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Abstract

We present a simple way to program typed abstract syntax in a lan-
guage following a Hindley-Milner typing discipline, such as Haskell and
ML, and we apply it to automate two proofs about normalization func-
tions as embodied in type-directed partial evaluation for the simply typed
lambda calculus: normalization functions (1) preserve types and (2) yield
long beta-eta normal forms.
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1 Introduction

Programs (implemented in a meta language) that manipulate programs (im-
plemented in an object language) need a representation of the manipulated
programs. Examples of such programs include interpreters, compilers, partial
evaluators, and logical frameworks.

When the meta language is a functional language with a Hindley-Milner
type system, such as Haskell [2] or ML [7], a data type is usually chosen to
represent object programs. In functional languages, data types are instrumental
in representing sum types and inductive types, both of which are needed to
represent even the simplest programs such as arithmetic expressions.

However, the object-language types of object-language terms represented by
data types cannot be inferred from the representation if the meta language
does not provide dependent types. Hence, regardless of any typing discipline
in the object language, when the meta language follows a Hindley-Milner type
discipline, it cannot prevent the construction of object-language terms that are
untyped, and correspondingly, it cannot report the types of object-language
terms that are well-typed. This typeless situation is familiar to anyone who has
represented λ-terms using a data type in an Haskell-like language.

In this article we consider a simple way of representing monomorphically
typed λ-terms in an Haskell-like language. We describe a typeful representation
of terms that prevents one from constructing untyped object-language terms in
the meta language and that makes the type system of the meta language report
the types of well-typed object-language terms.

We apply this typeful representation to type-directed partial evaluation [1, 3],
using Haskell [9]. In Haskell, the object language of type-directed partial eval-
uation is a subset of the meta language, namely the monomorphically typed
λ-calculus. Type-directed partial evaluation is an implementation of normal-
ization functions. As such, it maps a meta-language value that is simply typed
into a (textual) representation of its long beta-eta normal form.

All previous implementations of type-directed partial evaluation in Haskell-
like languages have the type t → Term, for some t and where Term denotes the
typeless representation of object programs. This type does not express that
the output of type-directed partial evaluation is a representation of an object
of the same type as the input. In contrast, our implementation has the more
expressive type t → Exp(t), where Exp denotes our typeful representation of ob-
ject programs. This type proves that type-directed partial evaluation preserves
types. Furthermore, using the same technique, we also prove that the output of
type-directed partial evaluation is indeed in long beta-eta normal form.

The rest of this article is organized as follows. In Section 2 we review a tradi-
tional, typeless data-type representation of λ-terms in Haskell. In Section 3, we
review higher-order abstract syntax, which is a stepping stone towards our type-
ful representation. Section 4 presents our main result, namely an extension of
higher-order abstract syntax that only allows well-typed object-language terms
to be constructed. In Section 5, we review type-directed partial evaluation,
which is our chosen domain of application. Section 6 presents our first applica-
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tion, namely an implementation of type-directed partial evaluation preserving
types. Section 7 presents our second application, namely another implemen-
tation of type-directed partial evaluation demonstrating that it produces long
beta-eta normal forms. Section 8 concludes.

2 Typeless first-order abstract syntax

We consider the simply typed λ-calculus with integer constants, variables, ap-
plications, and function abstractions:

(Types) t ::= α | int | t1 → t2
(Terms) e ::= i | x | e0 e1 | λx.e

Other base types (booleans, reals, etc.) and other type constructors (products,
sums, lists, etc.) are easy to add. So our object language is the λ-calculus.

Our meta language is Haskell. We use the following data type to represents
λ-terms. Its constructors are: integers (INT), variables (VAR), applications (APP),
and functional abstractions (LAM).

data Term = INT Int

| VAR String

| APP Term Term

| LAM String Term

Object-language terms are constructed in Haskell using the translation below.
Note that the type of dee0 is Term regardless of the type of e in the λ-calculus.

die0 = INT i

dxe0 = VAR "x"

de0 e1e0 = APP de0e0 de1e0
dλx.ee0 = LAM "x" dee0

The constructors of the data type are typed in Haskell: The term INT 9 is valid
whereas INT "a" is not. However, Haskell knows nothing of the λ-terms we wish
to represent. In other words, the translation d·e0 is not surjective: Some well-
typed encodings of object-language terms do not correspond to any legal object-
language term. For example, the term APP (INT 1) (LAM "x" (VAR "x")) has
type Term in Haskell, even though it represents the term 1(λx.x) which has no
type in the λ-calculus.

The fact that we can represent untyped λ-terms is not a shortcoming of the
meta language. One might want to represent programs in an untyped object
language like Scheme [6] or even structures for which no notion of type exists.

3 Typeless higher-order abstract syntax

To the data type Term we add an interface using higher-order abstract syn-
tax [8]. In higher-order abstract syntax, object-language variables and bindings
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module TypelessExp(int, app, lam, Exp) where

data Term = INT Int | VAR String | APP Term Term | LAM String Term

type Exp = Int -> Term

int i j = INT i

app e0 e1 j = APP (e0 j) (e1 j)

lam f j = LAM v (f (\_ -> VAR v) (j + 1))

where v = "x" ++ show j

Figure 1: Typeless higher-order abstract syntax in Haskell

are represented by meta-language variables and bindings. The interface to the
data type Term is shown in Figure 1.

The interface consists of syntax constructors for integers, applications, and
abstractions. There is no constructor for variables. Instead, fresh variable names
are generated and passed to the higher-order representation of abstractions. A
λ-expression is represented by a function accepting the next available fresh-
variable name, using de Bruijn levels.

Object-language terms are constructed in the meta language using the fol-
lowing translation. Note again that the type of dee1 is Term regardless of the
type of e in the λ-calculus.

die1 = int i

dxe1 = x

de0 e1e1 = app de0e1 de1e1
dλx.ee1 = lam (\x -> dee1)

This translation is also not surjective in the sense outlined in Section 2. Indeed,
the types of the three higher-order constructors in Haskell still allow untypable
λ-terms to be constructed. These three constructors are typed as follows.

int :: Int → Exp

app :: Exp → (Exp → Exp)
lam :: (Exp → Exp) → Exp

Therefore, the term app (int 1) (lam (\x -> x)) still has a type in Haskell,
namely Exp.

4 Typeful higher-order abstract syntax

Let us restrict the three higher-order constructors above to only yield well-typed
terms. To this end, we make the following observations about constructing well-
typed terms.
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module TypefulExp (int, app, lam, Exp) where

data Term = INT Int | VAR String | APP Term Term | LAM String Term

data Exp t = EXP (Int -> Term)

int :: Int -> Exp Int

app :: Exp (a -> b) -> Exp a -> Exp b

lam :: (Exp a -> Exp b) -> Exp (a -> b)

int i = EXP (\x -> INT i)

app (EXP e0) (EXP e1) = EXP (\x -> APP (e0 x) (e1 x))

lam f = EXP (\x -> let v = "x" ++ show x

EXP b = f (EXP (\_ -> VAR v))

in LAM v (b (x + 1)))

Figure 2: Typeful higher-order abstract syntax in Haskell

• The constructor int produces a term of object-language type Int.

• The first argument to app is a term of object-language type α → β, the
second argument is a term of object-language type α, and app produces a
term of object-language type β.

• The argument to lam must be a function mapping a term of object-
language type α into a term of object-language type β, and lam produces
a term of object-language type α → β.

These observations suggest that the (polymorphic) types of the three con-
structors actually could reflect the object-language types. We thus parameterize
the type Exp with the object-language type and we restrict the types of the con-
structors according to these observations. In Haskell we implement the new type
constructor as a data type, not just as an alias for Int → Term as in Figure 1. In
this way the internal representation is hidden. The result is shown in Figure 2.
The three constructors are typed as follows.

int :: Int → Exp(Int)
app :: Exp(α → β) → (Exp(α) → Exp(β))
lam :: (Exp(α) → Exp(β)) → Exp(α → β)

The translation from object-language terms to meta-language terms is the same
as the one for the typeless higher-order abstract syntax. However, unlike for
the typeless version, if e is an (object-language) term of type t then the (meta-
language) type of dee1 is Exp(t).

As an example, consider the λ-term λf.f(1) of type (Int → α) → α. It
is encoded in Haskell by dλf.f(1)e1 = lam (\f -> app f (int 1)) of type
Exp((Int → α) → α). Now consider the λ-term 1(λx.x) which is not well-typed
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module TypelessTdpe where

import TypelessExp -- from Figure 1

data Reify_Reflect(a) =

RR { reify :: a -> Exp,

reflect :: Exp -> a }

rra = -- atomic types

RR { reify = \x -> x,

reflect = \x -> x }

rrf (t1, t2) = -- function types

RR { reify = \v -> lam (\x -> reify t2 (v (reflect t1 x))),

reflect = \e -> \x -> reflect t2 (app e (reify t1 x)) }

normalize t v = reify t v

Figure 3: A typeless implementation of type-directed partial evaluation

in the λ-calculus. It is encoded by d1(λx.x)e1 = app 1 (lam (\x -> x)) which
is rejected by Haskell.

In the remaining sections, we apply typeful abstract syntax to type-directed
partial evaluation.

5 Type-directed partial evaluation

The goal of partial evaluation [5] is to specialize a program p of type t1 → t2 → t3
to a fixed first argument v of type t1. The result is a residual program pv that
satisfies pv(w) = p(v)(w) for all w of type t2, if both expressions terminate.
The motivation for partial evaluation is that running pv(w) is more efficient
than running p(v)(w).

In type-directed partial evaluation [1, 3, 9, 10], specialization is achieved
by normalization. For simply typed λ-terms, the partial application p(v) is
residualized into (the text of) a program pv in long beta-eta normal form. That
is, the residual program contains no beta-redexes and it is fully eta-expanded
with respect to its type.

5.1 Type-directed partial evaluation in Haskell

Figure 3 displays a typeless implementation of type-directed partial evaluation
for the simply typed λ-calculus in Haskell. To normalize a polymorphic value
v of type t, one applies the main function normalize to the value, v, and a
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representation of the type, |t|, defined as follows.

|α| = rra

|t1 → t2| = rrf(|t1|, |t2|)

To analyze the type of the representations of types, we first define the in-
stance of a type as follows.

[α]0 = Exp

[t1 → t2]0 = [t1]0 → [t2]0

Then, for any type t, the type of |t| is Reify Reflect([t]0). Haskell infers the
following type for the main function.

normalize :: Reify Reflect(α) → α → Exp

This type shows that normalize maps a α-typed input value into an Exp-typed
output value, i.e., a term. This type, however, does not show that the input
(meta-language) value and the output (object-language) term have the same
type. In Section 6, we show that type-directed partial evaluation is type-
preserving, and in Section 7, we show that the output term is in normal form.

5.2 Example: Church numerals, typelessly

As an example, we apply type-directed partial evaluation to specialize the addi-
tion of two Church numerals with respect to one argument. The Church numeral
zero, the successor function, and addition are defined as follows.

zero :: (a -> a) -> a -> a

zero = \s -> \z -> z

suc n = \s -> \z -> s (n s z)

add m n = \s -> \z -> m s (n s z)

5.2.1 Specializing add with respect to 0

We specialize the addition function with respect to the Church numeral 0 by
normalizing the partial application add zero. This expression has the following
type.

tadd = ((α → α) → β → α) → (α → α) → β → α

This type is represented in Haskell as follows.

|tadd| = rrf(rrf(rrf(rra, rra), rrf(rra, rra)),
rrf(rrf(rra, rra), rrf(rra, rra)))

Thus, evaluating the Haskell expression

normalize |tadd| (add zero) 37

9



(taking 37, for example, as the first de Bruijn level) yields a representation of
the following residual term.

λx37.λx38.λx39.x37(λx40.x38 x40)x39

For readability, let us rename this residual term:

λn.λs.λz.n(λn′.s n′)z

This term is the (η-expanded) identity function over Church numerals, reflecting
that 0 is neutral for addition.

Haskell infers the following type of the expression normalize |tadd|.

(((t′ → t′) → t′ → t′) → (t′ → t′) → t′ → t′) → t′, where t′ = Int → Term

This type does not express any relationship between the type of the input term
and the type of the residual term.

5.2.2 Specializing add with respect to 5

We specialize the addition function with respect to the Church numeral 5 by
normalizing the partial application add five, where five is defined as follows.

five = suc (suc (suc (suc (suc zero)))

The expression add five also has the type tadd. Thus, evaluating the Haskell
expression

normalize |tadd| (add five) 57

(taking 57 this time as the first de Bruijn level) yields a representation of the
following residual term.

λx57.λx58.λx59.x58(x58(x58(x58(x58(x57(λx60.x58 x60)x59)))))

For readability, let us rename this residual term:

λn.λs.λz.s(s(s(s(s(n(λn′.s n′)z)))))

In this term, the successor function is applied five times, reflecting that the
addition function has been specialized with respect to five.

6 Application 1: type preservation

In this section, we use the type inferencer of Haskell as a theorem prover to show
that type-directed partial evaluation preserves types. To this end, we implement
type-directed partial evaluation using typed abstract syntax.

10



module TypefulExpCoerce (int, app, lam, coerce, uncoerce, Exp) where

[...]

coerce :: Exp a -> Exp (Exp a)

uncoerce :: Exp (Exp a) -> Exp a

coerce (EXP f) = EXP f

uncoerce (EXP f) = EXP f

Figure 4: Typeful higher-order abstract syntax
with coercions for atomic types

6.1 Typeful type-directed partial evaluation (first variant)

We want the type of normalize to be Reify Reflect(α) → α → Exp(α). As a first
step to achieve this more expressive type, we shift to the typeful representation
of terms from Figure 2. The parameterized type constructor Exp(α) replaces
the type Exp. Thus, we change the data type Reify Reflect(α) from Figure 3 to
the following.

data Reify_Reflect a =

RR { reify :: a -> Exp a,

reflect :: Exp a -> a }

This change, however, makes the standard definition of rra untypable: The
identity function does not have type α → Exp(α) (or Exp(α) → α for that
matter). We solve this problem by introducing two identity functions in the
module of typed terms.

coerce :: Exp(α) → Exp(Exp(α))
uncoerce :: Exp(Exp(α)) → Exp(α)

At first it might seem that a function of type Exp(α) → Exp(Exp(α)) cannot
be the identity. However, internally Exp(t) is an alias for Int → Term, thus
discarding t, so in effect we are looking at two identity functions of type (Int →
Term) → (Int → Term). Figure 4 shows the required changes to the typeful
representation of Figure 2.

We can now define rra using coerce and uncoerce. The complete imple-
mentation is shown in Figure 5. Types are represented as in Section 5, but the
types of the represented types differ. We define the instance as follows.

[α]1 = Exp(α)
[t0 → t1]1 = [t0]1 → [t1]1

Then the type of |t| is Reify Reflect([t]1). Haskell infers the following type for
the main function.

normalize :: Reify Reflect(α) → α → Exp(α)

11



module TypefulTdpe where

import TypefulExpCoerce -- from Figure 4

data Reify_Reflect(a) =

RR { reify :: a -> Exp a,

reflect :: Exp a -> a }

rra = -- atomic types

RR { reify = \x -> coerce x,

reflect = \x -> uncoerce x }

rrf (t1, t2) = -- function types

RR { reify = \v -> lam (\x -> reify t2 (v (reflect t1 x))),

reflect = \e -> \x -> reflect t2 (app e (reify t1 x)) }

normalize t v = reify t v

Figure 5: A typeful implementation of type-directed partial evaluation

This type proves that type-directed partial evaluation preserves types.
N.B. The typeless implementation in Figure 3 and the typeful implementa-

tion in Figure 5 are as efficient. Indeed, they differ only in the two occurrences
of coerce and uncoerce in rra in Figure 5, which are defined as the identity
function.

6.2 Typeful type-directed partial evaluation (second vari-
ant)

The two auxiliary functions coerce and uncoerce are only necessary to obtain
an automatic proof of the type-preservation property of type-directed partial
evaluation: They are artefacts of the typeful encoding. But could one do without
them? In this section, we present an alternative proof of the typing of type-
directed partial evaluation without using these coercions. Instead, we show that
when type-directed partial evaluation is applied to a correct representation of
the type of the input value, the residual term has the same type as the input
value.

To this end, we implement rra as a pair of identity functions, as in Figure 3,
and we modify the data type Reify Reflect by weakening the connection between
the domains and the codomains of the reify / reflect pairs.

module TypefulTdpe where

import TypefulExp -- from Figure 2

12



data Reify_Reflect a b =

RR { reify :: a -> Exp b,

reflect :: Exp b -> a }

[...]

These changes make all of rra, rrf, and normalize well-typed in Haskell. Their
types read as follows.

rra :: Reify Reflect(Exp(α))(α)
rrf :: (Reify Reflect(α)(γ), Reify Reflect(β)(δ)) →

Reify Reflect(α → β)(γ → δ)
normalize :: Reify Reflect(α)(β) → α → Exp(β)

The type of normalize no longer proves that it preserves types. However, we
can fill in the details by hand using the inferred types of rra and rrf: We
prove by induction on the type t that the type of |t| is Reify Reflect([t]1)(t). For
t = α, we have |t| = rra which has type Reify Reflect(Exp(α))(α) as required.
For t = t1 → t2, we have |t| = rrf(|t1|, |t2|). By hypothesis, |ti| has type
Reify Reflect([ti]1)(ti) for i ∈ {1, 2}. Hence, by the inferred type for rrf we have
that rrf(|t1|, |t2|) has type Reify Reflect([t1]1 → [t2]1)(t1 → t2) as required.
As a corollary we obtain that for all types t,

normalize |t| :: [t]1 → Exp(t)

This proof gives a hint about how to prove (by hand) that typeless type-directed
partial evaluation preserves types.

6.3 Example: Church numerals, typefully

Let us revisit the example of Section 5.2. We specialize the addition function
with respect to a fixed argument using the two typeful variants of type-directed
partial evaluation. In both cases the residual terms are the same as in Sec-
tion 5.2. The Haskell expression normalize |tadd| has type [tadd]1 → Exp([tadd]1)
using the first variant and it has type [tadd]1 → Exp(tadd) using the second vari-
ant.

7 Application 2: normal forms

In this section, we use the type inferencer of Haskell as a theorem prover to show
that type-directed partial evaluation yields long beta-eta normal forms. We first
specify long beta-eta normal forms, both typelessly and typefully (Section 7.1).
Then we revisit type-directed partial evaluation, both typelessly (Section 7.2)
and typefully (Sections 7.3 and 7.4).
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module TypelessNf where

data Nf_ = AT_ At_

| LAM String Nf_

data At_ = VAR String

| APP At_ Nf_

type Nf = Int -> Nf_

type At = Int -> At_

app e1 e2 x = APP (e1 x) (e2 x)

lam f x = LAM v (f (\_ -> VAR v) (x + 1))

where v = "x" ++ show x

at2nf e x = AT_ (e x)

Figure 6: Typeless representation of normal forms

module TypefulNf where

data Nf_ = AT_ At_

| LAM String Nf_

data At_ = VAR String

| APP At_ Nf_

data Nf t = NF (Int -> Nf_)

data At t = AT (Int -> At_)

app :: At (a -> b) -> Nf a -> At b

lam :: (At a -> Nf b) -> Nf (a -> b)

coerce :: Nf a -> Nf (Nf a)

uncoerce :: At (Nf a) -> Nf a

at2nf :: At a -> Nf a

app (AT e1) (NF e2) = AT (\x -> APP (e1 x) (e2 x))

lam f = NF (\x -> let v = "x" ++ show x

NF b = f (AT (\_ -> VAR v))

in LAM v (b (x + 1)))

coerce (NF f) = NF f

uncoerce (AT f) = NF (\x -> AT_ (f x))

at2nf (AT f) = NF (\x -> AT_ (f x))

Figure 7: Typeful representation of normal forms
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7.1 Long beta-eta normal forms

We consider explicitly typed λ-terms:

(Types) t ::= a | t1 → t2
(Terms) e ::= x | e0 e1 | λx ::t. e

Definition 1 (long beta-eta normal forms [3, 4]) A closed term e of type
t is in long beta-eta normal form if and only if it satisfies · `nf e :: t where “·”
denotes the empty environment and where terms in normal form and atomic
form are defined by the following rules:

∆, x :: t1 `nf e :: t2

∆ `nf λx ::t1. e :: t1 → t2
[lam]

∆ `at e :: a

∆ `nf e :: a
[coerce]

∆ `at e0 :: t1 → t2 ∆ `nf e1 :: t1

∆ `at e0 e1 :: t2
[app]

∆(x) = t

∆ `at x :: t
[var]

No term containing β-redexes can be derived by these rules, and the coerce rule
ensures that the derived terms are fully η-expanded.

Figure 6 displays a typeless representation of normal forms in Haskell. Fig-
ure 7 displays a typeful representation of normal forms in Haskell.

7.2 Typeless type-directed partial evaluation and normal
forms

We now reexpress type-directed partial evaluation as specified in Figure 8 to
yield typeless terms, as also done by Filinski [3]. The type of normalize reads
as follows.

normalize :: Reify Reflect(α) → α → Nf

This type proves that type-directed partial evaluation yields residual terms
in beta normal form since the representation of Figure 6 does not allow beta
redexes. These residual terms are also in eta normal form because at2nf is only
applied at base type: residual terms are thus fully eta expanded.

7.3 Typeful type-directed partial evaluation and normal
forms (first variant)

We now reexpress type-directed partial evaluation to yield typeful terms as
specified in Figure 9. The type of normalize reads as follows.

normalize :: Reify Reflect(α) → α → Nf(α)

This type proves that type-directed partial evaluation (1) preserves types and
(2) yields terms in normal form.
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module TypelessTdpeNf where

import TypelessNf -- from Figure 6

data Reify_Reflect a =

RR { reify :: a -> Nf,

reflect :: At -> a }

rra = -- atomic types

RR { reify = \x -> x,

reflect = \x -> at2nf x }

rrf (t1, t2) = -- function types

RR { reify = \v -> lam (\x -> reify t2 (v (reflect t1 x))),

reflect = \e -> \x -> reflect t2 (app e (reify t1 x)) }

normalize t v = reify t v

Figure 8: Typeless implementation of type-directed partial evaluation
with normal forms

module TypefulTdpeNf1 where

import TypefulNf -- from Figure 7

data Reify_Reflect a =

RR { reify :: a -> Nf a,

reflect :: At a -> a }

rra = -- atomic types

RR { reify = \x -> coerce x,

reflect = \x -> uncoerce x }

rrf (t1, t2) = -- function types

RR { reify = \v -> lam (\x -> reify t2 (v (reflect t1 x))),

reflect = \e -> \x -> reflect t2 (app e (reify t1 x)) }

normalize t v = reify t v

Figure 9: Typeful implementation of type-directed partial evaluation
with normal forms (first variant)
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module TypefulTdpeNf2 where

import TypefulNf -- from Figure 7

data Reify_Reflect a b =

RR { reify :: a -> Nf b,

reflect :: At b -> a }

rra = -- atomic types

RR { reify = \x -> x,

reflect = \x -> at2nf x }

rrf (t1, t2) = -- function types

RR { reify = \v -> lam (\x -> reify t2 (v (reflect t1 x))),

reflect = \e -> \x -> reflect t2 (app e (reify t1 x)) }

normalize t v = reify t v

Figure 10: Typeful implementation of type-directed partial evaluation
with normal forms (second variant)

7.4 Typeful type-directed partial evaluation and normal
forms (second variant)

On the same ground as Section 6.2, i.e., to bypass the artefactual coercions of
the typeful encoding of abstract syntax, we now reexpress type-directed par-
tial evaluation to yield typeful terms as specified in Figure 10. The type of
normalize reads as follows.

normalize :: Reify Reflect(α)(β) → α → Nf(β)

This type only proves that type-directed partial evaluation yields terms in nor-
mal form. As in Section 6.2, we can prove type preservation by hand, i.e.,
that

normalize |t| :: [t]2 → Nf(t)

where the instance of a type is defined by

[α]2 = Nf(α)
[t1 → t2]2 = [t1]2 → [t2]2

8 Conclusions and issues

We have presented a simple way to express typed abstract syntax in a Haskell-
like language, and we have used this typed abstract syntax to demonstrate that
type-directed partial evaluation preserves types and yields residual programs in
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normal form. The encoding is limited because it does not lend itself to programs
taking typed abstract syntax as input—as, e.g., a typeful transformation into
continuation-passing style. Nevertheless, the encoding is sufficient to establish
two key properties of type-directed partial evaluation automatically.

These two properties could be illustrated more directly in a language with
dependent types such as Martin-Löf type theory. In such a language, one can
directly represent typed abstract syntax and program type-directed partial eval-
uation typefully.
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A ML programs

In this appendix we present the ML implementation of the programs in the
body of this report. The main differences between the ML programs and the
Haskell programs are as follows.

• The ML programs use gensym to generate fresh variable names instead
of a threaded variable. (Compare the figures 1A, 2A, 6A, and 7A with
their corresponding Haskell counterparts.) It is possible to use a threaded
variable to generate fresh variable names in the ML programs, too. On
the other hand, Haskell is a pure functional language, so it is not possible
to use gensym to generate fresh variable names in the Haskell programs.
The implementation of gensym is standard:

structure Gensym

= struct

val gensym_count = ref 0

fun gensym ()

= let val this = !gensym_count

in gensym_count := this + 1;

"x" ^ (Int.toString this)

end

end

• The ML programs use signatures to restrict the types of the higher-order
constructors instead of using a datatype. (Compare the figures 2A, 4A,
and 7A with their corresponding Haskell counterparts.) It is possible to
use a datatype to restrict the types of the higher-order constructors in the
ML programs, too. On the other hand, Haskell does not have signatures,
so this modular approach cannot be used in the Haskell programs.
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structure TypelessExp

= struct

datatype exp = INT of int

| VAR of string

| APP of exp * exp

| LAM of string * exp

val int = INT

val app = APP

fun lam f

= let val x = Gensym.gensym ()

in LAM(x, f(VAR x))

end

end

Figure 1A: Typeless higher-order abstract syntax in ML

structure TypefulExp

:> sig

type ’a exp

val int : int -> int exp

val app : (’a -> ’b) exp * ’a exp -> ’b exp

val lam : (’a exp -> ’b exp) -> (’a -> ’b) exp

end

= struct

datatype term = INT of int

| VAR of string

| APP of term * term

| LAM of string * term

type ’a exp = term

val int = INT

val app = APP

fun lam f

= let val x = Gensym.gensym ()

in LAM(x, f(VAR x))

end

end

Figure 2A: Typeful higher-order abstract syntax in ML
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structure TypelessTdpe

= let open TypelessExp (* from Fig. 1A *)

in struct

datatype ’a rr = RR of { reify : ’a -> exp,

reflect : exp -> ’a }

val rra (* atomic types *)

= RR { reify = fn x => x,

reflect = fn x => x }

fun rrf (RR t1, RR t2) (* function types *)

= RR { reify

= fn v => lam (fn x => #reify t2 (v (#reflect t1 x))),

reflect

= fn e => fn x => #reflect t2 (app(e, #reify t1 x)) }

fun normalize (RR t) v = #reify t v

end

end

Figure 3A: A typeless implementation of type-directed partial evaluation

structure TypefulExpCoerce

:> sig

[...]

val coerce : ’a exp -> (’a exp) exp

val uncoerce : (’a exp) exp -> ’a exp

end

= struct

[...]

fun coerce e = e

fun uncoerce e = e

end

Figure 4A: Typeful higher-order abstract syntax
with coercions for atomic types
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structure TypefulTdpeCoerce

= let open TypefulExpCoerce (* from Fig. 4A *)

in struct

datatype ’a rr = RR of { reify : ’a -> ’a exp,

reflect : ’a exp -> ’a }

val rra (* atomic types *)

= RR { reify = fn x => coerce x,

reflect = fn x => uncoerce x }

fun rrf (RR t1, RR t2) (* function types *)

= RR { reify

= fn v => lam (fn x => #reify t2 (v (#reflect t1 x))),

reflect

= fn e => fn x => #reflect t2 (app(e, #reify t1 x)) }

fun normalize (RR t) v = #reify t v

end

end

Figure 5A: A typeful implementation of type-directed partial evaluation

structure TypelessNf

= struct

datatype nf = AT of at

| LAM of string * nf

and at = VAR of string

| APP of at * nf

val app = APP

fun lam f

= let val x = Gensym.gensym ()

in LAM(x, f(VAR x))

end

val at2nf = AT

end

Figure 6A: Typeless representation of normal forms

21



structure TypefulNf

:> sig

type ’a nf

type ’a at

val app : (’a -> ’b) at * ’a nf -> ’b at

val lam : (’a at -> ’b nf) -> (’a -> ’b) nf

val coerce : ’a nf -> (’a nf) nf

val uncoerce : (’a nf) at -> ’a nf

val at2nf : ’a at -> ’a nf

end

= struct

datatype nf_ = AT of at_

| LAM of string * nf_

and at_ = VAR of string

| APP of at_ * nf_

type ’a nf = nf_

type ’a at = at_

val app = APP

fun lam f

= let val v = Gensym.gensym ()

in LAM(v, f (VAR v))

end

fun coerce f = f

fun uncoerce f = AT f

val at2nf = AT

end

Figure 7A: Typeful representation of normal forms
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structure TypelessTdpeNf

= let open TypelessNf (* from Fig. 6A *)

in struct

datatype ’a rr = RR of { reify : ’a -> nf,

reflect : at -> ’a }

val rra (* atomic types *)

= RR { reify = fn x => x,

reflect = fn x => at2nf x }

fun rrf (RR t1, RR t2) (* function types *)

= RR { reify

= fn v => lam (fn x => #reify t2 (v (#reflect t1 x))),

reflect

= fn e => fn x => #reflect t2 (app(e, #reify t1 x)) }

fun normalize (RR t) v = #reify t v

end

end

Figure 8A: Typeless implementation of type-directed partial evaluation
with normal forms
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structure TypefulTdpeNfCoerce

= let open TypefulNf (* from Fig. 7A *)

in struct

datatype ’a rr = RR of { reify : ’a -> ’a nf,

reflect : ’a at -> ’a }

val rra (* atomic types *)

= RR { reify = fn x => coerce x,

reflect = fn x => uncoerce x }

fun rrf (RR t1, RR t2) (* function types *)

= RR { reify

= fn v => lam (fn x => #reify t2 (v (#reflect t1 x))),

reflect

= fn e => fn x => #reflect t2 (app(e, #reify t1 x)) }

fun normalize (RR t) v = #reify t v

end

end

Figure 9A: Typeful implementation of type-directed partial evaluation
with normal forms (first variant)

structure TypefulTdpeNfWeak

= let open TypefulNf (* from Fig. 7A *)

in struct

datatype (’a, ’b) rr = RR of { reify : ’a -> ’b nf,

reflect : ’b at -> ’a }

val rra (* atomic types *)

= RR { reify = fn x => x,

reflect = fn x => at2nf x }

fun rrf (RR t1, RR t2) (* function types *)

= RR { reify

= fn v => lam (fn x => #reify t2 (v (#reflect t1 x))),

reflect

= fn e => fn x => #reflect t2 (app(e, #reify t1 x)) }

fun normalize (RR t) v = #reify t v

end

end

Figure 10A: Typeful implementation of type-directed partial evaluation
with normal forms (second variant)
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