
B
R

IC
S

R
S

-00-10
D

antchev
&

R
iis:

A
Tough

N
utforTree

R
esolution

BRICS
Basic Research in Computer Science

A Tough Nut for Tree Resolution

Stefan Dantchev
Søren Riis

BRICS Report Series RS-00-10

ISSN 0909-0878 May 2000



Copyright c© 2000, Stefan Dantchev & Søren Riis.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/00/10/



A tough nut for tree resolution

May 2000

Stefan Dantchev, Søren Riis

BRICS
∗

Department of Computer Science

University of Aarhus

Ny Munkegade, bldg. 540

DK-8000 Århus C

Denmark

Abstract

One of the earliest proposed hard problems for theorem provers is

a propositional version of the Mutilated Chessboard problem. It is well

known from recreational mathematics: Given a chessboard having two

diagonally opposite squares removed, prove that it cannot be covered with

dominoes. In Proof Complexity, we consider not ordinary, but 2n × 2n
mutilated chessboard. In the paper, we show a 2Ω(n) lower bound for tree

resolution.

1 Introduction

The most well-studied tautologies, that are hard for resolution, are those created

by translating matching principles in certain graphs into propositional formulas

- [1], [5], [11]. It was Haken who �rst proved in [4] an exponential lower bound

is proven for the pigeon-hole principle PHPn+1
n stating that there is no perfect

matching in the bipartite graph Kn+1,n. After that, the result has been simpli-

�ed and improved ([2], [3], [5], [11],) as well as lower bounds have been proven

for other matching principles [2]. In all these proves counting arguments have

been used.

One of the problems on which these techniques have failed so far is the muti-

lated chessboard problem. It also has the distinction to be the earliest proposed

hard problem for theorem provers [7]. The problem itself is: given a 2n × 2n
chessboard with two diagonally opposite squares missing, prove that it cannot
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be covered with dominoes. We can consider it as a matching problem: Squares

are vertices of the graph, and there is an edge between every two neighboring

squares. Thus one component of the bipartite graph consists of black squares

and the other consists of white ones. Two missing squares are of the same color

which implies one of the components in the graph has two more vertices than

the other. That is why there is no perfect matching i.e. dominoes tiling of the

mutilated chessboard.

In this paper, we prove an exponential lower bound for tree resolution proofs

of the problem. Our technique is an adversary argument. We consider any

tree resolution proof as a Prover-Adversary game. This kind of games is �rst

introduced in [9] and [8] where Haken's proof is presented in this setting.

2 The Problem

In this section, we �rst remind what the resolution proof system is, and introduce

the formal description of the Mutilated Chessboard problem, i.e. its encoding

as a set of clauses.

2.1 Tree resolution

We �rst give some de�nitions. A literal is either a propositional variable or the

negation of propositional variable. A clause is a set of literals. It is satis�ed by

a truth assignment if at least one of its literals is true under this assignment.

A set of clauses is satis�able if there exists a truth assignment satisfying all the

clauses.

Resolution is a proof system designed to refute given set of clauses i.e. to

prove that it is unsatis�able. This is done by means of the resolution rule

C1

⋃ {v} C1

⋃ {¬v}
C1

⋃
C2

.

We derive a new clause from two clauses that contain a variable and its nega-

tion respectively. The goal is to derive the empty clause from the initial ones.

Anywhere we say we prove some proposition, we mean that �rst its negation in

a clausal form and then resolution is used to refute these clauses.

There is an obvious way to represent every resolution proof as a directed

acyclic graph whose nodes are labelled by clauses. If we restrict the correspond-

ing graph to be a tree, we obtain tree resolution. If this restriction is not present,

we speak about general or dag-like resolution.

In our proof, we use the following simple fact (see, e.g. [6]): Any tree resolu-

tion refutation of a set of clauses can be considered as a decision tree that solves

the corresponding search problem. The search problem for an unsatis�able set

of clauses is: given an arbitrary truth assignment of variables, �nd a clause

which is falsi�ed by it.
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2.2 Mutilated Chessboard

We consider a 2n × 2n chessboard, with two diagonally opposite white corners

removed as shown on �g. 1.

j

i

uij

lij rij

dij

Figure 1:

We can encode the problem in clausal form as follows. We introduce (at

most) four propositional variables uij , rij , dij , lij for every square (i, j) as it is

shown on �g. 1. The set of clauses consists of

1. {uij , rij , dij , lij}
2. {¬uij ,¬rij}, {¬uij ,¬dij}, {¬uij ,¬lij}, {¬rij ,¬dij}, {¬rij ,¬lij}, {¬dij ,¬lij}
3. uij ↔ di−1 j , rij ↔ li ,j+1, dij ↔ ui+1 j , lij ↔ ri j−1

First two lines claim the square is covered exactly once. Third one connects it

with all its neighbors. It is not written in as a set of clauses, but in fact it is as

the propositional formula a ↔ b is equivalent to the clauses {a,¬b} and {¬a, b}.
Of course, not all of these variables are well de�ned for the border squares (for

instance ri 2n does not exist as it would require the existence of ri 2n ↔ li 2n+1).

In those cases, we simply omit the corresponding variables and clauses.

Note that our encoding is somehow redundant. We could have associated

a propositional variable to every neighboring squares, and we would have had

as half as many variables. However, the presented encoding makes makes the

proof technically easier as we will see later on. In particular, we can now think

of any propositional variable as a pair of a square and a domino that covers it.

Thus any query in the decision tree is of the form �Is it true that the domino

covering the square (i, j) goes up/right/down/left?�.

3



3 Lower bound

This section is organized as follows. First, the outline of the proof is given in

3.1. The proof itself is given in terms of a Prover-Adversary Game. It consists of

two main lemmas. First of them is presented in 3.2. For the sake of simplicity

a new game is introduced there. We call it Road Game, and it might be of

independent interest. The second lemma is proven in 3.3 where the original

problem is reduced to the Road Game.

3.1 Prover-Adversary Game

The main idea is to consider a tree resolution proof of the mutilated chessboard

problem as a Prover-Adversary Game. This concept is introduced by Pudlák

and Buss in [9]. In [8], the classical result of Haken [4] is presented in terms of

such a game.

Let us de�ne the game that corresponds to our problem precisely. As usual

there are two players - Prover and Adversary. Adversary pretends that there is a

complete tiling of the mutilated chessboard by dominoes. Prover tries to convict

him of lying. She holds a decision tree that solves the search problem, and asks

questions following the tree. As the mutilated chessboard is �nite, Prover always

wins meaning that he �nds a contradiction in the (partial) assignment built by

Adversary's answers. Thus the goal of Adversary is to maximize the size of the

tree Prover needs in order to win. Adversary's strategy is based on the concept

of critical questions �rst introduced in [10]. It has two important properties

that correspond to the two main lemmas in our proof:

1. Prover must ask at least cn critical questions (for some constant c) in

order to win.

2. Every time Adversary is asked a critical question, he has the freedom to

choose between �yes� and �no� answers.

Roughly speaking, the �rst lemma claims that there is at least one long branch

in the decision tree. The second one shows that this branch, in fact, blows up

to an exponentially big subtree. This implies that the size of Prover's decision

tree is at least 2cn.

3.2 Road Game

This game is played on a m×m chessboard. Adversary claims that there exists

an in�nite acyclic road starting from the the bottommost right square of the

board. At any round Prover chooses a squares and asks �Is this square on the

road?� Adversary answers either �yes� or �no�. In the former case, he should

construct the entire path from the bottommost right square to the one he has

just been asked about. As the chessboard is �nite, Prover can always win

after having asked m2 questions. Thus the goal of Adversary is to survive as
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many rounds as possible. We will prove that he can answer consistently Ω (m)
questions no matter what strategy Prover uses.

Let us now present the Road Game more formally. We have four kinds of

tiles as shown on �g. 2. The tile a corresponds to the �no� answer, while b and c
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Figure 2: Tiles for the new game

(and all their rotations) correspond to �yes� answers. The tile d is a special one.

It is used only once before the game has even started. We put it as shown on �g.

3 in order to emphasize the starting point of the road. It is now clear how the

����
����
����
����

����
����
����
����

Figure 3: The board for the new game

game is played. When asked about a particular square, Adversary puts there

either the tile a (answer �no�) or b/c rotated appropriately (answer �yes�). In

the latter case, he uses these to construct the entire path from the bottommost

right square. It is also clear how Prover can observe any inconsistency in the

answers and thus win.

We can now explain Adversary's strategy. To do this, we need to introduce

some more concepts. We call squares that Prover has asked about marked. We

should note that there might be squares neither marked nor empty, namely

these used in constructing the entire road after every positive answer. Another

concept is the current end of the road. Initially, it coincides with the beginning

of the road, i.e. it is the bottommost right square. After every answer �yes�

Adversary has to enlarge the road from its current end to the square having just

been marked. After that, the road is directed to some neighboring square of the

last one. If this square is empty, it becomes the new current end of the road.

Otherwise, a contradiction is found as the road cannot be enlarged anymore,

and therefore Prover wins.
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At any stage in the game, we consider the connected components of empty

squares, initially the entire board being such a component. We call the unique

component, which the current end of the road belongs to, bad and the others -

good. We should note that Prover does not need to ask in the good components

as Adversary can safely answer �no� to all such questions. Therefore we can

assume that all Prover's questions are inside the current bad component.

The Adversary's strategy is now both natural and simple: As far as Prover's

questions do not disconnect the bad component the answers are �no�. Otherwise,

Adversary looks at the sizes of the new components obtained by disconnecting

the bad one. The largest one will be the new bad component. Therefore, if the

current end of the road happens to be already there, Adversary answers �no�.

If not, he answers �yes� using the appropriate tile to direct the road to the new

bad component.

We can now state and prove the �rst main lemma.

Lemma 1 Prover has to ask at least 1
2
√

2
m questions in order to win the Road

Game.

Proof First of all, we need to observe that the �border� of every component,

either bad or good, consists of marked squares and (parts of) the sides of the

chessboard itself. We can prove a simple isoperimetric inequality.

Proposition 1 Let A be a connected component consisting of s empty squares.

Let us also suppose that A touches at most two neighboring sides of the chess-

board. The number of marked squares needed to isolate A from the rest of the

board is at least
√

s.

Proof (of the proposition) W.l.o.g. let us suppose that A together with

its �border� of marked squares is contained in an a × b rectangle where a ≥ b.
Obviously, the number of marked squares has to be at least a - at least one in

every row of the rectangle. Then

a2 ≥ ab ≥ s.

2

Note that this proposition does not hold if A touches three of the sides of the

chessboard. As an example, we can take small number of squares connecting

two neighboring sides of the board, near to one of the corners. They divide it

into two connected areas, one of them being much smaller than the other. It is

now clear that the proposition does not hold for the bigger component.

We can now prove the lemma. Let us consider the �rst square such that

after having marked it the size of the bad component gets less or equal to m2

2 .

Two cases are possible

• The square has not disconnected the bad component. Then its size is

exactly m2

2 .
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• The square has disconnected the bad component. At most four new con-

nected components could have appeared and the new bad is the largest

among them. Therefore its size is at least m2

8 .

In both cases, we have that the size of the bad component is between m2

8 and
m2

2 . Now, let us consider all possible shapes of its border:

1. It consists of marked squares and at most two neighboring sides of the

chessboard. The proposition applies, so that the number of marked squares

is at least m
2
√

2
.

2. It consists of some marked squares and either two opposite sides of the

board or three sides of the board. In these cases, there must be a connected

�path� of marked squares connecting two opposite sides of the chessboard.

Every such a path contains at least m squares.

3. It consists of some marked squares and all four sides of the board. In

this case, we consider the connected components of all good parts of the

board (i.e. we join all such parts that have common borders). The lemma

applies to them, so that if their sizes are s1, s2, . . . sk we have to have at

least
∑k

j=1

√
sj marked squares. Then




k∑
j=1

√
sj




2

≥
k∑

j=1

sj ≥ m2

2
,

so that we have at least m√
2
marked squares.

In all the cases, the number of marked squares is at least m
2
√

2
.2

3.3 Reduction

In this subsection, we will show how to reduce the original problem to the Road

Game. The general idea is as follows. We divide the mutilated chessboard into

non-overlapping constant-size squares that we will further call zones. Every

big enough constant is proper for our proof. However, we use 26 × 26 squares,

although much smaller constant is most likely enough. We also �move� one of the

missing squares near to the other as shown on �g. 4a for a (26n + 2)×(26n + 2)
chessboard. At the end, we have only one bad zone, namely the bottommost

right one which contains two missing white squares. All other zones are good,

initially complete 26 × 26 squares.

We can now introduce the most important concept in our proof - critical

question. Informally speaking, the (unique) critical question for a particular

zone is the �rst question inside the zone and such that both �yes� and �no�

answers do not contradict to any previous answers. After having answered a

such a question, Adversary decides a complete tiling for the corresponding zone,

so that all future question about it have forced answers. When Prover asks a

7
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Figure 4:

critical question for a zone, she receives not only its answer, but also a complete

tiling of the zone for free. Obviously, in a particular Prover-Adversary game,

the sequence of the critical questions depends completely on Prover's strategy,

that is the decision tree she holds.

We can de�ne critical question formally as follows. Let us �st remind that

any question is a pair of a square and a tile. The critical question for a particular

zone is the �rst one such that

1. The square is inside the zone.

2. Either the tile is completely inside or the square is one of the dashed

squares on �g. 4b.

3. Both answers �yes� and �no� do not contradict to the current partial tiling.

Conditions 1 and 3 correspond to the intuitive explanation we have already

given. The second says that a critical question a�ecting the a neighbouring

empty zone should not be too near to the corners. This prevents the situa-

tion when two critical questions �cut� the corner of an empty zone, so that an

immediate contradiction is found.

Now, we can describe the reduction in details. We �rst explain the shape of

zones we can have during the game. There is only one bad zone that corresponds

to the current end of the road in the Road Game. All other zones are either

tiled or good. The good zones correspond to the empty squares in the Road

Game. We show how any zone can look like on �g.5 . The possible patterns

shown on �g. 5b. The squares bordered with dashed lines are missing, i.e.

they are covered by the tiling of the corresponding neighbouring zone. These

patterns can appear on dashed area shown on �g. 5a. A good zone can have the

pattern 1 only (two missing neighbouring squares) there. The bad zone should

have either 2 or 3 on one of its sides. On the others, it can have the pattern

1. Patterns 4 and 5 do not appear anywhere during the game. They are shown

because we use them in our proof.

8
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We can now prove that the described above invariants can be satis�ed while

playing the Road Game. We will also show that when asked a critical question,

Adversary can give both answers without a�ecting its strategy. To do this, we

consider all the possible situations when Prover asks a critical question

1. The answer is �no�, i.e. this zone is not on the road, in the Road Game.

There are two possibilities for the question:

(a) The tile is completely inside the zone. Both �yes� and �no� answers

can be realized with the tile lying inside the zone (�no� answer is

realized by putting the tile in any position covering the square, but

di�erent than the one in the question). What remains to prove is

that a good zone with a domino put in any position inside it can be

tiled without a�ecting the neighbouring zones. We give the proof in

the appendix.

(b) The tile goes outside of the zone. In this case, the �yes� answer a�ects

a neighbouring zone, since it cuts a square from it. Therefore we need

to cut another square, of di�erent colour. Thus the pattern 1 from

�g. 5b appears on the side of the neighbouring zone. The answer

�no� can be realized by a tile which is completely inside the current

zone.

2. The zone is on the road in the Road Game. We need to �move� the two

missing white squares from the current bad zone to the new one. We move

them along the road connecting these zones as shown on �g. 6. There are

several possibilities depending on the tile of the critical question.

(a) It is completely inside the current zone. In both cases, corresponding

to �yes� and �no� answers, we are free to choose the two pairs of

dominoes that a�ects the current zone (see �g. 6a). It remains to

prove that a zone, having patterns 2 and 4 on two sides and possibly

9



a b

Figure 6:

1 on the other two and a domino put in any position inside it, can

be tiled completely by dominoes. Again, we refer to the appendix for

the proof

(b) The critical question is one of the two upper tiles on �g. 6a, i.e.

it cuts one white square from the new bad zone. The answer �yes�

forces us to use another such a tile to cut another white square. If

the answer is no, we should choose another pair of tiles, as this one

is forbidden by this answer. We can do that because we have chosen

big enough zones, so that we have many enough such pairs (we need

at least two). An analogous case is when the critical question cuts a

black square from the previous zone on the road.

(c) The critical question cuts one black square from the new bad zone.

The answer �yes� forces us to cut three white square from it as shown

on �g. 6b. Thus the pattern 3 appears on the border of the bad zone.

An analogous case is when the critical question cuts a white square

from the previous zone on the road.

Summarizing all the above cases, what we need to prove, in order to compete

the proof, are the following two propositions

Proposition 2 Let G be a good zone, i.e. with the pattern 1 on all its sides,

with two neighbouring squares missing. Then G can be tiled completely by domi-

noes .

Proposition 3 Let B be a zone, having either patterns 2 or 3 and either 4

or 5 on two of its sides and the pattern 1 on the other two sides, with two

neighbouring squares missing. Then B can be tiled completely by dominoes .

The proofs are given in the appendix.
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Appendix

We prove one of the two possible cases of the proposition 3. The other is

analogous, and the proposition 2 is even easier.

More precisely, we prove that a zone, having pattern 2 on its bottom side,

pattern 5 on its top side and possibly pattern 1 on the other two sides, with a

domino put in any position inside it, can be tiled. This case corresponds to the

tile b of the Road Game (see �g. 2). The proof is both simple and tedious. The

zone is shown on �g. 7a where missing squares corresponding to the patterns 2

and 5 are presented by thicker borders.

We construct two cycles that contain the missing squares. On the picture,

they are denoted by ABCDEFG and HIJKLMN . The conditions that any

of these cycles has to satisfy are the following:

11
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• The distance between the longest vertical side (AGF ) and the nearest side

of the zone, parallel to it, is exactly 6.

• The distance between two shorter vertical sides (BC and DE) and the

nearest missing squares, belonging to the cycle, is either 1 or 2.

• The middle horizontal side (CD), if exists (i.e. C and D do not coincide),

should be not so near to any of the horizontal sides of the zone.

We will also use the following trivial assertion:

(*) A rectangle, having both sides greater or equal to two and at least

one of them even, with a domino put at any position inside it can

be tiled completely.

We can now prove the main proposition. Assume for a moment that we had not

the extra tile inside the zone. In this case, we would tile the zone completely

as follows: First we tile the two cycles. This is always possible because the

missing squares disconnect any of them into two part of even length. After

having done this, we observe that the empty part of the zone can be divided

into six rectangles with at least one even side as shown on �g. 7a where they

are numbered.

Now, let us put a domino at any position inside the zone. We consider all

possible cases.

1. The tile does not intersect any of the two cycles and, moreover, it is not

inside the rectangles 1 or 4. If it is completely inside any of the four

rectangles we are done by (*). If the domino is on the border between

2 − 6 or 3 − 5, we �rst put one extra tile as shown on �g. 7c and then

apply (*) for both a�ected rectangles.

2. The tile intersects either the segment AI or the segment EK. In this case,

we put many extra dominoes, as shown on �g. 7b where the two possible

12



positions of the original domino are dashed. In this way, we reduce the

problem from a 26 × 26 zone to a 24 × 26 zone in which no extra tile

appears.

3. The tile intersects any other segment of the two cycles. Since we have

chosen all the distances appropriately, we can move the a�ected segment(s)

2 squares left/right/up/down, still keeping the missing squares on the

cycles and the six rectangles ful�lling the requirements of (*). After these

moves, the tile does not intersect any of the cycles.

4. The last remaining case is when the tile is inside either 1 or 4. It is shown
on �g. 7d-g where the tile from pattern 1 is shown with a thicker border,

and the new tile is dashed. If this tile does not intersect the gray area on

�g. 7d, we can use one of dashed lines to divide the rectangle into two

new rectangles, satisfying the condition of (*) with one tile inside each of

them. In the other case, we put some extra tiles as shown on �g. 7e-g,

thus again dividing the rectangle into two new, satisfying (*).

13
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