
B
R

IC
S

R
S

-00-42
B

rabrand
etal.:

T
he<

b
ig

w
ig

>
P

roject

BRICS
Basic Research in Computer Science

The <bigwig> Project

Claus Brabrand
Anders Møller
Michael I. Schwartzbach

BRICS Report Series RS-00-42

ISSN 0909-0878 December 2000

Copyright c© 2000, Claus Brabrand & Anders Møller & Michael I.
Schwartzbach.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/00/42/

The <bigwig> Project

Claus Brabrand, Anders Møller, and Michael I. Schwartzbach
BRICS, Department of Computer Science

University of Aarhus, Denmark
{brabrand,amoeller,mis }@brics.dk

Abstract

We present the results of the <bigwig> project, which aims to design and
implement a high-level domain-specific language for programming interactive
Web services.

The World Wide Web has undergone an extreme development since its
invention ten years ago. A fundamental aspect is the change from static to
dynamic generation of Web pages. Generating Web pages dynamically in
dialogue with the client has the advantage of providing up-to-date and tailor-
made information. The development of systems for constructing such dynamic
Web services has emerged as a whole new research area.

The <bigwig> language is designed by analyzing its application domain
and identifying fundamental aspects of Web services. Each aspect is handled
by a nearly independent sublanguage, and the entire collection is integrated
into a common core language. The <bigwig> compiler uses the available
Web technologies as target languages, making <bigwig> available on almost
any combination of browser and server, without relying on plugins or server
modules.

1 Introduction

The <bigwig> project was founded in 1998 at the BRICS Research Center at the
University of Aarhus to design and implement a high-level domain-specific language
for programming interactive Web services. Our ambitions are twofold: to build a
useful tool for Web programmers and to explore the domain-specific paradigm for
language design.

Programming Web services can be a daunting task compared to programming
more traditional systems. A large majority of the Web services that exist today are
produced either with the Perl scripting language on top of the HTTP/CGI Web
protocol [18], or with Microsoft’s ASP [14] or the Open Source language PHP [4],
both based on the idea of embedding program code in the Web pages. Although a
vast number of Web services have been produced with these and similar languages,
often the quality and development times of these services are discouraging. Provoca-
tively, the reason being that these languages do not seem to build on the experience
of thirty years of research in programming language technology. The overall goal of
the <bigwig> project is to bring some of this research experience into the hands of
the Web service developers.

The <bigwig> language is an intellectual descendant of MAWL, the Mother
of All Web Languages [3, 2, 20], from which it has inherited its conceptual basis.
However, we have moved further by considering more aspects of interactive Web
services and by generally raising the ambitions.

We have currently released version 1.3 of the <bigwig> tool under the GPL
license. This paper describes primarily that implementation but also mentions

1

browser

e

program
source

html

html JavaScript

rendered

source

Internet

execution
thread

suspension
thread

service

Applet

HTML reply FIFO
pipeCGI request

Figure 1: Legend for graphical components.

concepts and features that are scheduled for future releases.
Throughout this paper we use a graphical language to illustrate the various in-

teractions between clients and servers that we are concerned with. The components
of that notation are shown in Figure 1.

2 Language Design Principles

To a significant extent the <bigwig> project is an experiment in designing a pro-
gramming language for a complex application domain. From the outset, we have
had a clear design principle in mind.

While millions of Web services have been produced today, it is discouraging
that the technologies employed frankly seem old-fashioned. In contrast, <bigwig>
is intended to be a high-level, domain-specific language, meaning that it employs
special syntax and constructs that are tailored to fit its particular application do-
main. However, within this general approach we have formulated a more specific
principle to which we have faithfully adhered. The <bigwig> language has been
designed in the following manner:

• the application domain is analyzed and fundamental aspects are identified;

• the understanding of each aspect is expressed in the design of a domain-specific
sublanguage;

• the sublanguages are embedded in a simple core language; and

• a notion of syntax macros ties together the sublanguages and provides addi-
tional layers of abstractions.

Of course, many iterations have been necessary to incorporate the experiences we
gained with earlier versions of the language. However, those principles have served
us well and could conceivably be applicable to other application domains as well.
We have focused on the following central aspects of Web services:

• sessions as underlying paradigm: the session concept is an essential basis for
interactive Web services;

• concurrency control: Web services consist of collections of processes running
concurrently and sharing resources;

• dynamic documents: HTML pages must be constructed in a flexible but safe
way;

2

• form field validation: validating user input requires too much attention of
Web programmers, so a higher-level solution is desirable;

• integration with databases: the core of a Web service is often a database with
a number of sessions providing Web access; and

• security: this includes both cryptographic security for authenticity and confi-
dentiality, and information-flow security to prevent information leaking due
to inexpedient programming.

Each of these aspects is described in the following sections. Some of them are also
described in previous more specialized papers [29, 8, 30, 7, 9].

An immediate consequence of our approach is that <bigwig> is not a small
language. All in all, it has a large syntax. However, since it is composed of nearly
independent sublanguages, it has a gentle learning curve. Small and simple Web
services can be written without much complication, since many of the advanced
features need only be introduced to match the increasing ambitions of the Web
programmer.

Also, <bigwig> is designed to grow [32]. Our notion of syntax macros have
proved remarkably successful in providing seamless extensions of the base language.
This has helped each of the sublanguages to remain minimal, since desired syntactic
sugar is given by the macros. During our work with <bigwig>, we have also dis-
covered the idea of very domain-specific languages (VDSL). Those are obtained by
taking macros to the extreme where they define a completely new syntax that can
be viewed in isolation from the host language. When used to target specific families
of applications, they offer some advantages in maintenance and accessibility.

3 Technical Design Principles

<bigwig> is designed with a specific user group in mind, namely ordinary program-
mers. Thus, the use of our tool requires programming skills on par with those for
writing simple programs in standard languages such as C or Java. We have very
early abandoned any idea of creating a drag-and-drop developing environment, since
it seems clear to us that Web programming is just like ordinary programming, only
made more complicated by the morass of technical details that are imposed by the
given client-server model. In fact, our motto has been “to make Web programming
as easy as writing simple C or Java programs”.

The <bigwig> compiler uses common Web technologies as target languages.
This includes HTML [26], CGI scripts [18], JavaScript [16], HTTP Authentica-
tion [6], and Java applets [1]. As new technologies become standard, the compiler
will obtain corresponding opportunities for generating better code.

It is important that <bigwig> is based on compilation rather than on interpre-
tation of a scripting language. Unlike most other approaches, we can rely on type
checking and static analysis to catch many classes of errors before the service is
actually installed.

We have made no effort to contribute to the graphical design of Web services.
Rather, we provide a clean separation between the physical layout of HTML pages
and the logical structure that is necessary to define the semantics of a service. Thus,
we expect that standard HTML authoring tools are used, conceivably by others than
the Web programmer.

We have consciously aimed for the technological lowest common denominator of
the Web. This means that <bigwig> services will run on almost any combination of
browser and server. Thus, we do not require any privileged modules to be compiled
into the server or any browser plugins to be accepted by the client. For example,

3

we rely on the pure CGI protocol and we only use the subset of JavaScript that
is known to work on all recent versions of both Internet Explorer and Netscape
Navigator. This poses more challenges for our code generation in order to maintain
a reasonable degree of efficiency. However, the significant upside is that <bigwig>
is universally available. Regarding platforms, however, <bigwig> is currently only
supported for servers running Unix or Linux, but porting to Windows NT is merely
work waiting to be done. On the client side, we are of course indifferent as to the
platform being used.

The core syntax of <bigwig> dictates the look-and-feel of programs. We wish to
remain as neutral as possible, since our message is not to redefine ordinary program-
ming practices. Consequently, we have chosen the common syntax for declarations,
functions, statements, and expressions that seems to be the consensus of languages
such as C and Java. Still, the details of <bigwig> must be learned anew, but we
have not artificially introduced anything surprising.

4 Interactive Web Services

Web programming covers a wide spectrum of activities, from composing static
HTML documents to implementing autonomous agents that roam the Web. We
focus in our work on interactive Web services, which are Web servers on which
clients can initiate sessions that involve several exchanges of information mediated
by HTML forms. This definition includes large classes of well-known services, such
as news services, search engines, software repositories, and bulletin boards, but also
covers services with more complex and specialized behavior.

There are a variety of techniques for implementing interactive Web services.
These can be divided into three main paradigms: the script-centered, the page-
centered, and the session-centered approaches. Each are supported by various tools
and suggest a particular set of concepts inherent to Web services.

The Script-Centered Approach

The most primitive is the script-centered approach, which builds directly on top of
the plain CGI protocol. Thus, a Web service is viewed as a collection of loosely
related scripts, each of which receives form data as input and produces HTML as
output before terminating. Future interactions with the server are made possible
by explicitly inserting appropriate links to other scripts in the reply pages. This
approach is illustrated in Figure 2.

A prototypical scripting language is Perl [34], but almost any programming
language has been suggested for this role. CGI scripting is often supported by a large
collection of library functions for decoding form data, validating input, accessing
databases, and realizing semaphores. Even though such libraries are targeted at
the domain of Web services, the language itself is not. A major problem is that the
overall behavior is distributed over numerous individual scripts and depends on the
implicit manner in which they pass control to each other. This design complicates
maintenance and precludes any sort of automated global analysis, leaving all errors
to be detected in the running service [15, 2].

HTML documents are created on the fly by the scripts, typically using print -
like statements. This again means that no static guarantees can be issued about
their correctness. Furthermore, the control and presentation of a service are mixed
together in the script code, and it is difficult to factor out the work of programmers
and graphical designers [10].

4

e

e

e

save
state

state
restore

Figure 2: The script-centered approach.

The Page-Centered Approach

The page-centered approach is covered by language such as ASP [14], PHP [4], and
JSP [25], where the dynamic code is embedded in the HTML pages themselves.
When a client requests a page, a specialized Web server interprets the embedded
code, which typically produces additional HTML snippets while accessing a shared
database.

This approach, which is illustrated in Figure 3, is beautifully motivated by simple
examples, where pages are mainly static and only sporadically contain computed
contents. For example, a page that displays the time of day or the number of
accesses clearly fits this mold.

However, as the services become more complex, the page-centered approach
tends to converge towards the script-centered one. Instead of a mainly static HTML
page with some code inserted, the typical picture is a single gigantic code tag that
dynamically computes the entire contents. Thus, the two approaches are closely
related, and the page-centered technologies are only superior to the degree in which
their scripting languages are better designed.

There is generally little support for the issues related to the big picture, such as
maintaining states and session threads, handling concurrency control, and providing
security.

The Session-Centered Approach

The session-centered approach was pioneered by the MAWL project. A service is
viewed as a collection of distinct sessions that access some shared data. A client
may initiate a session thread, which is conceptually a process running on the server.
Interaction with the client is viewed as remote procedure calls from the server, as
known from classical construction of distributed systems but with the roles reversed.

The flow of an entire session is programmed as a single sequential program,
which is closer to ordinary programming practice and offers the compiler a chance
to obtain a global view of the service. Important issues such as concurrency control
become simpler to understand in this context and standard programming solutions
are more likely to be applicable.

In all three approaches there is generous support for implementing shared data,

5

e

e

e

save
state

state
restore

Figure 3: The page-centered approach.

usually in the form of database interfaces. However, only the session-centered ap-
proach offers the concept of data that is private to an individual thread. In the
other approaches this concept must be emulated, sometimes by unsafe means like
hidden form fields in the displayed pages.

In MAWL, all HTML templates are placed in separate files and viewed as proce-
dures, with the arguments being strings that are plugged into gaps in the template
and the results being the values of the form fields that the template contains. This
allows a complete separation of the service code and the HTML code. A disadvan-
tage is that the HTML pages becomes quite static compared to the flexibility of a
print statement.

A drawback of the session-centered approach is that some Web services are in
actuality more loosely structured. If all sessions are tiny and simply does the work
of a server module from the page-centered approach, then the overhead associated
with sessions may seem to large. For more involved services, however, the session-
centered approach makes programming easier. Figure 4 illustrates the flow of control
in this approach.

5 State and Sessions

We now describe the overall structure of a <bigwig> service. At this stage, we are
not concerned with its actual implementation on the CGI platform.

A <bigwig> program contains a complete specification of a Web service. A ser-
vice contains a collection of named sessions, each of which essentially is an ordinary
sequential program. A client has the initiative to invoke a thread of a given session,
which is a process on the server that executes the corresponding sequential code and
exclusively communicates with the originating client. Communication is performed
by showing the client an HTML page, which implicitly is made into a form with an
appropriate URL return address. While the client browses the given document, the
session thread is suspended on the server. Eventually the client submits the form,
which causes the session thread to be resumed and any form data entered by the
client to be received into program variables. In this manner, communication looks
like a remote procedure call from the viewpoint of the thread. A simple session that
communicates with a client is:

6

e

e

e

Figure 4: The session-centered approach.

service {
html Please = < html >

Please state your name:
<input type=text name =handle>

</ html >;
html Greeting = < html >Hello <[moniker]>, how are you?</ html >;
session Hello() {

string s;
show Please receive [s=handle];
show Greeting<[moniker=s];

}
}

This example also shows that HTML templates are values in <bigwig>; in fact,
they are first-class citizens. Furthermore, they may contain gaps that are plugged
with appropriate contents, as described in more detail in Section 8.

It is possible for session threads to share some data. A service may contain
declarations that are global to all sessions or local to a particular session, includ-
ing functions and variable declarations. Only variables that are declared with the
modifier shared can be accessed by more than one thread; all other variables are
private to a single thread. This is illustrated by the following example:

service {
int i; // private variable
shared int j; // shared variable
session Share() {

i++; j++;
show (html) "["+i+","+j+"]";

}
}

Since integer variables are initialized to zero, the output from subsequent invoca-
tions of the session is [1,1] , [1,2] , [1,3] , and so on.

As services have several concurrent threads, there is a need for synchronization
and other concurrency control. Note that contention may occur between threads
that are invocations of the same session as well as between threads of different
session kinds. Concurrency control in <bigwig> is explained in detail in Section 7.

The interaction model described so far is rather rigid, in that the client and
server must strictly alternate between being active and suspended. While this is

7

e

e

e

Figure 5: Seslets interacting with applets.

the typical pattern in many services, there are good reasons to allow more liberal
interactions. A simple example is a chat room, where new messages should appear
automatically, without the client having to resubmit the page being viewed. The
essence of this concept are client-side computations that are able to contact the
server on their own accord.

According to our design principles, we need a domain-specific sublanguage for
expressing such computations. However, Java applets are perfect candidates for this
task, and we have no desire to reinvent the wheel, let alone a graphical user interface
toolkit. Accordingly, we will limit ourselves to providing support for applets to
interface with the server. This is realized by the concept of seslets, which are
sessions with limited capabilities that can be invoked by applets running on the
HTML page that is currently being viewed by the client. A seslet is only restricted
in the obvious ways that follows from not having an associated client; for example,
show is clearly not possible from a seslet. Communication between an applet and
a seslet is very simple: the applet may supply arguments to the call of the seslet,
and the seslet may return a result upon termination. To facilitate the writing of
such applets, the <bigwig> compiler generates the Java code for a superclass, itself
a subclass of Applet , that they must inherit from in order to access the available
seslets. The interaction pattern of applets and seslets is illustrated in Figure 5.

An important use of seslets is to allow applets to synchronize with other active
threads on the server. For example, the chat room solution would employ a seslet
that used the concurrency control mechanisms of <bigwig> to wait until the next
message was available, which would then be returned to the applet. In this way, no
client pulling or busy waiting is required.

If the client submits the current page, then the browser terminates all running
applets. However, running seslets are allowed to run until termination. This is
necessary for instance to avoid breaking critical synchronization invariants.

6 The Runtime System

We want to implement our session concept on top of the plain HTTP/CGI platform,
which offers a stateless protocol designed for single interactions only. However, it
is very easy to make a naive but inefficient implementation of sessions, as sketched

8

e

e

e

save
state

restore
state

Figure 6: A naive implementation on the CGI platform.

in Figure 6, where the session is an ordinary CGI script. When sending a page
to the client, the thread must first save its local state and then terminate in order
to relinquish control. When the page is submitted, the thread must be started
again and restore its local state in order to continue execution. These steps are
prohibitively expensive. A possible remedy is to use something like FastCGI [22],
although that requires specialized servers.

However, the HTTP/CGI protocol imposes other practical problems. First, in
the session model, it does in general not make sense to “step back in time” us-
ing the history buffer that all browsers contain. This is no different from ordinary
programs—there is no reason why Web service designs should be constrained by
these history buffers. If implemented naively, the history buffer and cache gets
cluttered with URLs of obsolete pages, and this will inevitably confuse and an-
noy the user. Second, the bookmarking feature likewise found in all browsers also
becomes hazardous with a naive implementation. Adding a bookmark to a page
generated directly by a CGI script causes subsequent recalls of the bookmark to
rerun the script instead of just displaying its result again

The <bigwig> solution is to use special connector processes, which are the true
CGI scripts, as illustrated in Figure 7. They only exist to mediate information
between the client and the session thread, which is a resident server process. Con-
nectors communicate with the thread using FIFO pipes and terminate in accordance
with the CGI protocol when an HTML page is sent to the client. Each session thread
is associated a unique URL, which points to an HTML document that contains the
latest page shown to the client. Instead of showing the contents directly to the
client, we redirect the browser to this URL.

Since the URL serves as the identification of the session thread, this solves the
problems mentioned above: the history list of the browser now only contains a single
entry for the duration of the session, and sessions can now be bookmarked for later
use.

Also, with this simple solution we can provide the client with feedback while
the server is processing a request. This is done by after a few seconds writing a
temporary response to the HTML file, which informs the client about the status
of the request. This temporary file reloads itself frequently, allowing for updated
status reports. When the final response is written to the file, reloading is no longer
performed. This simple technique may prevent the client from becoming impatient

9

:

:

:

:

e

e

e

Figure 7: An implementation using connectors.

and abandoning the session.
Session threads that have been suspended for a certain length of time are auto-

matically garbage collected by a special process on the server. Surprisingly many
such abandoned threads quickly accumulate on most servers.

Seslets are handled directly by the CGI protocol, since they only involve a sin-
gle interaction with the applet. The result string is encoded as having MIME
type text/plain . The Java superclass that is generated by the <bigwig> com-
piler contains all the code necessary to marshal and unmarshal the values being
communicated.

The runtime system also contains a controller, which is a centralized component
that is used for concurrency control. Session threads may enter a number of queues,
from which they leave according to some policy that the controller enforces. How
<bigwig> uses this very general setup is explained in Section 7. The whole <bigwig>
runtime system is described in further detail in [8].

The implementation we have described is for a single server machine. We are
currently experimenting with a scalable architecture, called <bigwulf>, which is a
small version of a Beowulf cluster [5]. Our plan is to provide a generalized version
of the present runtime system that is able to use the structure of <bigwig> ser-
vices to dynamically reconfigure itself to exploit the available resources. The result
should hopefully be a cheap and scalable Web server, suitable for moderately sized
enterprises.

7 Concurrency Control

We need a mechanism to discipline the concurrent behavior of the active threads.
A simple case is to control access to the shared variables, using mutex regions or
the readers/writers protocol. Another issue is enforcement of priorities between
different session kinds, such that a management session may block other sessions
from starting. A final example is event handling, where a session thread may wait
for certain events to be caused by other threads.

We deal with all of these scenarios in a uniform manner based on the central
controller process in the runtime system, which is general enough to enforce a wide
range of safety properties [29].

A <bigwig> service has an associated set of event labels. During execution, a

10

session thread may request permission from the controller to pass a specific event
checkpoint. Until such permission is granted, the session thread is suspended. The
policy of the controller must be programmed to maintain the appropriate global
invariants for the entire service; clearly, this calls for a domain-specific sublanguage.
We have chosen a well-known and very general formalism, namely temporal logic;
in particular, we use a variation of monadic second-order logic [33]. A formula
describes a set of strings of event labels, and the associated semantics is that the
trace of all event labels being passed by all threads must belong to that set. To guide
the controller, the <bigwig> compiler uses the MONA tool [19] to translate the given
formula into a DFA that is used to grant permissions to individual threads. When
a thread asks to pass a given event label, it is placed in a corresponding queue. The
controller continually looks for non-empty queues whose event labels correspond
to enabled transitions from the current DFA state. When a match is found, the
corresponding transition is performed and the chosen thread is resumed. Of course,
the controller must be implemented to satisfy some fairness requirements. We have
also introduced notions of triggers and counters to gain expressive power beyond
regular sets of traces.

This is a very abstract approach that is a bit harsh on the average programmer.
However, using our syntax macros it is possible to capture all common concurrency
primitives, such as semaphores, mutex regions, the readers/writers protocol, mon-
itors, and so on. The advantage is that <bigwig> can be extended with any such
constructs, even some that are highly customized to particular applications.

The following example illustrates a simple service that implements a critical
region using the event labels enter and leave :

service {
shared int i;
session Critical() {

constraint {
label leave,enter;
all t1,t3: (t1<t3 && enter(t1) && enter(t3)) =>

is t2: t1<t2 && t2<t3 && leave(t2);
}
wait enter;
i = i+1;
wait leave;

}
}

The formula states that for any two enter events there is a leave event in be-
tween, which implies that at any time at most one thread is allowed in the critical
region. Using syntax macros, programmers are allowed to build and use higher-level
abstractions:

service {
shared int i;
session Critical() {

region {
i = i+1;

}
}

}

In its full generality, the wait statement is more like a switch statement that
allows a thread to simultaneously attempt to pass several event labels and request
a timeout after waiting a specified time.

A different example implements an asynchronous event handler. Without the
macros, this could be programmed as:

11

service {
shared int i;
constraint {

label handle,cause;
all t1: handle(t1) => is t2: t2<t1 && cause(t2) &&

(all t3: t2<t3 && t3<t1 => !handle(t3));
}
session Handler() {

while (true) {
wait handle;
i++;

}
}
session Application() {

wait cause;
}

}

Clearly, many programmers would have a hard time constructing that formula. It
allows the handler to proceed, without blocking the application, whenever the asso-
ciated event has been caused at least once since the last invocation of the handler.
Fortunately, the macros again permit high level abstractions to be introduced with
more palatable syntax:

service {
shared int i;
event Increment {

i++;
}
session Application() {

cause Increment;
}

}

Many <bigwig> applications have benefited from such tailor-made constructions.

8 Dynamic HTML Documents

All interactive Web services communicate with clients using HTML documents;
most often, their contents are dynamically generated. In script-centered services,
the HTML is produced by print statements. This is also true of page-centered
services, except that some HTML may be in the form of static templates. There
are several disadvantages to this approach. First, since the HTML is just the output
of a program, there is no way to statically guarantee that it is well-formed. For ex-
ample, the HTML could be unreadable by the browser. Second, a generated HTML
form could contain form fields different from the ones the script expects to receive
afterwards, leading to unpredictable behavior. Third, the HTML must often be
constructed in a linear fashion from top to bottom, instead of being composed from
components in a more logical manner. Fourth, since the code for generating HTML
is embedded in the script code, it is difficult to separate the tasks of programmers
and graphical designers.

MAWL proposes a solution by viewing HTML templates as procedures. The
arguments are named gaps in the template, which may be plugged by string values.
The results are the form fields that the form contains. By enforcing a simple type
discipline on procedure calls, the required static guarantees can be issued by the
compiler. Since the templates reside in external files, they can be designed and
validated by others than the programmer. We have adopted the template view in
<bigwig>, but with some significant extensions.

For many applications, the MAWL templates are too rigid. All the HTML doc-
uments that are presented to the client are essentially static, since only some string

12

</html>

<html>

""

""

</html>

<html>

<html>

</html>

</html>

<html>

<body bgcolor="#9966ff">

<body bgcolor="#9966ff">

</body>

</body>

.

.

contents

welcome to

Hello

Hello

co
nt
en
ts

,

welcome to

,

,

.welcome to

Hello

Stranger

BRICS

Stranger

BRICS

BRICS

Stranger

who

what

Brics:

what

who

Greeting:

Figure 8: Building a document by plugging gaps.

values can be dynamically replaced. To alleviate this problem, MAWL includes a
notion of iteration gaps than can be plugged with lists of string values. In <bigwig>
we introduce higher-order templates, meaning that gaps may be plugged with other
templates. This allows the construction of arbitrarily deep HTML structures, but
of course complicates the task of type checking. In <bigwig>, HTML templates
are values on equal footing with strings and integers; thus, they can be stored in
variables and passed as arguments to functions. An example illustrating our use of
HTML is:

service {
html Brics = < html ><body bgcolor="#9966ff"><[contents]></ body ></ html >;
html Greeting = < html >Hello <[who]>, welcome to <[what]>.</ html >;
session Welcome() {

show Brics<[contents=Greeting<[who="Stranger",what="BRICS"]];
}

}

The gradual construction of the resulting document shown to the client is illustrated
in Figure 8. The following example uses a recursive function to construct an HTML
document representing a binary tree:

service {
html List = < html ><[gap]><[gap]></ html >;
html tree(int i) {

if (i==0) return <html >foo</ html >;
return List<[gap=tree(i-1)];

}
session ShowTree() {

show tree(10);
}

}

It is infeasible to explicitly declare the types of higher-order templates for two
reasons. Firstly, all gaps and all fields and their individual capabilities would have
to be described, which may become rather voluminous. Secondly, this would also
imply that an HTML variable has the same type at every program point, which is too
restrictive to allow templates to be composed in an intuitive manner. Consequently,
we rely instead on a flow analysis to infer the types of template variables and
expressions at every program point. In our experience, this results in a liberal
and useful mechanism. We employ a standard monomorphic interprocedural flow

13

analysis [23], which guarantees that the form fields in a shown document correspond
to those that are received, and that gaps are always present when they are being
plugged. We do not guarantee that only valid HTML is produced. However, the task
of doing so manually is made significantly easier since all documents are combined
from a finite collection of templates. The <bigwig> compiler only recognizes a small
set of HTML tags and attributes necessary for determining the document types; in
the examples, those are indicated as keywords (in boldface). All other tags are
merely checked for well-formedness.

We offer explicit support for factoring out the work of graphical designers, since
each HTML constant appearing in a <bigwig> program may have associated a URL
pointing to an alternate, presumably more elaborate version:

service {
session Hello {

show <html >Hello World</ html >@"http://www.brics.dk/bigwig/fancy.html";
}

}

The compiler retrieves the indicated file and uses its contents in place of the con-
stant, provided it exists and contains well-formed HTML having the same gaps and
fields. In this manner, the programmer can use plain versions of the templates while
a graphical designer simultaneously produces fancy versions. In order to accommo-
date the use of HTML authoring tools such as FrontPage, we permit gaps to be
specified in an alternative syntax using special tags.

We also use HTML templates for pattern matching, as in the following example
which shows the daily Dilbert strip without advertisements:

service {
html Template = < html >

<[]><[]>
</ html >;
session Dilbert() {

string data = get ("http://www.dilbert.com/");
string s;
match (data,Template)[s=source];
show Template<[source="http://www.dilbert.com"+s];

}
}

The anonymous gaps are used as wildcards in pattern matching. Remaining gaps
are always implicitly plugged with empty contents when a page is being shown.

In some situations, the page-centered approach seems more appropriate. Con-
sider the following example, which gives the current time of day:

service {
session Time() {

html H = <html >Right now, the time is <[t]></ html >;
show H<[t= now()];

}
}

An equivalent but less clumsy version can be written using code gaps, which implic-
itly represent expressions whose values are computed and plugged into gaps when
the document is being shown:

service {
session Time() {

html H = <html >Right now, the time is <[(now())]></ html >;
show H;

}
}

14

Documents with code gaps remain first-class citizens, since the code can only access
the global scope. Note that code gaps in <bigwig> are more powerful than the usual
page-centered approach, since the code exists in the full context of sessions, shared
variables, and concurrency control. In fact, with the idea of published documents
described in Section 12, the page-centered approach is now included as a special
case of <bigwig>.

Some services may want to offer the client more than a single document to
browse; for example, the response could be a small customized Web site. In
<bigwig> there is support for showing such document clusters. The difficulty is
to provide a simple notation for specifying an arbitrary graph of documents con-
nected by links. We introduce for an HTML variable x the document reference
notation &x which can be used as the right-hand side of a plug operation. It will
eventually expand into a URL, but not until the document is finally shown; until
then, the flow analysis just records the connection between the gap and the variable.
When a document is shown, the transitive closure of document references is com-
puted, and the resulting cluster of documents is produced with references replaced
by corresponding URLs. The following example shows a cluster of two documents
that are cyclically connected. Notice that the cluster can be browsed freely without
cluttering the control-flow:

service {
session Cluster() {

html Greeting = < html >
Hi! Click here for a kind word.

</ html >;
html Kind = < html >How nice to see you! Back</ html >;
Kind = Kind<[there = &Greeting];
show Greeting<[where=&Kind];

}
}

The compiler checks that all cluster documents with submit buttons contain the
same form fields. It is also necessary to perform an escape analysis to ensure
that document variables are not exported out of their scope. Finally, the runtime
system must be carefully extended to allow bookmarking and not to interfere with
our solution to the “back button problem”.

We use an optimally efficient implementation of templates. The plug operation
takes only constant time, and showing a document takes time linear in the size of
the output. Also, the size of the runtime representation of a document may be only
a fraction of its printed size. For example, a binary tree of height n shown earlier
has a representation of size Ω(n) rather than Ω(2n).

9 Form Field Validation

A considerable effort in Web programming is expended on form field validation,
that is, checking whether the data supplied by the client in form fields is valid, and
when it is not, producing error messages and requesting the fields to be filled in
again. Apart from details about regular expression matching, the main problem is
to program a solution that is robust, efficient, and user friendly. One technique is
server-side validation, illustrated in Figure 9, where the form fields are validated
when the page has been submitted. Such a solution is automatically supported by
systems such as ColdFusion [12]. They have several disadvantages, primarily being
slow and wasting bandwidth. The alternative is client-side validation, illustrated
in Figure 10, which usually requires the programmer to use JavaScript in the pages
being generated.

15

e

e

e

:

validate

validate

document
same

Figure 9: Server-side form field validation.

This is an illusory choice, however, since both techniques clearly must be used
at the same time. The reason is that the client is perfectly capable of bypassing the
JavaScript code, so an additional server side validation must always be performed.
Thus, the same code must essentially be written in JavaScript and in the server
scripting language.

In <bigwig> we have introduced a domain-specific sublanguage for form field
validation [7]. It also handles complex interdependencies between form fields and
the compiler generates the required code for both client and server. In its simplest
form, it allows regular-expression formats to be associated to form fields:

service {
format Digit = range (’0’,’9’);
format Number = plus (Digit);
format Alpha = union (range (’a’,’z’), range (’A’,’Z’));
format Word = concat (Alpha, star (union (Digit,Alpha)));
format Name = concat (Word, star (concat (" ",Word)));
format Email = concat (Word,"@",Word, star (concat (".",Word)));
session Validate() {

html Form = <html >
Please enter your e-mail address:
<input name =email type =text size=20>
<format name =Email field =email>

</ html >;
string s;
show Form receive [s=email];

}
}

The <bigwig> compiler generates the JavaScript code that checks the user input on
the client-side and provides help and error messages, and also the code performing
the server-side double-check. Using “traffic-light” icons, the user is provided with
continuous feedback as to whether the string entered so far is a valid prefix. We also
allow the usual Perl-style syntax for regular expression, but of course only for the
subset of our notation that excludes the intersection and complement operators.

Formats can be associated to all kinds of form fields, not just those of type text .
For select fields, the format is used to filter the available options. For radio and
checkbox fields, only the permitted buttons can be depressed.

As noted in [31], many forms contain fields whose values may be constrained by
those entered in other fields. A typical example is a field that is not applicable if
some other field has a certain value. Such interdependencies are almost always han-

16

dled on the server, even if the rest of the validation is performed on the client. The
reason is presumably that interdependencies require even more delicate JavaScript
programming. The <bigwig> solution is to allow such field interdependencies to be
specified using an extension of the regular expressions: the format tags are extended
to describe boolean decision trees, whose conditions probe the values of other form
fields and whose leaves are simple formats. The interdependence is resolved by a
fixed-point process that is computed on the client, by JavaScript code automatically
generated by the <bigwig> compiler. A simple example is the following, where the
client chooses a letter group and the select menu is then dynamically restricted
to those letters:

service {
format Vowel = charset ("aeiouy");
format Consonant = charset ("bcdfghjklmnpqrstvwxz");
html Form = <html >

Favorite letter group:
<input type =radio name=group value=vowel checked>vowels
<input type =radio name=group value=consonant>consonants

Favorite letter:
<select name =letter>

<option value="a">a
<option value="b">b
<option value="c">c
...
<option value="x">x
<option value="y">y
<option value="z">z

</ select >
<format field =letter>

<if ><equal field =group value =vowel>
<then ><format name =Vowel></ then >
<else ><format name =Consonant></ else >
</ if >

</ format >
</ html >;
session Letter() {

string s;
show Form receive [s=letter];

}
}

This is a simple language with a clean semantics that appears to handle most
realistic situations.

10 Databases

For databases there is an obvious domain-specific sublanguage, namely SQL [11].
Unlike most other Web tools, however, we want our compiler to be able to statically
type-check database computations. This precludes us from using the standard tech-
nique of building SQL queries as strings that are shipped to the external database
engine. Instead, we introduce schemas, tuples, and relations as native concepts in
<bigwig>. A simple subset of SQL, modified to blend with the core language, is
then directly available in the syntax. The following simple example selects Bart
and Lisa from the relation:

service {
schema Person { int age; string name;}
shared relation Person simpsons;

session Init() {

17

e

e

:

validate

validate

Figure 10: Client-side form field validation.

simpsons = relation {
tuple {age=38,name="Homer"},
tuple {age=34,name="Marge"},
tuple {age=10,name="Bart"},
tuple {age= 8,name="Lisa"},
tuple {age= 1,name="Maggie"}

};
}

session Select() {
relation Person result;
result = select * from simpsons where (#.age<20 && |#.name|==4);

}
}

A shared relation will always reside in an external database that is associated to
the <bigwig> system through an ODBC [28] interface. Currently we have support
for DB2 [21], MySQL [13], and a simple default implementation based on the UNIX
file system. In contrast, private relations are viewed as data structures and are
implemented directly by <bigwig> as part of the thread. As shown in the example,
data can seamlessly be moved between shared and private relations. It is also pos-
sible to write mixed queries that involve both kinds. The compiler analyzes queries
and tries to ship as many computations as possible to the database engine. We are
still experimenting with these ideas, but certainly the query above which involves
only shared relations and constants will be shipped. As a further optimization, the
contents of the private result relation need only be retrived from the database
engine in a lazy manner.

11 Security

We have not fully analyzed this enormous aspect, but some simple ideas are already
in place. First of all, the implementation provides some low-level security to protect
the integrity of a service. For example, each session thread is identified by a large
random key that is required to gain access. Also, the compiler makes sure to catch
all runtime errors to avoid malicious attacks.

At a higher level, the programmer may use a number of security modifiers that
applies to communications with the client. The ssl modifier instructs the server to
use the SSL/HTTPS protocol [17], which collaborates with the client to set up an

18

encrypted tunnel for communication. The htaccess modifier protects the displayed
page with HTTP Authentication [6] using a supplied password file; <bigwig> also
supports the getcookie and setcookie functions to help manage userids. The
selective modifier restricts access to a session to those clients whose numeric
IP addresses (or alphanumeric domain names) match a given set of prefixes (or
postfixes). Finally, the singular modifier ensures that the client has the same IP
address throughout the execution of a session.

The <bigwig> compiler performs some simple static analysis that relates to
security. Values may be classified as secret or trusted, and the compiler keeps track
of the propagation of these properties. Furthermore, there are restrictions on how
each kind of data can be used. Form data is always assumed to be untrusted
and gaps are never allowed to be plugged with secret values. Variables can be
declared with the modifiers secret or trusted and may then only contain the
corresponding values. The system function can only be called with a trusted string
value. To change the status of a value, there are two functions trust and disclose ;
importantly, the programmer must make the explicit choice of using these coercions.
An example involving trust is the following service:

service {
session Lookup() {

html Error = < html >Invalid URL!</ html >;
html EnterURL = < html >Enter a URL: < input type =text name=URL></ html >;
string u,domain;
show EnterURL receive [u = URL];
if (|u|<7 || u[0..7]!="http://") show Error;
for (i=7; i<|u| && u[i]!=’/’; i++);
domain = u[7..i];
if (system ("/usr/sbin/nslookup ’" + domain + "’").stderr!="") {

show Error;
}

}
}

Since the value of domain is derived from the form field URLit should not be trusted,
and its use in the call of system will be flagged by the compiler. And, indeed, it
would be unfortunate if the client enters "http://foo’;rm -rf *’" in the form.
A similar analysis is performed for secrets. Consider the example:

service {
shared secret string password;
bool odd(int n) { return n%2==1; }
session Reveal() {

if (odd(|password|)) show <html >foo</ html >;
}

}

The compiler is sufficiently paranoid to reject this program, since the branching
of the if -statement depends on a function applied to information derived from a
secret value. These analyses [24] are not particularly original, but merely exist to
guide the programmer.

There is still much work to be done in this area. So far, we have not considered
using cryptological techniques to ensure service integrity, the role of certificates, or
more sophisticated static analyses [27].

12 Syntax Macros

Our syntax macros are similar to previous work in that the compiler accepts collec-
tions of grammatical rules that extend the syntax in which a subsequent program

19

may be written [35]. Almost arbitrary extensions can be defined in a purely declar-
ative manner without resorting to compile-time programming. The macros are
terminating, hygienic, and transparent to later phases in the compiler. Error mes-
sages from later phases in the compiler are tracked through all macro invocations to
pinpoint their sources in the extended syntax. We use a novel concept of metamor-
phic rules allowing the arguments of a macro to be defined in an almost arbitrary
meta level grammar and then to be morphed into the host language. Collections of
macros are bundled into packages.

Macros are used to provide tailor-made extensions of the language. Consider a
frequent scenario, where a service wishes to publish a page that is mostly static.
Once in a while the underlying data changes, and the page must be computed
again. We can use macros to provide special primitives supporting an efficient
implementation:

syntax <toplevels> publish <id d> { <exp E> } ::= {
shared html <d>˜cache;
shared bool <d>˜clean;
session <d>() {

if (!<d>˜clean) {
<d>˜cache = <E>;
<d>˜clean = true ;

}
show <d>˜cache;

}
}

syntax <stm> touch <id d> ; ::= {
<d>˜clean = false ;

}

The binary operator ‘˜ ’ provides a mechanism for concatenating identifiers. Using
this extended syntax, a service maintaining a high-score list can look like:

require "publish.wigmac"
service {

shared string who;
shared int score;
publish HiScore {

<html >
The top player is <[(who)]> with <[(score)]> points.

</ html >
}
session Update() {

html Winner = < html >
Winner: < input type=text name=who>

Score: < input type=text name=score>

</ html >;
show Winner receive [who = w; score = s];
touch HiScore;

}
}

A variation updates the cached document if it has reached a certain age:

syntax <toplevel_list>
publish <id d> every <intconst N> seconds { <exp E> } ::= {

shared html <d>˜cache;
shared time <d>˜timestamp;
session <d>() {

if (<d>˜timestamp== notime || (difftime (now(),<d>˜timestamp)><N>)) {
<d>˜cache = <E>;
<d>˜timestamp = now();

}
show <d>˜cache;

20

}
}

The macros are clearly easier to understand and maintain than the corresponding
expanded code. It is even possible to use macros in an extreme way, such that
an entirely new language is created. We call this concept a very domain-specific
language, or VDSL.

At the University of Aarhus, undergraduate Computer Science students must
complete a Bachelor’s degree in one of several fields. The requirements that must
be satisfied are surprisingly complicated. To guide students towards this goal, they
must maintain a so-called “Bachelor’s contract” that plans their remaining studies
and discovers potential problems. This process is supported by a Web service that
for each student iteratively accepts past and future course activities, checks them
against all requirements, and diagnoses violations until a legal contract is composed.
This service was first written as a straight <bigwig> application, but quickly be-
came annoying to maintain due to constant changes in the study program. Thus
it was redesigned in the form of a VDSL, where study fields and requirements are
conceptualized and defined directly in pseudo natural language style. This makes it
possible for a secretary—or even the responsible faculty member—to maintain and
update the service. An small example input is:

require "bachelor.wigmac"
studies

course Math101
title "Mathematics 101"
2 points fall term

...
course Phys202

title "Physics 202"
2 points spring term

course Lab304
title "Lab Work 304"
1 point fall term

exclusions
Math101 <> MathA
Math102 <> MathB

prerequisites
Math101,Math102 < Math201,Math202,Math203,Math204
CS101,CS102 < CS201,CS203
Math101,CS101 < CS202
Math101 < Stat101
CS202,CS203 < CS301,CS302,CS303,CS304
Phys101,Phys102 < Phys201,Phys202,Phys203,Phys301
Phys203 < Phys302,Phys303,Lab301,Lab302,Lab303
Lab101,Lab102 < Lab201,Lab202
Lab201,Lab202 < Lab301,Lab302,Lab303,Lab304

field "CS-Mathematics"
field courses

Math101,Math102,Math201,Math202,Stat101,CS101,CS102,CS201,CS202,CS203,
CS204,CS301,CS302,CS303, CS304,Project

other courses
MathA,MathB,Math203,Math204,Phys101,Phys102,Phys201,Phys202

constraints
has passed CS101,CS102
at least 2 courses among CS201,CS202,CS203
at least one of Math201,Math202
at least 2 courses among Stat101,Math202,Math203
has 4 points among Project,CS303,CS304
in total between 36 and 40 points

None of the syntax displayed is plain <bigwig> except the macro package re-

quire instruction. The entire program is the argument to a single macro studies

21

that expands into the complete code for a corresponding service. The file bache-

lor.wigmac is only 400 lines and yet contains a complete implementation of the new
language, including “parser” and “code generator”. Thus, our macro mechanism
offers a rapid and inexpensive realization of new ad-hoc languages with arbitrary
syntax.

13 Monitors and Managers

Once a service has been programmed and installed, it is important to monitor and
manage its performance. Since <bigwig> offers a global view of all components of
a service, we have unique opportunities to address these issues.

The <bigwig> compiler automatically generates a combined monitor and man-
ager tool for each service. This tool is written in <bigwig> itself using a spe-
cially designed VDSL. Apart from the aesthetic pleasure, the advantage of this
self-referential technique is that the generated code easily can be customized by
the <bigwig> programmer who may want a different layout or some additional
functionality.

The management tool performs several tasks. The status of all running threads
can be viewed, and any thread can be paused or killed. Similarly, the status of
the concurrency controller is visible, and the contents of the process queues can
be manipulated. Also, the shared data can be inspected and modified. Finally, in
order to maintain the service, there is support for blocking individual sessions, such
that no new threads may be created by outside clients.

The management tool runs as an independent service that may be started and
stopped at any time. It uses special knowledge about the implementation of the
runtime system to gain access to the internal data. For security, access to the
manager service is by default restricted to clients running on the Web server, but
remote management is certainly an option.

A future project is to construct a tool that generates statistics about a service.
Clearly, there are countless measures that could be computed and visualized by
digesting the service logs that we already today maintain. Examples include total
hits, hits per session kind, duration of session threads, usage of HTML templates,
and more general client patterns. Many such things have already been done by
MAWL.

14 Conclusions

The <bigwig> project has identified many aspects of interactive Web services and
has provided solutions in a coherent framework based on programming language
theory. At the same time, the <bigwig> language is a major case study in appli-
cations of the domain-specific language design paradigm. The project will continue
into the foreseeable future. The development can be followed at the <bigwig> home
page at http://www.brics.dk/bigwig/ , and we encourage contributions and co-
operations.

Acknowledgments

Tom Ball provided us with extensive and very helpful information about experiences
with the MAWL language. Anders Sandholm has been a key participant during his
PhD studies at BRICS. Mikkel Ricky Christensen and Steffan Olesen have worked
tirelessly as student programmers during the entire project. Niels Damgaard, Uffe
Engberg, Mads Johan Jurik, Lone Haudrum Olesen, Christian Stenz, and Tommy

22

Thorn have provided valuable feedback and suggestions. We also appreciate the
efforts made by the participants of the WIG Projects course in Spring 1998.

References

[1] Ken Arnold, James Gosling, and David Holmes. The Java Programming Lan-
guage. Addison-Wesley, 3rd edition, 2000.

[2] David Atkins, Thomas Ball, Michael Benedikt, Glenn Bruns, Kenneth Cox,
Peter Mataga, and Kenneth Rehor. Experience with a domain specific language
for form-based services. In Usenix Conference on Domain Specific Languages,
October 1997.

[3] David Atkins, Thomas Ball, Glenn Bruns, and Kenneth Cox. Mawl: a domain-
specific language for form-based services. In IEEE Transactions on Software
Engineering, June 1999.

[4] Leon Atkinson. Core PHP Programming. Prentice Hall, 1999.

[5] Donald J. Becker, Thomas Sterling, Daniel Savarese, John E. Dorband,
Udaya A. Ranawak, and Charles V. Packer. Beowulf: A parallel workstation
for scientific computation. In International Conference on Parallel Processing,
1995.

[6] T. Berners-Lee, R. Fielding, and H. Frystyk. Hyper-
text transfer protocol – HTTP/1.0. RFC1945, May 1996.
http://www.w3.org/Protocols/rfc1945/rfc1945 .

[7] Claus Brabrand, Anders Møller, Mikkel Ricky, and Michael I. Schwartzbach.
Powerforms: Declarative client-side form field validation. World Wide Web
Journal, 3(4), 2000.

[8] Claus Brabrand, Anders Møller, Anders Sandholm, and Michael I.
Schwartzbach. A runtime system for interactive Web services. Computer Net-
works, 31:1391–1401, 1999. Also in Proceedings of the Eighth International
World Wide Web Conference.

[9] Claus Brabrand and Michael I. Schwartzbach. Growing languages with meta-
morphic syntax macros, October 2000. submitted for publication, available
from http://www.brics.dk/bigwig/ .

[10] K. Cox, T. Ball, and J. C. Ramming. Lunchbot: A tale of two ways to pro-
gram web services. Technical Report BL0112650-960216-06TM, AT&T Bell
Laboratories, 1996.

[11] C.J. Date and Hugh Darwen. A Guide to the SQL Standard. Addison-Wesley,
3rd edition, October 1992.

[12] John Desborough. Cold Fusion 3.0 Intranet Application. International Thom-
son Publishing, 1997.

[13] Paul DuBois. MySQL. Macmillan Technical Publishing, 1999.

[14] Alex Fedorov et al. Professional Active Server Pages 2.0. Wrox Press, 1998.

[15] Mary Fernandez, Dan Suciu, and Igor Tatarinov. Declarative specification
of data-intensive Web site. In USENIX Conference on Domain-Specific Lan-
guages, October 1999.

23

[16] David Flanagan. JavaScript: The Definitive Guide. O’Reilly, June 1998.

[17] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The
SSL protocol version 3.0. Internet Draft, November 1996.
http://home.netscape.com/eng/ssl3/draft302.txt .

[18] Shishir Gundavaram. CGI Programming on the World Wide Web. O’Reilly &
Associates, Inc., 2000.

[19] Nils Klarlund and Anders Møller. MONA Version 1.3 User Manual. BRICS
Notes Series NS-98-3 (2nd revision), Department of Computer Science, Uni-
versity of Aarhus, October 1998.

[20] David A. Ladd and J. Christopher Ramming. Programming the Web: An
application-oriented language for hypermedia services. In 4th Intl. World Wide
Web Conference, 1995.

[21] IBM Corp. DB2 Application Programming. IBM, 1995. available from
http://www-4.ibm.com/software/data/db2 .

[22] Open Market, Inc. FastCGI: A high-performance Web server interface, April
1996. Technical White Paper, www.fastcgi.com.

[23] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Pro-
gram Analysis. Springer, 1999.

[24] Jens Palsberg and Peter Ørbæk. Trust in the λ-calculus. In Alan Mycroft,
editor, SAS’95: Static Analysis, volume 983 of Lecture Notes in Computer
Science, pages 314–330, Glasgow, September 1995. Springer-Verlag.

[25] Eduardo Pelegri-Llopart. JavaServer Pages specification, version 1.2 proposed
final draft. Sun Public Draft, October 2000.

[26] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01 specification. W3C
Recommendation, December 1999. http://www.w3.org/TR/html401 .

[27] Jerome H. Saltzer and Michael D. Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 36(9):1278–1308, 1975.

[28] Roger E. Sanders. ODBC 3.5 Developer’s Guide. McGraw-Hill, 1998.

[29] Anders Sandholm and Michael I. Schwartzbach. Distributed safety con-
trollers for Web services. In Fundamental Approaches to Software Engineering,
FASE’98, number 1382 in LNCS, 1998.

[30] Anders Sandholm and Michael I. Schwartzbach. A domain specific language
for typed dynamic documents. In Principles of Programming Languages,
POPL’00. ACM, 2000.

[31] Sebastian Schnitzenbaumer, Malte Wedel, and Dave Raggett. XHTML
extended forms requirements. W3C Working Draft, March 1999.
http://www.w3.org/TR/xhtml-forms-req.html .

[32] Guy Steele. Growing a language. OOPSLA invited talk, 1998.

[33] Wolfgang Thomas. Handbook of Theoretical Computer Science, volume B,
chapter Automata on Infinite Objects, pages 133–191. MIT Press/Elsevier,
1990.

24

[34] Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl. O’Reilly,
3rd edition, July 2000.

[35] Daniel Weise and Roger F. Crew. Programmable syntax macros. In Program-
ming Language Design and Implementation, PLDI’93, 1993.

25

Recent BRICS Report Series Publications

RS-00-42 Claus Brabrand, Anders Møller, and Michael I. Schwartzbach.
The <bigwig> Project. December 2000. 25 pp.

RS-00-41 Nils Klarlund, Anders Møller, and Michael I. Schwartzbach.
The DSD Schema Language and its Applications. December
2000. 32 pp. Shorter version appears in Heimdahl, editor,3rd
ACM SIGSOFT Workshop on on Formal Methods in Software
Practice, FMSP ’00 Proceedings, 2000, pages 101–111.

RS-00-40 Nils Klarlund, Anders Møller, and Michael I. Schwartzbach.
MONA Implementation Secrets. December 2000. 19 pp. Shorter
version appears in Daley, Eramian and Yu, editors,Fifth Inter-
national Conference on Implementation and Application of Au-
tomata, CIAA ’00 Pre-Proceedings, 2000, pages 93–102.

RS-00-39 Anders Møller and Michael I. Schwartzbach.The Pointer As-
sertion Logic Engine. December 2000. 23 pp. To appear in
ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’01 Proceedings, 2001.

RS-00-38 Bertrand Jeannet. Dynamic Partitioning in Linear Relation
Analysis: Application to the Verification of Synchronous Pro-
grams. December 2000.

RS-00-37 Thomas S. Hune, Kim G. Larsen, and Paul Pettersson.Guided
Synthesis of Control Programs for a Batch Plant usingUP-
PAAL . December 2000. 29 pp. Appears in Hsiung, editor,
International Workshop in Distributed Systems Validation and
Verification. Held in conjunction with 20th IEEE International
Conference on Distributed Computing Systems (ICDCS ’2000),
DSVV ’00 Proceedings, 2000.

RS-00-36 Rasmus Pagh.Dispersing Hash Functions. December 2000.
18 pp. Preliminary version appeared in Rolim, editor, 4th.
International Workshop on Randomization and Approximation
Techniques in Computer Science, RANDOM ’00, Proceedings
in Informatics 8, 2000, pages 53–67.

RS-00-35 Olivier Danvy and Lasse R. Nielsen.CPS Transformation of
Beta-Redexes. December 2000. 12 pp.

