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Characteristic Formulae for Timed Automata

Luca Aceto Anna Ingólfsdóttir
Mikkel Lykke Pedersen Jan Poulsen

BRICS∗, Department of Computer Science, Aalborg University
Fr. Bajersvej 7E, 9220 Aalborg Ø, Denmark

Abstract

This paper offers characteristic formula constructions in the real-
time logic Lν for several behavioural relations between (states of)
timed automata. The behavioural relations studied in this work are
timed (bi)similarity, timed ready simulation, faster-than bisimilarity
and timed trace inclusion. The characteristic formulae delivered by
our constructions have size which is linear in that of the timed au-
tomaton they logically describe. This also applies to the characteristic
formula for timed bisimulation equivalence, for which an exponential
space construction was previously offered by Laroussinie, Larsen and
Weise.

1 Introduction

There are two main methodologies for the formal verification of reactive
systems, viz. model checking and implementation verification. In the model
checking approach [8], one establishes the correctness of a system with re-
spect to a given specification by checking whether a state-transition graph
that models the program satisfies a temporal logic formula expressing the
desired specification of the system’s behaviour. In implementation veri-
fication, both a system and the specification of its desired behaviour are
expressed as state-transition graphs. Establishing that a system is correct
with respect to its specification then amounts to checking whether the be-
haviours of the two state-transition graphs are related in some formal sense.
In the classic, untimed setting, this correlation between the behaviours of

∗Basic Research in Computer Science, Centre of the Danish National Research Foun-
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two state-transition graphs is usually expressed in terms of a behavioural
relation in the linear time-branching time spectrum [12].

One of the bridges between these two approaches to verification is pro-
vided by the notion of characteristic formula [13, 15, 26]. A characteristic
formula is a formula in a temporal logic that completely characterizes the
behaviour of a (state in a) state-transition graph modulo a chosen notion of
behavioural relation. Using it, checking whether two state-transition graphs
A and B are related with respect to a behavioural relation can be reduced
to checking whether, say, A is a model of the characteristic formula for B.

The approach to (automated) verification where the problem of checking
behavioral relations between finite Labelled Transition Systems (LTSs) [16]
is reduced to model checking is advocated by Cleaveland and Steffen

in [9, 10]. In their approach, the language being model checked is a logic
equivalent in expressive power to the alternation-free fragment of the modal
µ-calculus [17]. The efficiency of this approach hinges on the following two
facts:

1. the characteristic formula associated with a finite labelled transition
system has size that is linear in that of the original LTS, and

2. the time complexity of determining whether a process satisfies a for-
mula is proportional to the product of the sizes of the process and the
formula.

The resulting algorithm offered in [9] is still considered to be one of the most
efficient for checking behavioural preorders.

In the setting of modelling and verification for real time systems, a char-
acteristic formula construction for timed bisimulation equivalence over timed
automata [2] has been offered in [19]. In op. cit., Laroussinie, Larsen and

Weise have proposed the logic Lν—a real-time version of Hennessy-Milner
Logic [14] with greatest fixed-points—, and have shown that its associated
model checking problem is decidable, and that this logic is sufficiently ex-
pressive for representing any timed automaton as a single characteristic Lν

formula. Such a formula uniquely characterizes the timed automaton up to
timed bisimilarity.

The characteristic formula construction presented in [19], together with
a model checking algorithm for the logic Lν , yields an algorithm for checking
whether two timed automata are timed bisimilar, which may be seen as the
implementation of the approach advocated in [9] in a real-time setting. Un-
fortunately, however, the characteristic formula construction for timed au-
tomata proposed in [19] produces formulae whose size is exponential in that

2



of the original automaton, and this makes its use in checking timed bisimilar-
ity for timed automata infeasible. The exponential blow-up involved in the
characteristic formula construction from op. cit. is due to the fact that the
formula is essentially constructed by applying the standard, untimed con-
struction developed by Ingólfsdóttir, Godskesen and Zeeberg [15]
to the region graph associated with the timed automaton [2]. As shown by
Alur and Dill [2], the size of the region graph is exponential in that of
the original timed automaton.

This study offers characteristic formula constructions for timed automata
using the logic Lν that, like those in the untimed setting and unlike that
offered in [19], yield formulae whose size is linear with respect to that of
the timed automaton they characterize. We present characteristic formula
constructions for timed bisimilarity [28], timed versions of the simulation [21]
and ready simulation [5, 20] preorders and for the faster-than preorder [23].
In particular, the characteristic formula construction for timed bisimilarity
improves upon that offered in [19]. In addition, since, if B is a deterministic
timed automaton, checking whether the set of timed traces afforded by a
timed automaton A is included in that of B is equivalent to establishing that
B simulates A, the characteristic formula construction for timed simulation
can also be applied to checking timed trace inclusion [2].

The constructions we propose constitute a first step towards the appli-
cation of the model checking approach to implementation verification in the
timed setting. A prototype tool based on the theory we present in this study
is described in [25].

Further Related Work Characteristic formulae were introduced in [13]
to relate equational reasoning about processes to reasoning in a modal logic,
and therefore to allow proofs about processes to be carried out in a logical
framework. The initial research within characteristic formulae concerned
terminating processes and bisimulation equivalences, but extensions to this
theory have included finite processes and further equivalences. The un-
published master’s thesis [15] presents, amongst other things, characteristic
formulae for finite LTSs with respect to bisimulation, and is the precur-
sor of most of the papers on the subject that followed, including ours. In
[26] Ingólfsdóttir and Steffen show how to extend these results to
cover bisimulation-like preorders which are sensitive to liveness properties.
Their work demonstrates the expressive power of intuitionistically inter-
preted Hennessy Milner Logic with greatest fixed-points, and builds the
theoretical basis for a uniform and efficient method to automatically verify
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bisimulation-like relations between processes by means of model checking.
As previously mentioned, this approach to checking behavioural relations
has been advocated by Cleaveland and Steffen in a series of papers
(see, e.g., [9]).

All the aforementioned papers use some form of Hennessy-Milner Logic
with greatest fixed-points as the logical counterpart of automata. This is,
however, by no means the only option pursued in the literature. For example,
Browne, Clarke and Grümberg [6] have shown how to characterize
Kripke structures in the logic CTL [7] up to bisimilarity.

Roadmap of the Paper After a brief review of background material on
timed automata and the logic Lν (Sect. 2), we present the timed behavioural
relations for which we offer characteristic formula constructions (Sect. 3).
The constructions of the characteristic formulae are the topic of Sect. 4,
where their correctness is also proven. The paper concludes with a discus-
sion of the use of characteristic formulae for checking timed trace inclusion
between timed automata in a setting in which the specification automaton
is deterministic (Sect. 5).

2 Preliminaries

We begin by briefly reviewing the timed automaton model proposed by
Alur and Dill [2] and the logic Lν [19] that will be used in this study.

Timed Labelled Transition Systems Let Act be a finite set of actions,
ranged over by a, b, and let N and R≥0 denote the sets of natural and non-
negative real numbers, respectively. We use D to denote the set of delay
actions {ε(d) | d ∈ R≥0}, and L to stand for the union of Act and D. The
meta-variable α will range over L.

Definition 2.1 A timed labelled transition system (TLTS) is a structure
T = (S,L, s0,−→) where S is a set of states, s0 ∈ S is the initial state, and
−→⊆ S × L× S is a transition relation satisfying the following properties:

• (Time Determinism) for every s, s′, s′′ ∈ S and d ∈ R≥0, if s
ε(d)→ s′

and s
ε(d)→ s′′, then s′ = s′′;

• (Time Additivity) for every s, s′′ ∈ S and d1, d2 ∈ R≥0, s
ε(d1+d2)→ s′′

iff s
ε(d1)→ s′

ε(d2)→ s′′, for some s′ ∈ S;
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• (0-Delay) for every s, s′ ∈ S, s
ε(0)→ s′ iff s = s′.

As usual, we write s α→ to mean that there is some state s′ such that s α→ s′.

The axioms of time determinism, time additivity and 0-delay are standard
in the literature on Yi’s TCCS (see, e.g., [28]).

Timed Automata Let C be a set of clocks. We use B(C) to denote
the set of boolean expressions over atomic formulae of the form x 1 p and
x − y 1 p, with x, y ∈ C, p ∈ N, and 1∈ {<,>,=}. Expressions in B(C)
are interpreted over the collection of time assignments. A time assignment,
or valuation, v for C is a function from C to R≥0. Given an expression
g ∈ B(C) and a time assignment v, we write v |= g if v satisfies g. Note that
B(C) is closed under negation. For every time assignment v and d ∈ R≥0,
we use v + d to denote the time assignment which maps each clock x ∈ C
to the value v(x) + d. Two assignments u and v are said to agree on the
set of clocks C ′ iff they assign the same real number to every clock in C ′.
For every subset C ′ of clocks, v[C ′ 7→ 0] denotes the assignment for C which
maps each clock in C ′ to the value 0 and agrees with v over C\C ′.

Definition 2.2 A timed automaton is a quintuple A = (Act,N, n0, C,E)
where N is a finite set of nodes, n0 is the initial node, C is a finite set of
clocks, and E ⊆ N ×N × Act× 2C ×B(C) is a set of edges. The quintuple
e = (n, ne, a, re, ge) ∈ E stands for an edge from node n to node ne (the
target of e) with action a, where re denotes the set of clocks to be reset to 0
and ge is the enabling condition (or guard) over the clocks of A.

A state of a timed automaton A is a pair (n, v) where n is a node of A and
v is a time assignment for C. The initial state of A is (n0, [C 7→ 0]) where
n0 is the initial node of A, and [C 7→ 0] is the time assignment mapping all
clocks in C to 0.

The operational semantics of a timed automaton A is given by the TLTS
TA = (SA,L, s0A, −→), where SA is the set of states of A, s0A is the initial
state of A, and −→ is the transition relation defined as follows:

(n, v) a→ (n′, v′) iff ∃e = (n, n′, a, re, ge) ∈ E. v |= ge ∧ v′ = v[re 7→ 0]

(n, v)
ε(d)→ (n′, v′) iff n = n′ and v′ = v + d ,

where a ∈ Act and ε(d) ∈ D.
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The Logic Lν The logic Lν is a real-time version of Hennessy-Milner Logic
with greatest fixed-points that stems from [19]. We now briefly review its
syntax and semantics for the sake of completeness.

Definition 2.3 (Syntax of Lν) Let K be a finite set of formula clocks,
Id a finite set of identifiers and k a non-negative integer. The set Lν of
formulae over K, Id and largest constant k is generated by the abstract
syntax below, with ϕ and ψ ranging over Lν:

ϕ ::= tt | ff | ϕ ∧ ψ | ϕ ∨ ψ | ∃∃ϕ | ∀∀ϕ | 〈a〉ϕ | [a]ϕ |
x in ϕ | x 1 p | x+ p 1 y + q | Z

where a ∈ Act, x, y ∈ K, p, q ∈ {0, . . . , k}, 1∈ {=, <,≤, >,≥} and Z ∈ Id.

The logic Lν allows for the recursive definition of formulae by including a
finite set Id of identifiers. The formula associated with each of the identifiers
is specified by a declaration D, i.e. D assigns a formula of Lν to each
identifier. For an identifier Z we let Z def= ϕ denote D(Z) = ϕ. Intuitively
Z will stand for the largest solution of the equation Z

def= ϕ. We refer the
interested reader to [19] for more information on Lν .

Given a timed automaton A, whose set of clocks C is disjoint from K,
we interpret the formulae in Lν over extended states. An extended state of
A is a pair (n, vu), where (n, v) is a state of A, u is a time assignment for
K, and we use vu for the assignment over C ∪K that agrees with v over C
and with u over K.
Definition 2.4 (Semantics of Lν) Let A be a timed automaton and D a
declaration. The satisfaction relation |=D is the largest relation satisfying
the following implications:

(n, vu) |=D tt ⇒ true
(n, vu) |=D ff ⇒ false

(n, vu) |=D ϕ ∧ ψ ⇒ (n, vu) |=D ϕ and (n, vu) |=D ψ

(n, vu) |=D ϕ ∨ ψ ⇒ (n, vu) |=D ϕ or (n, vu) |=D ψ

(n, vu) |=D ∃∃ϕ ⇒ ∃d ∈ R≥0.(n, (v + d)(u + d)) |=D ϕ

(n, vu) |=D ∀∀ϕ ⇒ ∀d ∈ R≥0.(n, (v + d)(u + d)) |=D ϕ

(n, vu) |=D 〈a〉ϕ ⇒ ∃(n′, v′).(n, v) a→ (n′, v′) and (n′, v′u) |=D ϕ

(n, vu) |=D [a]ϕ ⇒ ∀(n′, v′).(n, v) a→ (n′, v′) implies (n′, v′u) |=D ϕ

(n, vu) |=D x 1 p ⇒ u(x) 1 p

(n, vu) |=D x+ p 1 y + q ⇒ u(x) + p 1 u(y) + q

(n, vu) |=D x in ϕ ⇒ (n, vu′) |=D ϕ where u′ = u[{x} 7→ 0]
(n, vu) |=D Z ⇒ (n, vu) |=D D(Z) .
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Any relation satisfying the above implications is referred to as a satisfiability
relation. From standard fixed-point theory [27] we have that |=D is the union
of all satisfiability relations.

3 Timed Behavioural Relations

In the untimed setting various behavioral relations over processes have been
proposed (see, e.g., [12] for an encyclopaedic treatment and detailed refer-
ences to the original literature), and some of them (e.g. bisimulation and
trace equivalence) have later been adapted to a timed setting. However,
the timed setting also provides specific time-dependent behavioral relations.
One such relation is the faster-than bisimulation from [23], which explicitly
requires one process to execute at least as fast as another, while having the
same functional behaviour. (See [3] for a similar proposal in the more classic
setting of CCS [22].)

We now proceed to review the timed behavioural relations over TLTSs
studied in this paper. The notion of timed bisimulation stems from [28]. It
is the obvious adaptation to the timed setting of the classic definition due
to Park [24].

Definition 3.1 Let T = (S,L, s0,−→) be a TLTS. A timed simulation is
a relation R ⊆ S × S such that whenever s1Rs2 and α ∈ L, then:

- If s1
α→ s′1 then s2

α→ s′2 for some s′2 such that s′1Rs′2.

A timed bisimulation is a symmetric timed simulation.
For states s1, s2, we write s1 <∼S s2 (resp. s1 ∼ s2) iff there exists a timed

simulation (resp. a timed bisimulation) R with s1Rs2.

In the untimed setting, the notion of ready simulation stems from [5, 20].
In [5], the ready simulation preorder was characterized as the largest con-
gruence with respect to the GSOS format of operational rules included in
completed trace inclusion.

Definition 3.2 Let T = (S,L, s0,−→) be a TLTS. A timed ready simula-
tion is a relation R ⊆ S × S such that whenever s1Rs2, a ∈ Act and α ∈ L
then:

- If s1
α→ s′1 then s2

α→ s′2 for some s′2 such that s′1Rs′2;

- If s2
a→ then s1

a→.
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For states s1, s2, we write s1 <∼RS s2 iff there exists a timed ready simulation
R with s1Rs2.

Moller and Tofts [23] have proposed a preorder on processes that dis-
tinguishes functionally behaviourally equivalent processes which operate at
different speed. Their original proposal applied to their calculus TCCS, but
it is simple enough to adapt it to the setting of TLTSs.

Definition 3.3 Let T = (S,L, s0,−→) be a TLTS. A faster-than bisimula-
tion is a relation R ⊆ S×S such that whenever s1Rs2, a ∈ Act and d ∈ R≥0

then:

1. if s1
a→ s′1 then there are d ∈ R≥0, s

′′
1, s

′
2 and s′′2 such that s′1

ε(d)→ s′′1,

s2
ε(d)→ s′2

a→ s′′2, and s′1 R s′2;

2. If s2
a→ s′2 then s1

a→ s′1 for some s′1 such that s′1 R s′2;

3. If s1
ε(d)→ s′1 then s2

ε(d)→ s′2 for some s′2 such that s′1 R s′2;

4. If s2
ε(d)→ s′2 then s1

ε(d)→ s′1 for some s′1 such that and s′1 R s′2.

For states s1, s2, we write s1 <∼FT s2 iff there exists a faster-than bisimulation
R with s1Rs2.

It is well-known that <∼∗ (∗ ∈ {S,RS,FT}) is a preorder. Moreover <∼S is
the largest timed simulation, <∼RS is the largest timed ready simulation, and
<∼FT is the largest faster-than bisimulation. Similarly, ∼ is an equivalence
relation, and is the largest timed bisimulation.

All of the previously defined behavioural relations can be lifted to the
setting of timed automata thus:

Definition 3.4 Let A,B be two timed automata. Then, for every relation
R∈ {<∼S,<∼RS ,<∼FT ,∼}, we write A R B iff s0A R s0B in the TLTS that results
by taking the disjoint union of TA and TB.

In what follows, we shall always use the behavioural relations defined above
to compare (states of) timed automata.

4 Characteristic Formula Constructions

We now offer general characteristic formula constructions in terms of Lν for
each of the timed behavioral relations introduced in Sect. 3. The construc-
tions associate with each timed automaton a set of propositional equations
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(one equation per node of the automaton) that characterizes it up to the
given timed behavioural relation.

To increase the readability of the characteristic formulae we make use of
some derived constructs in the logic Lν . These we now present for the sake
of clarity.

For a reset set r = {x1, . . . , xk}, we use the abbreviation r in ϕ to stand
for the formula inductively defined thus:

∅ in ϕ
def= ϕ

{x1, . . . , xk} in ϕ
def= x1 in ({x2, . . . , xk} in ϕ) (k ≥ 1) .

Note that the order of the clocks is arbitrary because x in (y in ϕ) is
logically equivalent to y in (x in ϕ).

The expression g ⇒ ϕ will stand for g∨ϕ, where g is the negation of the
guard g. This is a formula in Lν because the collection of guards is closed
under negation.

Given a node n in a timed automaton A, and action a, we define:

enabled(n, a) def=
∨

e∈E(n,a)

ge , (1)

where e = (n, ne, a, re, ge) is an edge, and E(n, a) denotes the set of a-
labelled edges from node n. Intuitively, the formula enabled(n, a) describes
when action a can be performed from a state of the form (n, v). The negation
of the expression enabled(n, a) will be used in the characteristic formula
construction for timed ready simulation. Note that, since the collection of
guards is closed under negation, the negation of enabled(n, a) can also be
expressed in Lν . Finally, we recall that, as usual, an empty disjunction
stands for ff and an empty conjunction is equivalent to tt.

In the remainder of this section, we shall implicitly assume a given timed
automaton A, for which all the characteristic formulae will be defined.

Characteristic Formula for Timed Bisimulation Equivalence For
this relation we define the characteristic formula describing the properties
presented in Defn. 3.1. A formula characterizing a node of a timed automa-
ton up to timed bisimulation should offer a description of:

1. all the actions that are enabled in the node,

2. which node is entered by taking a given transition, together with the
resets associated with it, and
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3. the maximal delay that is allowed in the node.

The resulting characteristic formula is presented below. It consists of three
sets of conjuncts, each associated to one of the above properties, for each
node n of a timed automaton A:

Φ∼(n) def= (
∧

a∈Act

∧
e∈E(n,a)

ge ⇒ (〈a〉 re in Φ∼(ne))) ∧

∧

a∈Act
[a](

∨
e∈E(n,a)

ge ∧ (re in Φ∼(ne))) ∧

∀∀Φ∼(n)

where n is a node of A, e = (n, ne, a, re, ge), and we recall that E(n, a)
denotes the set of a-labelled edges from node n. We shall use D∼

A to denote
the declaration that consists of the equations above, one for each node of A.

Theorem 4.1 Let A,B be timed automata with disjoint sets of clocks. Let
n be a node of A and m be a node of B. Assume that u and v are valuations
for the clocks of A and B, respectively. Then

(n, u) ∼ (m, v) iff (m, vu) |= Φ∼(n) ,

where (m, vu) |= Φ∼(n) holds with respect to the declaration D∼
A .

Proof: We separately prove that:

1. (n, u) ∼ (m, v) only if (m, vu) |= Φ∼(n), and

2. if (m, vu) |= Φ∼(n) then (n, u) ∼ (m, v).

〈1〉 To show that the ‘only if’ implication holds, consider the relation ` defined
by structural induction on formulae thus: (m ranges over the nodes of B,
and n over those of A)
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(m, vu) ` tt ⇔ true
(m, vu) ` ff ⇔ false

(m, vu) ` ϕ ∧ ψ ⇔ (m, vu) ` ϕ and (m, vu) ` ψ
(m, vu) ` ϕ ∨ ψ ⇔ (m, vu) ` ϕ or (m, vu) ` ψ

(m, vu) ` ∃∃ϕ ⇔ ∃d ∈ R≥0.(m, (v + d)(u+ d)) ` ϕ
(m, vu) ` ∀∀ϕ ⇔ ∀d ∈ R≥0.(m, (v + d)(u+ d)) ` ϕ

(m, vu) ` 〈a〉ϕ ⇔ ∃(m′, v′).(m, v) a→ (m′, v′) and
(m′, v′u) ` ϕ

(m, vu) ` [a]ϕ ⇔ ∀(m′, v′).(m, v) a→ (m′, v′) implies
(m′, v′u) ` ϕ

(m, vu) ` x 1 p ⇔ u(x) 1 p
(m, vu) ` x+ p 1 y + q ⇔ u(x) + p 1 u(y) + q

(m, vu) ` x in ϕ ⇔ (m, vu′) ` ϕ where u′ = u[{x} 7→ 0]
(m, vu) ` Φ∼(n) ⇔ (m, v) ∼ (n, u) .

We prove that ` is a satisfiability relation. The only interesting part of the
proof is to show that if (m, vu) ` Φ∼(n), then (m, vu) ` D∼

A(Φ∼(n)). This
we now present in detail.
Assume that (m, vu) ` Φ∼(n) and let ξ be a conjunct of D∼

A(Φ∼(n)). We
prove that (m, vu) ` ξ holds for each of the three types of conjuncts of the
characteristic formula.

〈1〉.1 Case ξ ≡ ge ⇒ (〈a〉re in Φ∼(ne)), where a ∈ Act and e ∈ E(n, a).
The claim is trivial if u 6|= ge. Assume now that u |= ge. We wish to
argue that

(m, vu) ` 〈a〉re in Φ∼(ne) . (2)

Since u |= ge and e ∈ E(n, a), it follows that (n, u) a→ (ne, u[re 7→ 0]).
By the assumption that (m, vu) ` Φ∼(n), we have that (n, u) ∼ (m, v).
Thus there is a transition (m, v) a→ (m′, v′) with

(m′, v′) ∼ (ne, u[re 7→ 0]) .

By the definition of `, it follows that

(m′, v′(u[re 7→ 0])) ` Φ∼(ne) .

Thus, again by the definition of `, it holds that

(m′, v′u) ` re in Φ∼(ne) ,

from which (2) follows because (m, v) a→ (m′, v′).

〈1〉.2 Case ξ ≡ [a](
∨

e∈E(n,a)

ge ∧ (re in Φ∼(ne))), where a ∈ Act.

Assume that (m, v) a→ (m′, v′). We prove that
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(m′, v′u) `
∨

e∈E(n,a)

ge ∧ (re in Φ∼(ne)) . (3)

To this end, note that, since (n, u) ∼ (m, v) by the assumption that
(m, vu) ` Φ∼(n), there is a transition (n, u) a→ (n′, u′) with

(n′, u′) ∼ (m′, v′) . (4)

Since (n, u) a→ (n′, u′) holds, there is an edge e ∈ E(n, a) such that

- u |= ge,
- n′ = ne, and
- u′ = u[re 7→ 0].

Thus (m′, v′u) ` ge and, by (4), (m′, v′(u[re 7→ 0])) ` Φ∼(ne). By the
definition of `, we may now infer that

(m′, v′u) ` re in Φ∼(ne)

from which (3) finally follows.

〈1〉.3 Case ξ ≡ ∀∀Φ∼(n).
Assume that d ∈ R≥0. We prove that

(m, (v + d)(u+ d)) ` Φ∼(n) . (5)

Since (m, v)
ε(d)→ (m, v + d), (n, u)

ε(d)→ (n, u + d), and (m, v) ∼ (n, u)
hold, it follows by time determinism that (m, v + d) ∼ (n, u + d) also
holds. The definition of ` now yields (5), which was to be shown.

The proof of statement 〈1〉 is now complete.

〈2〉 We prove that the relation

R = {((n, u), (m, v)), ((m, v), (n, u)) | (m, vu) |= Φ∼(n)}
is a timed bisimulation. Note, first of all, that R is symmetric by definition.
We proceed to prove that the relation R satisfies the clauses in Defn. 3.1.
Assume to this end that (n, u)R(m, v) because (m, vu) |= Φ∼(n).

〈2〉.1 Case (n, u) a→ (n′, u′).
Since (n, u) a→ (n′, u′) holds, there is an edge e = (n, ne, a, ge, re) ∈
E(n, a) such that

(i) u |= ge,
(ii) n′ = ne, and

12



(iii) u′ = u[re 7→ 0].

Since (m, vu) |= Φ∼(n) and (i) holds, it follows that

(m, vu) |= 〈a〉re in Φ∼(ne) .

This means that there is a state (m′, v′) such that (m, v) a→ (m′, v′)
and (m′, v′(u[re 7→ 0])) |= Φ∼(ne). For such an (m′, v′) we infer that
(n′, u′)R(m′, v′) by (ii) and (iii).

〈2〉.2 Case (n, u)
ε(d)→ (n, u+ d).

Since (m, vu) |= ∀∀Φ∼(n), we have that

(m, (v + d)(u + d)) |= Φ∼(n) .

By the definition of R, it follows that (n, u + d)R(m, v + d), and, as

(m, v)
ε(d)→ (m, v + d), we are done.

We now consider the case that (m, v)R(n, u) because (m, vu) |= Φ∼(n).

〈2〉.3 Case (m, v) a→ (m′, v′).
Since (m, vu) |= [a](

∨
e∈E(n,a)

ge ∧ (re in Φ∼(ne))), we have that

(m′, v′u) |=
∨

e∈E(n,a)

ge ∧ (re in Φ∼(ne)). It follows that, for some

e ∈ E(n, a),

(i) u |= ge, and
(ii) (m′, v′(u[re 7→ 0])) |= Φ∼(ne).

By (i) we have that (n, u) a→ (ne, u[re 7→ 0]) . By (ii) and the definition
of R, it follows that (m′, v′)R(ne, u[re 7→ 0]) and we are done.

〈2〉.4 Case (m, v)
ε(d)→ (m, v+ d), where d ∈ R≥0. Since (m, vu) |= ∀∀Φ∼(n), it

follows that (m, (v + d)(u + d)) |= Φ∼(n). Thus (m, v + d)R(n, u + d)

holds. Moreover (n, u)
ε(d)→ (n, u+ d) and we are done.

This completes the proof of the theorem 2

Note that the characteristic formula for timed bisimulation has size that
is linear in that of the argument automaton. Laroussine, Larsen and

Weise [19] have proposed a characteristic formula construction for timed
automata up to timed bisimilarity. However, their construction is based on
directly mimicking the standard construction from the untimed setting on
the region graph, and the size of their characteristic formula is therefore
linear in the size of the region graph. Unfortunately, however, as observed
by Alur and Dill [2], the region graph has size that is exponential in the
length of the clock constraints of the argument automaton.
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Remark: Laroussine, Larsen and Weise [19] have shown that the logic
Lν characterizes timed bisimilarity over timed automata. This means that
two timed automata are timed bisimilar if, and only if, they satisfy the
same formulae in the logic Lν . As a consequence of Thm. 4.1, we obtain
that the existential delay modality ∃∃ is not necessary to obtain this logical
characterization of timed bisimilarity.

As a further corollary of Thm. 4.1, and the EXPTIME upper bound on
the complexity of model checking for Lν [1], we have another proof of the
following well-known result.

Corollary 4.2 The problem of deciding whether two timed automata are
timed bisimilar is decidable in exponential time.

Characteristic Formula for Timed Simulation The characteristic for-
mula for <∼S is a minor variation on that for ∼, and is defined thus:

Φ
<∼S (n) def= (

∧

a∈Act

∧
e∈E(n,a)

ge ⇒ (〈a〉 re in Φ
<∼S (ne))) ∧ (∀∀Φ

<∼S (n)) ,

where n is a node of A, e = (n, ne, a, re, ge) and E(n, a) denotes the set of

a labelled edges from node n. We shall use D
<∼S
A to denote the declaration

that consists of the equations above, one for each node of A.
A minor variation on the proof of Thm. 4.1 now establishes that:

Theorem 4.3 Let A,B be timed automata with disjoint sets of clocks. Let
n be a node of A and m be a node of B. Assume that u and v are valuations
for the clocks of A and B, respectively. Then

(n, u) <∼S (m, v) iff (m, vu) |= Φ
<∼S (n) ,

where (m, vu) |= Φ
<∼S (n) holds with respect to the declaration D

<∼S
A .

The full proof of this above theorem may be found in [25].

Corollary 4.4 The problem of deciding whether A <∼S B holds for timed
automata A,B is decidable in exponential time.

Timed ready simulation The characteristic formula for timed ready
simulation is presented below:
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Φ
<∼RS (n) def= (

∧

a∈Act

∧
e∈E(n,a)

ge ⇒ (〈a〉 re in Φ
<∼RS (ne))) ∧

(
∧

a∈Act
(enabled(n, a) ⇒ [a]ff) ∧

∀∀Φ
<∼RS (n)

where n is a node of A, e = (n, ne, a, re, ge) and we recall that E(n, a)
denotes the set of a labelled edges from node n. The notation enabled(n, a)
stands for the negation of the formula enabled(n, a) given in (1). We shall

use D
<∼RS
A to denote the declaration that consists of the equations above,

one for each node of A.
A minor variation on the proof of Thm. 4.1 now establishes that:

Theorem 4.5 Let A,B be timed automata with disjoint sets of clocks. Let
n be a node of A and m be a node of B. Assume that u and v are valuations
for the clocks of A and B, respectively. Then

(n, u) <∼RS (m, v) iff (m, vu) |= Φ(n)
<∼RS ,

where (m, vu) |= Φ
<∼RS (n) holds with respect to the declaration D

<∼RS
A .

The full proof of this result may also be found in [25].

Corollary 4.6 The problem of deciding whether A <∼RS B holds for timed
automata A,B is decidable in exponential time.

Faster-than preorder In the characteristic formula constructions that
we have presented so far no use was made of the existential modality ∃∃ over
delay transitions. The use of the ∃∃ modality will instead play a crucial role in
the definition of the characteristic property for the faster-than bisimulation
preorder. This we now proceed to present.

For every node n in a timed automaton A, we define:

Φ
<∼FT (n) def= (

∧

a∈Act

∧
e∈E(n,a)

ge ⇒ (re in ∃∃〈a〉Φ<∼FT (ne))) ∧

(
∧

a∈Act
[a](

∨
e∈E(n,a)

ge ∧ (re in Φ
<∼FT (ne))) ∧

∀∀Φ
<∼FT (n) ,
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where e = (n, ne, a, re, ge) and E(n, a) denotes the set of a labelled edges

from node n. We shall use D
<∼FT
A to denote the declaration that consists of

the equations above, one for each node of A.

Theorem 4.7 Let A,B be timed automata with disjoint sets of clocks. Let
n be a node of A and m be a node of B. Assume that u and v are valuations
for the clocks of A and B, respectively. Then

(n, u) <∼FT (m, v) iff (m, vu) |= Φ
<∼FT (n) ,

where (m, vu) |= Φ
<∼FT (n) holds with respect to the declaration D

<∼FT
A .

Proof: We separately prove that:

1. (n, u) <∼FT (m, v) only if (m, vu) |= Φ
<∼FT (n), and

2. if (m, vu) |= Φ
<∼FT (n) then (n, u) <∼FT (m, v).

〈1〉 To show that the ‘only if’ implication holds, consider the relation ` defined
by structural induction on formulae thus: (m ranges over the nodes of B,
and n over those of A)

(m, vu) ` tt ⇔ true
(m, vu) ` ff ⇔ false

(m, vu) ` ϕ ∧ ψ ⇔ (m, vu) ` ϕ and (m, vu) ` ψ
(m, vu) ` ϕ ∨ ψ ⇔ (m, vu) ` ϕ or (m, vu) ` ψ

(m, vu) ` ∃∃ϕ ⇔ ∃d ∈ R≥0.(m, (v + d)(u+ d)) ` ϕ
(m, vu) ` ∀∀ϕ ⇔ ∀d ∈ R≥0.(m, (v + d)(u+ d)) ` ϕ

(m, vu) ` 〈a〉ϕ ⇔ ∃(m′, v′).(m, v) a→ (m′, v′) and
(m′, v′u) ` ϕ

(m, vu) ` [a]ϕ ⇔ ∀(m′, v′).(m, v) a→ (m′, v′) implies
(m′, v′u) ` ϕ

(m, vu) ` x 1 p ⇔ u(x) 1 p
(m, vu) ` x+ p 1 y + q ⇔ u(x) + p 1 u(y) + q

(m, vu) ` x in ϕ ⇔ (m, vu′) ` ϕ where u′ = u[{x} 7→ 0]

(m, vu) ` Φ
<∼FT (n) ⇔ (n, u) <∼FT (m, v) .

We prove that ` is a satisfiability relation. The only interesting part of the

proof is to show that if (m, vu) ` Φ
<∼FT (n), then (m, vu) ` D

<∼FT
A (Φ

<∼FT (n)).
This we now proceed to prove.

Assume that (m, vu) ` Φ
<∼FT (n) and let ξ be a conjunct of D

<∼FT
A (Φ

<∼FT (n)).
We prove that (m, vu) ` ξ holds for the first type of conjunct of the charac-
teristic formula. The proof for the other two types of conjuncts is similar to
the corresponding cases of the proof of Thm. 4.1.
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– Case ξ ≡ ge ⇒ (re in ∃∃〈a〉Φ<∼FT (ne)), where a ∈ Act and e ∈ E(n, a).
The claim is trivial if u 6|= ge. Assume thus that u |= ge for some
a-labelled edge e emanating from n. We wish to argue that

(m, vu) ` re in ∃∃〈a〉 in Φ
<∼FT (ne) . (6)

To this end, it is sufficient to prove that

(m, v(u[re 7→ 0])) ` ∃∃〈a〉 in Φ
<∼FT (ne) . (7)

Since u |= ge and e ∈ E(n, a), it follows that (n, u) a→ (ne, u[re 7→ 0]).
As (n, u)<∼FT (m, v) holds, there are a d ∈ R≥0 and a state (m′, v′) such
that

- (m, v)
ε(d)→ (m, v + d),

- (m, v + d) a→ (m′, v′), and

- (ne, u[re 7→ 0])
ε(d)→ (ne, u[re 7→ 0] + d), with

(ne, (u[re 7→ 0]) + d) <∼FT (m′, v′) . (8)

Hence it is sufficient to prove that

(m, (v + d)(u[re 7→ 0] + d)) ` 〈a〉 in Φ
<∼FT (ne) . (9)

Since (m, v + d) a→ (m′, v′), by the definition of ` and by (8) it follows

that (m′, v′(u[re 7→ 0] + d)) ` Φ
<∼FT (ne), from which we may derive

that (9), (7) and finally (6) hold.

〈2〉 We now show that the ‘if’ implication holds. To this end we prove that the
relation

R = {((n, u), (m, v))|(m, vu) |= Φ
<∼FT (n)}

is a faster-than bisimulation.
Assume that (n, u)R(m, v). We proceed to check that all of the defining
properties of a faster-than bisimulation are met.

〈2〉.1 Case (n, u) a→ (n′, u′).
Then there is an edge e ∈ E(n, a) such that

(i) u |= ge,

(ii) n′ = ne, and
(iii) u′ = u[re 7→ 0].
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Since (m, vu) |= Φ
<∼FT (n) and (i) holds, it follows that

(m, vu) |= re in ∃∃〈a〉Φ
<∼FT (ne) .

Hence (m, vu′) |= ∃∃〈a〉Φ<∼FT (ne). This means that there are a delay
d ∈ R≥0 and a state (m′, v′) such that

(m, v)
ε(d)→ (m, v + d) a→ (m′, v′)

and (m′, v′u′′) |= Φ
<∼FT (ne), where u′′ = u′ +d. By the definition of R,

we have (n′, u′′)R(m′, v′). Moreover, (n′, u′)
ε(d)→ (n′, u′′), and we are

done.

〈2〉.2 Case (n, u)
ε(d)→ (n, u+ d).

Since (m, vu) |= ∀∀Φ
<∼FT (n), we have that

(m, (v + d)(u + d)) |= Φ
<∼FT (n) .

By the definition of R, it follows that (n, u + d)R(m, v + d) and, as

(m, v)
ε(d)→ (m, v + d), we are done.

〈2〉.3 Case (m, v) a→ (m′, v′).

Since (m, vu) |= [a](
∨

e∈E(n,a)

ge ∧ (re in Φ
<∼FT (ne))), we have that

(m′, v′u) |=
∨

e∈E(n,a)

ge ∧ (re in Φ
<∼FT (ne)). It follows that, for some

e ∈ E(n, a),
(i) u |= ge , and

(ii) (m′, v′(u[re 7→ 0])) |= Φ
<∼FT (n) .

By (i) (n, u) a→ (ne, u[re 7→ 0]). By (ii) and the definition of R, it
follows that (ne, u[re 7→ 0])R(m′, v′) and we are done.

〈2〉.4 Case (m, v)
ε(d)→ (m, v + d), where d ∈ R≥0.

Since (m, vu) |= Φ
<∼FT (n), it follows that

(m, (v + d)(u+ d)) |= Φ
<∼FT (n) .

Thus it holds that (n, u+ d)R(m, v+ d). Moreover (n, u)
ε(d)→ (n, u+ d)

and we are done.

This completes the proof of the theorem. 2

As for the previous behavioural relations studied in this section, we have
that:

Corollary 4.8 The problem of deciding whether A <∼FT B holds for timed
automata A,B is decidable in exponential time.
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5 Concluding Remarks

In their seminal paper [2], Alur and Dill proved that the problem of check-
ing timed trace inclusion between a timed automaton A and a deterministic
timed automaton B is PSPACE-complete. Following the classic automata
theoretic approach, they achieved this result by reducing this problem to
checking for the emptiness of the language accepted by a timed automaton
that can be built in polynomial time from A and B. We shall now argue that
the use of characteristic formulae offers an alternative approach to checking
timed trace inclusion.

For the sake of clarity, we begin with some preliminary definitions.

Definition 5.1 A sequence of actions σ = a1a2a3 . . . is a possibly infinite
sequence with ai ∈ Act.

A sequence of time instants t = t1t2t3 . . . is a possibly infinite, nonde-
creasing sequence with ti ∈ R≥0.

A timed trace ρ is a pair (σ, t), where σ is a sequence of actions and t is
a sequence of time instants. The sequences σ and t are either both infinite
or both finite and of the same length.

In a timed trace ρ, the real number ti denotes the absolute time instant at
which action ai occurs. In particular, t1 always denotes the time instant at
which the first action of the timed trace occurs. Assume, for the sake of
simplicity, that every timed automaton is supplied with an extra clock x0

which is never reset. Such a clock will measure the time that has elapsed
since a timed automaton started its execution.

Definition 5.2 Let A = (Act,N, n0, C,E) be a timed automaton. We say
that (σ, t), with σ = a1a2 . . . ak and t = t1t2 . . . tk (k ≥ 0), is a timed trace
of A iff

(n0, [C 7→ 0])
ε(d1)→ a1→ (n1, v1)

ε(d2)→ a2→ (n2, v2) · · · (nk−1, vk−1)
ε(dk)→ ak→ (nk, vk)

for some delays d1, d2, . . . , dk ∈ R≥0, valuations v1, v2, . . . vk such that ti =
vi(x0) for every i ∈ {1, . . . , k}, and nodes n1, . . . , nk of A. The set of timed
traces of A will be written traces(A).

Let A and B be timed automata. We write A <∼T B iff traces(A) ⊆
traces(B).

As shown by Alur and Dill [2], the relation <∼T is undecidable for timed
automata. It becomes decidable if the specification automaton B is deter-
ministic.
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Definition 5.3 A timed automaton is deterministic iff for every node n,
action a ∈ Act and distinct edges e, e′ ∈ E(n, a), the guards ge and ge′ are
disjoint, i.e., ge ∧ ge′ is unsatisfiable.

A standard argument, that may be found in [25], now suffices to establish
the following result. (See, e.g., [11] for a similar statement in the classic,
untimed setting.)

Proposition 5.4 Let A and B be timed automata. Then the following
statements hold:

1. A <∼S B implies A <∼T B;

2. A <∼T B implies A <∼S B, if B is deterministic.

The import of the above result is that, if B is a deterministic timed au-
tomaton, checking whether the set of timed traces of a timed automaton A
is included in that of B can be reduced to checking whether B satisfies the
characteristic formula of A with respect to timed simulation.

The feasibility of the approach based on establishing behavioural rela-
tions for timed automata via model checking characteristic formulae needs
to be established experimentally. The master’s thesis [25] describes a proto-
type implementation of a tool for checking behavioural relations for timed
automata based on the theory presented in this study. This tool is rather
inefficient, and cannot handle reasonably sized examples. However, we ex-
pect that an efficient tool for verifying behavioural equivalences for timed
automata can be obtained by implementing a front-end to the Lν-model
checker CMC [18] that generates the different characteristic formula con-
structions we have presented.
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