
B
R

IC
S

R
S

-00-44
G

robauer
&

Y
ang:

T
he

S
econd

F
utam

ura
P

rojection
for

Type-D
irected

P
artialE

valuation

BRICS
Basic Research in Computer Science

The Second Futamura Projection for
Type-Directed Partial Evaluation

Bernd Grobauer
Zhe Yang

BRICS Report Series RS-00-44

ISSN 0909-0878 December 2000

Copyright c© 2000, Bernd Grobauer & Zhe Yang.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/00/44/

The Second Futamura Projection for

Type-Directed Partial Evaluation∗

Bernd Grobauer †

BRICS‡

Department of Computer Science
University of Aarhus

Zhe Yang §

Department of Computer Science
New York University

December, 2000

Abstract

A generating extension of a program specializes the program with
respect to part of the input. Applying a partial evaluator to the pro-
gram trivially yields a generating extension, but specializing the partial
evaluator with respect to the program often yields a more efficient one.
This specialization can be carried out by the partial evaluator itself;
in this case, the process is known as the second Futamura projection.

We derive an ML implementation of the second Futamura projec-
tion for Type-Directed Partial Evaluation (TDPE). Due to the dif-
ferences between ‘traditional’, syntax-directed partial evaluation and
TDPE, this derivation involves several conceptual and technical steps.
These include a suitable formulation of the second Futamura projec-
tion and techniques for making TDPE amenable to self-application. In
the context of the second Futamura projection, we also compare and
relate TDPE with conventional offline partial evaluation.

We demonstrate our technique with several examples, including
compiler generation for Tiny, a prototypical imperative language.

∗A preliminary version of this paper appeared in the Proceedings of the 2000 ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM’00).

†Ny Munkegade, Building 540, 8000 Aarhus C, Denmark.
E-mail: grobauer@brics.dk

‡Basic Research in Computer Science (http://www.brics.dk/),
Centre of the Danish National Research Foundation.

§251 Mercer Street, New York, NY 10012, USA.
E-mail: zheyang@cs.nyu.edu

Work done while visiting BRICS; supported by BRICS and NSF CCR-9970909.

1

Contents

1 Introduction 3
1.1 Background . 3
1.2 Our work . 6

2 TDPE in a nutshell 8
2.1 Pure TDPE in ML . 8
2.2 TDPE in ML: implementation and extensions 12
2.3 A general account of TDPE 16

3 Formulating self-application 21
3.1 An intuitive account of self-application 21
3.2 A derivation of self-application 24

4 The implementation 27
4.1 Residualizing instantiation of the combinators 27
4.2 An example: Church numerals 29
4.3 The GE-instantiation . 30
4.4 Type specification for self-application 32
4.5 Monomorphizing control operators 34

5 Generating a compiler for Tiny 40

6 Benchmarks 41
6.1 Experiments and results . 41
6.2 Analysis of the result . 42

7 Conclusions and issues 44

A Notation and symbols 48

B Compiler generation for Tiny 50
B.1 A binding-time-separated interpreter for Tiny 50
B.2 Generating a compiler for Tiny 51
B.3 “Full parameterization” . 52
B.4 The GE-instantiation . 53

List of Figures

1 A data type for representing terms 8
2 Reification and reflection . 9
3 NbE in ML, signatures . 13
4 Pure NbE in ML, implementation 14
5 Instantiation via functors . 15

2

6 Full NbE in ML. 16
7 A formal recipe for NbE . 20
8 Evaluating Instantiation of NbE 28
9 Residualizing Instantiation of NbE 29
10 Visualizing ↓•→•→•→• . 30
11 Church numerals . 31
12 Instantiation via functors . 33
13 Specifying types as functors 34
14 Type specification for visualizing ↓•→• 35
15 The CPS semantics of shift/reset 35
16 TDPE with let-insertion . 36
17 Visualizing TDPE with let-insertion 39
18 BNF of Tiny programs . 50
19 Factorial function in Tiny . 51
20 An interpreter for Tiny . 54
21 Datatype for representing Tiny programs 55
22 An elimination function for expressions 55
23 A fully parameterizable implementation 56
24 Parameterizing over both static and dynamic constructs . . . 57
25 Excerpts from signature STATIC 57

1 Introduction

1.1 Background

General notions Given a general program p : σS × σD → σR and a fixed
static input s :σS , partial evaluation (a.k.a. program specialization) yields a
specialized program ps : σD → σR. When this specialized program ps is ap-
plied to an arbitrary dynamic input d :σD, it produces the same result as the
original program applied to the complete input (s, d), i.e., [[psd]] = [[p(s, d)]]
(where [[·]] maps a piece of program text to its denotation. In this article,
metavariables in slanted serif font, such as p, s, and d stand for program
terms. Meanwhile, variables in italic font, such as x and y, are normal vari-
ables in the subject program). Often, some computation in program p can
be carried out independently of the dynamic input d , and hence the special-
ized program ps is more efficient than the general program p. In general,
specialization is carried out by performing the computation in the source
program p that depends only on the static input s, and generating program
code for the remaining computation (called residual code). A partial evalu-
ator PE is a program that performs partial evaluation automatically, i.e., if
PE terminates on p and s then

[[PE(p, s)]] = ps

3

(often extra annotations are attached to p and s so as to pass additional
information to the partial evaluator).

A program p′ is a generating extension of the program p, if running p′

on s yields a specialization of p with respect to the static input s (under
the assumption that p′ terminates on s). Because the program λs.PE(p, s)
computes a specialized program ps for any input s, it is a trivial generating
extension of program p. To produce a more efficient generating extension,
we can specialize PE with respect to p, viewing PE itself as a program and
p as part of its input. In the case when the partial evaluator PE itself is
written in its input language, i.e., if PE is self-applicable, this specialization
can be achieved by PE itself. That is, we can generate an efficient generating
extension of p as

[[PE (PE , p)]].

Self-application The above formulation was first given in 1971 by Futa-
mura [17] in the context of compiler generation—the generating extension
of an interpreter is a compiler—and is called the second Futamura projec-
tion. Turning it into practice, however, proved to be much more difficult
than what its seeming simplicity suggests; it was not until 1985 that Jones’s
group implemented Mix [23], the very first effective self-applicable partial
evaluator. They identified the reason for previous failures: The decision
whether to carry out computation or to generate residual code generally de-
pends on the static input s, which is not available during self-application; so
the specialized partial evaluator still bears this overhead of decision-making.
They solved the problem by taking the decision offline, i.e., the source pro-
gram p is pre-annotated with binding-time annotations that solely determine
the decisions of the partial evaluator. In the simplest form, a binding time
is either static, which indicates computation carried out at partial evalu-
ation time (hence called static computation), or dynamic, which indicates
code-generation for the specialized program.

Subsequently, a number of self-applicable partial evaluators have been
implemented, e.g., Similix [3], but most of them are for untyped languages.
For typed languages, the so-called type specialization problem arises [21]:
Generating extensions produced using self application often retain a univer-
sal data type and the associated tagging/untagging operations as a source of
overhead. The universal data type is necessary for representing static values
in the partial evaluator, just as it is necesssary for representing values in a
standard evaluator. This is unsurprising, because a partial evaluator acts
as a standard evaluator when all input is static.

Partly because of this, in the 1990’s, the practice shifted towards hand-
written generating-extension generators [2, 20]; this is also known as the
cogen approach. Conceptually, a generating-extension generator is a staged
partial evaluator, just as a compiler is a staged interpreter. Ideally, produc-
ing a generating extension through self-application of the partial evaluation

4

saves the extra effort in staging a partial evaluator, since it reuses both
the technique and the correctness argument of the partial evaluator. In
practice, however, it is often hard to make a partial evaluator (or a partial-
evaluation technique, as in the case of this paper) self-applicable in the
first place. In terms of correctness argument, if the changes to the partial
evaluator in making it self-applicable are minor and are easily proved to
be meaning-preserving, then the correctness of a generating extension pro-
duced by self-application still follows immediately from that of the partial
evaluator.

As we shall see in this article, the problem caused by using a universal
data type can be avoided to a large extent, if we can avoid introducing an
implicit interpreter in the first place. The second Futamura projection thus
still remains a viable alternative to the hand-written approach, as well as a
source of interesting problems and a benchmark for partial evaluators.

Type-directed partial evaluation In a suitable setting partial evaluation
can be carried out by normalization. Consider, for example, the pure simply
typed λ-calculus, in which computation means β-reduction. Given two λ-
terms p : τ1 → τ2 and s : τ1, bringing the application ps into β-normal form
specializes p with respect to s. For example, normalizing the application of
the K -combinator K = λx.λ y.x to itself yields λ y.λ x.λ y′.x.

Type-directed partial evaluation (TDPE), due to Danvy [5], realizes the
above idea using a technique that turned out to be Berger and Schwichten-
berg’s Normalization by Evaluation (NbE) [1, 8]. Roughly speaking, NbE
works by extracting the normal form of a term from its meaning, where the
extraction function is coded in the object language.

Example 1. Let PL be a higher-order functional language in which we
can define a type Exp of term representations. Consider the combinator
K = λx.λy.x—the term KK is of type Exp→ Exp→ Exp→ Exp. We want to
extract a β-normal form from its meaning.

Since Exp → Exp→ Exp→ Exp is the type of a function that takes three
arguments, one can infer that a β-normal form of KK must be of the form
λ v1.λ v2.λ v3.t (we underline term representations to distinguish them from
terms), for some term t :Exp. Intuitively, the only natural way to generate the
term t from the meaning of term KK is to apply it to the term representations
v1, v2 and v3. The result of this application is v2. Thus, we can extract the
normal form of KK as λ v1.λ v2.λ v3.v2.

TDPE is different from a traditional, syntax-directed offline partial eval-
uator [22] in several respects:

Binding-Time Annotation In traditional partial evaluation, all subex-
pressions require binding-time annotations. It is unrealistic for the
user to annotate the program fully by hand. Fortunately, these anno-
tations are usually computed by an automatic binding-time analyzer,

5

while the user only needs to provide binding-time annotations on in-
put arguments. On the other hand, since the user does not have direct
control over the binding-time annotations, he often needs to know how
the binding-time analyzer works and to tune the program in order to
ensure termination and a good specialization result.

In contrast, TDPE eliminates the need to annotate expression forms
that correspond to function, product and sum type constructions. One
only needs to give a binding-time classification for the base types ap-
pearing in the types of constants. Consequently, it is possible, and
often practical, to annotate the program by hand.

Role of Types The extraction function is parameterized over the type of
the term to be normalized, which makes TDPE “type-directed”.

Efficiency A traditional partial evaluator works by symbolic computation
on the source programs; it contains an evaluator to perform the static
evaluation and code generation. TDPE reuses the underlying evalu-
ator (interpreter or compiler) to perform these operations; when run
on a highly optimized evaluation mechanism, TDPE acquires the effi-
ciency for free—a feature shared with the cogen approach.

Flexibility Traditional partial evaluators need to handle all constructs used
in a subject program, evaluating the static constructs and generating
code for the dynamic ones. In contrast, TDPE uses the underlying
evaluator for the static part. Therefore, all language constructs can
be used in the static part of a subject program. However, we shall see
that this flexibility is lost when self-applying TDPE.

These differences have contributed to the successful application of TDPE
in various contexts, e.g., to perform semantics-based compilation [12]. An
introductory account, as well as a survey of various treatments concerning
NbE, can be found in Danvy’s lecture notes [7].

1.2 Our work

The problem A natural question is whether one can perform self-applica-
tion, in particular the second Futamura projection, in the setting of TDPE.
It is difficult to see how this can be achieved, due to the drastic differences
between TDPE and traditional partial evaluation.

• TDPE extracts the normal form of a term according to a type that can
be assigned to the term. This type is supplied in some form of encod-
ing as an argument to TDPE. We can use self-application to specialize
TDPE with respect to a particular type; the result helps one to visu-
alize a particular instance of TDPE. This form of self-application was

6

carried out by Danvy in his original article on TDPE [5]. However, it
does not correspond to the second Futamura projection, because no
further specialization with respect to a particular subject program is
carried out.

• The aforementioned form of self-application [5] was carried out in
the untyped language Scheme. It is not immediately clear whether
self-application can be achieved in a language with Hindley-Milner
type system, such as ML [25]: Whereas TDPE can be implemented
in Scheme as a function that takes a type encoding as its first argu-
ment, this strategy is impossible in ML, because such a function would
require a dependent type. Indeed, the ML implementation of TDPE
uses the technique of type encodings [32]: For every type, a particular
TDPE program is constructed. As a consquence, the TDPE algorithm
to be specialized is not fixed.

• Following the second Futamura projection literally, one should spe-
cialize the source program of the partial evaluator. In TDPE, the
static computations are carried out directly by the underlying eval-
uator, which thus becomes an integral part of the TDPE algorithm.
The source code of this underlying evaluator might be written in an
arbitrary language or even be unavailable. In this case, writing this
evaluator from scratch by hand is an extensive task. It further defeats
the main point of using TDPE: to reuse the underlying evaluator and
to avoid unnecessary interpretive overhead.

TDPE also poses some technical problems for self-application. For ex-
ample, TDPE treats monomorphically typed programs, but the standard
call-by-value TDPE algorithm itself uses the polymorphically typed control
operators shift and reset to perform let-insertion in a polymorphically typed
evaluation context.

Our contribution This article addresses all the above issues. We show
how to effectively carry out self-application for TDPE, in a language with
Hindley-Milner type system. To generate efficient generating extensions,
such as compilers, we reformulate the second Futamura projection in a way
that is suitable for TDPE.

More technically, for the typed setting, we show how to use TDPE on the
combinators that constitute the TDPE algorithm and consequently on the
type-indexed TDPE itself, and how to slightly rewrite the TDPE algorithm,
so that we only use the control operators at the unit and boolean types. As
a full-fledged example, we derive a compiler for the Tiny language.

Since TDPE is both the tool and the subject program involved in self-
application, we provide a somewhat detailed introduction to the principle
and the implementation of TDPE in Section 2. Section 3 provides an ab-
stract account of our approach to self-application for TDPE, and Section 4

7

details the development in the context of ML. Section 5 describes the deriva-
tion of the Tiny compiler. Based on our experiments, we give some bench-
marks in Section 6. Section 7 concludes. The appendix provides an index
of notation (Appendix A) and gives further technical details in the gener-
ation of a Tiny compiler (Appendix B). The complete source code of the
development presented in this article is available online [18].

2 TDPE in a nutshell

In order to give some intuition, we first outline TDPE for an effect-free
fragment of ML without recursion. Then we sketch the extensions and
pragmatic issues of TDPE in a larger subset of ML, which is the setting we
will work with in the later sections. Finally, to facilitate a precise formulation
of self-application, we outline Filinski’s formalization of TDPE.

2.1 Pure TDPE in ML

In this section, we illustrate TDPE for an effect-free fragment of ML without
recursion, which we call Pure TDPE. For this fragment, the call-by-name
and call-by-value semantics agree, which allows us to directly use Berger
and Schwichtenberg’s NbE for call-by-name λ-calculus as the core algorithm
(recall that ML is a call-by-value functional language).

NbE works by extracting the normal form of a λ-term from its meaning,
by regarding the term as a higher-order code-manipulation function. The
extraction functions are type-indexed coercion functions coded in the ob-
ject language. To carry out partial evaluation based on NbE, TDPE thus
needs to prepare a code-manipulation version of the subject λ-term. Such
a λ-term, in general, could contain constant functions that cannot be stati-
cally evaluated; these constants have to be replaced with code-manipulating
functions.

Pure simply-typed λ-terms We first consider TDPE only for pure
simply-typed λ-terms. We use the type Exp in Figure 1 to represent code (as
it is used in Example 1 on page 5). In the following we will write v for VAR v,
λ v.t for LAM (v, t) and s @ t for APP (s, t); following the convention of the
λ-calculus, we use @ as a left-associative infix operator.

datatype Exp = VAR of string
| LAM of string * Exp
| APP of Exp * Exp

Figure 1: A data type for representing terms

8

Let us for now only consider ML functions that correspond to pure λ-
terms with type τ of the form τ ::= • | τ1 → τ2, where ‘•’ denotes a base
type. ML polymorphism allows us to instantiate ‘•’ with Exp when coding
such a λ-term in ML. So every λ-term of type τ gives rise to an ML value
of type τ = τ [• := Exp]; that is, a value representing either code (when
τ = Exp), or a code-manipulation function (at higher types).

Figure 2 shows the TDPE algorithm: For every type τ , we define in-
ductively a pair of functions ↓τ : τ → Exp (reification) and ↑τ :Exp → τ
(reflection). Reification is the function that extracts a normal form from the
value of a code-manipulation function, using reflection as an auxiliary func-
tion. We explain reification and reflection through the following examples.

↓• e = e
↓τ1→τ2 f = λx.↓τ2 (f(↑τ1 x)) (x is fresh)

↑• e = e
↑τ1→τ2 e = λx.↑τ2 (e@ (↓τ1 x))

Figure 2: Reification and reflection

Example 2. We revisit the normalization of KK from Example 1 on page 5.
For the type •→•→ •→ • the equations given in Figure 2 define reification
as

↓•→•→•→• e = λx.λ y.λ z.exyz.

For every argument of base type ‘•’, a lambda-abstraction with a fresh vari-
able name is created. Given a code-manipulating function of type Exp →
Exp→ Exp→ Exp, a code representation of the body is then generated by ap-
plying this function to the code representations of the three bound variables.
Evaluating ↓•→•→•→• (KK) yields λx.λ y.λ z.y.

What happens if we want to extract the normal form of t : τ1→ τ2 where
τ1 is not a base type? The meaning of t cannot be directly applied to the
code representing a variable, since the types do not match: τ1 6= Exp. This
is where the reflection function ↑τ :Exp → τ comes in; it converts a code
representation into a code-generating function:

Example 3. Consider τ1 = •→ •→ •→ •:

↑•→•→•→• e = λx.λ y.λ z.e@ x@ y @ z

For any term representation e, ↑•→•→•→• e is a function that takes three
term representations and constructs a representation of the application of
e to these term representations. It is used, e.g., when reifying the term
λx.λy.xyyy with ↓(•→•→•→•)→•→•.

9

Adding constants So far we have seen that we can normalize a pure
simply-typed λ-term by (1) coding it in ML, interpreting all the base types as
type Exp, so that its value is a code-manipulation function, and (2) applying
reification at the appropriate type. Treating terms with constants follows
the same steps, but the situation is slightly more complicated. Consider,
for example, the ML expression λ z.mult 3.14 z of type real→ real, where
mult is a curried version of multiplication over reals. This function cannot
be used as a code-manipulating function. The solution is to use a non-
standard, code-generating version multr : Exp→ Exp→ Exp of mult. We also
lift the constant 3.14 into Exp using a lifting-function liftreal : real→ Exp.
(This operation requires a straightforward extension of the data type Exp

with an additional constructor LIT REAL.) Reflection can then be used to
construct a code-generating version multr of mult:

Example 4. A code-generating version multr : Exp → Exp→ Exp of mult :
real→ real→ real is given by

multr = ↑•→•→•“mult” = λx.λ y.“mult”@ x@ y,

where “mult” (= VAR “mult”) is the code representation of a constant with
name mult. Now applying the reification function ↓•→• to the term

λ z.(multr (liftreal 3.14) z)

evaluates to λx.“mult”@3.14 @ x.

Partial evaluation
In the framework of TDPE, the partial evaluation of a (curried) program

p : σS → σD → σR with respect to a static input s : σS is carried out by
normalizing the application ps. We could use a code-generating version for
all the constants in this term; reifying the meaning will carry out all the
β-reductions, but leave all the constants in the residual program—no static
computation involving constants is carried out. However, this is not good
enough: One would expect that the application ps enables also computation
involving constants, not only β-reductions. Partial evaluation, of course,
should also carry out such computation. This is achieved by instantiating
the constants in question to themselves.

In general, to perform TDPE for a term, one needs to decide for each con-
stant occurrence, whether to use the original constant or a code-generating
instantiation of it; appropriate lifting functions have to be inserted where
necessary. The result must type-check, and its partial application to the
static input must represent a code-manipulation function (i.e., its type is
built up from only the base type Exp), so that we can apply the reification
function.

This process of classification corresponds to a binding-time annotation
phase, as will be made precise in the framework of a two-level language

10

(Section 2.3). Basically, a source term is turned into a well-formed two-level
term by marking constants as static or dynamic, inserting lifting functions
where needed. Because only constant occurrences have to be annotated, this
can, in practice, be done by hand. Given an annotated term tann, we call
the corresponding code-manipulation function its residualizing instantiation
tann . It arises from tann by instantiating each dynamic constant c with its
code-generating version cr, each static constant with itself, and each lifting
function with the appropriate coercion function into Exp. If t is of type σ,
then its normal form can be calculated by reifying tann at type σ (remember
that reification only distinguishes a type’s form—all base types are treated
equally as ‘•’):

NF (t) = [[↓σ tann]];

Partial evaluation of a program p :σS ×σD → σR with respect to a static
input s : σS thus proceeds as follows:

• binding-time annotate p and s as pann and sann, respectively;1 the
term λx. pann (sann , x) must be a code-manipulation function of type
σD → σR (recall that τ arises from τ by instantiating each base type
with Exp).

• carry out partial evaluation by reifying the above term at type σD →
σR:

ps = [[↓σD→σR λx . pann (sann , x)]]

Example 5. Consider the function

height = λ (a : real).λ (z : real).mult (sin a) z.

Suppose we want to specialize height to a static input a:real. It is easy to see
that the computation of sin can be carried out statically, but the computation
of mult cannot—mult is a dynamic constant. This analysis results in a two-
level term heightann, in which sin is marked as static, mult as dynamic, and
a lifting function has been inserted to make the static result of applying sin

to a dynamic. The residualizing instantiation of heightann instantiates sin

with the standard sine function, the lifting function with a coercion function
from real into Exp, and mult with a code-generating version as introduced
in Example 4 on the page before:

heightann = λ (a : real).λ (z : Exp).multr (liftreal(sin a)) z

Now (heightann
π
6) has type Exp → Exp, i.e., it is a code-manipulating

function. Thus, we can specialize height with respect to π
6 by evaluating

↓•→• (heightann
π
6), which yields λx.“mult”@ 0.5 @ x

1That the static input also needs to be binding-time annotated may at first seem
strange. This is natural, however, because TDPE also accepts higher-order values as
static input. For a static input of base type, the binding-time annotation is trivial.

11

Notice that instantiation in a binding-time annotated term tann of every
constant with itself and of every lifting function with the identity function
yields a term t̃ann that has the same denotation as the original term t; we
call t̃ann the evaluating instantiation of tann.

2.2 TDPE in ML: implementation and extensions

Implementation Type-indexed functions such as reification and reflec-
tion can be implemented in ML employing a technique first used by Filinski
and Yang [6, 32]; see also Rhiger’s derivation [28]. A combinator is defined
for every type constructor T (• and → in the case of Pure NbE in Sec-
tion 2). This combinator takes a pair of reification and reflection functions
for every argument τi to the (n-ary) type constructor T , and computes the
reification-reflection pair for the constructed type T (τ1, . . . , τn). Reification
and reflection functions for a certain type τ can then be created by com-
bining the combinators according to the structure of τ and projecting out
either the reification or the reflection function.

As Figure 3 on the following page shows, we specify these combinators in
a signature called NBE. Their implementation as the functor makePureNbE—
parameterized over two structures of respective signatures EXP (term repre-
sentation) and GENSYM (name generation for variables)—is given in Figure 4
on page 14. The implementation is a direct transcription from the formula-
tion in Section 2.1.

Example 6. We implement an NBE-structure PureNbE by applying the func-
tor makePureNbE (Figure 4 on page 14); this provides us with combinators
--> and a’ and functions reify and reflect. Normalization of KK (see
Example 1 on page 5 and Example 2 on page 9) is carried out as follows:

local open PureNbE; infixr 5 --> in
val K = (fn x => fn y => x)
val KK_norm = reify (a’ --> a’ --> a’ --> a’) (K K)

end

After evaluation, the variable KK norm is bound to a term representation of
the normal form of KK .

Encoding two-level terms through functors
As mentioned earlier, the input to TDPE needs to be binding-time an-

notated, i.e., the input is a two-level term. The ML module system makes
it possible to encode a two-level term p in a convenient way: Define p in-
side a functor p pe(structure D: DYNAMIC) = ... which parameterizes over
all dynamic types, dynamic constants and lifting functions. By instantiat-
ing D with an appropriate structure, one can create either the evaluating
instantiation p̃ or the residualizing instantiation p .

12

signature NBE = (* normalization by evaluation *)
sig
type Exp
type ’a rr (* (↓τ , ↑τ) : τ rr *)

val a’ : Exp rr (* τ = • *)
val --> : ’a rr * ’b rr -> (’a -> ’b) rr (* τ = τ1 → τ2 *)

...
val reify: ’a rr -> ’a -> Exp (* ↓τ *)
val reflect: ’a rr -> Exp -> ’a (* ↑τ *)

end

signature EXP = (* term representation *)
sig
type Exp
type Var

val VAR: Var -> Exp
val LAM: Var * Exp -> Exp
val APP: Exp * Exp -> Exp
...

end

signature GENSYM = (* name generation *)
sig
type Var
val new: unit -> Var (* make a new name *)
val init: unit -> unit (* reset name counter *)

end;

Figure 3: NbE in ML, signatures

Example 7. In Example 5 on page 11 we sketched how the function height

can be partially evaluated with respect to its first argument. Figure 5 on
page 15 shows how to provide both evaluating and residualizing instantiation
in ML using functors. The two-level term heightann is encoded as a func-
tor height pe(structure D:DYNAMIC) that is parameterized over the dynamic
type Real, the dynamic constant mult, and the lifting function lift real in
heightann.

Extensions We will use a much extended version of TDPE, referred to
as Full TDPE in this article. Full TDPE not only treats the function type
constructor, but also tuples and sums. Furthermore, a complication which
we have disregarded so far is that ML is a call-by-value language with com-
putational effects. In such languages, the β-rule is not sound because it

13

functor makePureNbE(structure G: GENSYM
structure E: EXP
sharing type E.Var = G.Var): NBE =

struct
type Exp = E.Exp
datatype ’a rr = RR of (’a -> Exp) * (Exp -> ’a)

(* (↓τ , ↑τ) : τ rr *)

infixr 5 -->
val a’ = RR(fn e => e, fn e => e) (* τ = • *)
fun RR (reif1, refl1) --> RR(reif2, refl2) (* τ = τ1 → τ2 *)
= RR (fn f =>

let val x = G.new ()
in E.LAM (x, reif2 (f (refl1 (E.VAR x))))

end,
fn e =>
fn v => refl2 (E.APP (e, reif1 v)))

fun reify (RR (reif, refl)) v (* ↓τ *)
= (G.init (); reif v)

fun reflect (RR (reif, refl)) e (* ↑τ *)
= refl e

end

Figure 4: Pure NbE in ML, implementation

might discard or duplicate computations with effects.
Extending TDPE to tuples is straightforward: reifying a tuple is done

by producing the code of a tuple constructor and applying it to the reified
components of the tuple; reflection at a tuple type means producing code
for a projection on every component, reflecting these code pieces at the
corresponding component type and tupling the results.

Sum types and call-by-value languages can be handled by manipulat-
ing the code-generation context in the reflection function. This has been
achieved by using the control operators shift and reset [9, 14]. Section 4.5
describes in more detail the treatment of sum types and call-by-value lan-
guages in TDPE.

Figure 6 on page 16 displays the signature CTRL of control operators
and the skeleton of a functor makeFullNbE that is used to implement Full
TDPE—an implementation can be found in Danvy’s lecture notes [7]. The
relevance of Full TDPE in this article is that (1) it is the partial evaluator
that one would use for specializing realistic programs; and (2) in particular,
it handles all features used in its own implementation, including side effects
and control effects. Hence in principle self-application should be possible.

14

signature DYNAMIC = (* Signature of dynamic types and constants *)
sig
type Real

val mult: Real -> Real -> Real
val lift_real: real -> Real

end

(* The functor encodes a two-level term *)
functor height_pe(structure D: DYNAMIC) =
struct
fun height a z = D.mult (D.lift_real (sin a)) z

end

structure EDynamic: DYNAMIC = (* Defining ·̃ *)
struct
type Real = real
fun mult x y = x * y
fun lift_real r = r

end

structure RDynamic: DYNAMIC = (* Defining · *)
struct
local

open EExp PureNbE
infixr 5 -->

in
type Real = Exp
val mult = reflect (a’ --> a’ --> a’) (VAR "mult")
fun lift_real r = LIT_REAL r

end
end

structure Eheight = height_pe (structure D = EDynamic);

(* ˜heightann *)
structure Rheight = height_pe (structure D = RDynamic);

(* heightann *)

Figure 5: Instantiation via functors

15

signature CTRL = (* control operators *)
sig
type Exp
val shift: ((’a -> Exp) -> Exp) -> ’a
val reset: (unit -> Exp) -> Exp

end;

functor makeFullNbE(structure G: GENSYM
structure E: EXP
structure C: CTRL
sharing ...): NBE = ...

Signatures GENSYM, EXP, and NBE are defined in Figure 3 on page 13.

Figure 6: Full NbE in ML.

2.3 A general account of TDPE

The introduction to TDPE given in Section 2.1 is concerned with providing
intuition rather than formal detail; in the following, we describe Filinski’s
formalization of TDPE [16], which gives a precise definition to the con-
cepts that were introduced only informally before. This formal account is
rather technical and may be skipped on first reading: When developing self-
application for TDPE in Section 3, we shall start with an intuitive account
that can be understood without having read the following material. Nev-
ertheless, the details of the development turn out to be rather intricate, so
an informal account alone is not satisfactory. In Section 3.2 we draw upon
the formal account of TDPE presented here, and derive a formulation of
self-application from it.

Preliminaries First we fix some standard notions. A simple functional
language is given by a pair (Σ,I) of a signature Σ and an interpretation I
of this signature. More specifically, the syntax of valid terms and types in
this language is determined by Σ, which consists of base type names, and
constants with types constructed from the base type names. (The types are
possibly polymorphic; however, in our technical development, we will only
work with monomorphic instances.) A set of typing rules generates, from
the signature Σ, typing judgments of the form Γ `Σ t : σ, which reads “t is
a well-formed term of type σ under typing context Γ”.

The denotational semantics of types and terms is determined by an in-
terpretation. An interpretation I of signature Σ assigns domains to base
type names, elements of appropriate domains to literals and constants, and,
in the setting of call-by-value languages with effects, also monads to various
effects. The interpretation I extends canonically to the meaning [[σ]]I of

16

every type σ and the meaning [[t]]I of every term t : σ in the language; we
write [[t]]I for closed terms t, which denote elements in the domain [[σ]]I .

The syntactic counterpart of the notion of an interpretation is that of an
instantiation, which compositionally maps syntactic phrases in a language
L to syntactic phrases in (usually) another language L′. The following defi-
nition of instantiations uses the notion of substitutions. For a substitution
Φ, we write t{Φ} and τ{Φ} to denote the application of Φ to term t and
type τ , respectively.

Definition 8 (Instantiation). Let L and L′ be two languages with signa-
tures Σ and Σ′, respectively. An instantiation Φ of Σ-phrases (terms and
types) into language L′ is a substitution that maps the base types in Σ to
Σ′-types, and maps constants c : σ to closed Σ′-terms of type σ{Φ}.

We also refer to the term t{Φ} as the instantiation of the term t under
Φ, and the type σ{Φ} as the instantiation of the type σ under Φ.

It should be obvious that an interpretation of a language L′ and an
instantiation of a language L in language L′ together determine an interpre-
tation of L.

Two-level language Filinski formalized TDPE using a notion of two-
level languages (or, binding-time-separated languages). The signature Σ2 of
such a language is the disjoint union of a static signature Σs (static base
types bs and static constants cs, written with superscript s), a dynamic
signature Σd (dynamic base types bd and dynamic constants cd, written
with superscript d), and lifting functions $b for base types. For simplicity,
we assume all static base types bs are persistent, i.e., each of them has a
corresponding dynamic base type bd, and is equipped with a lifting function
$b : bs → bd. The intuition is that a value of a persistent base type always
has a unique external representation as a constant, which can appear in the
generated code; we call such a constant a literal. The meaning [[e]]I

2

of a
term e is determined by a static interpretation Is of signature Σs, and a
dynamic interpretation Id of signature Σd and the lifting functions; we also
write [[e]]Is, Id for [[e]]I

2

. A two-level language is different from a one-level
language in that the meaning of terms is parameterized over the dynamic
interpretation Id. More precisely, it is specified by a pair (Σ2,Is) of its
signature Σ2 and a fixed static interpretation Is.

A two-level language PL2 = (Σ2,Is) is usually associated with a one-
level language PL = (ΣPL,IPL):

1. The dynamic signature Σd of PL2 duplicates ΣPL (except for liter-
als, which can be lifted from static literals) with all constructs super-
scripted by d.

2. The static signature Σs of PL2 comprises all the base types in PL
and all the constants in PL that have no computational effects except
possible divergence. All these constructs are superscripted by s in Σs.

17

3. The static interpretation Is is the restriction of interpretation IPL to
Σs.

For clarity, we let metavariable t range over one-level terms, e over two-level
terms, σ over one-level types, and τ over two-level types.

We can induce an evaluating dynamic interpretation Idev from IPL by
taking [[bd]]Idev = [[b]]IPL

, [[cd]]Idev = [[c]]IPL
, and [[$b]]I

d
ev = (λx.x) ∈ [[b]]IPL →

[[b]]IPL
. A closely related notion is the evaluating instantiation of Σ2-phrases

in ΣPL:

Definition 9 (Evaluating Instantiation). The evaluating instantiation
of a Σ2-term `Σ2 e :τ in PL is `ΣPL ẽ :τ̃ , given by ẽ = e{Φ∼} and τ̃ = τ{Φ∼},
where instantiation Φ∼ is a substitution of Σ2-constructs (constants and
base types) into ΣPL-phrases (terms and types): Φ∼(bs) = Φ∼(bd) = b,
Φ∼(cs) = Φ∼(cd) = c, Φ∼($b) = λx.x.

We have that for all Σ2-types τ and Σ2-terms e, [[τ̃]]IPL
= [[τ]]Is,Idev and

[[ẽ]]IPL
= [[e]]Is,Idev .

Static normalization Static normalization works on Σ2-terms of fully
dynamic types, i.e., types constructed solely from dynamic base types. A
term is in static normal form if it is free of β-redexes and free of static
constants, except literals that appear as arguments to lifting functions; in
other words, the term cannot be further simplified without knowing the
interpretations of the dynamic constants. Terms e in static normal form
are, in fact, in one-to-one correspondence with terms ẽ in ΣPL. They can
thus be represented using a one-level term representation such as the one
provided by Exp.

A static normalization function NF for PL2 is a computable partial func-
tion on well-typed Σ2-terms such that if e ′ = NF (e) then e ′ is a Σ2-term
in static normal form, and e and e ′ are not distinguished by any dynamic
interpretation Id of Σd, i.e., ∀Id.[[e]]Is, Id = [[e ′]]Is,Id; in other words, term
e′ and term e have the same (parameterized) meaning. Notice that NF is
usually partial, since terms for which the static computation diverges have
no normal form.

Normalization by evaluation In this framework, NbE can be described
as a technique to reduce the static normalization function NF for a two-
level language PL2 to evaluation in the ordinary language PL. For this to
be possible, we assume that language PL is equipped with a base type Exp

for the representation of its own terms (and thus of static normal forms in
PL2), and constants that support name generation and code construction
(for example, a lifting function liftb : b → Exp for every base type b).

Filinski has shown that in the described setting, NbE can be performed
with two type-indexed functions ↓τ : τ → Exp (reification) and ↑τ :Exp → τ
(reflection)—here the operation · on two-level types corresponds to the

18

one introduced in Section 2.1 for ML types; a formal definition is given in
Definition 10. The function ↓τ extracts the static normal form of a term `Σ2

e :τ from a special residualizing instantiation of the term in PL, `ΣPL e : τ ,
and the function ↑τ is used in both the definition of reification function and
the construction of the residualizing instantiation e .

Definition 10 (Residualizing Instantiation). The residualizing instan-
tiation of a Σ2-term `Σ2 e : τ in PL is `ΣPL e : τ , given by e = e{Φ }
and τ = τ{Φ }, where instantiation Φ is a substitution of Σ2-constructs
into ΣPL-phrases: for base types b, Φ (bs) = b, Φ (bd) = Exp, for constants
c, Φ (cs) = c, Φ (cd : τ) =↑τ “c”, and for lifting functions over a base type
b, Φ ($b) = liftb.

In words, the residualizing instantiation τ of a fully dynamic type
τ substitutes all occurrences of dynamic base types in τ with type Exp.
Since type τ is fully dynamic, type τ is constructed from type Exp, and
it represents code values or code manipulation functions (see Section 2.1).
The residualizing instantiation e of a term e substitutes all the occur-
rences of dynamic constants and lifting functions with the corresponding
code-generating versions (cf. Example 5 on page 11, where heightann is
λ (a : reals).λ (z : reald).multd ($real(sins a)) z).

The function NF in NbE is defined by Equation (1) on the next page) in
Figure 7 on the following page: It computes the static normal form of term e
by evaluating the ΣPL-term `ΣPL ↓τ e :Exp using an evaluator for language
PL. In Filinski’s semantic framework for TDPE, a correctness theorem of
NbE has the following form, though the exact definition of function NF
varies depending on the setting.

Theorem 11 (Filinski [16]). The function NF defined in Equation (1) in
Figure 7 on the next page is a static normalization function. That is, for all
well-typed Σ2-terms e, if e ′ = NF (e), then term e′ is in static normal form,
and ∀Id.[[e]]Is,Id = [[e ′]]Is,Id.

Just as self-application reduces the technique of producing an efficient
generating extension to the technique of partial evaluation, our results on
the correctness of self-application reduce to Theorem 11. The details of how
Theorem 11 is proved are out of the scope of this article.

Partial evaluation Given a Σ2-term `Σ2 p : τS × τD → τR, and its static
input `Σ2 s : τS , where both type τD and type τR are fully dynamic, spe-
cialization can be achieved by applying NbE (Equation (1) on the following
page) to statically normalize the trivial specialization λx.p(s, x):

NF (λx.p(s, x)) = [[↓τD→τR λx.p(s , x)]]IPL

= [[↓τD→τR λx . p (s , x)]]IPL (2)

19

Normalization by Evaluation
For term `Σ2 e : τ , we use

NF (e) = [[↓τ e]]I
PL

(1)

to compute its static normal form, where
1. Term `ΣPL e : τ is the residualizing instantiation of term e, and
2. Term `ΣPL ↓τ : τ → Exp is the reification function for type τ .

Binding-time annotation The task is, given `ΣPL t : σ and binding-
time constraints in the form of a two-level type τ whose erasure is
σ, to find `Σ2 tann : τ that satisfies the constraints and the following
equations:

[[τ]]I
s,Idev = [[σ]]I

PL
[[tann]]I

s, Idev = [[t]]I
PL

Figure 7: A formal recipe for NbE

In the practice of partial evaluation, one usually is not given two-level
terms to start with. Instead, we want to specialize ordinary programs. This
can be reduced to the specialization of two-level terms through a binding-
time annotation step. For TDPE, the task of binding-time annotating a ΣPL-
term t with respect to some knowledge about the binding-time information
of the input is, in general, to find a two-level term tann such that (1) the
evaluating instantiation [[tann]]I

s, Idev of term tann agrees with the meaning
[[t]]IPL

of term t, and (2) term tann is compatible with the input’s binding-
time information in the following sense: Forming the application of tann to
the static input results in a term of fully dynamic type. Consequently, the
resulting term can be normalized with the static normalization function NF .

Consider again the standard form of partial evaluation. We are given a
ΣPL-term `ΣPL p : σS × σD → σR and the binding-time information of its
static input s of type σS , but not the static input s itself. The binding-time
information can be specified as a Σ2-type τS such that τ̃S = σS ; for the more
familiar first-order case, type σS is some base type b, and type τS is simply
bs. We need to find a two-level term `Σ2 pann : τS × τD → τR, such that (1)
types τD and τR are the fully dynamic versions of types σD and σR, and (2)
[[pann]]I

s,Idev = [[p]]IPL
.

When given an annotated static input which has the specified binding-
time information, sann : τS (of some s :σS such that [[sann]]I

s, Idev = [[s]]IPL
), we

can form the two-level term `Σ2 tann ≡ λx.pann(sann, x) : τD → τR. It corre-
sponds to a one-level term t ≡ λx.p(s, x), for which (by compositionality of

20

the meaning functions) [[tann]]I
s,Idev = [[t]]IPL

. Our goal is to normalize term t.
If term e = NF (tann) is the result of the NbE algorithm, we see that its one-
level representation ẽ, which we regard as the result of the specialization,
has the same meaning as the term t:

[[ẽ]]I
PL

= [[e]]I
s, Idev = [[tann]]I

s, Idev = [[t]]I
PL

This verifies the correctness of the specialization.
This process of binding-time annotation can be achieved mechanically or

manually. In general, one tries to reduce occurrences of dynamic constants
in term t, so that more static computation involving constants is carried out
during static normalization.

Our setting In this article, the language PL we will work with is essentially
ML, with a base type Exp for encoding term representations, the construc-
tors associated with Exp, constants for name generations (GENSYM.init and
GENSYM.new), and control operators. All of these can be introduced into ML
as user-defined data types and functions; in practice, we do not distinguish
between PL and ML. The associated two-level language PL2 is constructed
from the language PL mechanically. As shown in Section 2.2 (Example 7
on page 13), a two-level term can be encoded in ML by using a functor to
parameterize over all dynamic types and constants in the term. Instanti-
ating the functor with a structure that defines either the original constants
or their code-generating versions yields the evaluating instantiation or the
residualizing instantiation, respectively.

3 Formulating self-application

In this section, we present two forms of self-application for TDPE. One uses
self-application to generate more efficient reification and reflection functions
for a type τ ; following Danvy [5], we refer to this form of self-application
as visualization. The other adapts the second Futamura projection to the
setting of TDPE. We first give an intuitive account of how self-application
can be achieved, and then derive a precise formulation of self-application,
based on the formal account of TDPE presented in Section 2.3.

3.1 An intuitive account of self-application

We start by presenting the intuition behind the two forms of self application,
drawing upon the informal account of TDPE in Section 2.1.

Visualization
For a specific type τ , the reification function ↓τ contains one β-redex

for each recursive call following the type structure. For example, the direct
unfolding of ↓•→•→•→•, according to the definition (Figure 2 on page 9), is

21

λ f0.λ x.(λ f1.λ y.(λ f2.λ z.(λ e.e)(f2((λ e.e)z)))(f1((λ e.e)y)))(f0((λ e.e)x))

rather than the normalized form presented in Example 2 on page 9. This
normalization can be achieved by self-applying TDPE so as to specialize the
reification function with respect to a particular type. Danvy has carried
out this form of self application in the untyped language Scheme [5]; in the
following, we reconstruct it in our setting.

Recall from Section 2 that finding the normal form of a term t : σ is
achieved by reifying the residualizing instantiation of a binding-time anno-
tated version of t:

NF (t) = [[↓σ tann]].

It thus suffices to find an appropriate binding-time annotated version of the
term ↓τ . A straightforward analysis of the implementation of NbE (see Fig-
ure 3 on page 13 and Figure 4 on page 14), shows that all the base types (Exp,
Var, etc.) and constants (APP, Gensym.init, etc.2) are needed in the code gen-
eration phase; hence they all should be classified as dynamic. Therefore, to
normalize ↓τ : τ → Exp, we use a trivial binding-time annotation, notated
as 〈 · 〉, in which every constant is marked as dynamic:

NF (〈 ↓τ 〉) = [[↓τ→• 〈 ↓τ 〉]], (3)

In order to understand the term 〈 ↓τ 〉 , we analyze the composite effect
of the residualizing instantiation and trivial binding-time annotation: for a
term e, the term 〈 e 〉 is formed from e by substituting all constants with
their code-generating counterparts. We write ⇓τ for 〈 ↓τ 〉 and ⇑τ for 〈 ↑τ 〉
for notational conciseness.

Term ↓τ and term ⇓τ are respectively the evaluating instantiation and

residualizing instantiation of the same (two-level) term 〈 ↓τ 〉: that is, 〈̃ ↓τ 〉 =↓τ ,

and 〈 ↓τ 〉 =⇓τ ; term ↑τ and term ⇑τ have an analogous relationship. We
will exploit this fact in Section 4.1 to apply the functor-based approach to
the reification/reflection combinators themselves, thus providing an imple-
mentation of ⇓τ and ⇑τ in ML.

Adapted second Futamura projection
As we have argued in the introduction, in the setting of TDPE, following

the second Futamura projection literally is not a reasonable choice for deriv-
ing efficient generating extensions—the evaluator for the language in which
we use TDPE might not even be written in this language; making such an
evaluator explicit in the partial evaluator to be specialized introduces an ex-
tra layer of interpretation, which defeats the advantages of TDPE. We thus
consider instead the general idea behind the second Futamura projection:

2These constants appear, e.g., in the underlined portion of the expanded term
↓•→•→•→•.

22

Using partial evaluation to perform the static computations in
a ‘trivial’ generating extension (usually) yields a more efficient
generating extension.

Following the informal recipe for performing TDPE given in Section 2, the
‘trivial generating extension’ p† of a program p : σS × σD → σR is

λs.TDPE(p, s) : σS → Exp = λ s.↓σD→σR λd. pann (s, d)

Since the trivial generating extension is itself a term, we can normalize it
using TDPE: We reify at type σS → • the residualizing instantiation of
the (suitably binding-time annotated) trivial generating extension. We can

use the trivial binding-time annotation, i.e., to reify 〈 λs.TDPE(p, s) 〉 —in
Section 3.2 we shall explain in detail why this choice is not too conservative.
Because 〈 · 〉 is a substitution, it distributes over term constructors, and
we can move it inside the terms:

〈 λs.TDPE(p, s) 〉 = λs. ⇓σD→σR (λd. 〈 pann 〉 (s, d)).

For concreteness, the reader might find it helpful to consider the ex-
ample of the height function (Example 5 on page 11): pann corresponds

to heightann , so 〈 pann 〉 is formed by substituting all the constants in
heightann with their code-generating versions. Such constants include sin,
liftreal, and the code-constructing constants appearing in term multr (Ex-
ample 4 on page 10).

In practice, however, we do not need to first build the residualizing
version by hand and then apply the TDPE formulation. Instead, we show
that we can characterize 〈 e 〉 in terms of the original two-level term e

itself, thus enabling a functor-based approach: We write e for 〈 e 〉 and
call it the GE-instantiation of term e, where “GE” stands for generating
extension. A precise definition of the GE-instantiation is derived formally
in Section 3.2 (Definition 17 on page 26). Basically, e instantiates all
static constants and lifting functions in e with their code-generating version
and all dynamic constants with versions that generate “code-generating”
code. In other words, static constants and lifting functions give rise to code
that is executed when applying the generating extension, whereas dynamic
constants give rise to code that has to appear in the result of applying the
generating extension.

All in all, the generating extension p‡ of a program p : σS × σD → σR

can be calculated as

p‡ = [[↓σS→• (λs. ⇓σD→σR (λd . pann (s, d)))]]. (4)

23

3.2 A derivation of self-application

In Section 3.1 we gave an intuitive account of how self-application can be
achieved for TDPE. Using the formalization of TDPE presented in Sec-
tion 2.3 we now derive both forms of self-application; correctness thus follows
from the correctness of TDPE.

Visualization
We formally derive visualization (Section 3.1), using the “recipe” out-

lined in Figure 7 on page 20. First, we need a formal definition of the trivial
binding-time annotation 〈 · 〉 in terms of the two-level language:

Definition 12 (Trivial Binding-Time Annotation). The trivial bind-
ing-time annotation of a ΣPL-term `ΣPL t :σ is a PL2-term `Σ2 〈 t 〉 : 〈 σ 〉,
given by 〈 t 〉 = t{Φ〈 〉} and 〈 σ 〉 = σ{Φ〈 〉}, where the instantiation Φ〈 〉 is
a substitution of ΣPL-constructs into Σ2-phrases: Φ〈 〉(b) = bd, Φ〈 〉(` : b) =
$b`
s (` is a literal), Φ〈 〉(c) = cd (c is not a literal).

Lemma 13 (Properties of 〈 · 〉). For a ΣPL-term `ΣPL t :σ, the following
properties hold:

1. [[〈 t 〉]]Is, Idev = [[t]]IPL
, making 〈 t 〉 a binding-time annotation of t;

2. 〈̃ t 〉 = t;

3. 〈 σ 〉 is always a fully dynamic type;

4. If a Σ2-type τ is fully dynamic, then 〈 τ 〉 = τ .

A simple derivation using properties (3) and (4) in Lemma 13, together
with the fact that 〈 · 〉 and · distribute over all type and term constructors,
yields the formulation of self-application given in Equation (3) on page 22:

NF (〈 ↓τ 〉) = [[↓τ→• (⇓τ)]]I
PL

.

The following corollary follows immediately from Theorem 11 on page 19
and property (1) of Lemma 13.

Corollary 14. If eτ = NF (〈 ↓τ 〉), then its one-level representation ẽτ is
free of β-redexes and is semantically equivalent to ↓τ :

[[ẽτ]]I
PL

= [[eτ]]I
s, Idev = [[〈 ↓τ 〉]]Is, Idev = [[↓τ]]I

PL

The self-application carried out by Danvy in the setting of Scheme [5] is
quite similar; his treatment explicitly λ-abstracts over the constants occur-
ring in ↓τ , which, by the TDPE algorithm, would be reflected according to
their types. This reflection also appears in our formulation: For any con-
stant c : σ appearing in ↓τ , we have 〈 c 〉 = cd =↑〈 σ 〉“c”. Consequently,
our result coincides with Danvy’s.

24

Adapted second Futamura projection
We repeat the development from Section 3.1 in a formal way. We begin

by rederiving the trivial generating extension, this time from Equation (2)
on page 19: In order to specialize a two-level term `Σ2 p : τS × τD → τR

with respect to a static input `Σ2 s : τS , we execute the ΣPL-program
`ΣPL ↓τD→τR λd. p (s , d) : Exp. By λ-abstracting over the residualizing
instantiation s of the static input s, we can trivially obtain a generating
extension p†, which we will refer to as the trivial generating extension.

`ΣPL p† ≡ λs. ↓τD→τR (λd.(p (s, d))) : τS → Exp.

Corollary 15 (Trivial Generating Extension). The term p† is a gen-
erating extension of program p.

Since the term p† is itself a ΣPL-term, we can follow the recipe in Figure 7
on page 20 to specialize it into a more efficient generating extension. We
first need to binding-time annotate the term p†. For the subterm ↓τD→τR ,
the analysis in Section 3.1 shows that we should take the trivial binding-
time annotation. For the subterm p , the following analysis shows that it
is not too conservative to take the trivial binding-time annotation as well.
Since · = Φ is an instantiation, i.e., a substitution on dynamic constants
and lifting functions, every constant c′ in p must appear as a subterm of
the image of a constant or a lifting function under the substitution Φ . If
c′ appears inside Φ (cd) =↑τ “c” (where c′ could be a code-constructor such
as LAM, APP appearing in term ↑τ) , or Φ ($b) = liftb, then c′ is needed in
the code generation phase, and hence it should be classified as dynamic. If
c′ appears inside Φ (cs) = c, then c′ = c is an original constant, classified
as static assuming the input s is given. Such a constant could rarely be
classified as static in p†, since the input s is not statically available at this
stage.

Taking the trivial binding time annotation of the trivial generating ex-
tension p†, we then proceed with Equation (1) on page 20 to generate a
more efficient generating extension.

p‡=NF (〈 λs. ↓τD→τR (λd.(p (s, d))) 〉)

=[[↓〈 τS→• 〉 〈 λs. ↓τD→τR (λd.(p (s, d))) 〉]]IPL

=[[↓τS→• (λs. 〈 ↓τD→τR 〉 (λd .(〈 p 〉 (s, d))))]]IPL

Expressing 〈 p 〉 as p , and 〈 ↓τD→τR 〉 as ⇓τD→τR , we have

p‡ = [[↓τS→• (λs. ⇓τD→τR (λd . p (s, d)))]]I
PL

,

as originally given in Equation (4) on page 23.

25

The generation of p‡ always terminates, even though, in general, the nor-
malization function NF may diverge. Recall that the trivial binding-time
annotation used in the preceding computation of p‡ marks all constants, in-
cluding all fixed-point operators, as dynamic. Divergence, however, can only
happen when the two-level program contains static fixed-point operators.

The correctness of the second Futamura projection follows from Corol-
lary 15 on the page before and Theorem 11 on page 19.

Corollary 16 (Efficient Generating Extension). Program p̃‡ (the one-
level form of the static normal form p‡) is a generating extension of p which
is free of β-redexes.

Proof. By Theorem 11 on page 19 and the property of trivial binding-time
analysis, we have p‡ is in static normal form, and [[p̃‡]]IPL

= [[p†]]IPL
. That

the program p̃‡ is a generating extension of p follows from Corollary 15 on
the preceding page.

Now let us examine how the term p is formed. Note that p = 〈 p 〉 =
((p{Φ }){Φ〈 〉}){Φ } = p{Φ ◦Φ〈 〉 ◦Φ }; thus · corresponds to the com-
position of three instantiations, Φ = Φ ◦Φ〈 〉◦Φ , which is also an instanti-
ation. We call Φ the generating-extension instantiation (GE-instantiation);
a simple calculation gives its definition.

Definition 17 (GE-instantiation). The GE-instantiation of a Σ2-term
`Σ2 e : τ in PL is `ΣPL e : τ given by e = e{Φ } and τ = τ{Φ }, where
instantiation Φ is a substitution of Σ2-constructs into ΣPL-phrases:

Φ (bs)= Φ (bd) = Exp

Φ (cs : τ)= 〈 c : τ 〉 =↑〈 τ 〉“c”

Φ (cd : τ)= ↑τ“c” =⇑τ 〈 VAR 〉 (liftstring“c”)

Φ ($b)= ↑•→•“liftb”

Note that at some places, we intentionally keep the · form unexpanded,
since we can just use the functor-based approach to obtain the residualiz-
ing instantiation. Indeed, the GE-instantiation boils down to “taking the
residualizing instantiation of the residualizing instantiation”. In Section 4.3,
we show how to extend the instantiation-through-functor approach to cover
GE-instantiation as well.

It is instructive to compare the formulation of the second Futamura
projection with the formulation of TDPE (Equation (2) on page 19). The
crucial common feature is that the subject program p is only instantiated,
i.e., only the constants are substituted in the program; this feature makes
them amenable to a functor-based treatment and frees them from an explicit
interpreter. For TDPE, however, static constants are instantiated with their

26

standard instantiation, which makes it possible to use built-in constructs
(such as case expressions) in the “static parts” of a program. This is not the
case for the second Futamura projection, which causes some inconvenience
when applying the second Futamura projection, as we shall see in Section 5.

4 The implementation

In this section we treat various issues arising when implementing the abstract
formulation of Section 3 in ML. We start with the implementation of the
key components for self application, namely the functions ⇓ and ⇑, and the
GE-instantiation. We then turn to two technical issues. First, we show how
to specify the input, especially the types, for the self-application. Second, we
show how to modify the full TDPE algorithm, which uses polymorphically
typed control operators, such that it is amenable to the TDPE algorithm
itself, i.e., amenable to self-application.

4.1 Residualizing instantiation of the combinators

In Section 3.1 we remarked that the terms ↓τ and ⇓τ are respectively the
evaluating instantiation and the residualizing instantiation of the same two-
level term 〈 ↓τ 〉. We can again use the ML module system to conveniently
implement both instantiations. Recall that we formulated reification and re-
flection as type-indexed functions, and we implemented them not as a mono-
lithic program, but as a group of combinators, one for each type constructor.
These combinators can be plugged together following the structure of a type
τ to construct a type encoding as a reification-reflection pair (↓τ , ↑τ). To
binding-time annotate (↓τ , ↑τ) as (〈 ↓τ 〉, 〈 ↑τ 〉), it suffices to parameterize all
the combinators over the constants they use: As already mentioned before,
because 〈 · 〉 is a substitution, it distributes over all constructs in a term,
marking all the types and constants as dynamic. These combinators, when
instantiated with either an evaluating or a residualizing instantiation, can
be combined according to a type τ to yield either (↓τ , ↑τ) or (⇓τ ,⇑τ).

We can directly use the functors makePureNbE (Figure 4 on page 14)
and makeFullNbE (Figure 6 on page 16) to produce the instantiations, be-
cause these functors are parameterized over the primitives used in the NbE
module. Hence, rather than hardwiring code-generating primitives, this
factorization reuses the implementation for producing both the evaluating
instantiation and the residualizing instantiation. An evaluating instantia-
tion EFullNbE of NbE is produced by applying the functor makeFullNbE to
the standard evaluating structures EExp, EGensym and ECtrl of the signa-
tures EXP, GENSYM and CTRL, respectively (Figure 8 on the following page—
we show the implementations of structures EExp and EGensym; for structure
ECtrl, we use Filinski’s implementation [14]). Residualizing instantiations
RFullNbE of Full NbE and RPureNbE of Pure NbE result from applying the

27

structure EExp (* Evaluating Inst. ·̃ on EXP *)
= struct

type Var = string
datatype Exp =

VAR of string (* v *)
| LAM of string * Exp (* λx.e *)
| APP of Exp * Exp (* e1 @ e2 *)
| PAIR of Exp * Exp (* (e1,e2) *)
| PFST of Exp (* fst *)
| PSND of Exp (* snd *)
| LIT_REAL of real (* $real *)

end

structure EGensym (* Evaluating Inst. ·̃ on GENSYM *)
= struct

type Var = string

local val n = ref 0
in fun new () = (n := !n + 1; (* make a new name *)

"x" ^ Int.toString (!n))
fun init () = n := 0 (* reset name counter *)

end
end;

(* Evaluating Instantiation *)
structure EFullNbE = makeFullNbE (structure G = EGensym

structure E = EExp
structure C = ECtrl): NBE

Figure 8: Evaluating Instantiation of NbE

functors makePureNbE and makePureNbE, respectively, to appropriate residu-
alizing structures RGensym, RExp, and RCtrl (Figure 9 on the next page).

For example, in the structure RExp, the type Exp and the type Var are
both instantiated with EExp.Exp since they are dynamic base types, and all
the code-constructing functions are implemented as functions that generate
‘code that constructs code’; here, to assist understanding, we have unfolded
the definition of reflection (see also Example 3 on page 9).

With the residualizing instantiation of reification and reflection at our
disposal, we now can perform visualization by following Equation (3) on
page 22.

Example 18. We show the visualization of ↓•→•→•→• (cf. Example 2 on
page 9) for Pure NbE. Following Equation (3) on page 22, we have to com-
pute ↓(•→•→•→•)→• (⇓•→•→•→•). This is done in Figure 10 on page 30;
it is not difficult to see that the result matches the execution of the term

28

structure RExp: EXP = struct
type Exp = EExp.Exp
type Var = EExp.Exp

(* VAR v = VAR@ v *)
fun VAR v = EExp.APP (EExp.VAR "VAR", v)

(* LAM (v, e) = LAM@ (v,e) *)
fun LAM (v, e) = EExp.APP (EExp.VAR "LAM",

EExp.PAIR (v, e))
(* APP (s, t) = APP@ (s,t) *)

fun APP (s, t) = EExp.APP (EExp.VAR "APP",
EExp.PAIR (s, t))

...
end

...

(* Residualizing Instantiations *)
structure RFullNbE = makeFullNbE (structure G = RGensym

structure E = RExp
structure C = RCtrl): NBE

structure RPureNbE = makePureNbE (structure G = RGensym
structure E = RExp): NBE

Figure 9: Residualizing Instantiation of NbE

reify (a’ --> a’ --> a’ --> a’) (see Figure 4 on page 14). Visualization
of the reflection function is carried out similarly.

4.2 An example: Church numerals

We first demonstrate the second Futamura projection with the example of
the addition function for Church numerals. The definitions for the Church
numeral 0ch, successor sch, and the addition function +ch in Figure 11 on
page 31 are all standard; as the types indicate, they are given as the resid-
ualizing instantiation. One can see that partially evaluating the addition
function +ch with respect to the Church numeral nch = sn

ch(0ch) should pro-
duce a term λn2.λf.λx.fn(n2fx); by definition, this is also the functionality
of a generating extension of function +ch.

The term +ch contains no dynamic constants, hence +ch = +ch = +ch.
Following Equation (4) on page 23, we can compute an efficient generating
extension +ch

‡, as shown in Figure 11 on page 31.

29

local open EFullNbE
infixr 5 -->
val Ereify_aaaa_a
= reify ((a’-->a’-->a’-->a’) --> a’) (* ↓(• → • → • → •) → • *)

open RPureNbE
infixr 5 -->
val Rreify_aaaa = reify (a’-->a’-->a’-->a’) (* ⇓• → • → • → • *)

in val nf = Ereify_aaaa_a (Rreify_aaaa) end

The (pretty-printed) result nf is:

λx1. let r2 = init() r3 = new() r4 = new() r5 = new()
in

λ r3.λ r4.λ r5.x1 r3 r4 r5

end

Figure 10: Visualizing ↓•→•→•→•

4.3 The GE-instantiation

We generalize the technique of encoding a two-level term p in ML presented
at the end of Section 2.2: We code p inside a functor

p ge(structure S:STATIC structure D:DYNAMIC) = ...

that parameterizes over both static and dynamic constants. With suitable
instantiations of the structures S and D, one thus can create not only the
evaluation instantiation p̃ and the residualizing instantiation p , but also
the GE-instantiation p . The instantiation table displayed in Table 1 sum-
marizes how to write the components of the three kinds of instantiation
functors for S and D. The table follows easily from the formal definitions
of ·̃ , · and · via Φ∼ (Definition 9 on page 18), Φ (Definition 10 on
page 19) and Φ (Definition 17 on page 26), respectively.

·̃ · ·
bs b b Exp

S
cs : τ c c ↑〈 τ 〉“c”

bd b Exp Exp

D cd : τ c ↑τ “c” ⇑τ 〈 VAR 〉 (liftstring“c”)

$b λx.x liftb ↑•→•“liftb”

Table 1: Instantiation table

30

type ’a num = (’a -> ’a) -> (’a -> ’a) (* Type num *)
val c0 : EExp.Exp num

= fn f => fn x => x (* 0ch : num *)
fun cS (n: EExp.Exp num)
= fn f => fn x => f (n f x) (* sch : num → num *)

fun cAdd (m: EExp.Exp num, n: EExp.Exp num)
= fn f => fn x =>

m f (n f x) (* +ch : (num × num) → num *)

local open EFullNbE
infixr 5 -->
val Ereify_n_exp
= reify (((a’ --> a’) --> (a’ --> a’)) --> a’)

(* ↓ num →• *)
open RPureNbE
infixr 5 -->
val Rreify_n_n
= reify (((a’-->a’) --> (a’-->a’)) -->

((a’-->a’) --> (a’-->a’))) (* ⇓ num→num *)
in val ge_add
= Ereify_n_exp (fn m => (Rreify_n_n (fn n =>
cAdd (m, n)))) (* +ch

‡ *)
end;

The (pretty-printed) result +ch
‡ is:

λx1. let r2 = init() r3 = new() r4 = new() r5 = new() r7 = new()
in

λ r3.λ r4.λ r5.(x1(λx6.(r4 @ x6)))
(((r3 @ (λ r7.(r4 @ r7)))@ r5)))

end

For example, applying +ch
‡ to (cS (cS (c0))) generates

λx1.λx2.λx3.x2(x2(x1(λx4.x2 x4)x3)).

Figure 11: Church numerals

31

Note, in particular, that ·̃ and · have the same instantiation for the
static signature; hence we can reuse Φ∼ for Φ .

Example 19. We revisit the function height, which appeared in Exam-
ple 5 on page 11 and Example 7 on page 13. In Figure 12 on the next page
we define the functor height ge along with signatures STATIC and DYNAMIC.
Structure GEStatic and structure GEDynamic provide the GE-instantiation
for the signature Σ2. The instantiation of height ge with these structures
gives heightann . Applying the second Futamura projection as given in Equa-
tion (4) on page 23 yields

λx1. let r2 = init()
r3 = new()

in
λ r3.“mult”@ (lift real(sin x1))@ r3

end

4.4 Type specification for self-application

The technique developed so far is already sufficient to carry out visualization
or the second Futamura projection, at least in an effect-free setting. Still,
it requires the user to manually instantiate self-application Equation (3) on
page 22 and Equation (4) on page 23, as we have done for all the proceed-
ing examples. In particular, as Example 18 on page 28 demonstrates, one
needs to use two different sets of combinators for essentially the same type
(• → • → • → • in this case), one for the residualizing instantiation of
NbE, and the other for the evaluating instantiation. It would be preferable
to package the abstract formulation of Equation (3) on page 22 and Equa-
tion (4) on page 23 as program modules themselves, instead of leaving them
as templates for the user.

Types are part of the input in both forms of self-application. The user
of the module should specify a type τ in a way that is independent of the
instantiations; it is the task of the self-application module to choose whether
and where to use the residualization instantiation (⇓τ ,⇑τ) or the evaluation
instantiation (↓τ , ↑τ). Since different instantiations have different types, the
type argument, even in the form of an encoding of the corresponding ex-
traction functions, cannot be abstracted over at the function level. Recall
that the type-indexed functions are formed by plugging together combina-
tors. Specifying a type, therefore, amounts to writing down how combinators
should be plugged together, leaving the actual definition of the combinators
(i.e., an NBE-structure) abstract.

To make the above idea more precise, let us consider the example of
visualizing the reification functions. The specification of a type τ should
consist of not only the type τ itself, but also a functor that maps a NBE-
structure NbE to the appropriate instantiation of the pair (〈 ↓τ 〉, 〈 ↑τ 〉), which
is of type τ NbE.rr . This suggests that the type specification should have

32

signature STATIC = (* Σs *)
sig
type SReal (* reals *)
val sin: SReal -> SReal (* sins *)

end

signature DYNAMIC = (* Σd *)
sig
type SReal (* reals *)
type DReal (* reald *)
val mult: DReal -> DReal -> DReal (* multd *)
val lift_real: SReal -> DReal (* $real *)

end

functor height_ge(structure S: STATIC (* heightann *)
structure D: DYNAMIC
sharing type D.SReal = S.SReal) =

struct
fun height a z = D.mult (D.lift_real (S.sin a)) z

end

structure GEStatic: STATIC = (* Φ on Σs *)
struct
local open EExp EFullNbE; infixr 5 --> in

type SReal = Exp
val sin = reflect (a’ --> a’) (VAR "sin")

end
end

structure GEDynamic: DYNAMIC = (* Φ on Σd *)
struct
local open RExp RFullNbE; infixr 5 --> in

type DReal = Exp
val mult = reflect (a’ --> a’ --> a’)

(VAR (EExp.STR "mult"))
fun lift_real r = LIT_REAL r

end
end

(* heightann *)
structure ge_height = height_ge(structure S = GEStatic

structure D = GEDynamic)

Figure 12: Instantiation via functors

33

signature VIS_INPUT = (* Signature for a type specification *)
sig
type ’a vis_type (* Type τ , parameterized at the base type *)
functor inp(NbE: NBE) : (* parameterized type coding *)
sig
val T_enc: (NbE.Exp vis_type) NbE.rr

end
end

functor vis_reify (P: VIS_INPUT) =
struct
local
structure eVIS (* Evaluating instantiation *)

= P.inp(EFullNbE)
structure rVIS (* Residualizing instantiation *)

= P.inp(RPureNbE)
open EFullNbE
infixr 5 -->

in
val vis = reify (eVIS.T_enc --> a’) (* ↓τ → • (⇓τ) *)

(RPureNbE.reify rVIS.T_enc)
end

end

Figure 13: Specifying types as functors

the following dependent type:∑
τ : ∗.

∏
NbE : NBE.(τ NbE.rr),

where
∑

is the dependent sum formation, and
∏

is the dependent product
formation.

We can then turn this type into a higher-order signature VIS INPUT

in Standard ML of New Jersey, and in turn write a higher-order functor
vis reify that performs visualization of the reification function (Figure 13).

The example visualization in Figure 10 on page 30 can be now carried
out using the type specification given in Figure 14 on the following page.

4.5 Monomorphizing control operators

So far we have shown how to self-apply Pure TDPE. When self-applying
Full TDPE, one complication arises: The implementation of Full TDPE
uses control operators polymorphically in the definition of reflection, but to
determine the residualizing instantiation of a constant, a fixed monomorphic
type has to be determined. This section shows how to rewrite the algorithm
for full TDPE such that all control operators occur monomorphically.

34

structure a2a : VIS_INPUT = (* A type specification *)
struct
type ’a vis_type = ’a->’a->’a->’a (* τ = • → • → • → • *)
functor inp(NbE: NBE) = (* NbE *)

struct
local open NbE infixr 5 --> in
val T_enc = a’ --> a’ --> a’ --> a’ (* τ NbE.rr *)

end
end

end

structure vis_a2a = vis_reify(a2a); (* Visualization *)

Figure 14: Type specification for visualizing ↓•→•

Let-insertion via control operators
Full TDPE treats call-by-value languages with computational effects. In

this setting, let-insertion [3, 19] is a standard partial-evaluation technique
to prevent duplicating or discarding computations that have side-effects: All
computation that might have effects is bound to a variable and sequenced
using the (monadic) let construct. However, when the TDPE algorithm
identifies the need to insert a let-construct, it usually is not at a point
where a let-construct can be inserted, i.e., a code-generating expression.

Using a technique that originated in continuation-based partial evalua-
tion [24], Danvy [4] solves this problem by using the control operators shift
and reset [9]: Intuitively speaking, the operator shift abstracts the current
evaluation context up to the closest delimiter reset and passes the abstracted
context to its argument, which can then invoke this delimited evaluation con-
text just like a normal function. Formally, the semantics of shift and reset
is expressed in terms of the CPS transformation (Figure 15; see Danvy and
Filinski [9] and Filinski [14] for more details, and Danvy and Yang [13] for
an operational account).

[[shift E]]
CPS

= λκ.[[E]]
CPS

(λ f.f(λ v.λ κ′.κ′(κ v))(λx.x))
[[reset〈E 〉]]

CPS
= λκ.κ([[E]]

CPS
(λx.x))

where 〈E〉, “the thunk of E”, is shorthand for λ().E. The use of a thunk
here delays the computation of E and avoids the need to implement reset
as a macro.

Figure 15: The CPS semantics of shift/reset

With the help of these control operators, Danvy’s treatment [4] follows

35

the following strategy for let-insertion: (1) use reset to ‘mark the boundaries’
for code generation, i.e., to surround every expression that has type Exp and
could potentially be a point where let-bindings need to be inserted;3 (2) when
let-insertion is needed, use shift to ‘grab the context up to the marked bound-
ary’ and bind it to a variable k (thus k is a code-constructing context); (3)
apply k to the intended return value to form the body expression of the let-
construct, and then wrap it with the let-construct. The new definitions for
the reification and reflection functions as given by Danvy are shown in Fig-
ure 16; there are two function type constructors: a function type without ef-
fects τ1→τ2, which does not need let-insertion, and a function type with pos-
sible latent effects τ1

!→τ2, which performs let-insertion. We extend the type
Exp of code representations with a constructor LET of string * Exp * Exp

and write let x = t1 in t2 end for LET (x,t1,t2); we implement a new
TDPE combinator -!> in ML for the new type constructor !→ .

↓• e = e
↓τ1→τ2 f = λx.reset〈↓τ2 (f(↑τ1 x))〉 (x is fresh)

↓τ1
!→τ2 f = λx.reset〈↓τ2 (f(↑τ1 x))〉 (x is fresh)

↑• e = e
↑τ1→τ2 e = λx.↑τ2 (e@ (↓τ1 x))
↑

τ1
!→τ2

e = λx.shift (λk.let x′ = e@ ↓τ1 x in reset〈k(↑τ2 x′)〉 end)
(x′ is fresh)

Figure 16: TDPE with let-insertion

Monomorphizing control operators In the definition of reflection for
function types with latent effects, ↑

τ1
!→τ2

, the return type (here τ2) of the
shift-expression depends on the type of the reflection. Hence it is not immedi-
ately amenable to be treated by TDPE itself, because during self-application,
shift is regarded as a dynamic constant, whose type is needed to determine
its residualizing instantiation.

However, observe that the argument to the context k is fixed to be ↑τ2 x′;
this prompts us to move this term into the context surrounding the shift-
expression, and to apply k to a simple unit value ()—no information needs
to be carried around, except for the transfer of the control flow.

3An effect-typing system can provide a precise characterization of where reset has to be
used. Roughly speaking, an operator reset encloses the escaping control effect introduced
by an inner shift. See Filinski’s recent work [15] for more details.

36

↑new

τ1
!→τ2

e = λx.(λ (). ↑τ2 x′)(shift (λk.let x′ = e@ ↓τ1 x in reset〈k()〉 end))

(x′ is fresh)

Now the aforementioned problem is solved, since the return type of shift is
fixed to unit—the new definition is a monomorphized version of the original.

To show that this change is semantics-preserving, we compare the CPS
semantics of the original definition and the new definition.

Proposition 20. The terms [[↑new

τ1
!→τ2

]]
CPS

and [[↑
τ1

!→τ2
]]
CPS

are βvηv-con-
vertible.

Here βv and ηv are respectively the β and η rules in Moggi’s computa-
tional lambda calculus λc [26], i.e., the restricted forms of the usual β rule,
(λx.e′)e ∼ e′[x := e], and of the usual η rule, λx.ex ∼ e, where the expres-
sion e must be a value. These rules are sound for call-by-value languages
with computational effects.

Proof. First of all, we abstract out the same computations in the two terms:

B ≡ λ f.let x′ = e@ ↓τ1 x in f() end
R ≡ ↑τ2 x′

C [] ≡ λ e.λ x.let x′ = new() in [] end

Then
↑

τ1
!→τ2

=βvηvC [shift (λk.B(λ ().reset〈k(R)〉))]
↑new

τ1
!→τ2

=βvηvC [(λ ().R)(shift (λk.B(λ ().reset〈k()〉)))]

Because the CPS transformation is compositional and preserves βvηv equiv-
alence, it suffices to prove that the CPS transformations of the two terms
enclosed by C [·] are βvηv-equivalent, for all terms B and R . It is a tedious
but straightforward check.

Recently, Sumii [30] pointed out that the reset in the above definition
can be removed. The continuation k, being captured by shift, resets the
continuation automatically when applied to an argument, which makes the
reset in the above redundant, since the argument of k is a value. In contrast,
the original definition still requires the reset, since the expression ↑τ2 x′ might
have latent escaping control effect, as in the case where τ2 is of form τ !→ τ ′.
This simplification improves the performance of TDPE and the generating
extension generated by self-application.

↑new′

τ1
!→τ2

e = λx.(λ (). ↑τ2 x′)(shift (λk.let x′ = e@ ↓τ1 x in k() end))

(x′ is fresh)

37

Proposition 21. The terms [[↑new

τ1
!→τ2

]]
CPS

and [[↑new′

τ1
!→τ2

]]
CPS

are βvηv-convert-
ible.

Proof. We proceed as in the proof of Proposition 20. In particular, using B,
R, and C [] introduced there, we have that

↑new′

τ1
!→τ2

=βvηv C [(λ ().R)(shift (λk.B(λ ().k())))].

Example 22. The monomorphized definitions ↑new

τ1
!→τ2

and ↑new′

τ1
!→τ2

of reflec-
tion for function types with latent effects are amenable to TDPE itself. Fig-
ure 17 on the next page shows the result of visualizing the reification function
at the type (• !→•) !→•. Note that both shift and reset have effects themselves;
consequently TDPE has inserted let-constructs for the result of visualization.
For comparison, we also show the visualization of (•→ •)→• of Pure NbE,
which is much more compact.

The main difference here is the control operators used in Full TDPE,
which remain in the result of self-application; later in Section 6, we will
see how this difference affects the speedup achieved by the second Futamura
projection.

Sum types Full TDPE also treats sum types using control operators;
this treatment is also due to Danvy [5]. Briefly, the operator shift is used
in the definition of reflection function for sum types, ↑τ1+τ2 . As the type
suggests, the return type of this function should be a value of type τ1 + τ2 ,
i.e., a value either of the form inl (v1 : τ1) or inr (v2 : τ2) (for some
appropriate v1 or v2); on the other hand, both values are needed to have the
complete information. Danvy’s solution is to “return twice” to the context
by capturing the delimited context and applying it separately to inl (↑τ1 e1)
and inr (↑τ2 e2); the results are combined using a case-construct which
introduces the bindings for e1 and e2. Danvy’s definition of ↑τ1+τ2 is given
below:

↑τ1+τ2 e = shift(λk. case e of inl(x1) ⇒ reset〈k(inl (↑τ1 x1))〉
| inr(x2) ⇒ reset〈k(inr (↑τ2 x2))〉)

(x1, x2 are fresh)

where Exp has been extended with constructors for a case distinction and
injection functions in the obvious way. Again, the return type of the shift-
expression in the above definition is not fixed; an alternative definition is
needed to allow self-application.

Following the same analysis as before, we observe that the arguments
to k must be one of the two possibilities, inl (↑τ1 e1) and inr (↑τ2 e2), so
the information to be passed through the continuation is just the binary

38

Visualization of ↓(• !→•) !→• results in:

λx1.let r2 = init()
r3 = new()
r11 = reset〈let r10 = x1(λx5.insertLet(r3 @ x5)) in r10 end〉

in λ r3.r11

end

where insertLet(E) abbreviates the expression

let x′ = new()
= shift(λk.let r = k() in (let x′ = E in r end) end)

in x′

end

In contrast, visualization of ↓(•→•)→• of Pure NbE results in:

λx1.let r2 = init()
r3 = new()

in λ r3.x1(λx4.r3 @x4)
end

Figure 17: Visualizing TDPE with let-insertion

choice between the left branch and the right branch. We can thus move
these two fixed arguments into the context and replace them with booleans
true and false as arguments to continuation k (again, Sumii’s remark on
the redundancy of reset in the program after change applies, and we have
dropped the unnecessary occurrences of reset):

↑new
τ1+τ2 e = if shift(λk. case e of inl(x1) ⇒ k true

| inr(x2) ⇒ k false)
then inl (↑τ1 x1) else inr (↑τ2 x2)

(x1, x2 are fresh)

The use of shift is instantiated with the fixed boolean type. Again, we
check that this change does not modify the semantics.

Proposition 23. [[↑new
τ1 +τ2]]

CPS
and [[↑τ1 +τ2]]

CPS
are βvηv-convertible.

Using ↑new
τ1+τ2 and ↑new′

τ1
!→τ2

instead of the original definitions provides us
with an algorithm for Full TDPE that is amenable to self-application. In the
following section, we use self-application of TDPE for compiler generation.

39

5 Generating a compiler for Tiny

It is well known that partial evaluation allows compilation by specializing an
interpreter with respect to a source program. TDPE has been used for this
purpose in several instances [4, 5, 11, 12]. Having implemented the second
Futamura projection, we can instead generate a compiler as the generating
extension of an interpreter.

One of the languages for which compilation with TDPE has been stud-
ied is Tiny [4, 27], a prototypical imperative language. As outlined in Sec-
tion 2.2, a functor tiny pe(D:DYNAMIC) is used to carry out type-directed
partial evaluation in a convenient way. This functor provides an interpreter
meaning that is parameterized over all dynamic constructs. Appendix B.1
gives an overview of Tiny and type-directed partial evaluation of a Tiny in-
terpreter. Compiling Tiny programs by partially evaluating the interpreter
meaning corresponds to running the trivial generating extension meaning†.

Following the development in Section 4.3, we proceed in three steps to
generate a Tiny compiler:

1. Rewrite tiny pe into a functor tiny ge(S: STATIC D: DYNAMIC) in which
meaning is also parameterized over all static constants and base types.

2. Give instantiations of S and D as indicated by the instantiation table in
Table 1 on page 30, thereby creating the GE-instantiation meaning .

3. Perform the second Futamura projection; this yields the efficient gen-
erating extension meaning‡, i.e., a Tiny compiler.

Appendix B.2 describes these steps in more detail.
Tiny was the first substantial example we treated; nevertheless we were

done within a day—none of the three steps described above is conceptually
difficult. They can be seen as a methodology for performing the second
Futamura projection in TDPE on a binding-time-separated program.

Although conceptually simple, the first of the three steps from above is
somewhat tedious:

• Every construct that is not handled automatically by TDPE has to be
parameterized over. This is not a problem for user-defined constants,
but is a problem for ML-constructs like recursion and case-distinctions
over recursive data types. Both have to be rewritten, using fixed-point
operators and elimination functions, respectively.

• For every occurrence of a constant in the program, its monotype has
to be determined; constants used at more than one monotype give
rise to several instances. This is a consequence of performing type-
directed partial evaluation; for the second Futamura projection, every
constant is instantiated with a code-generating function, the form of
which depends on the exact type of the constant in question.

40

program static inp. specialization specialization Speedup
p s time with p† (s) time with p‡ (s) (ratio)

meaning factorial 261.2 194.9 1.34
meaningorig factorial 169.5 99.2 1.71

+ch 80ch 58.45 19.95 2.93

Table 2: Benchmarks: time of specializations (1,000,000 repeated execu-
tions)

Because the Tiny interpreter we started with was already binding-time
separated, we did not have to perform the binding-time analysis needed
when starting from scratch. Our experience with TDPE, however, shows
that performing such a binding-time analysis is relatively easy, because

• TDPE restricts the number of constructs that have to be considered,
since functions, products and sums do not require binding-time anno-
tations, and

• TDPE uses the ML type system: Type checking checks the consistency
of the binding-time annotations.

6 Benchmarks

6.1 Experiments and results

In Section 3 we claimed that the specialized generating extension p‡ of a
program p produced by the second Futamura projection for TDPE is, in
general, more efficient than the trivial generating extension p†. In order to
assess how much more efficient p‡ is than p†, we performed some bench-
marks.

The benchmarks were performed on a 250 MHz Silicon Graphics O2

workstation using Standard ML of New Jersey version 110.0.3. We display
the results in Table 2. In each row of the table, we compare the time it takes
to specialize the subject program p with respect to the static input s using
two different generating extensions: (1) the trivial generating extension p†

(i.e., directly running TDPE on program p), and (2) the specialized generat-
ing extension p‡ (i.e., running the result of the second Futamura projection).
We calculate the speedup as the ratio of their running times.

The first row compares the compilers derived from the interpreter meaning
(see Section 5 and Appendix B); the result shows a speedup of 1.34 for com-
piling the factorial function. One might wonder, however, whether there is
any real gain in using the second Futamura projection: The changes that
are necessary to provide the GE-instantiation of meaning (replace built-in
pattern-matching and recursive function definition of ML with user-defined

41

fixed-point operators and case operators, respectively—see Section 5) slow
down both direct compilation with TDPE and compilation using the spe-
cialized generating extension. In fact, as the table’s second row shows, direct
compilation with the ‘original’ interpreter meaningorig, i.e., an instantiation
of tiny pe rather than tiny ge (cf. Sections 2.2 and 4.3), runs even faster
than the specialized generating extension meaning‡.

We can do better by eliminating the user-defined fixed point operators
and case operators in the result program meaning‡, using the built-in con-
structs.4 This yields a program that can be understood as the special-
ized generating extension of the program meaningorig, and we thus call it
meaningorig

‡. The second row of Table 2 on the preceding page shows that
running meaningorig

‡ gives a speedup of 1.71 over running the original pro-
gram meaningorig. The speedup over the direct compilation using the original
interpreter here is, in practice, more relevant than the speedup of the bench-
mark shown in the first row.

The benchmark in the third row compares the generating extensions of an
effect-free function, the addition function +ch for Church numerals. Because
the function is free of computational effects (we assume that its argument
function is also effect-free), we can specialize Pure TDPE instead of Full
TDPE in the second Futamura projection. The speedup of running the
specialized generating extension over direct partial evaluation is consistently
around 3 (shown with Church numeral 80ch).

6.2 Analysis of the result

Overall, the speedup of the second Futamura projection with TDPE is dis-
appointing compared to the typical order-of-magnitude speedup achievable
in traditional partial evaluation [22]. This, on the other hand, reflects the
high efficiency of TDPE, which carries out static computations by evaluation
rather than symbolic manipulation. Turning symbolic manipulation (i.e., in-
terpretation) into evaluation is one of the main goals one hopes to achieve
by specializing a syntax-directed partial evaluator. Since TDPE does not
have much interpretive overhead in the first place, the further speedup is
bound to be lower.

Logically, the next question to ask—for a better understanding of how
and when the second Futamura projection could effectively speedup the
TDPE process—is what cost of TDPE can or cannot be removed by using the
self-application. The higher-order nature of the TDPE algorithm blurs the
boundaries between the various components that contribute to the running

4Removing the user-defined fixed point operator and case operators can be carried
out automatically by (1) incorporating TDPE with patterns as generated bindings, and
(2) systematically changing the residualizing instantiations for the fixed point and case
operators used. Danvy and Rhiger [11] achieved a similar effect in TDPE for Scheme,
using Scheme macros.

42

time of the specialization; we can only roughly divide the cost involved in
performing TDPE as follows:

1. Cost due to computation in the extraction function ↓τ , namely func-
tion invocations of reification and reflection for subtypes of τ , name
and code generation and, in the case of Full TDPE, the use of control
operators shift and reset.

2. Cost due to computation in the residualizing instantiation ps of in-
put program and static input, namely, apart from static computation,
the invocation of reflection by code-generating versions of dynamic
constants (see Section 2.1).

3. Cost due to reducing extra redexes formed by the interaction of ↓τ and
ps in ↓τ ps .

Of the cost due to computation in the extraction function, only the one
caused by function invocations can be eliminated: All other computations
have to be performed at specialization time. This optimization amounts to
function inlining. Similarly, for the cost associated with the residualizing
instantiation, inlining can be performed for the code-generating versions of
dynamic constants and their calls to the reflection function. Finally, the
extra redexes formed by the interaction of the extraction function and the
residualizing instantiation can be partly reduced by the specialization.

In Full TDPE, the somewhat time-consuming control operators dominate
the cost of extraction algorithm; the low speedup of specializing Full TDPE
(the first two benchmarks) as opposed to that of specializing Pure TDPE
(the third benchmark), we think, are mainly due to the fact that these
control operators cannot be eliminated. Furthermore, in the case of the
Church addition function, the program is a higher-order pure λ-term, which
usually “mixes well” with the extraction function, in the sense that many
extra redexes are formed by their interaction.

Do certain implementation-related factors, such as the global optimiza-
tions of the ML compiler we used and the fact that we are working in a
typed setting, give positive contribution to the speedup? In our opinion,
the help is minimal, if not negative. First, the specialization carried out by
the self-application, where the program is given a trivial BTA (Section 3.1),
has an effect similar to a good global inliner. Therefore, the global opti-
mization of the ML compiler, especially the inlining optimization, should
only reduce the potential speedup of the specialization. Second, working in
a typed setting does complicates the type specification and the parameteri-
zation (Section 4.4), but it does not incur extra cost at runtime when using
TDPE—the instantiation through ML functors happens at compile time;
furthermore, the need to parameterize over built-in constructs such as fixed
point operators and pattern matching is present also in an untyped setting.

43

7 Conclusions and issues

We have adapted the underlying concept of the second Futamura projection
to TDPE and derived an ML implementation for it. By treating several
examples, among them the generation of a compiler from an interpreter, we
have examined the practical issues involved in using our implementation for
deriving generating extensions of programs.

To hand-write a cogen and to formally prove its correctness at the same
time, one possibility is to start with a partial evaluator and rewrite it into
the desired generating extension in several steps, such as the use of higher-
order abstract syntax and deforestation in Thiemann’s work [31]. Correct-
ness follows from showing the correctness of the partial evaluator and the
correctness of each of these steps. In contrast, for generating extensions pro-
duced with the second Futamura projection, the implementation is produced
automatically, and correctness follows immediately from the correctness of
the partial evaluator. Often, however, this conceptual simplicity is compro-
mised by (1) the complications in using self-application, and (2) the need to
make the partial evaluator self-applicable and prove the necessary changes
to be meaning preserving. In the case of TDPE, the implementational effort
for writing the GE-instantiation of the object program is similar in level
to that of the hand-written cogen approach, but the only change to the
TDPE algorithm itself is the transformation described and proven correct
in Section 4.5.

The third Futamura projection states that specializing a partial evaluator
with respect to itself yields an efficient generating-extension generator. The
type-indexed nature of TDPE makes it challenging, if possible at all, to
implement the third Futamura projection directly in ML. Even if it could
be done, our experience with the second Futamura projection suggests that
only an insignificant speedup would be obtained.

At the current stage, our contribution seems to be more significant at
a conceptual level, since the speedup achieved by using the generated gen-
erating extensions is rather modest. However we observed that a higher
speedup can be achieved for more complicated type structures, especially in
a setting with no or few uses of computational effects; this suggests that our
approach to the second Futamura projection using TDPE might find more
practical applications in, e.g., the field of type theory and theorem proving.

The technical inconveniences mentioned in Section 5 are clearly an ob-
stacle for using the second Futamura projection for TDPE (and, to a lesser
extent, for using TDPE itself). A possible solution is to implement a trans-
lator from the two-level language into ML, thus handling the mentioned
technicalities automatically. Of course, such an approach would sacrifice
the flexibility of TDPE of allowing the use of all language constructs in the
static part of the subject program. Even so, TDPE would still retain a
distinct flavor when compared to traditional partial evaluation techniques:

44

Only those constructs not handled automatically by TDPE, i.e., constants,
need to be binding-time annotated; other constructs, such as function ap-
plication and function abstraction, always follow their standard typing rules
from typed lambda calculi. This simplifies the binding-time analysis con-
siderably and often makes binding-time improvements, e.g, eta-expansion,
unnecessary, which was one of the original motivations of TDPE [5, 10].

Acknowledgments

At an early stage both Olivier Danvy and Morten Rhiger [29] independently
implemented a similar version of the second Futamura projection, thus pro-
viding further stimulation for our work. Andrzej Filinski’s formal treatment
of TDPE proved to be invaluable for understanding the second Futamura
projection for TDPE. Eijiro Sumii pointed out how the monomorphizing
transformations can be improved (see Section 4.5).

We are grateful to Daniel Damian, Olivier Danvy, Andrzej Filinski,
Lasse R. Nielsen, Morten Rhiger, our anonymous referees from HOSC and
PEPM’00, and our editor Julia Lawall for their numerous constructive com-
ments.

References

[1] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation
functional for typed λ-calculus. In Albert R. Meyer, editor, Proceed-
ings of the 6th Annual IEEE Symposium on Logic in Computer Science,
pages 203–213, Amsterdam, The Netherlands, July 1991. IEEE Com-
puter Society Press.

[2] Lars Birkedal and Morten Welinder. Hand-writing program generator
generators. In Manuel Hermenegildo and Jaan Penjam, editors, Sixth
International Symposium on Programming Language Implementation
and Logic Programming, number 844 in Lecture Notes in Computer Sci-
ence, pages 198–214, Madrid, Spain, September 1994. Springer-Verlag.

[3] Anders Bondorf and Olivier Danvy. Automatic autoprojection of recur-
sive equations with global variables and abstract data types. Science
of Computer Programming, 16:151–195, 1991.

[4] Olivier Danvy. Pragmatic aspects of type-directed partial evaluation.
In Olivier Danvy, Robert Glück, and Peter Thiemann, editors, Partial
Evaluation, Proceedings, number 1110 in Lecture Notes in Computer
Science, pages 73–94. Springer-Verlag, 1996.

[5] Olivier Danvy. Type-directed partial evaluation. In Guy L. Steele Jr.,
editor, Proceedings of the Twenty-Third Annual ACM Symposium on

45

Principles of Programming Languages, pages 242–257, St. Petersburg
Beach, Florida, January 1996. ACM Press.

[6] Olivier Danvy. A simple solution to type specialization. In Kim G.
Larsen, Sven Skyum, and Glynn Winskel, editors, Proceedings of
ICALP ’98, number 1443 in Lecture Notes in Computer Science, pages
908–917, Aalborg, Denmark, 1998. Springer-Verlag.

[7] Olivier Danvy. Type-directed partial evaluation. In Partial Evaluation
– Practice and Theory; Proceedings of the 1998 DIKU Summer School,
number 1706 in Lecture Notes in Computer Science, pages 367–411,
Copenhagen, Denmark, July 1998. Springer-Verlag. xtended version
available as BRICS technical report LN-98-3.

[8] Olivier Danvy and Peter Dybjer, editors. Proceedings of the 1998
APPSEM Workshop on Normalization by Evaluation, NBE ’98,
(Gothenburg, Sweden, May 8–9, 1998), number NS-98-8 in Note Se-
ries, Department of Computer Science, University of Aarhus, May 1998.
BRICS.

[9] Olivier Danvy and Andrzej Filinski. Representing control, a study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361–391, December 1992.

[10] Olivier Danvy, Karoline Malmkjær, and Jens Palsberg. Eta-expansion
does The Trick. ACM Transactions on Programming Languages and
Systems, 8(6):730–751, 1996.

[11] Olivier Danvy and Morten Rhiger. Compiling actions by partial evalua-
tion, revisited. Technical Report BRICS-RS-98-13, BRICS, Department
of Computer Science, University of Aarhus, June 1998.

[12] Olivier Danvy and René Vestergaard. Semantics-based compiling: A
case study in type-directed partial evaluation. In Herbert Kuchen and
Doaitse Swierstra, editors, Eighth International Symposium on Pro-
gramming Language Implementation and Logic Programming, number
1140 in Lecture Notes in Computer Science, pages 182–197, Aachen,
Germany, September 1996. Springer-Verlag. Extended version avail-
able as BRICS technical report RS-96-13.

[13] Olivier Danvy and Zhe Yang. An operational investigation of the CPS
hierarchy. In S. Doaitse Swierstra, editor, Proceedings of the Eighth
European Symposium on Programming, number 1576 in Lecture Notes
in Computer Science, pages 224–242, Amsterdam, The Netherlands,
March 1999. Springer-Verlag.

46

[14] Andrzej Filinski. Representing monads. In Hans-J. Boehm, editor,
Proceedings of the Twenty-First Annual ACM Symposium on Principles
of Programming Languages, pages 446–457, Portland, Oregon, January
1994. ACM Press.

[15] Andrzej Filinski. Representing layered monads. In Alex Aiken, editor,
Proceedings of the Twenty-Sixth Annual ACM Symposium on Princi-
ples of Programming Languages, pages 175–188, San Antonio, Texas,
January 1999. ACM Press.

[16] Andrzej Filinski. A semantic account of type-directed partial evalua-
tion. In Gopalan Nadathur, editor, International Conference on Princi-
ples and Practice of Declarative Programming, number 1702 in Lecture
Notes in Computer Science, pages 378–395, Paris, France, September
1999. Springer-Verlag.

[17] Yoshihito Futamura. Partial evaluation of computation process – an
approach to a compiler-compiler. Higher-Order and Symbolic Compu-
tation, 12(4):363–397, 1999. Reprinted from Systems · Computers ·
Controls 2(5), 1971.

[18] Bernd Grobauer and Zhe Yang. Source code for the second Futamura
projection for type-directed partial evaluation in ML, 2000. Available
from http://www.brics.dk/~tdpe/second_FP/sources.tgz.

[19] John Hatcliff and Olivier Danvy. A computational formalization for par-
tial evaluation. Mathematical Structures in Computer Science, 7:507–
541, 1997. Extended version available as BRICS technical report RS-
96-34.

[20] Carsten K. Holst and John Launchbury. Handwriting cogen to avoid
problems with static typing. In Draft Proceedings, 4th Annual Glasgow
Workshop on Functional Programming, Skye, Scotland, pages 210–218.
Glasgow University, 1991.

[21] Neil D. Jones. Challenging problems in partial evaluation and mixed
computation. In Dines Bjørner, Andrei P. Ershov, and Neil D. Jones,
editors, Partial Evaluation and Mixed Computation, pages 1–14. North-
Holland, 1988.

[22] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evalu-
ation and Automatic Program Generation. Prentice Hall International
Series in Computer Science. Prentice-Hall International, 1993.

[23] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. MIX: A self-
applicable partial evaluator for experiments in compiler generation.
Lisp and Symbolic Computation, 2(1):9–50, 1989.

47

[24] Julia L. Lawall and Olivier Danvy. Continuation-based partial evalua-
tion. In Carolyn L. Talcott, editor, Proceedings of the 1994 ACM Con-
ference on Lisp and Functional Programming, LISP Pointers, Vol. VII,
No. 3, Orlando, Florida, June 1994. ACM Press.

[25] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). The MIT Press, 1997.

[26] Eugenio Moggi. Computational lambda-calculus and monads. In Rohit
Parikh, editor, Proceedings of the Fourth Annual IEEE Symposium on
Logic in Computer Science, pages 14–23, Pacific Grove, California, June
1989. IEEE Computer Society Press.

[27] Lawrence C. Paulson. Compiler generation from denotational seman-
tics. In Bernard Lorho, editor, Methods and Tools for Compiler Con-
struction, pages 219–250. Cambridge University Press, 1984.

[28] Morten Rhiger. Deriving a statically typed type-directed partial eval-
uator. In Olivier Danvy, editor, ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-Based Program Manipulation (PEPM’99),
Proceedings, BRICS technical report BRICS-NS-99-1, pages 25–29, De-
partment of Computer Science, University of Aarhus, 1999. BRICS.

[29] Morten Rhiger. Run-time code generation for type-directed partial
evaluation. Progress report, BRICS PhD School, University of Aarhus.
Available at http://www.brics.dk/~mrhiger, 1999.

[30] Eijiro Sumii, 2000. Email exchange, February 2000.

[31] Peter Thiemann. Combinators for program generation. Journal of
Functional Programming, 9(5):483–525, 1999.

[32] Zhe Yang. Encoding types in ML-like languages. In Paul Hudak and
Christian Queinnec, editors, Proceedings of the 1998 ACM SIGPLAN
International Conference on Functional Programming, pages 289–300,
Baltimore, Maryland, September 1998. ACM Press. Extended version
available as BRICS technical report RS-98-9.

A Notation and symbols

Font Conventions

p, s, d , . . . terms (one-level or two-level) 3
x, y, z, . . . variable names 3
x, @ , let,. . . constructors for code representation (of

type Exp)
8

48

Language

Σ signature 16
I interpretation 16
(Σ,I) language specification 16
t : σ or Γ `Σ t : σ typing judgment 16
[[·]], [[·]]I meaning function 3,16
t[x := t ′] substitution of t ′ for x in t
Φ instantiation 17
t{Φ} application of Φ to t 17

Two-level language

Σ2 = Σs,Σd two-level signature with static part Σs and
dynamic part Σd

17

cs, bs, . . . static constants and base-types (part of Σs) 17
cd, bd, . . . dynamic constants and base-types (part

of Σd)
17

$b lifting function on base-type b (part of Σd) 17
Is interpretation of static signature Σs 17
Id interpretation of dynamic signature Σd 17
PL2 = (Σ2,Is) two-level language (fixing only the

interpretation of Σs)
17

PL = (ΣPL,IPL) one-level language associated with PL2 17
NF (e) static normal-form of two-level term e 18
tann binding-time annotated term (a two-level

term)
20

〈 · 〉 trivial binding-time annotation (defined
by Φ〈 〉)

22,24

·̃ evaluating instantiation (defined by Φ∼) 18
· residualizing instantiation (defined by Φ) 19
· GE-instantiation (defined by Φ) 26

PE-specific notation

PE code of a partial evaluator 3
ps result of specializing program p to input s 3
p† trivial generating extension of program p 23
p‡ efficient generating extension of program p 23

TDPE-specific notation

↓τ reification function at type τ 9
↑τ reflection function at type τ 9
• abbreviation for any base type 9

⇓τ abbreviation for 〈 ↓τ 〉 22

49

⇑τ abbreviation for 〈 ↑τ 〉 22

ML function symbols

init initializes the name generator 28
new generates a new name 28
shift, reset control operators 35

B Compiler generation for Tiny

B.1 A binding-time-separated interpreter for Tiny

Paulson’s Tiny language [27] is a prototypical imperative language—the
BNF of its syntax is given in Figure 18. Figure 19 on the following page
displays the factorial function coded in Tiny.

program ::= block declaration in command end

declaration ::= identifier∗

command ::= skip
| command ; command
| identifier := expression
| if expression then command else command
| while expression do command end

expression ::= literal
| identifier
| (expression primop expression)

identifier ::= a string

literal ::= an integer

primop ::= + | - | * | < | =

Figure 18: BNF of Tiny programs

Experiments in type-directed partial evaluation of a Tiny interpreter
with respect to a Tiny program [4, 5] used an ML implementation of a
Tiny interpreter (Figure 20 on page 54): For every syntactic category a
meaning function is defined—see Figure 21 on page 55 for the ML data type
representing Tiny syntax. The meaning of a Tiny program is a function
from stores to stores; the interpreter takes a Tiny program together with a
initial store and, provided it terminates on the given program, returns a final
store. Compilation by partially evaluating the interpreter with respect to a

50

block res val aux in
aux := 1;
while (0 < val) do
aux := (aux * val);
val := (val - 1)

end;
res := aux

end

Figure 19: Factorial function in Tiny

program thus results in the ML code of the store-to-store function denoted
by the program.

Performing a binding-time analysis on the interpreter (under the as-
sumptions that the input program is static and the input store is dynamic)
classifies all the constants in the bodies of the meaning functions as dy-
namic; literals have to be lifted. As described at the end of Section 2.3, the
implementation is made as part of a functor which abstracts over all dy-
namic constants (for example cond, fix and update in mc). This allows one
to easily switch between the evaluating instantiation ˜meaning and the resid-
ualizing instantiation meaning . For the evaluating instantiation we simply
instantiate the functor with the actual constructs, for example

fun cond (b, kt, kf, s) = if b <> 0 then kt s else kf s

fun fix f x = f (fix f) x

For the residualizing instantiation meaning we instantiate the dynamic con-
stants with code-generating functions; as pointed out in Example 3 on page 9
and made precise in Definition 10 on page 19, reflection can be used to write
code-generating functions:

fun cond e = reflect (rrT4 (a’, a’ -!> a’, a’ -!> a’, a’)
-!> a’)
(VAR "cond") e

fun fix f x = reflect (((a’ -!> a’) --> (a’ -!> a’)) -->
(a’ -!> a’))
(VAR "fix") f x

B.2 Generating a compiler for Tiny

As mentioned in Section 5, we derive a compiler for Tiny in three steps:

1. rewrite tiny pe into a functor tiny ge(S:STATIC D:DYNAMIC) in which
meaning is also parameterized over all static constants and base types

51

2. give instantiations of S and D as indicated by the instantiation table in
Table 1 on page 30, thereby creating the GE-instantiation meaning

3. use the GE-instantiation meaning to perform the second Futamura
projection

The following two sections describe the first two steps in more detail.
Once we have a GE-instantiation, the third step is easily carried out with
the help of an interface similar to the one for visualization described in
Section 4.4.

B.3 “Full parameterization”

Following Section 4.3 we re-implement the interpreter inside a functor to
parameterize over both static and dynamic base types and constants. Note,
however, that the original implementation of Figure 20 on page 54 makes
use of recursive definitions and case distinctions; both constructs cannot be
parameterized over directly. Hence we have to express recursive definitions
with a fixed point operator and case distinctions with appropriate elimi-
nation functions. Consider for example case distinction over Expression;
Figure 22 on page 55 shows the type of the corresponding elimination func-
tion.

The resulting implementation is sketched in Figure 23 on page 56. The
recursive definition is handled by a top-level fixed point operator, and all
the case distinctions have been replaced with a call to the corresponding
elimination function.

Now that we are able to parameterize over every construct, we enclose
the implementation in a functor as shown in Figure 24 on page 57. The
functor takes two structures; their respective signatures STATIC and DYNAMIC

declare names for all base types and constants that are used statically and
dynamically, respectively. A base type (for example int) may occur both
statically (ints) and dynamically (intd)—in this case two distinct names
(for example Int s and Int d) have to be used.

As mentioned in Section 5, the monotype of every instance of a constant
appearing in the interpreter has to be determined. It is these monotypes
that have to be declared in the signatures STATIC and DYNAMIC. Figure 25
on page 57 shows a portion of signature STATIC: The polymorphic type of
caseExpression (Figure 22 on page 55) gives rise to a type abbreviation
case Exp type, which can be used to specify the types of the different in-
stances of caseExpression. Note that if a static polymorphic constant is
instantiated with a type that contains dynamic base types—like Int d in
the case of caseExpression—then these dynamic base types have to be in-
cluded in the signature STATIC of static constructs.5 For base types which

5Note that static base types appear also in the signature of dynamic constructs, because

52

occur both in signatures STATIC and DYNAMIC, sharing constraints have to be
declared in the interface of functor tiny ge (Figure 24 on page 57).

Finding the monotypes for the different instantiations of constants ap-
pearing in the interpreter can be facilitated by using the type-inference
mechanism of ML: We transcribe the output of ML type inference into a
type specification by hand. This transcription is straightforward, because
the type specifications of TDPE and the output of ML type inference are
very much alike.

B.4 The GE-instantiation

After parameterizing the interpreter as described above, we are in a position
to either run the interpreter by using its evaluating instantiation (see Defini-
tion 9 on page 18), perform type-directed partial evaluation by employing the
residualizing instantiation (Definition 10 on page 19), or carry out the second
Futamura projection with the GE-instantiation (Definition 17 on page 26).
Section 4.3 shows how the static and dynamic constructs have to be instan-
tiated in each case. For the GE-instantiation, all base types become Exp;
static and dynamic constants are instantiated with code-generating func-
tions. The latter are constructed using the evaluating and the residualizing
instantiation of reflection, respectively. Because the signatures STATIC and
DYNAMIC hold the precise type at which each constant is used, it is purely
mechanical to write down the structures needed for the GE-instantiation.

we make the lifting functions part of the latter. However there is a conceptual difference:
in a two-level language, it is natural that the dynamic signature has dependencies on the
static signature, whereas the static signature should not depend on the dynamic signature.

53

fun meaning p store =
let fun mp (PROGRAM (vs, c)) s (* program *)

= md vs 0 (fn env => mc c env s)
and md [] offset k (* declaration *)
= k (fn i => ~1)
| md (v :: vs) offset k
= (md vs (offset + 1)

(fn env => k (fn i => if v = i
then offset

else env i)))
and mc (SKIP) env s (* command *)
= s
| mc (SEQUENCE(c1, c2)) env s
= mc c2 env (mc c1 env s)
| mc (ASSIGN(i, e)) env s
= update (lift_int (env i), me e env s, s)
| mc (CONDITIONAL(e, c_then, c_else)) env s
= cond (me e env s,

mc c_then env,
mc c_else env,
s)

| mc (WHILE(e, c)) env s
= fix (fn w => fn s

=> cond (me e env s,
fn s => w (mc c env s),
fn s => s,
s)) s

and me (LITERAL l) env s (* expression *)
= lift_int l
| me (IDENTIFIER i) env s
= fetch (lift_int (env i), s)
| me (PRIMOP2(rator, e1, e2)) env s
= mo2 rator (me e1 env s) (me e2 env s)

and mo2 b v1 v2 (* primop *)
=
case b of

Bop_PLUS => add (v1, v2)
| Bop_MINUS => sub (v1, v2)
| Bop_TIMES => mul (v1, v2)
| Bop_LESS => lt (v1, v2)
| Bop_EQUAL => eqi (v1, v2)

in
mp p store

end

Figure 20: An interpreter for Tiny

54

type Identifier = string

datatype
Program = (* program and declaration *)
PROGRAM of Identifier list * Command

and
Command = (* command *)
SKIP (* skip *)

| SEQUENCE of Command * Command (* ; *)
| ASSIGN of Identifier * Expression (* := *)
| CONDITIONAL of Expression * Command * Command (* if *)
| WHILE of Expression * Command (* while *)

and
Expression = (* expression *)
LITERAL of int (* literal *)

| IDENTIFIER of Identifier (* identifier *)
| PRIMOP2 of Bop * Expression * Expression (* primop *)

and
Bop = (* primop *)
Bop_PLUS (* + *)

| Bop_MINUS (* - *)
| Bop_TIMES (* * *)
| Bop_LESS (* < *)
| Bop_EQUAL (* = *)

Figure 21: Datatype for representing Tiny programs

val case_Expression
: Expression -> ((Int_s -> ’a) *

(Identifier -> ’a) *
(Bop * Expression * Expression -> ’a)
) -> ’a

Figure 22: An elimination function for expressions

55

fun meaning p store =
let val (mp, _, _, _, _) =
fix5
(fn (mp, md, mc, me, mo2) =>
let fun mp’ prog (* program *)

= ...
and md’ idList (* declaration *)
= ...

and mc’ c (* command *)
= (case_Command c

((* mc (SKIP) env s *)
fn _ => fn env => fn s
=> s,

(* mc (SEQUENCE(c1, c2)) env s *)
fn (c1, c2) => fn env => fn s
=> mc c2 env (mc c1 env s),

(* mc (ASSIGN(i, e)) env s *)
fn (i, e) => fn env => fn s
=> update (lift_int (env i), me e env s, s),

(* mc (CONDITIONAL(e,c_then,c_else)) env s *)
fn (e, c_then, c_else) => fn env => fn s
=> cond (me e env s,

mc c_then env,
mc c_else env,
s),

(* mc (WHILE (e, c)) env s *)
fn (e, c) => fn env => fn s
=> fix (fn w

=> fn s
=> cond (me e env s,

fn s => w (mc c env s),
fn s => s,
s)) s

))
and me’ e (* expression *)
= (case_Expression e (...))

and mo2’ bop (* primop *)
= (case_Bop bop (...))

in
(mp’, md’, mc’, me’, mo2’)

end)
in
mp p store

end

Figure 23: A fully parameterizable implementation

56

functor tiny_ge (structure S : STATIC
structure D : DYNAMIC
sharing type S.Int_s = D.Int_s

...)=
struct
local open S D
in

fun meaning p store
= ...

end
end

Figure 24: Parameterizing over both static and dynamic constructs

...
type ’a case_Exp_type (* Type abbreviation *)
= Expression -> ((Int_s -> ’a) *

(Identifier -> ’a) *
(Bop * Expression * Expression -> ’a)
) -> ’a

type case_Exp_res_type (* Result type *)
= (Identifier -> Int_s) -> sto -> Int_d

...
(* Declaration of elimination function for expressions *)

val case_Expression: case_Exp_res_type case_Exp_type

...

Figure 25: Excerpts from signature STATIC

57

Recent BRICS Report Series Publications

RS-00-44 Bernd Grobauer and Zhe Yang. The Second Futamura Pro-
jection for Type-Directed Partial Evaluation. December 2000.
To appear in Higher-Order and Symbolic Computation. This re-
vised and extended report supersedes the earlier BRICS report
RS-99-40 which in turn was an extended version of Lawall,
editor, ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, PEPM ’00 Proceed-
ings, 2000, pages 22–32.

RS-00-43 Claus Brabrand, Anders Møller, Mikkel Christensen, Ricky,
and Michael I. Schwartzbach.PowerForms: Declarative Client-
Side Form Field Validation. December 2000. 21 pp. To appear
in World Wide Web Journal, 4(3), 2000.

RS-00-42 Claus Brabrand, Anders Møller, and Michael I. Schwartzbach.
The <bigwig> Project. December 2000. 25 pp.

RS-00-41 Nils Klarlund, Anders Møller, and Michael I. Schwartzbach.
The DSD Schema Language and its Applications. December
2000. 32 pp. Shorter version appears in Heimdahl, editor,3rd
ACM SIGSOFT Workshop on on Formal Methods in Software
Practice, FMSP ’00 Proceedings, 2000, pages 101–111.

RS-00-40 Nils Klarlund, Anders Møller, and Michael I. Schwartzbach.
MONA Implementation Secrets. December 2000. 19 pp. Shorter
version appears in Daley, Eramian and Yu, editors,Fifth Inter-
national Conference on Implementation and Application of Au-
tomata, CIAA ’00 Pre-Proceedings, 2000, pages 93–102.

RS-00-39 Anders Møller and Michael I. Schwartzbach.The Pointer As-
sertion Logic Engine. December 2000. 23 pp. To appear in
ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’01 Proceedings, 2001.

RS-00-38 Bertrand Jeannet. Dynamic Partitioning in Linear Relation
Analysis: Application to the Verification of Synchronous Pro-
grams. December 2000. 44 pp.

