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Luca Aceto', Wan Fokkink?, and Anna Ingélfsdéttirt

! BRICS (Basic Research in Computer Science), Centre of the Danish National
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Abstract. 2-nested simulation was introduced by Groote and Vaan-
drager [10] as the coarsest equivalence included in completed trace equiv-
alence for which the tyft/tyxt format is a congruence format. In the linear
time-branching time spectrum of van Glabbeek [8], 2-nested simulation
is one of the few equivalences for which no finite equational axiomati-
zation is presented. In this paper we prove that such an axiomatization
does not exist for 2-nested simulation.

KEYwoRDs: Concurrency, process algebra, basic CCS, 2-nested simula-
tion, equational logic, complete axiomatizations.

1 Introduction

Labelled transition systems (LTSs) [11] are a fundamental model of concurrent
computation, which is widely used in light of its flexibility and applicability. In
particular, they are the prime model underlying Plotkin’s Structural Operational
Semantics [19] and, following Milner’s pioneering work on CCS [15], are by now
the standard semantic model for various process description languages.

LTSs model processes by explicitly describing their states and their transi-
tions from state to state, together with the actions that produced them. Since
this view of process behaviours is very detailed, several notions of behavioural
equivalence and preorder have been proposed for LTSs. The aim of such be-
havioural semantics is to identify those (states of) LTSs that afford the same
“observations”, in some appropriate technical sense. The lack of consensus on
what constitutes an appropriate notion of observable behaviour for reactive sys-
tems has led to a large number of proposals for behavioural equivalences for con-
current processes. (Cf. the encyclopaedic study [8], where van Glabbeek presents
the linear time-branching time spectrum—a lattice that contains all the known
behavioural equivalences and preorders over LTSs, ordered by inclusion.)

One of the criteria that has been put forward for studying the mathematical
tractability of the behavioural equivalences in the linear time-branching time
spectrum is that they afford elegant, finite equational axiomatizations over frag-
ments of process algebraic languages. Equationally based proof systems play an
important role in both the practice and the theory of process algebras. From the



point of view of practice, these proof systems can be used to perform system
verifications in a purely syntactic way, and form the basis of axiomatic verifi-
cation tools like, e.g., PAM [12]. From the theoretical point of view, complete
axiomatizations of behavioural equivalences capture the essence of different no-
tions of semantics for processes in terms of a basic collection of identities, and
this often allows one to compare semantics which may have been defined in very
different styles and frameworks. A review of existing complete equational ax-
iomatizations for many of the behavioral semantics in van Glabbeek’s spectrum
is offered in [8]. The equational axiomatizations offered ibidem are over Milner’s
Basic CCS (abbreviated to BCCS in what follows), a fragment of CCS suit-
able for describing finite synchronization trees, and characterize the differences
between behavioural semantics in terms of a few revealing axioms.

The main omission in this menagerie of equational axiomatizations for the
behavioural semantics in van Glabbeek’s spectrum is an axiomatization for 2-
nested simulation semantics. 2-nested simulation was introduced by Groote and
Vaandrager [10] as the coarsest equivalence included in completed trace equiva-
lence for which the tyft/tyxt format is a congruence format. It thus characterizes
the distinctions amongst processes that can be made by observing their termi-
nation behaviour in program contexts that can be built using a wide array of
operators. (The interested reader is referred to op. cit. for motivation and the
basic theory of 2-nested simulation.) 2-nested simulation can be decided over
finite LTSs in time that is quadratic in their number of transitions [22], and
can be characterized by a single parameterised modal logic formula [16]. How-
ever, as previously mentioned, no equational axiomatization for it has ever been
proposed, even for the language BCCS.

In this paper, we offer a possible mathematical justification for the lack of
an equational axiomatization for the 2-nested simulation equivalence and pre-
order even for the language of finite synchronization trees [14]. More precisely,
we show that neither of these two behavioural relations has a finite equational
axiomatization over the language of BCCS. These results hold in a very strong
form. Indeed, we prove that no finite collection of inequations that are sound
with respect to the 2-nested simulation preorder can prove all of the inequalities
of the form

a®™ < a*™ +a™ (m>0),

which are sound with respect to the 2-nested simulation preorder. Similarly, we
establish a result to the effect that no finite collection of equations that are sound
with respect to 2-nested simulation equivalence can be used to derive all of the
sound equalities of the form

a(a®™ +a™) = a(a®™ + a™) 4+ a*™ ! (m>0) .
The import of these two results is that not only the equational theory of 2-nested

simulation is not finitely equationally axiomatizable, but neither is the collection
of (in)equivalences that hold between BCCS terms over one action and without



occurrences of variables. This state of affairs should be contrasted with the el-
egant equational axiomatizations over BCCS for most of the other behavioural
equivalences in the linear time—branching time spectrum that are reviewed by
van Glabbeek in [8]. Only in the case of additional, more complex operators, such
as iteration, are these equivalences known to lack a finite equational axiomati-
zation; see, e.g., [3,6,7,20,21]. Of special relevance for concurrency theory are
Moller’s results to the effect that the process algebras ACP and CCS (without
the auxiliary left merge operator from [5]) do not have a finite equational axiom-
atization modulo bisimulation equivalence [17,18]. Aceto, Esik and Ingolfsdéttir
[2] proved that there is no finite equational axiomatization that is w-complete for
the max-plus algebra of the natural numbers, a result whose process algebraic
implications are discussed in [1].

The paper is organized as follows. We begin by presenting preliminaries on
the language BCCS and (in)equational logic (Sect. 2). We then proceed to define
2-nested simulation, and study some of its basic properties that play a major role
in the proof of our main results (Sect. 3). The definition of 2-nested simulation
suggests a natural conditional inference system for it. This is presented in Sect. 4.
Our main results on the non-existence of finite (in)equational axiomatizations
for 2-nested equivalence and preorder are the topic of Sects. 5 and 6. The paper
concludes with a result to the effect that the 3-nested simulation preorder has
no finite inequational axiomatization, and some open problems (Sect. 7).

2 Preliminaries

The language BCCS The process algebra BCCS [14] is a basic formalism to
express finite process behaviour. Tts syntax consists of (process) terms that are
constructed from a countably infinite set of variables (with typical elements
x,y,z), a constant 0, a binary operator + called alternative composition, and
unary prefizing operators a, where a ranges over some nonempty set Act of atomic
actions. We shall use the meta-variables ¢, u, v to range over process terms, and
write var(t) for the collection of variables occurring in the term ¢.

A process term is closed if it does not contain any variables. Closed terms
will be typically denoted by p, ¢, . Intuitively, closed terms represent completely
specified finite process behaviours, where 0 does not exhibit any behaviour, p+ ¢
combines the behaviours of p and ¢, and ap can execute action a to transform
into p. This intuition for the operators of BCCS is captured, in the style of
Plotkin [19], by the transition rules in Table 1. These transition rules give rise to
transitions between process terms. The operational semantics for BCCS is thus
given by the labelled transition system [11] whose states are terms, and whose
Act-labelled transitions are those that are provable using the rules in Table 1.

A (closed) substitution is a mapping from process variables to (closed) BCCS
terms. For every term ¢ and (closed) substitution o, the (closed) term obtained
by replacing every occurrence of a variable z in ¢t with the (closed) term o(x)
will be written o (t).



Table 1. Transition rules for BCCS

Table 2. Axioms for BCCS

Al rt+yrRy+tx

A2 (z4+y)t+z=z+ (y+2)
A3 T+rRCT

A4 r+0~z

In the remainder of this paper, process terms are considered modulo associa-
tivity and commutativity of 4+, and modulo absorption of 0 summands. In other
words, we do not distinguish t+w and u+t, nor (t4+u)+v and t+ (u+v), nor t+0
and t. This is justified because all of the behavioural equivalences we consider
satisfy axioms Al, A2 and A4 in Table 2. In what follows, the symbol = will
denote syntactic equality modulo axioms Al, A2 and A4. We use a summation
Zie{l,...,k} t; to denote t1 + - - - + tr, where the empty sum represents 0. It is
easy to see that, modulo the equations Al, A2 and A4, every BCCS term ¢ has
the form 3, ;@ + >, ;a;t;, for some finite index sets I, J, terms ¢; (j € J)
and variables z; (i € I).

Equational logic An aziom system is a collection of (in)equations over the lan-
guage BCCS. We say that an equation ¢ &~ wu (resp. an inequation ¢ < w) is
derivable from an axiom system F if it can be proven from the axioms in E us-
ing the standard rules of equational (resp. inequational) logic. It is well-known
(cf., e.g., Sect. 2 in [9]) that if an (in)equation relating two closed terms can be
proven from an axiom system F, then there is a closed proof for it.

In the proofs of our main results (cf. Thms. 3 and 4), it will be convenient to
use a different formulation of the notion of provability of an (in)equation from
a set of axioms. This we now proceed to define for the sake of clarity.

A context C[] is a closed BCCS term with exactly one occurrence of a hole ||
in it. For every context C[] and closed term p, we write C[p] for the closed term
that results by placing p in the hole in C/[]. It is not hard to see that an equation
p = q is provable from an equational axiom system FE iff there is a sequence
p1~ - = p (k>1) such that

— p=0p1, ¢ = pk and
— pi = Clo(t)] = Clo(u)] = pi+1 for some closed substitution o, context C]
and pair of terms ¢, u with either ¢t & u or v &~ ¢t an axiom in E (1 <i < k).

The obvious modification of the above observation applies to proofs of inequa-
tions from inequational axiom systems. In what follows, we shall refer to se-



quences of the form p; ~ -+ &~ py (vesp. p1 S --- < pi) as equational (resp. in-
equational) derivations.

For later use, note that, using axioms A1, A2 and A4 in Table 2, every context
can be proven equal to either one of the form C[b([] + p)] or to one of the form
[] + p, for some action b and closed BCCS term p.

3 2-nested simulation

In this paper, we shall study the (in)equational theory of 2-nested simulation
semantics over BCCS. This is a behavioural semantics for processes that stems
from [10], where it was characterized as the largest congruence with respect to
the tyft/tyxt format of transition rules which is included in completed trace
semantics.

Definition 1. A binary relation R between closed terms is a simulation iff p R q
together with p — p' implies that there is a transition ¢ — ¢ with p’ R ¢'.

For closed terms p,q, we write p c! q iff p R q with R a simulation. The
kernel of S' (i.e., the equivalence S N(S')™1) is denoted by <.

The relation S' is the well-known simulation preorder [13].

Definition 2. For closed terms p,q, we write p c? q iff p R q with R a simula-
tion and R~ included in S'. The kernel of S° (i.e., the equivalence c? 0(92)_1)
is denoted by 2.

The relations S and <2 are the 2-nested simulation preorder and the 2-nested
simulation equivalence, respectively. It is easy to see that c?isincluded in 1. In
the remainder of this paper we will use, instead of Definition 2, the following more
descriptive characterization of 2-nested simulation. To the best of our knowledge,
this characterization is new.

Theorem 1. Let p,q be closed BCCS terms. Then p c? q iff

(1) for allp % p' there is a ¢ % ¢ with p' c? q, and
(2) q<' p.

Proof. We prove the two implications separately.

(=) Let p c? g. By definition, p R ¢ with R a simulation and R~ included
in . So if p 5, then ¢ = ¢ with p’ R ¢/, which implies p’ c? q'. Moreover,
since R~! is included in Sl, it follows that ¢ S~ p.

(<) We define p R q iff

(1) for all p % p’ there is a ¢ = ¢/ with p’ c? q', and
1
(2) ¢S p.

Suppose p R q. If p % ¢/, then by the definition of R we have ¢ = ¢ with

P’ c? q'. Since we have already proven the ‘only if’ implication, p’ R ¢’. So R is

1

a simulation. Furthermore, by (2) R~ is included in ch, Hence, p c? q. O



The transition rules in Table 1 are in tyft/tyxt format, that is a (pre)congruence
format for * and <2 [10]. Hence, we immediately have that:

Lemma 1. The relations S° and <2 are preserved by the operators of BCCS.

The relations S and 52 are extended to arbitrary BCCS terms thus:

Definition 3. Let t,u be BCCS terms. The inequation t S wu is sound with

respect to 7 iff o(t) ¢’ o(u) holds for every closed substitution o. Similarly,
the equation t ~ u is sound with respect to <2 iff o(t) =2 o(u) holds for every
closed substitution o.

Examples of (in)equations that are sound with respect to S? are those in Table 2
and

alx +y) Salx +y)+az .

3.1 Norm and depth

We now present some results on the depth and the norm of BCCS terms that
are related in 2-nested simulation semantics. These will find important appli-
cations in the proofs of our main results, and shed light on the nature of the
identifications made by 2-nested simulation semantics.

Definition 4. A sequence aj---ap € Act® (k > 0) is a termination trace of a

term t iff there exists a sequence of transitions t = tg Yot BB with

a term without outgoing transitions.

Definition 5. The depth and the norm of a BCCS term t, denoted by depth(t)
and norm(t), are the lengths of the longest and of the shortest termination trace
of t, respectively.

Lemma 2. Ifp c? q, then

1. each termination trace of p is a termination trace of q;
2. depth(p) = depth(q); and
3. norm(p) > norm(q).

Proof. We prove the three statements separately.

1. By induction on the depth of p.

[Base case| Let depth(p) = 0. Then p cannot perform any transitions, so the
empty trace is the only termination trace of p. Since p c? q implies ¢ ct p, it
follows that g cannot perform any transitions either. Hence, the empty trace
is also a termination trace of q.

[Inductive case] Consider a termination trace aj - - - aj of p; since depth(p) > 0
we have k > 0. Then p 23 p/ where as - - - ay, is a termination trace of p’. Since
D c? g, there is a transition ¢ =5 ¢’ with p’ c? ¢'. By the induction hypothesis
as - - - ay, is a termination trace of ¢’. So ap - - - ay is a termination trace of q.



Table 3. Axiom for simulation

S z51x+4y

Table 4. Axiom for 2-nested simulation

2S yS1zx = zSx+y

2. p c? q implies p 51! ¢, so clearly p and ¢ must have equal depth.
3. By statement 1 in the lemma, the shortest termination trace of p is a termi-
nation trace of q. O

Remark: If p c? q, then ¢ may afford more termination traces than p. As an
example, consider the terms p = aa0 and ¢ = p + a0. So if p c? q, then norm(p)
may be strictly larger than norm(q).

4 A conditional axiomatization

The definition of 2-nested simulation immediately suggests an implicational
proof system for the 2-nested simulation preorder. It is folklore that the axioms
in Tables 2 and 3 give a complete axiomatization of the simulation preorder over
the language BCCS [8]. To obtain a complete inference system for the 2-nested
simulation preorder, it is sufficient to add the conditional axiom in Table 4 to
the axiom system in Table 2. In axioms S and 2S, the relation symbol <; refers
to inequations that are provable using the proof system for the simulation pre-
order, while the relation symbol Sg refers to inequations that are provable using
the proof system for the 2-nested simulation preorder. Not too surprisingly, we
have that:

Theorem 2. A1-4+2S is sound and complete for BCCS modulo the 2-nested
simulation preorder.

Proof. The soundness proof is left to the reader. We prove that A1-442S is

complete modulo the 2-nested simulation preorder. Suppose p c? q. We prove,
by induction on the depth of p, that p S ¢ can be derived from A1-4+2S.

Let p=)_,c;a;p; and ¢ = Zje] bjq;. Since p c? q, for every i € I there is a
Jji € J such that a; = b;, and p; c? gj,- By the induction hypothesis, p; < g;, can
be derived from A1-4+2S. Hence, » ;. aip; S ) ,c;aigj, can be proven from
A1-44-28.

Vice versa, since ¢ ct p, for each [ € J there is an i; € I such that b; =
ai, = bj, and q ct Di, c? qj;,- By completeness of A1-4+S for the simulation
preorder, b;q; < ai,qj,, can be derived from A1-4+S. So @i, g5, < @i qj;, + biq



can be derived using 2S. Hence, 7, ; ai,qj;, S >_;c;bj¢; can be proven from
A1-4+2S. As the index set {j;, |l € J} is included in the set {j; | i € I}, we can
derive from A1-44-2S that

D aign Y aigs + Y ang, S Y aig + Y bigi~ Y big;=q -

i€l i€l leJ icl jed jeJ
By transitivity we conclude that p < ¢ can be derived from A1-4+42S. O

The aforementioned proof system for the 2-nested simulation preorder, albeit
very natural, includes the conditional axiom 2S; moreover, the condition of this
axiom contains an auxiliary relation symbol that is not defined inductively on the
syntax of BCCS. This raises the question of whether there exists a finite purely
(in)equational axiomatization of 2-nested simulation preorder and/or equiva-
lence at least over the language BCCS. The remainder of this study is devoted
to showing that no finite (in)equational axiomatization of 2-nested simulation
exists over BCCS.

5 Inaxiomatizability of the 2-nested simulation preorder

In this section we prove that the 2-nested simulation preorder is not finitely
inequationally axiomatizable. The following lemma will play a key role in the
proof of this statement. In the lemma, and in the remainder of this paper, we
let a® denote 0, and a™*?! denote a(a™).

Lemma 3. Ifp S c?g2m g a™, then either p <2 a®™ or p <2 a®™ 4+ o™

Proof. The case m = 0 is trivial; we focus on the case m > 0. We note, first
of all, that if ¢ c? a* for some k > 0, then, by Lemma 2(1), ¢ has only the
termination trace a®; clearly, this implies a* c? q.

Suppose now that p — p’. Since p c? g2m 4 a™, either p’ o
P’ c? gm-1 . By Lemma 2(2), p has depth 2m. So there is at least one transition
p % p with pf €% ¢2m1,

If for all tran51t10ns p = p' we have p’ S c? g2m-1 (and so a®m~1 c? p'), then
it follows that a™ S p. On the other hand, if there exists a transition p — p”
with p” €% @1 (and so a™~! c? p"), then it follows that a?>™ 4 a™ <y O

The idea behind the proof that the 2-nested simulation preorder is not finitely
inequationally axiomatizable is as follows. Assume a finite inequational axioma-
tization E for BCCS that is sound modulo S*. We show that, if m is sufficiently
large, then, for all closed inequational derivations a®™ < p; < --- < pi from E
with pyg c? g2m + a™, we have that pr 52 a®™. So a®™ < a®™ + a™ cannot be

derived from E. Note that a2™ S a?m 4 g™

Lemma 4. Let t < u be sound modulo S°. Let m be greater than the depth of

t. Assume that Clo(u)] S° a®™ + a™. Then Clo(t)] S2% a®™ implies Clo(u)] =2
a*m,



Proof. Let Clo(t)] 52 a2™; we prove Clo(u)] 2 a?™. Since Clo(u)] S° a?™ +
[o

a™, it is sufficient to show that a®™ + a™ ¢~ Clo(u)]. In fact, if Clo(u)] S ﬂ2
a*m+a™ and a®™ +a™ g2 C[o(u)], by Lemma 3 it follows that C[o(u)] =2 a?™,

which is to be shown. We prove that a®™+a™ %2 Clo(u)] holds by distmgulshlng
two cases, depending on the form of the context C1].

[N~}

— Case I: Suppose C[] is of the form C’[b([] + 7)].
Consider a transition Clo(u)] % ¢'. Since C[] is of the form C'[b([] + )],
clearly there is a transition C[o(t)] = p’ where p’ can be obtained by re-
placing at most one subterm o(u) of ¢’ by o(t). Since o(t) c? o(u), by
Lemma 2 o(t) and o(u) have the same depth; so p’ and ¢’ have the same
depth as well. Since C[o(t)] 52 a?™, it follows that p' S° a?™~1. So by
Lemma 2(2), depth(p') = depth(q’) = 2m — 1. As depth(a™ 1) # 2m — 1,
by Lemma 2(2) ™1 %2 ¢'. This holds for all transitions Clo(u)] % ¢/, and
a?™ +a™ % g™ s0 a®™ + a™ & Clo(u)].

— Case 2: Suppose C] is of the form [] +r.
As p(t) c? p(u) for all closed substitutions p, by Lemma 2(2) p(t) and p(u)
have the same depth for all p. Clearly this implies that depth(t) = depth(u),
and moreover that ¢ and u contain exactly the same variables.
Since o(t)+r 52 a®™, by Lemma 2(3) norm(o(t)) > 2m and norm(r) > 2m
Aso(u)+r S? 42™ 4 g™, again by Lemma 2(3), we have that norm(o(u)) >
m.
Since depth(t) < m and norm(c(t)) > 2m, for each variable x € var(t) =
var(u) we have norm(o(x)) > m.
By the fact that depth(u) = depth(t) < m and norm(o(u)) > m, each
termination trace of o(u) must become, after less than m transitions, a
termination trace of a o () with « € var(u). Since for all x € var(u) = var(t)
we have norm(o(zx)) > m, it follows that norm(o(u)) > m. Since moreover
norm(r) > 2m, we have norm(o(u) +r) > m. As a®™ + a™ has norm m, by
Lemma 2(3) we may conclude that a*™ + a™ 7 o(u) 4. O

Remark: The inequation az S ax+a' is sound modulo c?, However, a* %2 a*+
a'. So the side condition in the statement of Lemma 4 that Co(u)] S? g2m g qm
cannot be omitted. (Note that a* + a! 7% a4+ a?.)

Theorem 3. BCCS modulo the 2-nested simulation preorder is mot finitely in-
equationally axiomatizable.

Proof. Let E be a finite, non-empty inequational axiomatization for BCCS that
is sound modulo S*. Let m > max{depth(t) |t Su e E}.

By Lemma 4, and using induction on the length of derivations, it follows that
if the closed inequation a>™ < r can be derived from E and r c?g2m 4 a™, then
r 52 a?™m. As a®™ +a™ ¥2 a*™ (Lemma 2(3)), it follows that a®™ < @™ 4 o™
cannot be derived from E. Since 2™ €% a2 + a™, we may conclude that E is
not complete modulo c?, O



6 Inaxiomatizability of 2-nested simulation equivalence

We now proceed to prove that the 2-nested simulation equivalence is not finitely
equationally axiomatizable. The following lemma will play a key role in the proof
of this statement.

Lemma 5. Let the inequational axiom u St be sound modulo c? If t is of the
form Y .y wi + ZjeJ ajt; and w is of the form Y . - Yk + D s bewe, then

— {yr | k€ K} C{z; | i€ I}, and
— for each £ € L there is a j € J such that var(t;) C var(uy).

Proof. Let m be greater than the depth of .

Assume, towards a contradiction, that yx & {x; | ¢ € I} for some k € K.
Let o(yx) = a™ and let o(z) = 0 for z # yx. As o(yx) — a™~!, it follows
that o(u) % a™'; so o(u) has a termination trace of length m. On the other
hand, o(z;) 52 0 for i € I, and it is easy to see that no o(a;t;) for j € J has a
termination trace of length m; so o(t) does not have a termination trace of length
m. As o(u) c? o(t) by the soundness of u < ¢, this contradicts Lemma 2(1).

Assume, towards a contradiction, that there is an ¢ € L such that var(t;) €
var(ug) for all j € J. Let p(z) = 0 for z € var(w) and let p(z) = a™ for
z & var(ug). Since p(z) = 0 for z € var(uy), clearly depth(p(ue)) < depth(u)—1 <
m—1. On the other hand, for all transitions p(t) - p’ we have depth(p') > m—1.
Namely, each transition of p(t) is of the form p(t) % a™ ! or p(t) = p(t;);
by assumption, for every j € J, the term ¢; contains a variable z & var(ue),

implying that depth(p(t;)) > m. Since p(u) c? p(t) and p(u) LA p(ug), it follows

that there is a transition p(t) 2 q with p(uyg) c? ¢ Since depth(p(ug)) <m—1
and depth(q') > m — 1, this contradicts Lemma 2(2). O

Assume a finite equational axiomatization FE for BCCS that is sound modulo
2. The idea behind the proof that E cannot be complete modulo <2 is as
follows. We show that, if m is sufficiently large, then, for all closed derivations
a(a®® +a™) ~ p; ~ - = py, from B, py > p), implies norm(p},) = m. Clearly,
a(a®™ + a™) + a®>m™*! does not satisfy the latter property, so a(a®>™ + a™) ~
a(a®™ + a™) + a®™*! cannot be derived from E. Note that a(a®™ + a™) 52
a(a2m +am) +a2m+1.

Theorem 4. BCCS modulo 2-nested simulation equivalence is not finitely equa-
tionally axiomatizable.

Proof. Let E be a finite, non-empty equational axiomatization for BCCS that
is sound modulo 2. Let m > max{depth(t) | t ~ u € E}.

First we prove the following fact:
Claim: Let t = u € E and let o be a closed substitution such that C[o(¢)] only
has termination traces of lengths m + 1 and 2m + 1. Suppose moreover that for
every transition Clo(t)] 2, p’ we have norm(p’) = m. Then, for every transition
Clo(u)] = ¢’ we have norm(q') = m.

10



Proof of the claim. First of all, note that, as C[o(t)] =2 Clo(u)], by Lemma 2(1)
we know that C[o(u)] only has termination traces of lengths m + 1 and 2m + 1.
We now proceed with the proof by distinguishing two cases, depending on the
form of the context C]).

— Case 1: Suppose C[] is of the form C'[d([] + 7)].
Consider a transition C[o(u)] < ¢'. Since C[] is of the form C’[d([] + )],
clearly there is a transition C[o(t)] - p’ where p’ can be obtained by re-
placing at most one subterm o(u) of ¢’ by o(t). Since o(t) S? o(u), by
Lemma 2(3) o(t) and o(u) have the same norm; so p’ and ¢’ have the same
norm as well. By assumption norm(p’) = m, so norm(q’) = m.

— Case 2: Suppose C] is of the form [] + r.
Let ¢ be of the form 37, z;+3 ", y a;t; and let u be of the form 7, ;e yi+

> e, beug. Consider a transition o(u)+r = ¢'. We distinguish three possible
cases.

— Case 2.1: Let r 5 ¢/. Then o(t) +r 5 ¢/, which implies norm(q’) = m.

— Case 2.2: Let o(y) ~ ¢ for some k € K. By Lemma 5, y, = x; for some
i€1,s00(z;) > q. Then o(t) +r > ¢, which implies norm(q’) = m.

— Case 2.3: Let ¢’ = o(uy) for some ¢ € L. By Lemma 5, var(t;) C var(ug)
for some j € J. Since depth(t) < m, we have depth(t;) < m. On the other
hand, o(t) + r 2 o(t;) implies norm(o(t;)) = m. Hence, each termination
trace of o(t;) (so in particular its shortest one) must become, after less
than m transitions, a termination trace of a o(z) with z € war(¢;). So
norm(o(t;)) = m implies norm(o(z)) < m for some z € war(t;). Since
x € var(ue) and depth(ug) < m, we have norm(o(ug)) < 2m. Since o(u)
only has termination traces of lengths m + 1 and 2m + 1, and moreover

o(u) LA o(ug), it follows that o(us) can only have termination traces of
lengths m and 2m. Hence, norm(o(u¢)) = m. (End of the proof of the claim)

Suppose now that p only has termination traces of lengths m + 1 and 2m + 1.

Suppose moreover that for every transition p LA p’ we have norm(p’ ) = m. By
induction on the length of equational derivations from FE, using the claim that
we have just proven, it is easy to show that if p ~ ¢ can be derived from F, then
for every transition ¢ = ¢/ we have norm(q’) = m.

Concluding, a(a®™ + a™) only has termination traces of lengths m + 1 and
2m + 1. Moreover, its only transition is a(a®™ +a™) % a?™ 4 a™, and a*™ + a™
has norm m. Finally, a(a®™ + a™) + a?>™*! 2 a?™ and a*™ does not have norm
m. So a(a®™ + a™) ~ a(a®™ + a™) + a®>™*! cannot be derived from E. Since
a(a®™ +a™) 52 a(a® 4 a™) + a®>™ ! we may conclude that E is not complete
modulo 2. O

7 The 3-nested simulation preorder and beyond

Groote and Vaandrager [10] actually introduced a hierarchy of n-nested simula-
tion preorders for n > 2. The following definition generalizes Definition 2.

11



Definition 6. Forn > 1, p crtt q iff p R q with R a simulation and R™!
included in G". The kernel of ™ is denoted by Sntl,

It is easy to see that S™ 1 is included in 5™ for n > 1. The characterization of
the 2-nested simulation preorder in Theorem 1 generalizes to the n-nested simu-
lation preorders for n > 3. Also, the idea behind the conditional axiomatization
for the 2-nested preorder (see Theorem 2) generalizes to the n-nested simulation
preorders for n > 3. The proofs of these results are omitted.

Theorem 5. For n > 1, and for closed process terms p and q over BCCS,
n+1 .
S qiff

(1) fornallp L o there is a g = ¢ with p' S
(2) ¢S p.

Definition 7. Forn > 1, let S, 41 be the preorder generated by the equational
axioms Al-4 together with y S, © =  Spa1 ¢+ .

+1
"y, and

Theorem 6. For n > 1, and for closed process terms p and q over BCCS,
. n
PSnqiffpS g

It follows from the proof of Theorem 4 that there does not exist a finite inequa-
tional axiomatization for the 3-nested simulation preorder.

Theorem 7. BCCS modulo the 3-nested simulation preorder is not finitely in-
equationally axiomatizable.

Proof. Let E be a finite inequational axiomatization for BCCS that is sound
modulo <°. Since S” is included in =2, clearly the equational axiomatization
E' ={t=u|t<uec E} is sound modulo 2. Let m > max{depth(t) |t ~u €
E’}. In the proof of Theorem 4 it was shown that a(a®*™ +a™) =~ a(a®*™ +a™) +
a®"*+1 cannot be derived from E’. Hence, a(a®*™ + a™) < a(a®™ + a™) + a*>m+1
cannot be derived from E. Since a(a®™ +a™) S° a(a®™ +a™) + a2+ it follows

that F is not complete modulo c?. O

We leave it as an open question whether there exist finite equational axioma-
tizations for n-nested simulation equivalence if n > 3, and finite inequational
axiomatizations for the n-nested simulation preorder if n > 4.
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