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Abstract

The Mona tool provides an implementation of automaton-based de-
cision procedures for the logics WS1S and WS2S. It has been used for
numerous applications, and it is remarkably efficient in practice, even
though it faces a theoretically non-elementary worst-case complexity. The
implementation has matured over a period of six years. Compared to the
first naive version, the present tool is faster by several orders of magni-
tude. This speedup is obtained from many different contributions working
on all levels of the compilation and execution of formulas. We present
an overview of Mona and a selection of implementation “secrets” that
have been discovered and tested over the years, including formula re-
ductions, DAGification, guided tree automata, three-valued logic, eager
minimization, BDD-based automata representations, and cache-conscious
data structures. We describe these techniques and quantify their respec-
tive effects by experimenting with separate versions of the Mona tool that
in turn omit each of them.

1 Introduction

Mona [21, 30, 38, 26] is an implementation of decision procedures for the logics
WS1S and WS2S (Weak monadic Second-order theory of 1 or 2 Successors) [48].
They have long been known to be decidable [12, 18], but with a non-elementary
lower bound [37]. For many years it was assumed that this discouraging com-
plexity precluded any useful implementations.

Mona has been developed at BRICS since 1994, when our initial attempt
at automatic pointer analysis through automata calculations took four hours
to complete. Today Mona has matured into an efficient and popular tool on
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which the same analysis is performed in a couple of seconds. Through those
years, many different approaches have been tried out, and a good number of
implementation “secrets” have been discovered. This paper describes the most
important tricks we have learned, and it tries to quantify their relative merits
on a number of benchmark formulas.

Of course, the resulting tool still has a non-elementary worst-case complexity.
Perhaps surprisingly, this complexity also contributes to successful applications,
since it is provably linked to the succinctness of the logics. If we want to describe
a particular regular set, then a WS1S formula may be non-elementarily more
succinct that a regular expression or a transition table.

The niche for Mona applications contains those structures that are too
large and complicated to describe by other means, yet not so large as to re-
quire infeasible computations. Happily, many interesting projects fit into this
niche, including hardware verification [4, 1], pointer analysis [23, 17], controller
synthesis [44, 22], natural languages [39], parsing tools [14], software design
descriptions [29], Presburger arithmetic [45], and verification of concurrent sys-
tems [32, 31, 24, 42, 46].

There are a number of tools resembling Mona. Independently of the Mona
project, the first implementation of automata represented with BDDs was that
of Gupta and Fischer from 1993 [20]. However, they used “linear inductive func-
tions” instead of the automaton–logic connection. MoSeL (see http://sunshine.
cs.uni-dortmund.de/projects/mosel/) implements the automaton based deci-
sion procedure for M2L-Str using BDDs like Mona. In [25], MoSeL is described
and compared with Mona 0.2, which provided inspiration for the MoSeL
project. Apparently, there have been only few applications of MoSeL. AMoRE
[35] (see http://www.informatik.uni-kiel.de/inf/Thomas/amore.html) is a library
of automata theoretic algorithms, resembling those used in Mona. AMoRE
also provides functionality for regular expressions and monoids, but is not tied
to the automaton–logic connection. Glenn and Gasarch [19] have in 1997—
apparently independently of Mona and MoSeL—implemented a decision pro-
cedure for WS1S, basically as the one in Mona, but without using BDDs or
other sophisticated techniques. The Shasta tool from 1998 is based upon the
same ideas as Mona. It is used as an engine for Presburger Arithmetic [45].

Furthermore, Mona has provided the foundation of or been integrated into
a range of other tools: FIDO [34], LISA [2], DCVALID [42], FMONA [9, 8],
STTOOLS [43], PEN [40], PAX [5], PVS [41], and ISABELLE [3].

2 The Automaton–Logic Connection

Being a variation of first-order logic, WS1S is a formalism with quantifiers and
boolean connectives. First-order terms denote natural numbers, which can be
compared and subjected to addition with constants. Also, WS1S allows second-
order terms, which are interpreted as finite sets of numbers. The actual Mona
syntax is a rich notation with constructs such as set constants, predicates and
macros, modulo operations, and let-bindings. If all such syntactic sugar is peeled
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off, the formulas are “flattened” (so that there are no nested terms), and first-
order terms are encoded as second-order terms, the logic reduces to a simple
“core” language (X ranges over a set of second-order variables):

φ ::= ~φ′ | φ′ & φ′′ | ex2 Xi : φ′

| Xi sub Xj | Xi =Xj \ Xk | Xi =Xj +1

Given a fixed main formula φ0, we define its semantics inductively relative
to a string w over the alphabet B

k, where B = {0, 1} and k is the number
of variables in φ0. We assume every variable of φ0 is assigned a unique index
in the range 1, 2, .., k, and that Xi denotes the variable with index i. The
string w determines an interpretation w(Xi) of Xi defined as the finite set
{j | the jth bit in the Xi-track is 1}.

The semantics of a formula φ in the core language can now be defined in-
ductively relative to an interpretation w. We use the notation w � φ (which is
read: w satisfies φ) if the interpretation defined by w makes φ true:

w � ~φ′ iff w 2 φ′

w � φ′ & φ′′ iff w � φ′ and w � φ′′

w � ex2 Xi : φ′ iff ∃ finite M ⊆ N : w[Xi 7→ M ] � φ′

w � Xi sub Xj iff w(Xi) ⊆ w(Xj)
w � Xi = Xj\Xk iff w(Xi) = w(Xj)\w(Xk)
w � Xi = Xj +1 iff w(Xi) = {j + 1 | j ∈ w(Xj)}

The notation w[Xi 7→ M ] is used for the shortest string that interprets all
variables Xj where j 6= i as w does, but interprets Xi as M .

The language L(φ) of a formula φ can be defined as the set of satisfying
strings: L(φ) = {w | w � φ}. By induction in the formula, we can now construct
a minimal deterministic finite-state automaton (DFA) A such that L(A) = L(φ),
where L(A) is the language recognized by A.

For the atomic formulas, we show just one example: the automaton for the
formula φ = Xi sub Xj in the case where i = 1 and j = 2. The automaton
must recognize the language

L(X1 sub X2) = {w ∈ (Bk)∗ | for all letters in w: if the first component is
1, then so is the second }

Such an automaton is:
X

1
0

X
1
X 0

0,

The other atomic formulas are treated similarly. The composite formulas are
translated as follows:

φ = ~φ′ Negation of a formula corresponds to automaton complementation.
In Mona, this is implemented trivially by flipping accepting and rejecting
states.
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φ = φ′ & φ′′ Conjunction corresponds to language intersection. In Mona,
this is implemented with a standard automaton product construction gen-
erating only the reachable product states. The resulting automaton is
minimized.

φ = ex2 Xi : φ′ Existential quantification corresponds to a simple quotient
operation followed by a projection operation. The quotient operation takes
care of the problem that the only strings satisfying φ′ may be longer
than those satisfying ex2 Xi : φ′. The projection operation removes the
“track” belonging to Xi, resulting in a nondeterministic automaton, which
is subsequently determinized using the subset construction operation, and
finally minimized.

This presentation is a simplified version of the procedure actually used in Mona.
For more detail, see the MONA User Manual [30].

When the minimal automaton A0 corresponding to φ0 has been constructed,
validity of φ0 can be checked simply by observing whether A0 is the one-state
automaton accepting everything. If φ0 is not valid, a (minimal) counter-example
can be constructed by finding a (minimal) path in A0 from the initial state to
a non-accepting state.

WS2S is the generalization of WS1S from linear- to binary-tree-shaped struc-
tures [47, 15, 48]. Seen at the “core language” level, WS2S is obtained from
WS1S by replacing the single successor predicate by two successor predicates,
for left and right successor respectively. This logic is also decidable by the
automaton–logic connection, but using tree automata instead of string au-
tomata. The Mona tool also implements this decision procedure.

There is a subtle difference between WS1S, the logic now used in Mona,
and M2L-Str, the logic used in early experimental versions [48, 6, 16]. (The
difference between WS2S and M2L-Tree is similar.) In WS1S, formulas are in-
terpreted over infinite string models (but quantification is restricted to finite sets
only). In M2L-Str, formulas are instead interpreted over finite string models.
That is, the universe is not the whole set of naturals N, but a bounded subset
{0, . . . , n− 1}, where n is defined by the length of the string. The decision pro-
cedure for M2L-Str is almost the same as for WS1S, only slightly simpler: the
quotient operation (before projection) is just omitted. From the language point
of view, M2L-Str corresponds exactly to the regular languages (all formulas cor-
respond to automata and vice versa), and WS1S corresponds to those regular
languages that are closed under concatenation by 0’s. These properties make
M2L-Str preferable for some applications [4, 44]. However, the fact that not all
positions have a successor often makes M2L-Str rather unnatural to use. Being
closer tied to arithmetic, the WS1S semantics is easier to understand. Also, for
instance Presburger Arithmetic can easily be encoded in WS1S whereas there
is no obvious encoding in M2L-Str.

Notice that the most significant source of complexity in this decision proce-
dure is the quantifiers, or more precisely, the automaton determinization. Each
quantifier can cause an exponential blow-up in the number of automaton states,
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so in worst case, this decision procedure has a non-elementary complexity. Fur-
thermore, we cannot hope for a fundamentally better decision procedure since
this is also the lower bound for the WS1S decision problem [37]. However, as we
will show, even constant factors of improvement can make significant differences
in practice.

To make matters even worse (and the challenge the more interesting), the
implementation also has to deal with automata with huge alphabets. As men-
tioned, if φ0 has k free variables, the alphabet is B

k. Standard automaton
packages cannot handle alphabets of that size, for typical values of k.

3 Benchmark Formulas

The experiments presented in the following section are based on twelve bench-
mark formulas, here shown with their sizes, the logics they are using, and their
time and space consumptions when processed by Mona 1.4 (on a 296MHz Ul-
traSPARC with 1GB RAM):

Benchmark Name Size Logic Time Space

A dflipflop.mona 2 KB WS1S (M2L-Str) 0.4 sec 3 MB
B euclid.mona 6 KB WS1S (Presburger) 33.1 sec 217 MB
C fischer mutex.mona 43 KB WS1S 15.1 sec 13 MB
D html3 grammar.mona 39 KB WS2S (WSRT) 137.1 sec 208 MB
E lift controller.mona 36 KB WS1S 8.0 sec 15 MB
F mcnc91 bbsse.mona 9 KB WS1S 13.2 sec 17 MB
G reverse linear.mona 11 KB WS1S (M2L-Str) 3.2 sec 4 MB
H search tree.mona 19 KB WS2S (WSRT) 30.4 sec 5 MB
I sliding window.mona 64 KB WS1S 40.3 sec 59 MB
J szymanski acc.mona 144 KB WS1S 20.6 sec 9 MB
K von neumann adder.mona 5 KB WS1S 139.9 sec 116 MB
L xbar theory.mona 14 KB WS2S 136.4 sec 518 MB

The benchmarks have been picked from a large variety of Mona applications
ranging from hardware verification to encoding of natural languages.

dflipflop.mona – a verification of a D-type flip-flop circuit [4]. Provided by
Abdel Ayari.

euclid.mona – an encoding in Presburger arithmetic of six steps of reachability
on a machine that implements Euclid’s GCD algorithm [45]. Provided by
Tom Shiple.

fischer mutex.mona and lift controller.mona – duration calculus encodings of
Fischer’s mutual exclusion algorithm and a mine pump controller, trans-
lated to Mona code [42]. Provided by Paritosh Pandya.

html3 grammar.mona – a tree-logic encoding of the HTML 3.0 grammar anno-
tated with 10 parse-tree formulas [14]. Provided by Niels Damgaard.
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reverse linear.mona – verifies correctness of a C program reversing a pointer-
linked list [23].

search tree.mona – verifies correctness of a C program deleting a node from a
search tree [17].

sliding window.mona – verifies correctness of a sliding window network proto-
col [46]. Provided by Mark Smith.

szymanski acc.mona – validation of the parameterized Szymanski problem using
an accelerated iterative analysis [9]. Provided by Mamoun Filali-Amine.

von neumann adder.mona and mcnc91 bbsse.mona – verification of sequential hard-
ware circuits; the first verifies that an 8-bit von Neumann adder is equiv-
alent to a standard carry-chain adder, the second is a benchmark from
MCNC91 [49]. Provided by Sebastian Mödersheim.

xbar theory.mona – encodes a part of a theory of natural languages in the Chom-
sky tradition. It was used to verify the theory and led to the discovery of
mistakes in the original formalization [39]. Provided by Frank Morawietz.

We will use these benchmarks to illustrate the effects of the various implemen-
tation “secrets” by comparing the efficiency of Mona shown in the table above
with that obtained by handicapping the Mona implementation by not using
the techniques.

4 Implementation Secrets

The Mona implementation has been developed and tuned over a period of six
years. Many large and small ideas have contributed to a combined speedup
of several orders of magnitude. Improvements have taken place at all levels,
which we illustrate with the following seven examples from different phases of
the compilation and execution of formulas.

To enable comparisons, we summarize the effect of each implementation
“secret” by a single dimensionless number for each benchmark formula. Usually,
this is simply the speedup factor, but in some cases where the numerator is not
available, we argue for a more synthetic measure. If a benchmark cannot run
on our machine, it is assigned time ∞.

4.1 BDD-based automata representation

The very first attempt to implement the decision procedure used a represen-
tation based on conjunctive normal forms—however this quickly showed to be
very inefficient. The first actually useful version of the Mona tool was the 1995
experimental ML-version [21]. The reason for the success was the novel repre-
sentation of automata based on (reduced and ordered) BDDs (Binary Decision
Diagrams) [10, 11] for addressing the problem of large alphabets. In addition,
the representation allows some specialized algorithms to be applied [33, 27].
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A BDD is a graph representing a boolean function. The BDD representation
has some extremely convenient properties, such as compactness and canonicity,
and it allows efficient manipulation. BDDs have successfully been used in a
long range of verification techniques (a popular one is [36]). In Mona, a special
form of BDDs, called shared multi-terminal BDDs, or SMBDDs are used. As
an example, the transition function of the tiny automaton shown in Section 2
is represented in Mona as the following SMBDD:

2

1

0 1

0 1

The roots and the leaves represent the states. Each root has an edge to the node
representing its alphabet part of the transition function. For the other edges,
dashed represents 0 and solid represents 1. As an example, from state 0, the
transition labeled

(
1
0

)
leads to state 1. In this way, states are still represented

explicitly, but the transitions are represented symbolically, in a compact way.
Its reasonable to ask: “What would happen if we had simply represented

the transition tables in a standard fashion, that is, a row for each state and a
column for each letter?”. Under this point of view, it makes sense to define a
letter for each bit-pattern assignment to the free variables of a subformula (as
opposed to the larger set of all variables bound by an outer quantifier). We
have instrumented Mona to measure the sum of the number of entries of all
such automata transition tables constructed during a run of a version of Mona
without BDDs:

Misses Table entries Effect

A 397,472 237,006 0.6
B 48,347,395 2,973,118 0.1
C 46,080,139 1,376,499,745,600 29,871.9
E 19,208,299 290,999,305,488 15,149.7
F 39,942,638 2,844,513,432,416,357,974,016 71,214,961,626,128.9
G 561,202 912,194 1.6
I 95,730,831 116,387,431,997,281,136 1,215,777,934.7
J 24,619,563 15,424,761,908 626.5
K 250,971,828 2,544,758,557,238,438 10,139,618.4

In Section 4.2, we describe the importance of cache awareness, which motivates
the number of cache misses as a reasonable efficiency measure. “Misses” is the
number of cache misses in our BDD-based implementation, and “Table entries”
is the total number of table entries in the naive implementation. To roughly
estimate the effect of the BDD-representation, we conservatively assume that
each table entry results in just a single cache miss; thus, “Effect” compares
“Table entries” to “Misses”. The few instances where the effect is less than
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one correctly identify benchmark formulas where the BDDs are less necessary,
but are also artifacts of our conservative assumption. Conversely, the extremely
high effects are associated with formulas that could not possibly be decided
without BDDs. Of course, the use of BDD-structures completely dominates all
other optimizations, since no implementation could realistically be based on the
naive table representation.

The BDD-representation was the first breakthrough of the Mona implemen-
tation, and the other “secrets” should really be viewed with this as baseline.

4.2 Cache-conscious data structures

The data structure used to represent the BDDs for transition functions has been
carefully tuned to minimize the number of cache misses that occur. This effort
is motivated in earlier work [33], where it is determined that the number of
cache misses during unary and binary BDD apply steps totally dominates the
running time.

In fact, we argued that if A1 is the number of unary apply steps and A2
is the number of binary apply steps, then there exists constant m, c1, and c2

such that the total running time is approximately m(c1 · A1 + c2 · A2). Here,
m is the machine dependent delay incurred by an L2 cache miss, and c1 and c2

are the average number of cache misses for unary and binary apply steps. This
estimate is based the assumption that time incurred for manipulating auxiliary
data structures, such as those used for describing subsets in the determinization
construction, is insignificant. For the machine we have used for experiments, it is
by a small C utility determined that m = 0.43µs. In our BDD implementation,
explained in [33], we have estimated from algorithmic considerations that c1 =
1.7 and c2 = 3 (the binary apply may entail the use of unary apply steps for
doubling tables that were too small—these steps are not counted towards the
time for binary apply steps, and that is why we can use the figure c2 = 3);
we also estimated that for an earlier conventional implementation, the numbers
were c1 = 6.7 and c2 = 7.3. The main reason for this difference is that our
specialized package stores nodes directly under their hash address to minimize
cache misses; traditional BDD packages store BDD nodes individually with the
hash table containing pointers to them—roughly doubling the time it takes to
process a node. We no longer support the conventional BDD implementation,
so to measure the effect of cache-consciousness, we must use the above formula
to estimate the running times that would have been obtained today.

In the following experiment, we have instrumented Mona to obtain the exact
numbers of apply steps:
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Apply1 Apply2 Misses Auto Predicted Conventional Effect

A 183,949 28,253 397,472 0.2 sec 0.2 sec 0.6 sec 3.0
B 21,908,722 3,700,856 48,347,395 32.8 sec 20.8 sec 74.7 sec 3.6
C 24,585,292 1,428,381 46,080,139 14.2 sec 19.8 sec 75.2 sec 3.8
E 9,847007 822,796 19,208,299 7.7 sec 8.2 sec 30.9 sec 3.8
F 13,406,047 5,717,453 39,942,638 12.8 sec 17.2 sec 56.6 sec 3.3
G 233,566 54,814 561,504 0.5 sec 0.3 sec 0.8 sec 2.7
I 36,629,195 11,153,733 95,730,831 37.0 sec 41.2 sec 140.5 sec 3.4
J 10,497,759 2,257,791 24,619,563 11.6 sec 10.6 sec 37.3 sec 3.5
K 129,126,447 10,485,623 250,971,828 137.4 sec 107.9 sec 404.7 sec 3.8

“Apply1” is the number of unary apply steps; “Apply2” is the number of binary
apply steps; “Misses” is the number of cache misses predicted by the formula
above; “Auto” is the part of the actual running time involved in automata
constructions; “Predicted” is the running time predicted from the cache misses
alone; “Conventional” is the predicted running time for a conventional BDD
implementation that was not cache-conscious; and “Effect” is “Conventional”
compared to “Predicted”. In most cases, the actual running time is close to the
predicted one (within 25%). Note that there are instances where the actual time
is about 50% larger than the estimated time: benchmark B involves a lengthy
subset construction on an automaton with small BDDs—thus it violates the
assumption that the time handling accessory data structures is insignificant;
similarly, benchmark G also consists of many automata with few BDD nodes
prone to violating the assumption.

In an independent comparison [45] it was noted that Mona was consistently
twice as fast as a specially designed automaton package based on a BDD pack-
age considered efficient. In [33], the comparison to a traditional BDD package
yielded a factor 5 speedup.

4.3 Eager minimization

When Mona inductively translates formulas to automata, a Myhill-Nerode min-
imization is performed after every product and projection operation. Naturally,
it is preferable to operate with as small automata as possible, but our strategy
may seem excessive since minimization often exceeds 50% of the total run-
ning time. This suspicion is strengthened by the fact that Mona automata by
construction contain only reachable states; thus, minimization only collapses
redundant states.

Three alternative strategies to the eager one currently used by Mona would
be to perform only the very final minimization, only the ones occurring af-
ter projection operations, or only the ones occurring after product operations.
Many other heuristics could of course also be considered. The following table
results from such an investigation:
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Time
Effect

Only final After project After product Always

A ∞ ∞ 0.6 sec 0.4 sec 1.5
B ∞ ∞ ∞ 33.1 sec ∞
C ∞ ∞ 32.3 sec 15.1 sec 2.1
D ∞ ∞ 290.6 sec 137.1 sec 2.1
E ∞ ∞ 19.4 sec 8.0 sec 2.4
F ∞ ∞ 36.7 sec 13.2 sec 2.8
G ∞ ∞ 5.8 sec 3.2 sec 1.8
H ∞ ∞ 59.6 sec 30.4 sec 2.0
I ∞ ∞ 74.4 sec 40.3 sec 1.8
J ∞ ∞ 36.3 sec 20.6 sec 1.8
K ∞ ∞ 142.3 sec 139.9 sec 1.0
L ∞ ∞ ∞ 136.4 sec ∞

“Only final” is the running time when minimization is only performed as the final
step of the translation; “After project” is the running time when minimization is
also performed after every projection operation; “After product” is the running
time when minimization is instead performed after every product operation;
“Always” is the time when minimization is performed eagerly; and “Effect”
is the “After product” time compared to the “Always” time (since the other
two strategies are clearly hopeless). Eager minimization is seen to be always
beneficial and in some cases essential for the benchmark formulas.

4.4 Guided tree automata

Tree automata are inherently more computationally expensive because of their
three-dimensional transition tables. We have used a technique of factorization
of state spaces to split big tree automata into smaller ones. The basic idea,
which may result in exponential savings, is explained in [7, 30]. To exploit this
feature, the Mona programmer must manually specify a guide, which is a top-
down tree automaton that assigns state spaces to the nodes of a tree. However,
when using the WSRT logic, a canonical guide is automatically generated. For
our two WSRT benchmarks, we measure the effect of this canonical guide:

Without guide With guide Effect

D 584.0 sec 137.1 sec 4.3
H ∞ 30.4 sec ∞

“Without guide” shows the running time without any guide, while “With guide”
shows the running time with the canonical WSRT guide; “Effect” shows the
“Without guide” time compared to the “With guide” time. We have only a
small sample space here, but clearly guides are very useful. This is hardly
surprising, since they may yield an asymptotic improvement in running time.
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4.5 DAGification

Internally, Mona is divided into a front-end and a back-end. The front-end
parses the input and builds a data structure representing the automata-theoretic
operations that will calculate the resulting automaton. The back-end then in-
ductively carries out these operations.

The generated data structure is often seen to contain many common subfor-
mulas. This is particularly true when they are compared relative to signature
equivalence, which holds for two formulas φ and φ′ if there is an order-preserving
renaming of the variables in φ (increasing with respect to the indices of the vari-
ables) such that the representations of φ and φ′ become identical.

A property of the BDD representation is that the automata corresponding to
signature-equivalent trees are isomorphic in the sense that only the node indices
differ. This means that intermediate results can be reused by simple exchanges
of node indices. For this reason, Mona represents the formulas in a DAG
(Directed Acyclic Graph), not a tree. The DAG is conceptually constructed
from the tree using a bottom-up collapsing process, based on the signature
equivalence relation as described in [16].

Clearly, constructing the DAG instead of the tree incurs some overhead, but
the following experiments show that the benefits are significantly larger:

Nodes Time
Effect

Tree DAG Tree DAG

A 2,532 296 1.7 sec 0.4 sec 4.3
B 873 259 79.2 sec 33.1 sec 2.4
C 5,432 461 40.1 sec 15.1 sec 2.7
D 3,038 270 ∞ 137.1 sec ∞
E 4,560 505 20.5 sec 8.0 sec 2.6
F 1,997 505 49.1 sec 13.2 sec 3.7
G 56,932 1,199 ∞ 3.2 sec ∞
H 8,180 743 ∞ 30.4 sec ∞
I 14,058 1,396 107.1 sec 40.3 sec 2.7
J 278,116 6,314 ∞ 20.6 sec ∞
K 777 273 284.0 sec 139.9 sec 2.0
L 1,504 388 ∞ 136.4 sec ∞

“Nodes” shows the number of nodes in the representation of the formula. “Tree”
is the number of nodes using an explicit tree representation, while “DAG” is
the number of nodes after DAGification. “Time” shows the running times for
the same two cases. “Effect” shows the “Tree” running time compared to the
“DAG” running time. From the differences in the number of nodes, one might
expect the total effect to be larger, however DAGification is mainly effective
on small formulas where the corresponding automata typically are also smaller.
Nevertheless, the DAGification process is seen to provide a substantial and often
essential gain in efficiency.

The effects reported sometimes benefit from the fact that the restriction
technique presented in the following subsection knowingly generates redundant
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formulas. This explains some of the failures observed.

4.6 Three-valued logic and automata

The standard technique for dealing with first-order variables in monadic second-
order logics is to encode them as second-order variables, typically as singletons.
However, that raises the issue of restrictions : the common phenomenon that
a formula φ makes sense, relative to some exterior conditions, only when an
associated restriction holds. The restriction is also a formula, and the main
issue is that φ is now essentially undefined outside the restriction. In the case
of first-order variables encoded as second-order variables, the restriction is that
these variables are singletons. We experienced the same situation trying to
emulate M2L-Str in WS1S, causing state-space explosions.

The nature of these problems is technical, but fortunately they can be solved
through a theory of restriction couched in a three-valued logic [28]. Under
this view, a restricted subformula φ is associated with a restriction φR. If,
for some valuation, φR does not hold, then formulas containing φ are assigned
a new third truth value “don’t-care”. This three-valued logic carries over to
the Mona notion of automata—in addition to accept and reject states, they
also have “don’t-care” states. A special restrict(φR) operation is used for
converting reject states to “don’t-care” states for the restriction formulas, and
the other automaton operations are modified to ensure that non-acceptance of
restrictions is propagated properly.

This gives a cleaner semantics to the restriction phenomenon, and further-
more avoids the state-space explosions mentioned above. According to [28], we
can guarantee that the WS1S framework handles all formulas written in M2L-
Str, even with intermediate automata that are no bigger than when using the
traditional M2L-Str decision procedure. Mona uses the same technique for the
tree logics, WS2S and M2L-Tree.

We refer to [28] for the full theory of three-valued logic and automata. Un-
fortunately, there is no way of disabling this feature to provide a quantitative
comparison.

4.7 Formula reductions

Formula reduction is a means of “optimizing” the formulas in the DAG be-
fore translating them into automata. The reductions are based on a syntactic
analysis that attempts to identify valid subformulas and equivalences among
subformulas.

There are some non-obvious choices here. How should computation resources
be apportioned to the reduction phase and to the automata calculation phase?
Must reductions guarantee that automata calculations become faster? Should
the two phases interact? Our answers are based on some trial and error along
with some provisions to cope with subtle interactions with other of our opti-
mization secrets.
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Mona 1.4 performs three kinds of formula reductions: 1) simple equality and
boolean reductions, 2) special quantifier reductions, and 3) special conjunction
reductions. The first kind can be described by simple rewrite rules (only some
typical ones are shown):

Xi = Xi  true

true & φ  φ

false & φ  false

φ & φ  φ

~~φ  φ

~false  true

These rewrite steps are guaranteed to reduce complexity, but will not cause
significant improvements in running time, since they all either deal with con-
stant size automata or rarely apply in realistic situations. Nevertheless, they
are extremely cheap, and they may yield small improvements, in particular on
machine generated Mona code.

The second kind of reductions can potentially cause tremendous improve-
ments. As mentioned, the non-elementary complexity of the decision procedure
is caused by the automaton projection operations, which stem from quanti-
fiers. The accompanying determinization construction may cause an exponential
blow-up in automaton size. Our basic idea is to apply a rewrite step resembling
let -reduction, which removes quantifiers:

ex2 Xi : φ  φ[T/Xi] provided that φ => Xi = T is valid,
and T is some term satisfying FV (T ) ⊆
FV (φ)

where FV (·) denotes the set of free variables. For several reasons, this is not
the way to proceed in practice. First of all, finding terms T satisfying the side
condition can be an expensive task, in worst case non-elementary. Secondly, the
translation into automata requires the formulas to be “flattened” by introduc-
tion of quantifiers such that there are no nested terms. So, if the substitution
φ[T/X ] generates nested terms, then the removed quantifier is recreated by the
translation. Thirdly, when the rewrite rule applies in practice, φ usually has
a particular structure as reflected in the following more restrictive rewrite rule
chosen in Mona:

ex2 Xi : φ  φ[Xj/Xi] provided that φ ≡
· · · & Xi = Xj & · · · and Xj

is some variable other than Xi

In contrast to equality and boolean reductions, this rule is not guaranteed to
improve performance, since substitutions may cause the DAG reuse degree to
decrease.

The third kind of reductions applies to conjunctions, of which there are two
special sources. One is the formula flattening just mentioned; the other is the
formula restriction technique mentioned in Section 4.6. Both typically introduce
many new conjunctions. Studies of a graphical representation of the formula
DAGs (Mona can create such graphs automatically) led us to believe that many
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of these new conjunctions are redundant. A typical rewrite rule addressing such
redundant conjunctions is the following:

φ1 & φ2  φ1 provided that nonrestr(φ2) ⊆ nonrestr(φ1) ∪
restr(φ1) and restr(φ2) ⊆ restr(φ1)

Here, restr(φ) is the set of restrict(·) conjuncts in φ, and nonrestr(φ) is the
set of non-restrict(·) conjuncts in φ. This reduction states that it is sufficient
to assert φ1 when φ1& φ2 was originally asserted in situations where the non-
restricted conjuncts of φ2 are already conjuncts of φ1—whether restricted or
not—and the restricted conjuncts of φ2 are non-restricted conjuncts of φ1. It is
not sufficient that they be restricted conjuncts of φ1, since the restrictions may
not be the same in φ1.

All rewrite rules mentioned here have the property that they cannot “do
any harm”, that is, have a negative impact on the automaton sizes. (They can
however damage the reuse factor obtained by the DAGification, but this is rarely
a problem in practice.) A different kind of rewrite rules could be obtained using
heuristic—this will be investigated in the future.

With the DAG representation of formulas, the reductions just described can
be implemented relatively easily in Mona. The table below shows the effects
of performing the reductions on the benchmark formulas:

Hits Time
Effect

Simple Quant. Conj. None Simple Quant. Conj. All

A 12 8 22 0.8 sec 0.7 sec 0.7 sec 0.7 sec 0.4 sec 2.0
B 10 45 0 58.2 sec 58.8 sec 56.2 sec 56.8 sec 33.1 sec 1.8
C 9 13 8 43.7 sec 41.9 sec 37.1 sec 42.9 sec 15.1 sec 2.9
D 4 28 27 542.7 sec 536.1 sec 296.0 sec 404.7 sec 137.1 sec 4.0
E 5 6 19 22.6 sec 23.4 sec 16.6 sec 22.7 sec 8.0 sec 2.8
F 3 1 1 28.3 sec 29.9 sec 27.0 sec 27.2 sec 13.2 sec 2.1
G 65 318 191 6.1 sec 5.9 sec 6.1 sec 5.9 sec 3.2 sec 1.9
H 35 32 81 104.1 sec 102.6 sec 71.0 sec 98.5 sec 30.4 sec 3.4
I 102 218 7 76.2 sec 76.5 sec 75.0 sec 76.0 sec 40.3 sec 1.9
J 91 0 1 37.3 sec 37.9 sec 37.6 sec 37.0 sec 20.6 sec 1.9
K 9 4 1 313.7 sec 267.9 sec 240.3 sec 302.6 sec 139.9 sec 2.3
L 4 4 18 ∞ ∞ ∞ ∞ 136.4 sec ∞

“Hits” shows the number of times each of the three kinds of reduction is per-
formed; “Time” shows the total running time in the cases where no reductions
are performed, only the first kind of reductions are performed, only the second,
only the third, and all of them together. “Effect” shows the “None” times com-
pared to the “All” times. All benchmarks gain from formula reductions, and
in a single example this technique is even necessary. Note that most often all
three kinds of reductions must act in unison to obtain significant effects.

A general benefit from formula reductions is that tools generating Mona
formulas from other formalisms may generate naive and voluminous output
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while leaving optimizations to Mona. In particular, tools may use existential
quantifiers to bind terms to fresh variables, knowing that Mona will take care
of the required optimization.

5 Future Developments

Several of the techniques described in the previous section can be further refined
of course. The most promising ideas seem however to concentrate on the BDD
representation. In the following, we describe three such ideas.

It is a well-known fact [10] that the ordering of variables in the BDD au-
tomata representation has a strong influence on the number of BDD nodes
required. The impact of choosing a good ordering can be an exponential im-
provement in running times. Finding the optimal ordering is an NP-complete
problem, but we plan to experiment with the heuristics that have been sug-
gested [13].

We have sometimes been asked: “Why don’t you encode the states of the
automata in BDDs, since that is a central technique in model checking?”. The
reason is that there is no obvious structure to the state space in most cases that
would lend itself towards an efficient BDD representation. For example, consider
the consequences of a subset construction or a minimization construction, where
similar states are collapsed; in either case, it is not obvious how to represent the
new state. However, the ideas are worth investigating.

For our tree automata, we have experimentally observed that the use of
guides produce a large number of component automata many of which are almost
identical. We will study how to compress this representation using a BDD-like
global structure.

6 Conclusion

The presented techniques reflect a lengthy Darwinian development process of
the Mona tool in which only robust and useful ideas have survived. We have not
mentioned here the many ideas that failed or were surpassed by other techniques.
Our experiences confirm the maxim that optimizations must be carried out at all
levels and that no single silver bullet is sufficient. We are confident that further
improvements are still possible and that many other interesting applications will
be made.
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