]. In fact, Peleg [P96b] points out several areas of
distributed computing in which our model could be relevant.1 These are

1We believe that the potential applicability of the local majority process goes
beyond classical distributed computing problems. For example, anyone interested
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areas that revolve around the idea of eliminating the damage caused by
failed processors, or at least restricting their influence, by maintaining
replicated copies of crucial data and performing a simple voting pro-
cedure among the participating processors whenever faults occur, with
the goal of adopting the values stored at the majority of the processors
as the correct data. The work of this flavor can be found in classical
problems of agreement and consensus [AW98, LSP82, B87, DPPU88],
system-level diagnosis [S86, P96a, DP96], distributed database manage-
ment [D85, H84], quorum systems [G79, GB85, SB94, PW95, W96],
and fault-local mending [KP95a, KP95b].

To give a concrete example, suppose that all processors in a dis-
tributed network collectively store some value and suppose that this value
is distorted in some of the processors (distortions could be due to various
reasons, even due to fundamental imprecise nature of floating point op-
erations). The goal is to restore the correct value in all of the processors
by means of local communication only, in particular, by triggering the
local majority process. For example, if stored distortions are due to a
rounding error (rounding up or down), a desirable feature would be for
all processors to accept the rounded value which is stored in the majority
of processors. Which network structures allow for successful restoration
of the (global) majority value in all of the processors?

A natural question to ask is when does the local majority process en-
sure that all agents reach a consensus on the initial majority state? We
will say that G is a democratic consensus computer (d.c.c.) if, for any
set of initial states (there are 2n such sets), the local majority process
simultaneously brings all agents into the state that was the initial ma-
jority state. Note that, according to the local majority process, once all
agents are in the same state, no agent will change its state everafter. All
of the recent papers dealing with the local majority process and its mod-
ifications [P98, B99, FLLPS98, FLLPS99, H98, HP99, HP00, LPS99,
NIY99, NIY00] investigated how badly could the local majority process
(and its variations) miscalculate the initial majority (on a specific class
of graphs)2 In contrast to these results, we are interested in G which are

in data aggregation by means of local computation/communication only should be
interested in this model (at least as a starting point towards possible more complex
models).

2For example, Berger [B99] has shown that for every n there exists a G on at least
n vertices and the set of states such that only 18 vertices are in one state and the rest
are in the other, yet the local majority process forces all vertices to simultaneously
end up in the initial minority state.
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immune to miscalculations in the local majority process, i.e., the focus
of this paper are democratic consensus computers and investigation of
their structure.

Since being a democratic consensus computer is seemingly a very
strong property, one would expect that a sort of an impossibility theo-
rem holds. As will be shown, the situation is not that simple and the
full characterization of d.c.c.’s remains an open problem. However, our
results demonstrate in several ways that the non-locality is inherent prop-
erty of every d.c.c.. Thus, reaching consensus on the majority is a truly
non-local task in the sense that a most natural local computation pro-
cedure is failure-free only if computing local majority is essentially as
complex as computing global majority.

As already mentioned, the local majority process is precisely formu-
lated in the next section. Furthermore, we review some known properties
of the model and formally define the class of graphs that we call demo-
cratic consensus computers. We end Section 2 by stating and proving
several basic properties of democratic consensus computers.

In Section 3 we explore the structure of democratic consensus com-
puters. For example, in this section we show that every such d.c.c. must
have a trivial min-cut, a non-unique max-cut, diameter at most four and
that for any vertex v in a d.c.c. the set of vertices that are neighbors of
v or neighbors of the neighbors of v is a majority-making set (i.e., has
more than half of the vertices of G).

In Section 4 we study highly connected graphs, i.e., those with the
minimum degree of n − 3 and show that if such a graph is a d.c.c., then
there must exist a “truly global” vertex which we call a master (that is,
a vertex connected to every other vertex in the graph). Furthermore,
we give full characterization of democratic consensus computers with
δ(G) ≥ n − 3 and, as a byproduct, show that there exists d.c.c.’s on n
vertices, n odd, with exactly k masters for every positive k except for
k = (n − 3)/2.

Some generalizations of our model and relaxations of the definition of
democratic consensus computer are presented and discussed in Section 5.
This includes emulation results showing how our model can be used to
study seemingly more complex models.

In Section 6 we discuss some assumptions of our model and try to
illustrate why our model is a most natural one to study.

We close the paper with a brief summary of our results and directions
for further research.
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2 Democratic Consensus Computers

A standard graph theoretic notation is used throughout the paper. Car-
dinality of the set S is denoted by |S| and the complement of the set
is denoted by Sc. G = (V, E) denotes an undirected, simple, finite
graph G with the vertex set V , |V | = n, and the edge set E (i.e.
E ⊆ {S ⊆ V : |S| = 2}). We say that the vertices u and v are ad-
jacent or neighbors in G if and only if {u, v} ∈ E. We will abuse the
notation and sometimes denote an edge {i, j} by (i, j). The neighbor-
hood of a vertex v in the set S ⊆ V is the set of the neighbors of v that are
in S, NS(v) := {s ∈ S : (v, s) ∈ E}. Note that NS(v) = NV (v) ∩ S. The
degree of a vertex v in S, denoted as degS(v) is the number of neighbors
of v that are in S, i.e. degS(v) = |NS(v)|. In the rest of the text, we will
omit the subscript when S = V , i.e., we will refer to NV (v) as N(v) and
to degV (v) as deg(v). The maximum degree of a vertex in G is denoted
by ∆, where ∆ = ∆(G) = max{deg(v) : v ∈ V } and the minimum degree
is denoted by δ, where δ = δ(G) = min{deg(v) : v ∈ V }.

Given a pair of nonempty S, T ⊆ V , let E(S, T ) = {{s, t} ∈ E :
s ∈ S, t ∈ T}. Recall that G = (V, E) is bipartite with bipartition
S ∪ Sc = V if E(S, Sc) = E. A pair of nonempty sets S, Sc defines a
(S, Sc)-cut represented by E(S, Sc). A cut is trivial if either S or Sc is a
one element set. An (S, Sc)-cut is a min-cut if |E(S, Sc)| ≤ |E(T, T c)| for
all pairs of nonempty sets T, T c ⊂ V . Similarly, (S, Sc)-cut is a max-cut
if |E(S, Sc)| ≥ |E(T, T c)| for all pairs of nonempty sets T, T c ⊂ V .

A graph H = (V ′, E′) is a subgraph of G, denoted as H ⊆ G, if V ′ ⊆ V
and E′ ⊆ E. We’ll also use the notation G\H = (V, E\E ′). The following
graphs on n vertices are denoted in the standard way: the complete graph
Kn, the path Pn, and the cycle Cn. A Kk ⊆ G is a clique (or a k-clique)
in G. The complement of G is denoted by Gc = (V, Ec) = Kn \ G. G
is connected if for every pair of vertices u, v ∈ V , there exists a path
P ⊆ G containing both u and v. Otherwise, G is disconnected. A
connected component H of G is a maximal connected subgraph H ⊆ G.
The distance between two vertices u and v in G, denoted as dist(u, v),
is the smallest k for which there exists Pk+1 ⊆ G that contains both u
and v (might not be defined in a disconnected graph). The diameter of
a connected graph G is diam(G) = max{dist(u, v) : u, v ∈ V }.

Some non-standard terminology: a vertex v is a master if deg(v) =
n − 1 (i.e., v is adjacent to every other vertex). We also say that v is
a k-master if deg(v) = n − 1 − k (i.e., v is adjacent to all but k other
vertices). Note that 0-master and master are equivalent notions, and we
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will use them interchangeably throughout the rest of the text.
In our model all agents and communication links in the system are

represented by a graph G in a natural way. That is, the vertices of G
are in a one-to-one correspondence with the agents and the edges of G
correspond to adjacency relation among the agents.

A coloring of the graph G, ct : V → {0, 1} defines an assignment of
binary values (colors) to the vertices of G at time t. We use the notation
ct
v := ct(v) to denote the color of a vertex v at time t. The notation

sum(ct) :=
∑

v∈V ct
v will also be useful. A color which is assigned to

more than |V |/2 vertices at a time t is called the majority color of the
coloring ct and denoted by maj(ct). Thus, maj(ct) = 1 if and only if
sum(ct) > n/2 and maj(ct) = 0 if and only if sum(ct) < n/2. Note that
maj(ct) is not defined if |V | is even and ct defines an equipartition of V ,
i.e., if sum(ct) = n/2. A coloring ct is a consensus if it is constant, i.e.
if all the vertices of G have the same binary values (colors). Thus, ct is
a consensus if and only if ct

v = maj(ct) for all v ∈ V . We will sometimes
abuse the notation and write ct = 0 or ct = 1 for consensus in color 0
and 1, respectively. Another abuse of notation is (1 − ct) denoting the
coloring obtained from ct by changing the color of every vertex, i.e., for
every v ∈ V and coloring ct, (1 − ct)(v) = 1 − ct(v).

Note that in our model ct(v) corresponds to the state of agent, rep-
resented by v, at time t.

The main object of our study is the local majority process LMP (G, c0),
a discrete time process on G that is based on the iterative application of
the local majority rule. The process is completely defined by G and the
initial coloring c0. For every t = 0, 1, 2, . . . , the coloring ct+1 is derived
by applying the local majority rule on N(v) for each vertex in G:

ct+1
v =

{
ct
v if |{w ∈ N(v) : ct

w = ct
v}| ≥ |N(v)|/2

1 − ct
v if |{w ∈ N(v) : ct

w 6= ct
v}| > |N(v)|/2

(1)

The local majority rule simply states that, at the next discrete time step,
the color assigned to a vertex v will be the color of the majority of its
neighbors. Note that an even degree vertex will retain its color whenever
exactly half (or more) of its neighbors have the same color. The above
rule also implies that the local majority rule is executed simultaneously
for all the vertices. The change from ct to ct+1 is called a global update
of G at time t + 1, while the change of the color of a particular vertex v
from ct

v to ct+1
v is called a local update. We say that there is a majority

switch at time (t + 1) if maj(ct) 6= maj(ct+1).
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Note that if ct is a consensus, then ct+k = ct for all positive inte-
gers k. If, for some positive integer t, ct is a consensus, then we say
that G reaches consensus for c0. If G reaches consensus ct for c0 and
ct = maj(c0), then we say that the LMP (G, c0) correctly computes the
initial majority and that G admits a democratic consensus for the initial
coloring c0. A graph G is a democratic consensus computer (or a d.c.c.
in short) if, for every c0 (there are 2n such colorings), LMP (G, c0) cor-
rectly computes the initial majority. In other words, G is a d.c.c. if G
admits democratic consensus for all of the 2n possible initial colorings.
Note that for every graph with even number of vertices there exists a c0

where maj(c0) is not defined. Thus, G can be a democratic consensus
computer only if it has an odd number of vertices.

Assumption.
Throughout the rest of the paper we assume that n is odd.

Our first observation about democratic consensus computers is the
following proposition.

Proposition 2.1 Let G be a d.c.c. and let c0 be an initial coloring of
G. Then there are no majority switches for LMP (G, c0), i.e. maj(ct) =
maj(c0) for t = 0, 1, 2, . . . .

Proof: Suppose that there exists t∗ such that maj(ct∗) 6= maj(c0). De-
fine another initial coloring d0 = ct∗ , and observe that dt = ct∗+t.

Since G is a d.c.c., the local majority process reaches consensus on
the maj(c0). In other words, there exists a t0 such that ct = maj(c0) for
every t ≥ t0. Thus, for t ≥ t0 − t∗, maj(dt) = maj(ct+t∗) = maj(c0) 6=
maj(ct∗) = maj(d0). Therefore G is not a d.c.c. since it does not admit
democratic consensus for d0. A contradiction. 2

The related research in the area of neural networks and models of
social influence was geared towards finding properties of the local ma-
jority process, rather than towards finding specific graphs (i.e., network
architectures) having certain desirable properties. In particular, we use
results about the behavior of the sequence c0, c1, c2, . . . . There are only
2n possible colorings and ct+1 is a function of G and ct, thus the sequence
c0, c1, c2, . . . must become periodic, i.e., there exists positive integers t0
and k such that ct+k = ct for every t ≥ t0. Obviously, the period k and
t0 are not larger than 2n. Somewhat surprisingly, the period can be only
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one or two and there exists t0 smaller than |E|. We first state the origi-
nal result from neural network literature3 and then show how this result
applies to our model.

Theorem 2.2 (Goles-Olivos [GO81], Goles [G86]) Let A = [aij]
be a n × n matrix and b ∈ Rn. For any c0 ∈ {0, 1}n define a dynamic
process by ct+1

i = p[Act − b]i where p(x) = 1 if x ≥ 0 and p(x) = 0 if
x < 0.

If A is symmetric, there exists t0 such that ct = ct+2 for all t ≥ t0.
Furthermore, if A is integer valued and b = A(1, . . . , 1)T , then t0 can be
chosen so that t0 ≤ |(∑i,j |aij |) − n|/2

Corollary 2.3 Consider the sequence c0, c1, c2, . . . defined by the local
majority process on G with initial coloring c0, LMP (G, c0). Then there
exists t0 < |E| such that ct = ct+2 for every t ≥ t0.

Proof: Let A be a slightly modified adjacency matrix of G, i.e., let
A = [auv] be defined with

auv =




1 if {u, v} ∈ E
1 if u = v and deg(v) is even
0 otherwise.

It is straightforward to check that, for any c0, a dynamic process from
Theorem 2.2 with A as defined is exactly LMP (G, c0). Note that A is a
zero-one symmetric matrix: auv = avu since {u, v} = {v, u}. Further note
that

∑
u,v |auv| = 2|E|+|{v : deg(v) is even}|. Thus, t0 from Theorem 2.2

can be chosen so that t0 ≤ |E| + |{v : deg(v) is even}|/2 − |V | < |E|. 2

Many of our results will be based on the “period is at most two”
property.

Next we show that a monotonicity property with respect to the struc-
ture of the coloring holds in the local majority process. As the next
Lemma shows, if at time t the color of some set of vertices is changed

3Theorem 2.2 is not the most general result. Various variations can be found in
a rather comprehensive collection of results related to dynamic behavior of neural
and automata networks by Goles and Martinez [GM90]. The period is either one
or two property holds in models beyond the symmetric neural network model. For
example, dynamical systems with more general threshold functions and allowing for
more than two possible colors are studied in [PS83, PT86a, PT86b], while sufficient
conditions for the property in the case of LMP on infinite graphs were studied in
[M94a, M94b, M94c].
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from 1 − i to i and colors of all other vertices remain the same, then, at
any later time t ≥ t′ the number of vertices of color i is as at least as
large as it would be without the change that was executed at time t.

Lemma 2.4 Let Vi(c
t) = {v ∈ V : ct

v = i}, i = 0, 1, where ct is a
coloring of G = (V, E). If there exists i ∈ {0, 1} and colorings ct and dt′

such that Vi(c
t) ⊆ Vi(d

t′) then Vi(c
t+k) ⊆ Vi(d

t′+k) for k = 0, 1, 2, . . . .

Proof: By induction on k. If k = 0 there is nothing to prove. Suppose
Vi(c

t+k) ⊆ Vi(d
t′+k). We have to show that, for every v ∈ V , ct+k+1

v =
i ⇒ dt′+k+1

v = i. It follows from the assumption that N(v) ∩ Vi(c
t+k) ⊆

N(v) ∩ Vi(d
t′+k) and, in particular, ct+k

v = i ⇒ dt′+k
v = i. Hence, if

ct+k+1
v = i because |N(v)∩Vi(c

t+k)| > |N(v)|/2, then |N(v)∩Vi(d
t′+k)| >

|N(v)|/2 also, and dt′+k+1
v = i. If ct+k+1

v = i because ct+k
v = i and

|N(v) ∩ Vi(c
t+k)| = |N(v)|/2, then dt′+k

v = i and |N(v) ∩ Vi(d
t′+k)| ≥

|N(v)|/2 which shows that dt′+k+1
v = i. 2

According to the definition, in order to check whether G is a demo-
cratic consensus computer, one would have to check whether G admits
democratic consensus for all 2n possible initial colorings c0. However,
because of the monotonicity property described in Lemma 2.4, it suffices
to consider only colorings c0 such that sum(c0) = (n + 1)/2. (There are(

n
(n+1)/2

)
= O(2n/

√
n) such colorings).

Theorem 2.5 Suppose G admits democratic consensus for any c0 such
that sum(c0) = n/2 + 1. Then G is a democratic consensus computer.

Proof: By symmetry, if G admits democratic consensus for all c0 with
maj(c0) = 1, then G admits democratic consensus for all c0 with maj(c0)
= 0 also. (If G does not admit democratic consensus for c0 with maj(c0) =
0, then G does not admit democratic consensus for 1−c0 also. Note that
maj(1 − c0) = 1 − maj(c0) = 1.)

Suppose d0 such that maj(d0) = 1, i.e., sum(d0) ≥ (n + 1)/2. Thus,
there exists a c0 with sum(c0) = (n + 1)/2 such that c0 and d0 satisfy
conditions of Lemma 2.4 with i = 1 (e.g., construct c0 from d0 by chang-
ing color of any sum(d0) − sum(c0) vertices w such that d0

w = 1). By
assumption, G admits democratic consensus for c0. Thus, using termi-
nology of Lemma 2.4, there exists t such that V1(c

t) = V and, by the
lemma, V1(c

t) ⊆ V1(d
t). Therefore, dt is a consensus with maj(dt) = 1

which shows that G admits democratic consensus for d. 2

9



Remark. Unfortunately, it is not true that adding an edge to or deleting
an edge from a democratic consensus computer G preserves the property
“democratic consensus computer”. In other words, if G is a d.c.c., G + e
might not be. Similarly, if G is not a d.c.c, G− e could be. For example,
consider

(Kn)c ⊂ Kn \ Pn−1 ⊂ Kn \ P(n+1)/2 ⊂ Kn

where n is odd. We later show that (Kn)c is not a d.c.c. (Corollary 3.3),
Kn \ Pn−1 is a d.c.c. (Theorem 4.12), Kn \ P(n+1)/2 is not a d.c.c ((b) of
Proposition 3.1), and that Kn is a d.c.c. ((a) of Proposition 3.1). Thus,
the graph property “democratic consensus computer” is not monotone in
the sense that addition or deletion of an edge in G preserves the property.

We close this section by showing that masters in G compute majority
instantly, i.e., the color of a master at time t + 1 is maj(ct). (Larger the
difference between the majority and minority color of ct, smaller degree
of v is needed to ensure ct+1

v = maj(ct).)

Proposition 2.6 If v is a master in G, then ct+1
v = maj(ct). More

generally, if v is a k-master in G and |sum(ct)− n/2| ≥ (k + 1)/2, then
ct+1
v = maj(ct).

Proof: Recall that a vertex v is a k-master if deg(v) = n− (k +1). Note
that |{w ∈ V : ct

w = 1 − maj(ct)}| ≤ deg(v)/2 implies ct+1(v) = maj(ct)
(at time t, at most half of v’s neighbors have color 1 − maj(ct); if each
of the two colors is the color of exactly half of v’s neighbors, then no
other vertex has color 1 − maj(ct) and, in particular, ct

v = maj(ct) and
the local majority process ensures ct+1

v = ct
v = maj(ct)). In order to

complete the proof note that |sum(ct) − n/2| ≥ (k + 1)/2 is equivalent
to |{w ∈ V : ct

w = 1 − maj(ct)}| ≤ (n − (k + 1))/2. 2

3 Structural properties

Let’s start by presenting a class of graphs that are d.c.c. and a class of
graphs that are not d.c.c..

Proposition 3.1
(a) A graph G with more than n/2 masters is a democratic consensus
computer.
(b) A graph G with exactly (n − 1)/2 masters is not a democratic con-
sensus computer.

10



Proof: First suppose that G has more than n/2 masters. Then, by
Proposition 2.6, for any c0 and any master v ∈ V , c1

v = maj(c0). Since
there are more than n/2 masters, it follows that maj(c1) = maj(c0).
Thus, c2

v = maj(c1) = maj(c0) (first equality follows from Proposition 2.6
with t = 1). Since every vertex w is adjacent to all the masters, it follows
that every w ∈ V that is not a master is connected to more than n/2
masters. Thus, c2

w = maj(c0) because masters are the majority of w’s
neighbors and, as already observed, c1

v = maj(c0) for every master v.
Hence, c2 is the consensus in color maj(c0) and (a) follows.

In order to prove (b), let G be a graph with exactly (n−1)/2 masters
and let c0

v = 0 if v is master and c0
w = 1 if v is not a master. Note

that maj(c0) = 1. Every w ∈ V that is not a master is connected to all
(n− 1)/2 masters (all having color 0 at time t=0) and is connected to at
most (n + 1)/2 − 2 = (n − 3)/2 vertices that are not masters (w is not
connected to itself and to at least one more vertex u because w is not a
master; u is not a master either because it is not connected to w). Thus,
c1
w = 0 and maj(c1) = 0 6= maj(c0). Hence, by Proposition 2.1, G is not

a democratic consensus computer. 2

Next we give a characterization of democratic consensus computers
which indicates a way towards a static representation in the form of
existence of a particular partition of the vertices of G.

Theorem 3.2 G is not a democratic consensus computer if and only if
at least one of the following holds:
(a) There exists c0 such that maj(c0) 6= maj(c1)
(b) There exists a partition of V into four sets A0, A1, B0, B1 satisfying

1. |B0||B1| = 0 ⇒ |A0||A1| = 1,

2. For every v ∈ V and i = 0, 1:

v ∈ Ai ⇒ degAi
(v) − degA1−i

(v) ≥ |degBi
(v) − degB1−i

(v)|

3. For every v ∈ V and i = 0, 1:

v ∈ Bi ⇒ degB1−i
(v) − degBi

(v) > |degAi
(v) − degA1−i

(v)|

Proof: Suppose G is not a democratic consensus computer. If G admits
a consensus for every possible initial coloring c0, there must exist d0 for
which G does not admit a democratic consensus, i.e., there exists d0
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and t such that dt is a consensus and maj(d0) 6= maj(dt). Obviously,
in the sequence d0, d1, . . . , dt, there exists t′ < t such that maj(dt′) 6=
maj(dt′+1). Thus, (a) holds for c0 := dt′ .

Thus, we may assume that there exists c0 for which G does not admit a
consensus. By Corollary 2.3 there exists t such that ct = ct+2. For i = 0, 1
define Ai := {v ∈ V : i = ct

v = ct+1
v } and Bi := {v ∈ V : i = ct

v 6= ct+1
v }.

Note that A0, A1, B0, B1 partition V and that 1. must hold since neither
ct nor ct+1 is a consensus. Since for every v ∈ Ai, ct

v = ct+1
v ,

degAi
(v) + degBi

(v) ≥ degA1−i
(v) + degB1−i

(v).

Similarly, for every v ∈ Ai, ct+1
v = ct+2

v implies (because {w : ct+1
w = i} =

Ai ∪ B1−i)

degAi
(v) + degB1−i

(v) ≥ degA1−i
(v) + degBi

(v).

These two inequalities imply 2. In the same manner, it follows that for
every v ∈ Bi, ct

v 6= ct+1
v implies

degA1−i
(v) + degB1−i

(v) > degAi
(v) + degBi

(v)

and that ct+1
v 6= ct+2

v implies

degAi
(v) + degB1−i

(v) > degA1−i
(v) + degBi

(v).

Hence, 3. follows from these two inequalities.
Conversely, suppose that (a) holds. Then, by Proposition 2.1, G is

not a d.c.c.
Finally, suppose that (b) holds. Define c0

v := i for v ∈ Ai∪Bi, i = 0, 1.
Note that 3. implies that either none or both sets B0 and B1 must be
nonempty (otherwise, if Bi is not empty and B1−i is empty, the lefthand
side of inequality in 3. would be less than or equal to zero for a v ∈ Bi

thereby automatically violating the inequality). If both B0 and B1 are
empty, 1. implies that both A0 and A1 are not empty. Hence, in either
case, c0 is not a consensus because Ai ∪ Bi 6= ∅ for i = 0, 1. Note that
2. implies that c1

v = c0
v for v ∈ Ai and that 3. implies that c1

v 6= c0
v for

v ∈ Bi, i = 0, 1. Furthermore, 2. also implies that c2
v = c1

v for v ∈ Ai

and 3. implies that c2
v 6= c1

v for v ∈ Bi, i = 0, 1. Hence, c2 = c0 and
the sequence c0, c1, c2, . . . never admits a consensus. Thus, G is not a
democratic consensus computer. 2

Theorem 3.2 indicates possible ways of adding edges to G that is not
a democratic consensus computer so that the new graph is still not a

12



democratic consensus computer. For example, if (b) holds for G and if
there exists four edges defining a 4-cycle

E ′ := {(w, x), (x, y), (y, z), (z, w)}

such that E ′∩E = ∅, then it is straightforward to check that (b) remains
to hold for G′ = (V, E∪E ′) provided that one of the following is true: (i)
w, x ∈ A0 and y, z ∈ A1, (ii) w, x ∈ B0 and y, z ∈ B1, (iii) w ∈ A0, x ∈
B0, y ∈ A1 and z ∈ B1.

Special cases of Theorem 3.2 help identify large classes of graphs that
are not d.c.c.’s. and provide insights into the structure of graphs that
are d.c.c.’s.

Corollary 3.3 Let G be bipartite or disconnected. Then G is not a
democratic consensus computer.

Proof: First suppose that G is disconnected. Let A0 6= V be one of
G’s connected components. Set A1 := V \ A0 and B0 = B1 = ∅. Note
that this partition satisfies conditions 1., 2., 3. from (b) in Theorem 3.2.
Thus, G is not a democratic consensus computer.

Next suppose that G is a connected bipartite graph with bipartition
B0 ∪ B1 = V . Set A0 = A1 = ∅ and note that 1., 2., 3. from (b) in
Theorem 3.2 hold. Thus, G is not a democratic consensus computer. 2

Corollary 3.4 Let G be a democratic consensus computer.
(a) Every min-cut in G is trivial.
(b) G does not have a unique max-cut.

Proof: First note that if (S, Sc) is a non-trivial min-cut, then for every
v ∈ S, degS(v) ≥ degSc(v) (if not, then (S, Sc) is not a min-cut since the
cut (S \ {v}, Sc ∪ {v}) has lesser edges) and for every v ∈ Sc, degSc(v) ≥
degS(v) (if not, then (S, Sc) is not a min-cut since the cut (S ∪ {v}, Sc \
{v}) has lesser edges). Thus, setting A0 = S, A1 = Sc and B0 = B1 = ∅
gives a partition from (b) in Theorem 3.2. Hence, G is not a democratic
consensus computer.

Similarly, note that in a unique max-cut (S, Sc) for every v ∈ S,
degS(v) < degSc(v) (if not, then (S, Sc) is not a max-cut since the cut (S\
{v}, Sc ∪{v}) has more edges), and for every v ∈ Sc, degSc(v) < degS(v)
(if not, then (S, Sc) is not a max-cut since the cut (S ∪ {v}, Sc \ {v})
has more edges). Thus, setting B0 = S, B1 = Sc and A0 = A1 = ∅
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gives a partition from (b) in Theorem 3.2. Hence, G is not a democratic
consensus computer. 2

The last corollary indicates that democratic consensus computers are
highly connected graphs (in the sense that having only trivial min-cuts
and many max cuts could be taken as a good indication of high level of
connectivity). The following theorem and its corollary provide another
confirmation of this claim.

Theorem 3.5 Let G be a democratic consensus computer. Then for
every v ∈ V

|
⋃

w∈N(v)

N(w)| ≥ n/2. (2)

Proof: First note that we can assume that G is connected (by Corol-
lary 3.3) and that n > 2.

Suppose (2) does not hold for some v ∈ V . Let u ∈ V be a vertex
of the minimum degree among all vertices v for which (2) is violated.
Let c0 be such that c0

v = 1 for every v ∈ ⋃
w∈N(u) N(w) and such that

sum(c0) = (n + 1)/2. Note that c0
u = 1 and that maj(c0) = 1. Let d0 be

such that d0
v 6= c0

v if and only if v = u (i.e., the only difference between
c0 and d0 is in the color of u). Note that sum(d0) = (n − 1)/2 and thus

maj(d0) = 0 6= 1 = maj(c0). (3)

Observe that for all v 6∈ N(v) ∪ {u}, w ∈ N(v) ⇒ c0
w = d0

w, and
hence c1

v = d1
v. Further observe that c1

u = d1
u = 1 because the color of all

neighbors of u is 1 in both c0 and d0 (and u has at least one neighbor since
G is connected). Finally observe that by the choice of u and the fact that
G is connected and n > 2, deg(v) ≥ 2 for all v ∈ N(u). Since the color
of all neighbors of v other than u is 1 in both c0 and d0, it follows that
c1
v = d1

v for v ∈ N(u). Hence, c1 = d1 and thus, because of (3), either
maj(c1) 6= maj(c0) or maj(d1) 6= maj(d0). In either case, it follows from
Proposition 2.1 that G is not a democratic consensus computer. 2

The theorem shows that democratic consensus computers are nowhere
truly local since the second neighborhood of any vertex contains a major-
ity of the vertices of V . Hence, the local majority process always reaches
a consensus on the initial majority color only if the local majority rule
is nowhere local. Hence, the theorem can be viewed as a sort of an
impossibility result.
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Corollary 3.6 If G is a democratic consensus computer then diam(G)≤
4.

Proof: Follows immediately from (2) because for any two vertices u, v ∈
V ,

(
⋃

w∈N(u)

N(w))
⋂

(
⋃

w∈N(v)

N(w)) 6= ∅.

2

Exhaustive computer aided search confirmed that diam(G) ≤ 2 for
every democratic consensus computer on at most 13 vertices. We con-
jecture that a much stronger statement is true (also confirmed to hold
for n ≤ 13 by an exhaustive search method).

Master Conjecture. Every democratic consensus computer contains a
master.

This is a rather strong conjecture because it implies that a necessary
condition for reaching democratic consensus is the existence of a vertex
connected to all the other vertices, thereby annihilating any notion of
local computation. In the next section we’ll show that the master con-
jecture holds for graphs G with δ(G) ≥ n − 3. Note that intuitively,
such graphs should be considered as prime candidates for a counterex-
ample to the conjecture since all of the vertices in these graphs are either
masters or very close to being masters (i.e., 0-masters, 1-masters, or 2-
masters). Thus our result that the master conjecture holds for graphs
with δ(G) ≥ n − 3 provides strong evidence towards the truth of the
master conjecture.

4 The case of δ(G) ≥ n − 3.

In the first part of this section we show that the Master Conjecture holds
for G with δ(G) ≥ n− 3. Moreover, in the second part we give complete
characterization of democratic consensus computers with δ(G) ≥ n − 3.
We close the section by demonstrating that, for every n and positive
k 6= (n − 1)/2, there exists a democratic consensus computer whose
number of masters is exactly k.

A direct consequence of Proposition 2.6 is that the only colorings c0

for which G might not admit a democratic consensus are the tight ones,
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i.e., c0 such that sum(c0) = (n + 1)/2. (The case sum(c0) = (n− 1)/2 is
symmetric).

Proposition 4.1 If δ(G) ≥ n − 3, then G admits democratic consensus
for every c0 such that sum(c0) ≥ (n + 3)/2.

Proof: Note that every v ∈ V is either a master, a 1-master, or a
2-master. Thus, by Proposition 2.6, c1

v = maj(c0) for every v ∈ V . 2

If δ(G) ≥ n − 3, then Gc has a very simple structure since ∆(Gc) =
(n − 1) − δ(G) ≤ (n − 1) − (n − 3) = 2. In other words, a connected
component of Gc is a single vertex, a path, or a cycle. The decomposition
of Gc into its connected components H1 = (V1, E

c
1), H2 = (V2, E

c
2), ...,

Hm = (Vm, Ec
m) 4 will be used throughout this section and we will often

abuse the notation and identify V (H) with H whenever such notation will
be unambiguous (e.g., we will often say that the connected components
of Gc define a partition of V ).

Another convenient property of G with δ(G) ≥ n − 3 is that every
vertex in G is either a master, a 1-master, or a 2-master. Thus, the
following lemma gives a complete boolean formula representation of local
updates for colorings ct with sum(ct) = (n + 1)/2.

Lemma 4.2 Let ct such that sum(ct) = (n + 1)/2.
(a) If v is a master, then ct+1

v = 1.
(b) If v is a 1-master, then ct+1

v = 1− ct
vc

t
w where w is the unique vertex

not adjacent to v.
(c) If v is a 2-master, then ct+1

v = 1 − ct
uc

t
w where u and w are the two

vertices not adjacent to v.

Proof: Since maj(ct) = 1, (a) follows directly from Proposition 2.6.
If v is a 1-master then V \ N(v) = {v, w}, so

|{u ∈ N(v) : ct
u = 1}| =

n + 1

2
− ct

v − ct
w

Note that ct+1
v = 0 if and only if |{u ∈ N(v) : ct

u = 1}| < |N(v)|/2 =
(n − 2)/2 (deg(v) = n − 2 is odd, so tie is impossible). But the last
inequality holds if and only if ct

v = ct
w = 1. Thus, (b) holds.

4In other words, Vi, i = 1, . . .m are pairwise disjoint, V1 ∪ . . . ∪ Vm = V , and
Ec

1 ∪ . . . ∪ Ec
m = Ec

16



Similarly, if v is a 2-master then V \ N(v) = {v, u, w}, so

|{u ∈ N(v) : ct
u = 1}| =

n + 1

2
− ct

v − ct
u − ct

w

First suppose ct
v = 0. Then, ct+1

v = 0 if and only if |{u ∈ N(v) : ct
u =

1}| ≤ |N(v)|/2 = (n − 3)/2 and this is true if and only if ct
u = ct

w = 1.
Thus, (c) holds if ct

v = 0. Finally, suppose ct
v = 1. Then, ct+1

v = 0 if and
only if |{u ∈ N(v) : ct

u = 1}| < |N(v)|/2 = (n − 3)/2 and, again, this is
true if and only if ct

u = ct
w = 1. Thus, (c) also holds if ct

v = 1. 2

This lemma allows us to track action of the local majority process on
G. We define an auxiliary graph AG = (V, E(AG)). Edges of AG are
defined by formulas from (b) and (c) from the lemma:

E(AG) = {{v, w} : dG(v) = n − 2, {v, w} 6∈ E(G)}
∪

{{u, w} : ∃v, dG(v) = n − 3, {v, u}, {v, w} 6∈ E(G)}.
Thus, E(AG) is in one to one correspondence with the set of all vertices
of G which are not masters. Note that AG has a rather simple struc-
ture: all of its connected components are cycles, each corresponding to
a connected component of Gc as follows (this is a direct consequence of
the definition of AG):

• If a connected component H ⊂ Gc is a path, say v1, v2, . . . , vl (i.e.,
{vi, vi+1} ∈ E(Gc), i = 1, . . . l − 1), then V (H) defines a cycle CH

that is a connected component in AG:
If l is even, then the adjacent vertices in CH are

v1, v2, v4, v6, . . . , vl−2, vl, vl−1, vl−3 . . . , v3, v1.

If l is odd, then adjacent vertices in CH are

v1, v2, v4, v6, . . . , vl−1, vl, vl−2, vl−4, . . . , v3, v1.

• If a connected component H ⊂ Gc is an odd cycle v1, v2,. . . ,v2k+1, v1

(i.e., {vi, vi+1} ∈ E(Gc), i = 1, . . . 2k+1, and {v2k+1, v1} ∈ E(Gc)),
then V (H) defines a cycle CH that is a connected component in AG:

v1, v3, . . . , v2k+1, v2, v4, . . . , v2k, v1.
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• If a connected component H ⊂ Gc is an even cycle v1, v2, . . . , v2k, v1

(i.e., {vi, vi+1} ∈ E(Gc), i = 1, . . . 2k, and {v2k, v1} ∈ E(Gc)), then
V (H) defines two disjoint cycles CH = C1H ∪ C2H that are con-
nected components in AG:

v1, v3, . . . , v2k−1, v1 and v2, v4, . . . , v2k, v2.

Lemma 4.3 Let ct such that sum(ct) = (n+1)/2. Let H be a connected
component of Gc on l vertices, l ≥ 2. Let S = {v ∈ H : ct

v = 1}. Then

|{v ∈ H : ct+1
v = 1}| ≥ l − |S| (4)

Furthermore, the equality holds in (4) if and only if one of the following
holds: (i) |S| = 0, (ii) |S| = l, (iii) H is an even cycle and ct

v 6= ct
w

whenever {v, w} ∈ E(Gc).

Proof: First note that, by Lemma 4.2 and by definition of AG,

|{v ∈ H: ct+1
v =1}| =

∑
v∈H

ct+1
v =

∑
{u,w}∈CH⊂AG

(1 − ct
uc

t
w) = |H| −

∑
{u,w}∈CH⊂AG

ct
uc

t
w.

Thus, it remains to show that

|S| ≥
∑

{u,w}∈CH⊂AG

ct
uc

t
w. (5)

Note that∑
{u,w}∈CH⊂AG

ct
uc

t
w = |{{u, w} ∈ EAG(CH) : u, w ∈ S}| = |E(CH [S])|

where CH [S] denotes the induced subgraph of CH , i.e., the maximal
subgraph of CH on the vertex set S ⊂ V (CH).

If |S| = 0, |E(CH[S])| = 0, and (5) holds with equality. Thus, (4)
holds with equality.

If |S| = l, then CH [S] = CH and |E(CH [S])| = |E(CH)| = l since CH

is a cycle or a union of two disjoint cycles. Thus, if |S| = l, (4) also holds
with equality.

If H is an even cycle, then CH = C1H ∪ C2H . Furthermore, S =
V (C1H) or S = V (C2H) if and only if vertices of H are colored alter-
nately along the cycle H (i.e., as described in (iii) in the statement of
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the lemma). In either case, |E(CH[S])| = |S| and (4) again holds with
equality.

If neither (i) nor (ii) nor (iii) holds, then CH [S] contains an acyclic
component and any possible cyclic component of CH must be a cycle.5

Thus, |E(CH [S])| ≤ |S| − 1 and

|{v ∈ H : ct+1
v = 1}| ≥ l − |S| + 1 (6)

2

Several simple consequences of this lemma will be useful in the anal-
ysis that follows. For example, if a connected component of Gc that is
not an isolated vertex is monochromatic for some ct, then every vertex
in H will switch color.

Lemma 4.4 Let ct be a coloring of G, δ(G) ≥ n−3, such that sum(ct) =
(n + 1)/2. Let H = (VH , EH) be a connected component of Gc with
|VH| ≥ 2. Suppose that ct

v = ct
w for every v, w ∈ VH . Then ct+1

v = 1 − ct
v

for every v ∈ VH .

Proof: Let |VH | = l. If ct
v = 1 for all v ∈ VH , then result follows from

Lemma 4.4 with |S| = l. If If ct
v = 0 for all v ∈ VH , then result follows

from Lemma 4.4 with |S| = 0. 2

The next lemma presents an opposite scenario: if colors assigned by
ct, sum(ct) = (n+1)/2, alternate along an even cycle that is a connected
component of Gc, then no vertex on that cycle will switch color.

Lemma 4.5 Let ct be a coloring of G, δ(G) ≥ n−3, such that sum(ct) =
(n + 1)/2. Let C2k ⊂ Gc be a connected component in Gc. Suppose the
colors assigned by Ct alternate along the cycle: if u is adjacent to v in
C2k then ct

u = 1 − ct
v. Then ct+1

v = ct
v for every v ∈ C2k.

Proof: Every v ∈ C2k is a 2-master and, by (c) of Lemma 4.2, ct+1
v =

1− ct
uc

t
w = 1− (1− ct

v), because in C2k, v is adjacent to both u and w. 2

The preceding lemmas indicate a way to construct c0 yielding a com-
plete switch, i.e., c1 = 1 − c0. Obviously, all masters must be colored
with a minority color in order to switch. If all the other connected com-
ponents of Gc are monochromatic (with some even cycles possibly being

5In fact the only possibility for a cyclic component is when H is an even cycle
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colored as described in the previous lemma), and if the resulting coloring
c0 is a tight majority coloring on G (i.e., sum(ct) = (n + 1)/2), then, as
shown in the next lemma, c1 = 1 − c0 (except on the even cycles where
ct=1 = ct), and G is not a democratic consensus computer.

Lemma 4.6 Let δ(G) ≥ n − 3. Let H1 = (V1, E
c
1), H2 = (V2, E

c
2), ...,

Hm = (Vm, Ec
m) be the connected components of Gc. Suppose there exist

i and j, 1 ≤ i < j ≤ m, such that
(i) |Vk| = 1 ⇒ k ≤ i,
(ii) m ≥ k > j ⇒ Hk is an even cycle,
(iii) |V1| + |V2| + . . . + |Vi| + 1 = |Vi+1| + . . . + |Vj|.
Then G is not a democratic consensus computer.

Proof: For v ∈ Vk, set c0
v = 0 if k ≤ i and set c0

v = 1 if i < k ≤ j. If
j < m, then the remaining vertices lie on even cycles in Gc. Color each
Hk alternately, i.e., as described in the statement of Lemma 4.5. Note
that, by (iii),

|{v ∈ V : c0
v = 0}| =

∑i
k=1 |Vk| + 1

2

∑m
k=j+1 |Vk|

= (
∑j

k=i+1 |Vk|) − 1 + 1
2

∑m
k=j+1 |Vk|

= |{v ∈ V : c0
v = 1}| − 1.

Thus, sum(c0) = (n + 1)/2 and maj(c0) = 1.
If v is a master c1

v = maj(c0) = 1 = 1 − c0
t (the last equality holds

because {v} = Hk for some k and k ≤ i by (i)). If v is not a master, then
v ∈ Hk for some k ≤ m such that |Hk| ≥ 2. If k ≤ j, then c1

v = 1− c0
v by

Lemma 4.4. If k > j then c1
v = c0

v by Lemma 4.5. Therefore, c1
v = 1 − c0

v

if v ∈ V1 ∪ . . . ∪ Vj and c1
v = c0

v if v ∈ Vj+1 ∪ . . . ∪ Vm. Thus,

|{v ∈ V : c1
v = 1}| =

∑i
k=1 |Vk| + 1

2

∑m
k=j+1 |Vk|

= (
∑j

k=i+1 |Vk|) − 1 + 1
2

∑m
k=j+1 |Vk|

= |{v ∈ V : c1
v = 0}| − 1.

So, maj(c1) = 0 6= maj(c0) and G is not a democratic consensus com-
puter by Proposition 2.1. 2

For any k = 0, 1, . . . (n − 1)/2, it is straightforward to construct a
G with k masters satisfying conditions of Lemma 4.6. For example, if
k = 0, take G such that connected components of Gc are P(n−1)/2 and
P(n+1)/2. If k > 0, G whose connected components are its masters, Pk+1

and Cn−2k−1 is such example. Thus, there exist G with δ(G) ≥ n − 3
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which are not d.c.c. and having exactly k masters for every k < (n+1)/2.
(Recall that, by Proposition 3.1, every G with at least (n + 1)/2 masters
is a d.c.c.)

A similar construction to that of Lemma 4.6 yields a class of graphs
with a unique master that are not d.c.c.’s

Lemma 4.7 Let δ(G) ≥ n − 3 and let v0 be the unique master in G.
Let H1 = {v0}, H2 = (V2, E

c
2), ..., Hm = (Vm, Ec

m) be the connected
components of Gc. Suppose there exist i and j, 1 ≤ i ≤ j ≤ m, such that
(i) m ≥ k > j ⇒ Hk is an even cycle,
(ii) |V2| + |V3| + . . . + |Vi| = |Vi+1| + . . . + |Vj| (assuming the empty
summation on both sides of the equation when i = j = 1).
Then G is not a democratic consensus computer.

Proof: Define c0 as in the proof of Lemma 4.6 except for v0. Set c0
v0

= 1.
Observe that c1

v = 1 − c0
v for v ∈ V2 ∪ . . . ∪ Vj (by Lemma 4.4), that

c1
v0

= maj(c0) = 1 = c0
v0

(by Proposition 2.6), and that c1
v = c0

v for v ∈
Vj+1∪. . .∪Vm (by Lemma 4.5). Note that sum(c1) = (n+1)/2 because of
(ii). Repeating the same observation, we get c2

v = 1−c1
v = 1−(1−c0

v) = c0
v

for v ∈ V2 ∪ . . . ∪ Vj (by Lemma 4.4), c2
v0

= maj(c1) = 1 = c0
v0

(by
Proposition 2.6), and c2

v = c1
v = c0

v for v ∈ Vj+1∪. . .∪Vm (by Lemma 4.5).
Thus c2 = c0 and c0, c1, c2, . . . is periodic with period at most two. Since
c0 is not a consensus, G is not a democratic consensus computer. 2

For example, Kn \ Cn−1 is not a d.c.c. because it satisfies the condi-
tions of the lemma with i = j = 1 and m = 2.

In order to prove that the Master Conjecture holds in the case δ(G) ≥
n − 3, we need yet another lemma. In what follows we will say that
v1, v2, . . . vk form a path Pk if vi is adjacent to vi+1 in Pk for i = 1, . . . , (k−
1). Similarly, we will say that v1, . . . vk form a cycle Ck if v1, . . . , vk form
a path Pk ⊆ Ck and v1 is adjacent to vk in Ck.

Lemma 4.8 Let ct be a coloring of G, δ(G) ≥ n−3, such that sum(ct) =
(n + 1)/2. Let v1, v2, . . . , vk form H ⊂ Gc, a connected component in Gc

on k ≥ 3 vertices. Suppose that there exists a j < k/2 such that ct
vi

= i
mod2 for i ≤ 2j + 1. If 2j + 1 < k, also suppose that ct

vi
= ct

v2j+2
for

i > 2j + 1.
Then ct+1

vi
= ct

vi
for i ≤ 2j + 1 and ct+1

vi
= 1 − ct

vi
for i > 2j + 1.

Proof: Since δ(G) ≥ n − 3, H is a path or a cycle. Using (b) and (c)
of Lemma 4.2, observe that ct+1

vi
= ct

vi
for i ≤ 2j + 1 (since each vi such
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that ct
vi

= 0 has both non-neighbors of color 1, while each vi such that
ct
vi

= 1 has at least one non-neighbor of color 0) and that ct+1
vi

= 1 − ct
vi

for i > 2j + 1 (if ct
v2j+2

= . . . = ct
vk

= 0, then each such vi has a non-

neighbor of color 0; if ct
v2j+2

= . . . = ct
vk

= 1, then each such vi has all

non-neighbors of color 1 because ct
v1

= ct
v2j+1

= 1). 2

Theorem 4.9 Let G such that δ(G) ≥ n − 3. If G is a democratic
consensus computer, then G contains a master.

Proof: Suppose G does not contain a master. We’ll show that G is not
a democratic consensus computer. Let H1 = (V1, E

c
1), H2 = (V2, E

c
2), ...,

Hm = (Vm, Ec
m) be the connected components of Gc. Since G does not

contain a master, |Vl| ≥ 2, l = 1, . . .m. Choose an index i such that

|V1| + . . . + |Vi| ≤ (n − 1)/2 < |V1| + . . . + |Vi| + |Vi+1|.

If |V1| + . . . + |Vi| = (n − 1)/2, then the conditions of Lemma 4.6
are satisfied with i, and with j = m. Therefore, in this case, G is not a
democratic consensus computer.

For the rest of the proof we may assume that |V1| + . . . + |Vi| <
(n−1)/2. We may also assume that |V1|+ . . .+ |Vi−1|+ |Vi|+(|Vi+1|/2) >
(n−1)/2. (If not, then (|Vi+1|/2)+|Vi+2|+|Vi+3|+. . .+(|Vm|) > (n−1)/2
and we could map l to m+1− l, i.e. Hl becomes Hm+1−l, l = 1, . . . , m.)
Note that these imply that |Vi| ≥ 3.

Let v1, v2, . . . , vk form Hi+1 and let

j = (n − 1)/2 − (|V1| + . . . + |Vi−1| + |Vi|) (7)

Note that j < k/2. Set

c0
v =




0 v ∈ V1 ∪ V2 ∪ . . . ∪ Vi

i mod2 vi, i = 1, . . . , 2j + 1
1 vi, i = 2j + 2, . . . , k
1 v ∈ Vi+2 ∪ Vi+3 ∪ . . . ∪ Vm

Note that sum(c0) = (n + 1)/2. By Lemma 4.4, c1
v = 1 − cv for every

v 6∈ Vi+1. By Lemma 4.8, c1
vi

= 1− c0
vi

for i = 2j + 2, . . . , k and c1
vi

= c0
vi

for i = 1, . . . 2j + 1. Thus, only j vertices colored by 0 and only j + 1
vertices colored by 1 do not switch color. Hence, sum(c1) = |V1| + . . . +
|Vi| + (j + 1) = (n − 1)/2 + 1 = (n + 1)/2 (the second equality follows
from (7)).
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Repeating the same argument for

c1
v =




1 v ∈ V1 ∪ V2 ∪ . . . ∪ Vi

i mod2 vi, i = 1, . . . , 2j + 1
0 vi, i = 2j + 2, . . . , k
0 v ∈ Vi+2 ∪ Vi+3 ∪ . . . ∪ Vm

we conclude that c2 = c0. Thus, c0, c1, c2, . . . has period two. Therefore,
G is not a democratic consensus computer. 2

Next we turn to G, δ(G) ≥ n − 3, which contain masters. Because
of Proposition 3.1, the only remaining cases are graphs with k masters,
k = 1, 2, . . . (n − 3)/2. We have already demonstrated two conditions
that would immediately classify such G as not being d.c.c. (Lemma 4.6
and Lemma 4.7). As the next theorem shows, these are the only two
obstacles.

Theorem 4.10 Let G, δ(G) ≥ n − 3, contain exactly k masters, 1 ≤
k ≤ (n − 3)/2. G is not a d.c.c. if and only if G satisfies conditions of
Lemma 4.6 or conditions of Lemma 4.7.

Proof: We only have to prove necessity. (Sufficiency follows from Lemma
4.6 and Lemma 4.7.) We will show that, for any c0, G either admits a
democratic consensus for c0 or satisfies conditions of either Lemma 4.6 or
conditions of Lemma 4.7. By Proposition 4.1 we may assume sum(c0) =
(n + 1)/2.

Let H1, H2, . . . , Hl be the connected components of Gc that are not
isolated vertices. Let c0 be a coloring of G, sum(c0) = (n + 1)/2. For
i = 0, 1 define

m(i) = |{v ∈ G : v is a master, c0
v = i}|

and
hj(i) = |{v ∈ Hj : c0

v = i}|,
j = 1, . . . , l. Note that k = m(0)+m(1),|Hj| = hj(0)+hj(1), (n+1)/2 =

sum(c0) = m(1) +
∑l

j=1 hj(1) and that (n − 1)/2 = m(0) +
∑l

j=1 hj(0).
Furthermore, for j = 1, . . . , l, let αj = 0 if Hj satisfies (i), (ii), or (iii)

from Lemma 4.3; otherwise let αj = 1. In this notation, by Lemma 4.3,
we have

|{v ∈ Hj : c1
v = 1}| ≥ |Hj| − hj(1) + αj = hj(0) + αj .
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Thus, taking into account that c1
v = 1 for every master v (Proposi-

tion 2.6),

sum(c1) ≥ m(0) + m(1) +

l∑
j=1

(hj(0) + αj).

Thus,

sum(c1)−sum(c0) ≥ m(1) + m(0) +
∑l

j=1 hj(0) +
∑l

j=1 αj −sum(c0)

≥ m(1) + (n − 1)/2 +
∑l

j=1 αj − (n + 1)/2

≥ m(1) − 1 +
∑l

j=1 αj

Therefore, sum(c1) < sum(c0) if and only if m(1) = 0 and αj = 0 for
all j = 1, . . . , n. Also, in this case, sum(c1) = (n − 1)/2, i.e., G is not
a d.c.c. since maj(c1) = 0 6= 1 = maj(c0). Note that conditions of
Lemma 4.6 are satisfied: list all components of Gc as follows: start with
all masters and continue with all H such that c0

v = 0 for all v ∈ H ;
then continue by listing all H such that c0

v = 1 for all v ∈ H ; if there
are remaining components, these must be even cycles colored alternately
along the cycle by c0.

If sum(c1) > sum(c0), then sum(c1) ≥ (n + 3)/2 and, therefore, G
admits democratic consensus for c1 by Proposition 4.1(and thus for c0

also since maj(c0) = maj(c1)).
Therefore, we may assume that sum(c1) = sum(c0) = (n+1)/2. This

also means that we may assume that

1 − m(1) =

l∑
j=1

αj .

Since the righthand side is nonnegative, m(1) = 0 or m(1) = 1. Note
that we may assume that m(1) = 1. (For otherwise, m(1) = 0 implies
m(0) > 0 since G has at least one master and that there is exactly one
Hj such that αj = 1. Note that d0 = c1 has sum(d0) = (n + 1)/2,
unchanged αj for every j, and, because of Proposition 2.6, m(0) = 0 and
m(1) > 0. Thus, we can replace c0 by d0 and ensure that m(1) 6= 0. This
can be done because G admits democratic consensus for c0 if and only if
G admits democratic consensus for d0.)

Because m(1) = 1, we know that every αj = 0, i.e., Hj is either
colored monochromatically by c0 or Hj is an even cycle colored alternately
by c0. If, in addition, m(0) = 0, G has only one master and the conditions
of Lemma 4.7 are satisfied: list all components of Gc as follows: start
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with the unique master, continue with all H such that c0
v = 0 for every

v ∈ H , and then continue by listing all H such that c0
v = 1 for every

v ∈ H ; if there are any vertices in H left, these must be even cycles
colored alternately.

Therefore, it remains to consider the case sum(c0) = sum(c1) =
(n + 1)/2, m(1) = 1, m(0) ≥ 1 and αj = 0 for every Hj. Note that

sum(c2) = m(0) + m(1) +
∑l

j=1 hj(1) ≥ 1 + m(1) +
∑l

j=1 hj(1)

= 1 + sum(c0) = (n + 3)/2.

Thus, by Proposition 4.1, c3 is a consensus in color 1. 2

Remark. The proof of Theorem 4.10 shows that if G, with δ(G) ≥ n−3,
is a d.c.c., then c3 is the democratic consensus, i.e., the local majority
process reaches consensus in at most three steps.

Theorem 4.11 Let G be a graph with k masters and with δ(G) ≥ n −
3. G is not a democratic consensus computer if and only if one of the
following holds: (i) k = 0, (ii) k = (n− 1)/2, (iii) G satisfies conditions
Lemma 4.6, (iv) G satisfies the conditions of Lemma 4.7.

Proof: Theorem 4.9, Proposition 2.6, and Theorem 4.10. 2

Note that Theorem 4.10 can be used to define various classes of d.c.c.’s
and non-d.c.c.’s. We close this section by observing just one additional
class of d.c.c’s that was mentioned in Section 2.

Theorem 4.12 Let k ≥ 1, k 6= (n − 1)/2. There exist a democratic
consensus computer with exactly k masters. In particular, Kn \ Pn−k is
a democratic consensus computer.

Proof: If k ≥ (n + 1)/2, the result follows from Proposition 2.6. If
1 ≤ k ≤ (n − 3)/2, the connected components of G = Kn \ Pn−k are
k single element components corresponding to masters in G and Pn−k.
Note that G does not satisfy conditions of Lemma 4.6, nor conditions
of Lemma 4.7. Thus, by Theorem 4.10, G is a democratic consensus
computer. 2

5 Generalizations and Relaxations

A simple generalization of the local majority process would allow vertex v
to have some resistivity towards color switch. Formally, for a nonnegative
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integer kv, we define a kv-local majority rule for vertex v:

ct+1
v =

{
ct
v if |{w ∈ Nv : ct

w = ct
v}| ≥ |N(v)|/2 + kv

1 − ct
v if |{w ∈ Nv : ct

w 6= ct
v}| > |N(v)|/2 + kv

(8)

The value kv is called the resistivity value of vertex v and we call the graph
G = (V, E) together with the set of vertex resistivities {kv : v ∈ V } a
varied-resistivity graph. Similarly, the process defined by (8) is called
the local majority process with resistivities. Note that the local majority
process with resistivities where kv = 0, v ∈ V , is exactly the local major-
ity process. As the next theorem shows, introducing vertex resistivities
does not bring additional difficulties: the local majority process with
resistivities can be simulated by the (standard) local majority process.

Theorem 5.1 Let G(V, E) be a varied-resistivity graph, with the vertex
set V ={v1,. . . ,vn}, and the corresponding resistivities R={kv1 ,. . . ,kvn}.
The local majority process with resistivities on the varied-resistivity graph
G can be simulated by the local majority process on some graph G′(V ′, E′).

Proof: We will derive the graph G′(V ′, E′) iteratively. Let the graph
G0(V0, E0) = G(V, E), where the vertices of G0 are labeled differently,
i.e. V0 = {v1

1 = v1, . . . , vn
n = vn}. The edges are the same. Also, let c0

be the coloring defined on G, and let the corresponding coloring for G0

be c0
0.
We now show how to derive Gi from Gi−1. The vertices of the graph

Gi−1(Vi−1, Ei−1) are Vi−1 = {v1
1, . . . , vm

1 , . . . , v1
n, . . . , vm

n }, where kvj
l

=

k
vj′

l

for all 1 ≤ j, j′ ≤ m and for all l. If kvj
i

= 0, then we set Gi = Gi−1,

i.e. Vi = Vi−1 and Ei = Ei−1. Otherwise, we do the following.
For ease of notation, we refer to kvj

i
as ki, since all vj

i vertices have

the same resistivity by assumption. For each vertex vj
l ∈ Vi−1, we add

ki new vertices. We shall denote these ki new vertices for each vertex
vj

l ∈ Vi−1 as vd
l , where d = (m+(j− 1)kvj

l
+1), . . . , (m+ jkvj

l
). We shall

call vj
l the parent vertex of all such ki new vd

l vertices. More formally,

Vi = Vi−1 ∪ki
u=1 {vm+(j−1)ki+u

l : vj
l ∈ Vi−1}. The resistivity values of all the

vertices are reassigned as

kvj
l

=

{
0 if l = i, or vj′

i is parent of vj
l , for any j′

kvj
l

else if l 6= i, or vj′
i is not a parent of vj

l , for all j′
(9)

That explains all the vertices we add to the graph. We add the edges
to the new graph as follows. First, for each vertex vd

i , (m + (j − 1)ki) ≤
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d ≤ (m + jki), we add the edge (vd
i , v

j
i ), where vj

i is the parent vertex of
the vertex vd

i . For each pair of vertices vd
i , v

e
i , for all (m+(j−1)ki) ≤ d <

e ≤ (m + jki), we add the edges (vd
i , v

e
i ) to Ei. Then, for every pair of

vertices vd
l , v

d
l′ such that the parent of vd

l is vj
l and the parent of vd

l′ is vj
l′,

we add the edge (vd
l , v

d
l′) to Ei whenever (vj

l , v
j
l′) ∈ Ei−1. More formally,

Ei = Ei−1 ∪ ({(vd
i , v

j
i ) : (m + (j − 1)ki) ≤ d ≤ (m + jki)})

∪
(∪m

j=1{(vd
i , v

e
i ) : (m + (j − 1)ki) ≤ d < e ≤ (m + jki)})

∪
(∪ki

u=1{(vm+(j−1)ki+u
l , v

m+(j′−1)ki+u
l′ ) : (vj

l , v
j′
l′ ) ∈ Ei−1).

This completes the construction of the new graph. Note that |Vi| =
ki|Vi−1|. Also, by the assignment of resistivities, kvj

i
= 0 for all j.

We now extend the coloring c0
i−1 for the coloring c0

i of the new graph
simply by making the color of each new vertex as the color of its parent
vertex. More formally, c0

i = {c0
i (v

m+(j−1)ki+u
l ) = c0

i−1(v
j
l ) : 1 ≤ u ≤

ki, 1 ≤ j ≤ m}.
Note that now c1 according to the local update procedure can be

found on Gi by extending c1 from Vi−1 to Vi, or by applying the local
update on c0 in Gi directly.

Finally, note that Gn has d|V | vertices, where d =
∏n

u=1 ku. Also,
since for the graph Gi, kj = 0 for all j ≤ i, Gn has the resistivity values
of all vertices as zero. At each step, Gi simulates Gi−1, and thus Gn

simulates G0 = G. 2

Another natural generalization of our model would be to associate
weights to the edges of G. The weight auv associated to the edge {u, v}
could be interpreted as the strength of the relationship between u and v
and used as the relative importance of the info provided by u ∈ N(v) at
time t for v’s decision on its color ct+1

v at time t + 1. In other words, the
weighted local majority process is defined by

ct+1
v = 1 − ct

v ⇔

 ∑

u∈N(v):ct
u=1−ct

v

auv


 >

1

2

∑
u∈N(v)

auv.

Note that we may assume that all auv are rational numbers because G
is finite6. Furthermore, we may assume that all weights auv are integer

6There exists ε > 0 such that replacing each weight auv by a∗
uv, auv−ε < a∗

uv ≤ auv,
yields the same process for any initial coloring c0.
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valued7. If all weights happen to be nonnegative, the weighted local
majority process can be simulated by the local majority process on the
corresponding multigraph GM = (V, EM) where EM is the multiset of
edges of G with multiplicity of an edge {u, v} given by auv. In order to
properly apply (1) in this case, several definitions have to be adjusted:
N(v) is the multiset of the vertices adjacent to v where a vertex u appears
with multiplicity auv. A degree of a vertex v, deg(v) is the cardinality
(taking into account multiplicities) of N(v). Most of our results readily
generalize in the multigraph framework.

Combining both generalizations yields the local weighted majority pro-
cess with resistivities which is defined by:

ct+1
v = 1 − ct

v ⇔

 ∑

u∈N(v):ct
u=1−ct

v

auv


 > kv +


 ∑

u∈N(v):ct
u=ct

v

auv


 . (10)

In other words, v changes its color at time t + 1 if and only if at least kv

more than the weighted majority of its neighbors are colored by 1 − ct
v

at time t. As already noted, it is safe to assume that edge weights auv

are integral, and thus, without loss of generality we may assume that
resistivities kv are integral also8. If kv is nonnegative, this process can be
simulated by the local majority process on the multigtraph GM defined
as in the previous paragraph with addition of kv loops to each vertex v.
Note that v belongs to N(v) with multiplicty kv in such a multigraph.

Hence, because of the multigraph simulation, it is straightforward to
generalize most of the presented results in the framework that allows
for nonnegative edge weights auv and for nonnegative vertex weights kv.
Note that the weighted local majority process with resistivities can be
described in terms of the process from the statement of Theorem 2.2 with
b = A(1, . . . , 1)T where nondiagonal entries of the integer valued A are
auv if {u, v} is an edge and auv = 0 if {u, v} is not an edge and where
the diagonal entries of A are avv = kv + 1 if there exists ct which would
turn the righthand side of (10) into equality, and avv = kv otherwise.
Conversely, if A is a nonnegative matrix and b such that, for every i =
1, . . . n, the interval (bi − aii, bi) contains no elements from

S = {
∑
j∈J

aij : J ⊆ {1, 2 . . . , n} \ {i}}
7Multiplying all weights by a scalar λ yields the same process. Set λ to the common

denominator of all weights.
8Any kv can be replaced by an integral k∗

v resulting in no change in the coloring
process.
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and bi ≥ (max S)/2, then it is straightforward to define G and non-
negative edge and vertex weights such that the weighted local majority
process with resistivities on G is equivalent to the dynamic process in
the symmetric neural network model (i.e., the process described in the
statement from Theorem 2.2). Finally, note that there are instances of
the general symmetric neural network process, e.g., a weighted local ma-
jority process with resistivities where any of the edge weights or vertex
resistivities are negative, that cannot be simulated by the multigraph
simulation approach to the local majority process. (Allowing negative
weights and resistivities could be viewed as a technical generalization
but not necessarily as a natural one. If at least one of these parameters
is negative, there exists v and c0 such that v switches its color at time
t = 1 from c0

v = the majority color of its neighborhood at time t = 0, to
c1
v = 1 − c0

v = the mi! nority color of its neighborhood at time t = 0. A
rule that allows for a switch from the local majority to the local minority
hardly qualifies as an acceptable majority computation rule.)

In the next section we further discuss some basic assumptions of our
model and try to illustrate why our model is a natural one to analyze.
In the rest of this section we present an approach toward relaxing the
notion of democratic consensus computer.

In view of our results showing that democratic consensus computers
are nowhere truly local, one might want to know how likely is a network
of agents G to admit a democratic consensus. Here we single out and
then combine two possible ways to measure this. On the one hand, one
might be interested only in the colorings where the difference between
majority and minority is substantial, i.e., we may only require that G ad-
mits democratic consensus only for c0 such that sum(c0) ≥ k (where an
integer k ≥ n/2 is a numerical expression of “substantial majority”). On
the other hand, one might allow for occasional failures requiring that G
admits democratic consensus for substantial proportion p of initial color-
ings c0 that are of interest. These two approaches motivate the following
definition of the (p, k)-weak democratic consensus computer that is de-
fined for 0 ≤ p ≤ 1 and integer k > n/2. G is a (p, k)-weak democratic
consensus computer if G ad! mits a democratic consensus for at least
p|C(k)| colorings c0 ∈ C(k) = {c0 : sum(c0) ≥ k}. Note that, for odd n,
d.c.c. is equivalent to (1, (n + 1)/2)-weak d.c.c. Also note that, if G is a
(p, k)-weak d.c.c. and (p′, k′)-weak d.c.c., then k ≤ k′ ⇒ p ≤ p′. (This
follows from Lemma 2.4.) Further note that, by Proposition 2.6, any G
with δ(G) ≥ 2(n−k) is a (1, k)-weak democratic consensus computer. In
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fact, we believe that the following generalization of the master conjecture
holds.
Generalized Master Conjecture. Every (1, k)-weak democratic con-
sensus computer contains a (2k − n − 1)-master.

6 Discussion of model assumptions

As already noted, one might think that our model is not a realistic one nor
a natural one to study because of several assumptions that we have made.
In this section we discuss model assumptions and hopefully illustrate why
our model is a natural one to study.

Choice of the neighborhood and tie-breaking rule. One might
consider our choice of the tie-breaking rule and the definition of the
neighborhood somewhat arbitrary. For example, why not redefine N(v)
by including v itself in N(v) and/or modify the tie-breaking rule so that
ct+1
v = 1 − ct

v whenever |{w ∈ N(v) : ct
w = 1}| = |N(v)|/2 (i.e., require

that v switches color in the case of a tie in the neighborhood). Note
that adopting both changes in our model does not change the process.
Also note that the proposed modification of the tie-breaking rule (with-
out redefining N(v)) allows no democratic consensus computers9. Other
modifications can be found in the literature (e.g., several variants are
studied in [P96b]).

Since it is impossible to discuss all possible creative proposals for the
modifications of our model, let’s discuss some properties that a reason-
able model should have, and then show that our model is the only one
satisfying these properties.

The least one should expect from a local majority process is that
every vertex v should be able to update its color ct

v so that ct+1
v is the

majority color among the colors it is aware of, i.e., ct+1
v should be the

majority color on N(v) ∪ {v} at time t. In the case where the majority
is not defined, the update should reflect that ambivalence, i.e., if there
is a tie among colors that v is aware of at time t, then ct+1

v = 1 − ct
v. In

other words, ct+1
v should be computed to reflect the majority situation

in N(v) ∪ {v} at time t (majority is 0 or 1 or ambivalent) because v has
no information about possible existence of vertices that are not itself nor
in N(v). Thus, if v happens to be a master, thereby having no reasons

9Let c0
v = 1 if and only if v ∈ S where (S, Sc) is a max-cut in G. If the tie-breaking

rule is redefined as described, then c1 = 1− c0 (because degSc(v) ≥ degS(v) for every
v ∈ S).
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for faulty computations of global majority, ct+1
v will correctly signal the

global majority10. Note that the stated properties uniquely define

ct+1
v = f({ct+1

w : w ∈ N(v) ∪ {v}})

and (1) is a way to represent ct+1. Therefore, if the goal is to define a
local update step satisfying outlined properties, the only choice is the
local update used in our model.

Bidirectional communication. The bidirectional nature of the
relationship among the agents played a crucial rule in our analysis. For
example, even the basic “period is one or two” property does not hold
when G is allowed to be a directed graph. For example, if ~Cn is a directed
cycle on n vertices and c0 is the coloring assigning 1 to only one vertex
and 0 to the remaining n−1 vertices, c0, c1, c2, . . . is periodic with period
n. Thus, allowing for nonsymmetric relationships yields to periods of any
possible length. In order to generalize presented results, one would have
to take into account the possibility of periods longer than two.

Memoryless property. The memoryless property of the local ma-
jority process might seem unreasonable in many applications. In this pa-
per we investigated iterative use of the local majority rule as the simplest
local approach to the problem of determining global majority. Limited
computational power of the agents due to the memoryless property of the
process and the agent’s ability to calculate and communicate the local
majority in the form of a one-bit information is of central importance in
our analysis. Empowering agents with memory would bring the problem
closer to the standard distributed computing framework. Design and
analysis of possibly more successful and more complicated protocols of
the distributive computing flavor is beyond the scope of this paper. Here
we only note that the problem of determining majority becomes trivial if
all agents are aware of the network structure. (If G is disconnected, there
is no way to communicate between two connected components. If G is
connected, the in! fo about c0

v can be propagated through the network.
This could be repeated for all n vertices which would allow all agents
to learn c0 and thus maj(c0)). Thus, the interesting protocols would be
those defined for agents that have no unique IDs and have no info about
the network.

Static network structure. The static nature of the network of
agents is another critical property of the local majority process. It is

10If, for a master v, ct+1
v = 1 − ct

v, one has to check ct+2
v to determine if the color

switch indicated ambivalence or the choice of the global majority color.
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possible that allowing for network dynamics in the form of protocols that
simultaneously control changes in ct and the structure of the network at
the time t (e.g., changing the weight of an edge; adding/deleting an edge)
might yield efficient protocols. This seems to be a fundamentally different
model than the one studied here.

Synchronous vs. asynchronous updates. Synchronous updates
make the local majority process less restrictive than it would be with
possible asynchronous update protocols. If the local majority process is
modified in a way that an infinite sequence v1, v2, . . . of vertices from
G is given and that the only update of ct at time t occurs at vertex vt

according to the local majority rule (1) while ct+1
v = ct

v for all v 6= vt,
then no G except the complete graph on odd number of vertices can be
a democratic consensus computer. (First note that v1 must be a master
with deg(v) = n − 1 even to ensure that maj(c0) = maj(c1) for all
colorings c0. Thus, by induction, all vertices appearing in the sequence
must be masters with even degree. If a vertex v does not appear in the
sequence, then G cannot be a d.c.c. because an update at v will never
occur.)

Deterministic vs. stochastic model. The presented model is
purely deterministic and there are several aspects of the model that call
for stochastic modification. For example, it would be interesting to see
what effect would replacing the local update (1) by the stochastic update
rule

P(ct+1
v = i) =

1

deg(v)
|{w ∈ N(v) : ct

w = i}|
have on the conclusions drawn from the model. (The same rule is used
in [HP99, HP00, NIY99, NIY00].)

Also, allowing for asynchronous updates where the next vertex to be
updated is selected at random could yield interesting results. However,
one has to be aware that stochastic rules allow for a nonzero probability
of not admitting a democratic consensus.

Also, allowing for asynchronous updates where the next vertex to be
updated is selected at random could yield interesting results. However,
one has to be aware that stochastic rules allow for a nonzero probability
of not admitting a democratic consensus.

Number of colors. One might consider generalizing the model by
allowing k possible colors, i.e., allowing ct : V → {0, 1, . . . , k−1}. Proper
definition of the tie-breaking rule is an inherent problem of this general-
ization. If k > 2, it is possible that ct

v is a minority color in N(v)∪{v} and
that there is more than one majority color in N(v). Then any choice for
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ct+1
v will favor one of the majority colors even though info available, ct

w,
w ∈ N(v) does not. Regardless of the definition of the tie-breaking rule
that would hopefully generalize the one used in our model, understand-
ing the case k = 2 is a prerequisite for understanding models allowing
k > 2 colors. (Clearly, if G is a democratic consensus computer when k
colors are possibly present, G is also a democratic consensus computer
when k′ < k are possibly present.)

A generalization that would be more along the lines of our approach
would be to allow ct : V → R, define the dynamic process by

ct+1
v =

∑
w∈N(v)

ct
w

and stating that G admits a democratic consensus for c0 if there exists
a t such that sign(ct

v) = sign(sum(c0)) for every v ∈ V . A minimalistic
version of this generalization would be to allow ct : V → {−1, 0, 1},
define define the dynamic process by

ct+1
v = sign(

∑
w∈N(v)

ct
w)

and stating that G admits a democratic consensus for c0 if there exists a
t such that ct is a consensus with (ct

v) = sign(sum(c0)) for every v ∈ V .
(Note that the local majority process differs from this generalization only
in the tie-breaking rule: if initial colorings are restricted to c0 : V →
{−1, 1}, then c1

v = 0 if and only if the number of 1’s and -1’s is equal in
N(v).) For both generalizations it is straightforward to generate results
that show that G cannot be a democratic consensus computer if there
exists a partition of G, similar to that described in (b) of Theorem 3.2.
For example, no bipartite graph can be a democratic consensus computer
in either of the two generalizations.

7 Conclusions and Directions

The main result of this paper is that failure-free computation of demo-
cratic consensus by iterative applications of the local majority rule is
possible only in the networks that are nowhere truly local (Theorem 3.5).
In other words, the idea of solving a truly global task (reaching consensus
on majority) by means of truly local computation only (local majority
rule) is doomed for failure.

33



However, even well connected networks of agents that are nowhere
truly local might fail to reach democratic consensus when iteratively
applying the local majority rule. We have investigated the properties
of democratic consensus computers, i.e., the networks in which iterative
application of the local majority rule always yields consensus in the initial
majority state.

There are several directions that might be of potential interest. One
such direction that was not of our interest here is to determine the com-
plexity of the decision problem:

DCC. Input is a finite graph G. Is G a democratic consensus
computer?

Clearly, DCC is in co-NP because of Theorem 3.2 and it is very likely
that DCC is co-NP complete. However, subclasses of DCC are in P:
for example, if the input in DCC is restricted to G with δ(G) ≥ n − 3,
then it is not hard to construct a polynomial time dynamic program-
ming algorithm that counts the number of masters and then, if neces-
sary, determines whether conditions of either Lemma 4.6 or Lemma 4.7
are satisfied, i.e., determines, using Theorem 4.11, whether G is a d.c.c.
or not.

The direction that would be more along the lines of our work would
be quest for the full characterization of democratic consensus comput-
ers. We have made a first step towards possible characterization theorem
by characterizing democratic consensus computers for networks that are
almost complete in the sense that every agent does not communicate
with at most two other agents (Theorem 4.11). A simpler task would be
to determine interesting properties of democratic consensus computers
that fail short of characterization. For example, we have shown, by the
exhaustive computer aided search, that in every democratic consensus
computer on at most 13 agents there exists an agent that communicates
with all other agents. In fact, we conjecture that every democratic con-
sensus computer G contains a master, i.e., there exists v ∈ V (G) such
that d(v) = |V (G)| − 1 (see Master Conjecture in Section 3). We have
shown that this conjecture ho! lds for almost complete networks, i.e. net-
works that are in a way most natural candidates for a counterexample to
the conjecture (Theorem 4.9). However, the Master Conjecture remains
open.
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sus and the Local Majority Rule. May 2000. 38 pp.

RS-00-7 Lars Arge and Jakob Pagter.I/O-Space Trade-Offs. April 2000.
To appear in 7th Scandinavian Workshop on Algorithm Theory,
SWAT ’98 Proceedings, LNCS, 2000.

RS-00-6 Ivan B. Damg̊ard and Jesper Buus Nielsen. Improved Non-
Committing Encryption Schemes based on a General Complexity
Assumption. March 2000. 24 pp.

RS-00-5 Ivan B. Damg̊ard and Mads J. Jurik. Efficient Protocols based
on Probabilistic Encryption using Composite Degree Residue
Classes. March 2000. 19 pp.

RS-00-4 Rasmus Pagh.A New Trade-off for Deterministic Dictionaries.
February 2000.

RS-00-3 Fredrik Larsson, Paul Pettersson, and Wang Yi.On Memory-
Block Traversal Problems in Model Checking Timed Systems.
January 2000. 15 pp. Appears in Graf and Schwartzbach, ed-
itors, Tools and Algorithms for The Construction and Analysis
of Systems: 6th International Conference, TACAS ’00 Proceed-
ings, LNCS 1785, 2000, pages 127–141.

RS-00-2 Igor Walukiewicz. Local Logics for Traces. January 2000.
30 pp.

RS-00-1 Rune B. Lyngsø and Christian N. S. Pedersen.Pseudoknots in
RNA Secondary Structures. January 2000. 15 pp. To appear
in Fourth Annual International Conference on Computational
Molecular Biology, RECOMB ’00 Proceedings, 2000.

RS-99-57 Peter D. Mosses.A Modular SOS for ML Concurrency Primi-
tives. December 1999. 22 pp.

RS-99-56 Peter D. Mosses.A Modular SOS for Action Notation. Decem-
ber 1999. 39 pp. Full version of paper appearing in Mosses
and Watt, editors, Second International Workshop on Action
Semantics, AS ’99 Proceedings, BRICS Notes Series NS-99-3,
1999, pages 131–142.


