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Pseudoknots in RNA Secondary Structures

Rune B. Lyngsø∗ Christian N. S. Pedersen∗

Abstract

RNA molecules are sequences of nucleotides that serve as more than mere

intermediaries between DNA and proteins, e.g. as catalytic molecules. Com-

putational prediction of RNA secondary structure is among the few structure

prediction problems that can be solved satisfactory in polynomial time. Most

work has been done to predict structures that do not contain pseudoknots. Al-

lowing pseudoknots introduce modelling and computational problems. In this

paper we consider the problem of predicting RNA secondary structure when

certain types of pseudoknots are allowed. We �rst present an algorithm that

in time O(n5) and space O(n3) predicts the secondary structure of an RNA

sequence of length n in a model that allows certain kinds of pseudoknots. We

then prove that the general problem of predicting RNA secondary structure

containing pseudoknots is NP-complete for a large class of reasonable models

of pseudoknots.

1 Introduction

An RNA molecule is a sequence of nucleotides that often is just an intermediary

between DNA and proteins. Some RNA molecules do however have vital importance,

e.g. in translation of mRNA to proteins. The three dimensional structure of an RNA

molecule is to a large extent determined by interactions between pairs of nucleotides,

called base pairings. The secondary structure of an RNA molecule is the set of base

pairings in the three dimensional structure of the molecule. The secondary structure

can thus be used in its own right to look for information, e.g. active sites, or as a

stepping stone towards prediction of higher structural levels.

If the three dimensional, or tertiary, structure of an RNA molecule is available it

is of course easy to determine the secondary structure. But determining the tertiary

structure is a complicated and time consuming task. When the tertiary structure of an

RNA molecule is not available, the authoritative way of determining the secondary

structure of an RNA molecule is by comparative modelling. Given a number of

related RNA sequences the common secondary structure is inferred by identifying

compensatory mutations, that is, by identifying pairs of positions where mutations

of the base in one of the positions is accompanied by a mutation of the base in the

other position to retain their base pairing capability. The drawback of this technique

is that it requires several related RNA sequences to be available. Moreover, since

∗Basic Research In Computer Science (BRICS), Centre of the Danish National Research Foun-
dation, Department of Computer Science, University of Aarhus, Ny Munkegade, 8000 Århus C,
Denmark. E-mail: {rlyngsoe,cstorm}@brics.dk.
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expert intervention is often necessary to identify the compensatory mutations, it is

di�cult to fully automate comparative modelling.

Thus computational methods for predicting the secondary structure of an RNA

sequence are in demand. To construct such methods it is necessary to model the

biological reality that governs structure formation. Inspired by the laws of thermo-

dynamics this is often done in terms of energy minimisation. Using a model that

describes how to assign free energies to legal secondary structures, the secondary

structure of an RNA sequence is predicted as the structure of least free energy. The

biological relevance of the predicted structure and the computational resources such

as time and space that are needed to compute it, depend entirely on the choice of legal

structures and free energies. Most work has been devoted to construct algorithms for

RNA secondary structure prediction when the legal structures are limited to secondary

structures that do not contain pseudoknots, that is, do not contain overlapping base

pairs. Nussinov et al. in [7] present an algorithm using a simple free energy function

that is minimised when the secondary structure contains the maximum number of

complementary base pairs. The algorithm takes time O(n3) for predicting the sec-

ondary structure of an RNA sequence of length n. A more complex model for the free

energy of secondary structures is proposed by Tinoco et al. in [15]. This model states

that the free energy of a secondary structure is the sum of independent energies for

each loop in the structure. Based on this model of free energy, Zuker and Stiegler

in [19], and Nussinov and Jacobsen in [6], present algorithms that take time O(n3)
for predicting the secondary structure of an RNA sequence of length n. Since the

ideas of these algorithms form the basis of the widely used mfold server for RNA

secondary structure prediction, they are commonly referred to as mfold algorithms,

or algorithms of the mfold type.

The reason that legal structures are often required not to contain pseudoknots is

not that pseudoknots do not occur in real world structures, but rather because of

modelling and computational considerations. It is still an open question how to con-

struct a reasonable model of free energy for structures containing pseudoknots that

also makes it possible to construct e�cient structure prediction algorithms. Rivas and

Eddy in [10] present an algorithm that in time O(n6) and space O(n4) predicts the

secondary structure of an RNA sequence of length n in a model that allows certain

kinds of pseudoknots. In this paper we study the problem of predicting RNA sec-

ondary structure containing pseudoknots further. In section 2 we brie�y review the

ideas of the mfold algorithms. Extending on these ideas, we in section 3 present an

algorithm for predicting RNA secondary structure when certain types of pseudoknots

are allowed. We compare the presented algorithm with the algorithm presented by

Rivas and Eddy in [10]. In section 4 we show that predicting RNA secondary struc-

tures containing pseudoknots of arbitrary types is NP-complete for a large class of

reasonable free energy functions. Finally, in section 5 we discuss the implications of

the NP-completeness result.

2 Terminology

For an RNA sequence s, |s| = n, a secondary structure is a set S of base pairs i ·j with
1 ≤ i < j ≤ n, such that ∀i ·j, i′ ·j′ ∈ S : i = i′ ⇔ j = j′. Each base can thus take part
in at most one base pair. The base pairs of a secondary structure describe the base

2
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Figure 1: General recursion scheme for the Rivas and Eddy RNA secondary structure

prediction algorithm.

pairing interactions formed by hydrogen bonding in a corresponding tertiary structure.

It is usually assumed that RNA secondary structures do not contain pseudoknots. Two

base pairs form a pseudoknot if they are overlapping, i.e. two base pairs i · j, i′ · j′ ∈ S
form a pseudoknot if i < i′ < j < j′. The term pseudoknot is also used as a shorthand

for other overlapping structures than base pairs, e.g. two helices of stacking base pairs,

when the base pairs of these structures form pseudoknots.

There are of course good reasons for introducing this restriction, prominent among

which is a simpli�cation of legal structures. The simpli�cation of not allowing pseudo-

knots ensures that two base pairs i · j, i′ · j′ ∈ S are either nested, i.e. i < i′ < j′ < j,
or disjoint, i.e. i < j < i′ < j′. In many situations this allows us to �rst handle

one base pair and then the other (if they are nested), or handle them independently

(if they are disjoint). The pseudoknot restriction is thus crucial in algorithms for

e.g. structure prediction [1, 3, 6, 11, 19], partition function calculations [5], compar-

ing secondary structures [18], and simultaneous alignment and structure prediction

of RNA sequences [2, 12]. In the following we will exemplify this by giving a brief

summary of an algorithm of the mfold type for secondary structure prediction. The

summary is also aimed at introducing the terminology we will use in section 3. A

more detailed summary can be found in e.g. Turner et al. [16].

An mfold algorithm predicts secondary structures by computing minimum (or

close to minimum) energy structures in the model proposed by Tinoco et al. [14]

extended with simplifying assumptions about the nature of the energy function for

multibranched loops. Three arrays, V (i, j) holding the minimum energy of a sec-

ondary structure on s[i .. j] with bases i and j forming a base pair, WM(i, j) holding
the minimum energy of a structure on s[i .. j] that is part of a multibranched loop,

and W (i) holding the minimum energy of a structure on s[1 .. i], are computed based

on the recursions

V (i, j) = min
{
eH(i, j),
eS(i, j, i + 1, j − 1) + V (i + 1, j − 1),

min
i<i′<j′<j

i′ − i + j − j′ > 2

{eL(i, j, i′, j′) + V (i′, j′)},

min
i+1<k<j

{WM(i + 1, k − 1) + WM(k, j − 1) + a}}
,

(1)
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WM(i, j) = min
{
V (i, j) + b,

WM(i, j − 1) + c,

WM(i + 1, j) + c,

min
i<k≤j

{WM(i, k − 1) + WM(k, j)}}
,

(2)

W (i) = min
{
W (i − 1),

min
0≤k<i

{W (k) + V (k + 1, i)}}
.

(3)

These recursions employ energy functions for hairpin loops (eH), stacking base pairs

(eS), internal loops and bulges (eL), and multibranched loops (eM(k, k′) = a + bk′ +
ck, where k′ is the number of unpaired bases and k the number of helices in the multi-

branched loop). With the currently used parameters for the energy functions these

recursions allow for an O(|s|3) time algorithm, cf. [4, 16], for computing secondary

structures of minimum energy for an RNA sequence s.

3 Algorithmic Results

The Tinoco model, cf. [14] describes how to assign energies to secondary structures

not containing pseudoknots, but does not address how to handle secondary structures

containing pseudoknots. To develop algorithms for predicting secondary structures

containing pseudoknots, an important step is to decide on a model, i.e. to give a

description of the types of legal secondary structures, and how to assign energies

to these structures. As developing an algorithm and deciding on a model are closely

connected processes, the description of the model is often only in part given explicitly.

Often the types of legal secondary structures are only de�ned implicitly through the

constructed algorithm.

An example of this is the pseudoknot model used by Rivas and Eddy in [10]. This

is, to our knowledge, the only rigorous, energy based, polynomial time algorithm for

RNA secondary structure prediction including a class of pseudoknots. In �gure 1

we brie�y sketch the idea of the Rivas and Eddy algorithm. Arrays holding energies

of optimal structures for the subsequence from i through j are maintained similar to

equations 1 to 3, but with the further restriction that the bases from k through l are yet
unpaired (to allow for future pseudoknot interactions). The general recursion scheme

for an entry in one of these matrices is to minimise over all possible ways of splitting

the subsequence with an unpaired region into two new subsequences with unpaired

regions. This de�nes the legal structures of the model. The energy parameters, cf. [10,

table 3], used were partly �ne tuned by hand and partly obtained by multiplying

similar parameters for unknotted structures by a weighting parameter.

The requirements of time O(|s|6) and space O(|s|4) for this algorithm are obser-

vations that follow directly from �gure 1. Though polynomial, these time and space

requirements are rather steep and in [10] an estimate of 130 � 140 bases is mentioned

as a rough upper bound for the size of sequences for which the algorithm is feasi-

ble. Though computational power is ever increasing, applying Moore's law (stating

that computational power doubles every 18 months) still only allows sequences of 300

4
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Optimal energy =

min
i<j<k<l

{Optimal energy of i j k l +

Optimal energy of j k l i }

Figure 2: A model for a class of pseudoknots. The sequence has been drawn as a

circle to highlight that one of the four parts of the sequence might extend across the

sequence ends, here shown with a zigzagged line.

bases ten years from now and of 650 bases in twenty years. Nevertheless, the exper-

iments based on this algorithm reported in [10] show the feasibility of energy-based

predictions of RNA secondary structures with pseudoknots.

To obtain a faster algorithm, we propose a more restricted model for legal sec-

ondary structures. The legal secondary structures of our model are structures where

we can split the sequence into four parts (one of which might extend across the ends

of the sequence) as illustrated in �gure 2. The splitting into four parts divides the

sequence into two pairs of opposing subsequences, illustrated in �gure 2 as pairs of

black and grey parts of the sequence. Each pair of opposing subsequences are allowed

to form an unknotted secondary structure and the pseudoknotted secondary structure

arises when these two secondary structures are combined.

To further explain the types of secondary structures allowed in this model, consider

a pseudoknot of type H as illustrated in �gure 3. A pseudoknot of type H consists of

two overlapping helices, each closing a hairpin loop, such that some of the bases in

the hairpin closed by one of the helices are part of the other helix. As indicated in

�gure 3, we can split a pseudoknot of type H into four parts such that only bases in

non-neighbouring, or opposing, parts form base pairs. The model in �gure 2 can be

seen as a generalisation of pseudoknots of type H where

• the overlapping structures can be arbitrary, complex secondary structures not

containing pseudoknots.

• the loop regions closed by the overlapping structures do not need to be hairpin

loops. They can be part of any type of loop as long as they are consecutive

stretches of bases.

The model in �gure 2 thus encompasses secondary structures with one pseudoknot of

type H (or of type B or type I, cf. [9, �gure 3]) among others.

As just explained, our model allows only one (albeit very complex) pseudoknot,

so in that respect our model is a step backward compared to the model used by Rivas

and Eddy. But if we can develop more e�cient algorithms for secondary structure

prediction in this model, it �nds its justi�cation in cases where using the Rivas and
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Figure 3: A pseudoknot of type H (cf. [9, �gure 1]). Zigzagged lines indicate base

pairings.

Eddy algorithm is infeasible and we only expect, or are content, to �nd only one

pseudoknot interaction. In the rest of this section we will focus on developing an

e�cient algorithm for secondary structure prediction in our model.

A straightforward algorithm to solve this problem would be to run through all the

O(|s|4) choices of splits and compute the energy of the optimal structures of the two

pairs of subsequences. This would require time O(|s|7) and space O(|s|2). One can

however observe, that when we compute the energy of the optimal structure of the

subsequence from base i to base l with the subsequence from base j to base k removed,

we also compute the energy of the optimal structure of the subsequence from base i′

to base l′ with the subsequence from base j to base k removed for all i ≤ i′ ≤ j and

k ≤ l′ ≤ l. Hence, by using these intermediate results from the dynamic programming

algorithm, we can reduce the time requirement to O(|s|5) by just running through

all the O(|s|2) choices of the removed subsequence. Unfortunately, we then have to

store some intermediate results until other results become available. This increases

the space requirement to O(|s|4). However, a more thorough investigation shows that

the intermediate results computed with k − 1 as the right endpoint of the removed

subsequence are only combined with intermediate results computed with k as the left

endpoint of the removed subsequence. This allows us to split the computation into n
independent phases, each requiring only space O(|s|3), thus reducing the overall space
requirement to O(|s|3) while maintaining the O(|s|5) time requirement.

The formal speci�cation of the sketched algorithm for predicting RNA secondary

structures containing pseudoknots is given in algorithm 1. The speci�cation is rather

abstract. It is more an algorithm schema than a ready-to-implement algorithm. More

speci�cally, an implementation would require several di�erent arrays, storing energies

under various assumptions of base pairings of �anking bases. In algorithm 1 we only

show have to maintain one type of array (V ). But the same technique can be used for

maintaining several types of interdependent arrays used in an actual implementation

of the algorithm.

The O(|s|5) running time of algorithm 1 should make it feasible for longer RNA

sequences than the Rivas and Eddy algorithm. For example, if we assume that the

constants hidden by the O notation are similar for the two algorithms, the 130 �

140 bases upper bound for the Rivas and Eddy algorithm implies an upper bound of

350 � 375 bases for our algorithm. This increase might justify the restricted model

6



Algorithm 1 An algorithm for predicting RNA secondary structures containing pseu-

doknots based on the model illustrated in �gure 2.

/* Vj,k(i, l) denotes the energy of the optimal structure for s[i..j] concatenated with

s[k..l]. */
E = ∞
for k = 1 to |s| do /* Fix one of the endpoints of the excluded region */

Allocate memory for storing and calculating Vj,k(i, l) and Vk−1,l(j, i) for i < j <
k < l
/* Compute tables with k (or k−1) as right (or left) endpoint of excluded region.

*/

for j = 1 to k − 1 do
Compute table Vj,k

end for

for l = k to |s| do
Compute table Vk−1,l

end for

/* Combine tables. */

for 1 ≤ i < j < k < l ≤ |s| do
E = min{E, Vj,k(i, l) + Vk−1,l+1(j + 1, i − 1)}

end for

Free allocated memory

end for

of allowing only one pseudoknot. If this restriction is to severe, we could extend our

model by allowing the sequence to be split into segments for each of which the optimal

secondary structure is calculated using the model of �gure 2. Such an extended model

is more comparable to the model used by Rivas and Eddy in terms of legal structures

(though still more restricted). It is also comparable to the model used by Rivas

and Eddy in allowing secondary structure prediction in time O(|s|6). The space

requirement can still be limited to O(|s|3) though.
We could keep playing this game of modifying models and algorithms to obtain

the best possible combination of a fast algorithm and broad class of legal secondary

structures. But for any class of secondary structures with pseudoknots we should

probably not expect to do better than the requirements of time O(|s|3) and space

O(|s|2) of the classic mfold algorithm. Furthermore, in the following section we pro-

vide evidence that we should not set hopes to high for developing e�cient algorithms

handling secondary structures with general types of pseudoknots.

4 Complexity Results

In this section we prove that RNA secondary structure prediction with pseudoknots

is NP-complete in a simple nearest neighbour model, cf. de�nition 1. This model

might seem too simple, and probably would be if we wanted to base a secondary

structure prediction algorithm on it. But when proving complexity results, we want

to do so in a model that is as simple as possible. If the problem in the simple model

is NP-complete, it will remain so in any more complex and realistic model if �xing

7



some of the parameters in the complex model turns it into the simple model.

De�nition 1 (The Nearest Neighbour Pseudoknot Model) Let S be a sec-

ondary structure on a sequence s ∈ {A, C, G, U}∗, with |s| = n, that is, S is a set of

base pairs i · j where 1 ≤ i < j ≤ n and ∀i · j, i′ · j′ ∈ S : i = i′ ⇔ j = j′. The energy

of S is an independent sum of energies of each of the base pairs in S,

E(S) =
∑

i·j∈S
E(i · j, i + 1, j − 1),

where the energy of a base pair i · j only depends on

• the base pair itself, that is, the types of bases forming the pair.

• the two neighbouring bases i + 1 and j − 1, that is, the types of these two bases.

Furthermore, if i + 1 · j′ ∈ S (or i′ · j − 1 ∈ S) the energy can depend on j′ (or
on i′).

Note that the Nearest Neighbour Pseudoknot Model allows arbitrarily complex

pseudoknots as there is no restriction that base pairs are not allowed to overlap. The

energy of a base pair in the Nearest Neighbour Pseudoknot Model is allowed to depend

on non-neighbouring bases, but only through a base pairing with a neighbouring base.

If we compare this to the Tinoco model, cf. [14], the Tinoco model allows the energy

of a base pair to depend, not only on the neighbouring bases and the base pairs

they might participate in, but on all bases and base pairs in the loop it closes. If

we consider the model assumed by the mfold server, this is more restricted than the

Tinoco model. Still it allows the energy of a base pair to depend on the type of loop it

closes, the size of the loop, and coaxial stacking of base pairs involving neighbouring

bases. The Nearest Neighbour Pseudoknot Model can be seen as a further restriction

of this where we only allow the energy of a base pair to depend on stacking e�ects

with unpaired neighbouring bases and base pairs involving neighbouring bases. The

value of these stacking e�ects can however depend on whether the involved base pairs

form a helix, an ordinary loop (a bulge or multibranched loop), or a pseudoknot.

Thus, if we compare the Nearest Neighbour Pseudoknot Model to the energy

model used by Rivas and Eddy, cf. [10], it should be of little surprise that the Nearest

Neighbour Pseudoknot Model is a restriction of the model used by Rivas and Eddy.

The Nearest Neighbour Pseudoknot Model can be obtained from the energy model

used by Rivas and Eddy by �xing some of the parameters. Thus an NP-hardness

result for secondary structure prediction in the Nearest Neighbour Pseudoknot Model

immediately implies that secondary structure prediction in the energy model used by

Rivas and Eddy is NP-hard.

Proposition 1 The problem of determining whether the optimal secondary structure

in the Nearest Neighbour Pseudoknot Model has energy lower than some energy value

E is NP-complete.

As the problem trivially is in NP (guess the optimal secondary structure and

verify in polynomial time that it has an energy value lower than E), all we need to do

is to prove that it is NP-hard. We will do this by a reduction to the special case of

3sat where each literal occurs at most two times, cf. [8, proposition 9.3]. Throughout

8



the proof of the proposition we will allow only Watson-Crick base pairs, i.e. A pairing

with U and C pairing with G. This will become explicit in the �nal speci�cation of the

base pair energy function, and is only a technical limitation to reduce the complexity

of the proof. Before proving proposition 1 we need some building blocks.

De�nition 2 The d digit binary representation of k, where 0 ≤ k ≤ 2d − 1, over
the alphabet {A, U}, is the string b{A,U}(k, d) of length d that interpreted as a bi-

nary number with A representing 0 and U representing 1 has the value k. Similarly

b{C,G}(k, d) is the d digit binary representation of k over the alphabet {C, G}.
The k'th distinct {A, U} pattern using d digit binary representations is the string

A . . . A︸ ︷︷ ︸
d+2

Ub{A,U}(k, d)AUAb{A,U}(k, d)UA . . . A︸ ︷︷ ︸
d+2

.

The k'th distinct {C, G} pattern using d digit binary representations is de�ned simi-

larly.

De�nition 3 For a string s the complementary string s̄ is the string constructed by

reversing s and replacing each A with a U , each U with an A, each C with a G, and

each G with a C.

The need for these distinct patterns is to circumvent the fact that we only have

four letters in the alphabet of RNA sequences. They will be used to construct an RNA

sequence corresponding to a boolean formula on restricted 3sat form, such that the

energy of an optimal secondary structure of the constructed RNA sequence implies

whether the formula is satis�able. The constructed RNA sequence will consist of two

parts, a part where the literals are grouped according to the clauses and a part where

the literals are grouped according to the variables.

If we had an alphabet of arbitrary size we could use two symbols to represent each

occurrence of a literal, one symbol in the clauses part and the other symbol in the

literals part. A score of minus one could be assigned for each pairing of two such

symbols with some extra pairs of symbols being used to form structures nullifying the

bene�ts of pairing more than one symbol in a clause, or pairing a symbol representing

a variable as well as pairing a symbol representing this variables negation.

Without an alphabet of arbitrary size we will instead use distinct {C, G} patterns
and their complementary strings in the clauses and variables parts, respectively, to

represent the literals of the formula. A helix formed between a {C, G} pattern and its

complementary string will indicate that the corresponding literal is true and we will

choose energy parameters ensuring that such a helix usually contributes negatively to

the total energy. The distinct {A, U} patterns and their complementary strings will be

used to form structures nullifying bene�ts of having more than one true literal in each

clause, and of having both a literal representing a variable and a literal representing its

negation being true at the same time. This is ensured by choosing energy parameters

such that helices formed by the distinct {A, U} patterns also contribute negatively to

the total energy, except if the case they should nullify occurs. In that situation they

contribute zero to the total energy. The formal speci�cation of the energy parameters

is postponed till the end of this section.
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De�nition 4 Let C = l1∨ l2∨ l3 be a boolean disjunction of three literals. The clause

block C of C using d digit binary representations is the string

︸︷︷︸
S1

︸︷︷︸
L1

︸︷︷︸
S̄1

︸︷︷︸
S2

︸︷︷︸
L2

︸︷︷︸
S1

︸︷︷︸
S̄2

︸︷︷︸
L3

︸︷︷︸
S2

,

where the Si's are distinct {A, U} patterns using d digit binary representations for

two di�erent k's, and the Li's are distinct {C, G} patterns using d digit binary repre-

sentations for three di�erent k's.

The rationale behind this construction is that we can form two helices between

distinct {A, U} patterns and their complementary strings within the clause block.

These two helices will span di�erent Li's, except for the case where the S1 and S2

�anking L2 both form helices with their complementary string. In this case, the

innermost base pair of the S1 helix and the outermost base pair of the S2 helix (and

vice versa) will be neighbouring base pairs forming pseudoknots.

Furthermore, the Li's spanned by such a helix will be screened. By screened, we

mean that at least one of the �anking bases of the Li pattern cannot form a base

pair with a base not spanned by the helix without forming a pseudoknot with the

innermost base pair of the helix. The Li pattern thus cannot form the intended helix

with its complementary string in the variable block, that we will describe shortly,

without introducing a pseudoknot of neighbouring base pairs. Without introducing

neighbouring pseudoknotted base pairs, for a clause block we can thus form helices of

two of the distinct patterns straightaway, and a third helix if we can pair one of the

Li patterns with its complementary string in the variables part.

De�nition 5 Let x be a variable occurring in a boolean formula where each literal

occurs at most twice. The variable block V of x using d digit binary representations

is the string

︸︷︷︸
S1

︸︷︷︸
P̄1

︸︷︷︸
P̄2

︸︷︷︸
S̄1

︸︷︷︸
N̄1

︸︷︷︸
N̄2

︸︷︷︸
S1

,

where S1 is a distinct {A, U} pattern for some k, the P̄i's are complementary strings

to the distinct {C, G} patterns used for the at most two positive occurrences of x (if

x occurs positive only once, one of the P̄ patterns is omitted from V) and the N̄i's

are complementary strings to the distinct {C, G} patterns used for the at most two

negative occurrences of x (if x occurs negative only once, one of the N̄ patterns is

omitted from V).

The rationale behind this construction is once again to use a helix formed by one

of the occurrences of S1 and its complementary string to screen the complementary

strings corresponding to either the (at most) two positive occurrences of x or the (at

most) two negative occurrences of x. If we are to avoid introducing neighbouring base
pairs forming a pseudoknot, either none of the distinct S1 patterns form a helix with

the complementary string, the complementary strings corresponding to the positive

occurrences of x do not form helices, or the complementary strings corresponding to

the negative occurrences of x do not form helices. We are now ready to construct the

RNA sequence representing a boolean formula on restricted 3sat form.
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De�nition 6 Let φ be a boolean formula on conjunctive normal form where each

clause has three literals and each literal occurs at most two times. Assume that φ
consists of c clauses and uses v variables. The RNA sequence corresponding to φ is

the sequence

sφ = C1C2 . . .CcV1V2 . . .Vv,

where Ci is the clause block using dlog2(3c + v)e digit binary representations corre-

sponding to the i'th clause of φ, Vi is the variable block using dlog2(3c + v)e digit

binary representations corresponding to the i'th variable of φ, no distinct pattern is

used more than once, and the patterns corresponding to a literal and their comple-

mentary strings occur in reverse order.

The choice of number of digits we use in the binary representations ensures that

we can choose at least max{3c, 2c + v} di�erent values for distinct patterns. Each

clause block uses two distinct {A, U} patterns and three distinct {C, G} patterns,

while each variable block uses one distinct {A, U} pattern. Thus we do not run out of

patterns. We will use the term complementary pattern for the deliberate occurrences

of the complementary string to a distinct pattern, that is, the strings indicated by a

barred pattern in de�nitions 4 and 5.

So far we have assumed that helices only form between a distinct pattern and

the complementary string designed to form a helix with it. Helices can of course

form between parts of distinct patterns not designed to form helices together, but the

following lemma limits the length of such helices.

Lemma 1 Let sφ be an RNA sequence constructed from a boolean formula φ accord-

ing to de�nition 6. In any structure S of sφ, any helix of consecutively stacking pairs

of length at least 4d + 5, where d is the number of digits used for the binary represen-

tations, will have at least 2d + 3 bases at the end of a distinct pattern forming base

pairs with the intended bases of the complementary pattern to this distinct pattern.

Proof. By construction any substring of sφ of length at least 4d + 5 will contain at

least 2d + 3 bases from one of the ends of a distinct pattern or its complementary

pattern. Consider one of the two substrings forming the helix. This will be of length

at least 4d + 5 and thus contain at least 2d + 3 bases from a distinct pattern or its

complementary pattern. Assume without loss of generality that it contains the �rst

2d + 3 bases from the k'th distinct {A, U} pattern using d digit representations, that

is, it contains the substring Ad+2Ub{A,U}(k, d). By construction, the only occurrences
of d + 2 consecutive U 's preceded by an A in sφ are at the ends of complementary

patterns to distinct {A, U} patterns, and thus Ad+2Ub{A,U}(k, d) forms base pairs

with b̄{A,U}(k′, d)AUd+2 for some k′ (by the assumption that only Watson-Crick base

pairs are allowed). As b{A,U}(k, d) pairs with b̄{A,U}(k′, d) it follows that k = k′. 2

We have now established that any helix of considerable length will contain at least

part of a designed pairing. The next lemma establishes that this will be all it contains.

Lemma 2 Let sφ be an RNA sequence constructed from a boolean formula φ according

to de�nition 6 using d digit binary representations. In any structure S of sφ, there are

no helices of more than 4d+9 consecutively stacking base pairs containing only A's and

U 's or containing only C's and G's. The only helices of length 4d+9 containing only
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A's and U 's or containing only C's and G's are helices formed by distinct patterns

and their complementary pattern.

Proof. By lemma 1 we know that a helix of length 4d + 9 will contain one of the ends

of a distinct pattern paired with its complementary pattern. All we have to show is,

that we cannot extend a helix formed by a distinct pattern and its complementary

pattern with an extra stacking pair of bases of the same type.

If the distinct pattern is a {C, G} pattern this is straightforward, as it will be

in a clause block and thus bordered by an A and a U , or by two A's. Similarly,

the complementary pattern of a distinct {A, U} pattern from a variable block will

be bordered by two G's. Finally, the complementary pattern to a distinct {A, U}
pattern from a clause block will be bordered by an A on one side, cf. de�nition 4. But

taking the S̄1 complementary pattern as example, this A should form an illegal (by

the Watson-Crick base pair assumption) base pair with either the leftmost A of the

preceding clause block or the rightmost C in the L2 pattern to extend the helix. 2

Proof (of proposition 1). As mentioned above the reduction will be from 3sat with

the restriction that each literal appears at most twice. So let φ be a valid formula for

this restriction of 3sat with c clauses and v variables. In polynomial time, we can

construct sφ according to de�nition 6, and the base pair energy function

E(Xi · Yj , Vi+1, Wj−1) = 


−1 if Vi+1 · Wj−1 ∈ S and either
X · Y, V · W ∈ {A · U, U · A}
or X · Y, V · W ∈ {C · G, G · C}

4d + 7 if X · Y ∈ {A · U, U · A, C · G, G · C}
and for j′ 6∈ {i + 1, . . . j − 1} we have
Vi+1 · Zj′ , Wj−1 · Zj′ , Zj′ · Vi+1,
Zj′ · Wj−1 6∈ S

4d + 8 otherwise

where d is the number of digits used for the binary representations in sφ and S is the

structure for which the energy is calculated. The notation Xi is used as a shorthand

to indicate that the i'th base is of type X .

We claim that the optimal secondary structure of sφ with the above energy func-

tion has energy −(3c + v) if and only if φ is satis�able. By the energy function, the

only helices for which the base pairs combined yields a negative contribution to the

energy of the secondary structure are helices of at least 4d + 9 base pairs, base pairs

that are either all A's pairing with U 's or all C's pairing with G's. By lemma 2, the

only such helices that can be formed are between distinct patterns and their com-

plementary patterns; these helices will consist of exactly 4d + 9 base pairs and thus

contribute −1 to the total score of a secondary structure, provided that the innermost

base pair of the helix does not have a neighbouring base pair that forms a pseudoknot.

Hence, if a distinct pattern is screened by a helix, it can not form a helix yielding a

negative contribution to the total energy.

If there is an assignment of truth values to the variables of φ satisfying φ, we
can construct a secondary structure S on sφ with energy −(3c + v) based on this

assignment by forming the following base pairs.

12



• For each variable block forming the helix of the distinct {A, U} pattern and the

complementary pattern screening the complementary patterns of the literals

that become false by the assignment.

• For each clause block forming the helices between the distinct {A, U} patterns

that leave the distinct {C, G} pattern of a literal that becomes true by the

assignment unscreened.

• Forming the helices between the unscreened distinct patterns of literals in the

clauses part and their complementary patterns (that are unscreened as the as-

signment satis�es φ, and as the reverse order requirement in de�nition 6 ensures

the two complementary patterns corresponding to the same literal not having

neighbouring base pairs forming a pseudoknot) in the variables part.

By the discussion following de�nition 4, the distinct patterns of a clause block can

form at most three helices, each yielding a contribution of −1, and each variable

block introduces only one new distinct pattern; hence the energy of S of −(3c + v) is
optimal.

Assume now that sφ has an optimal structure S of energy −(3c + v). By the

above and the discussion following de�nition 4, we get that each clause block will

contain a distinct pattern corresponding to a literal forming a helix with its un-

screened complementary pattern in the variables part, and that the complementary

patterns corresponding either to a variable or to its negation will be screened. We can

thus infer a truth assignment to the variables of φ satisfying φ from the unscreened

complementary patterns of literals in S. 2

The energy function speci�ed in the proof of proposition 1 rewards stacking some

base pairs, penalises loops by penalising the �rst base pair in a helix, and further

penalises neighbouring base pairs that form a pseudoknot. The only two remark-

able oddities are the disallowance of base pairings between G and U , and penalising

stacking an A, U base pair with a C, G base pair.

One can observe that we could allow G, U base pairs without changing anything

but inserting a C between the two complementary patterns corresponding to the same

literal. As for penalising stacking A, U base pairs with C, G base pairs, this was chosen

to ease establishing the fact that no energy bene�ts are obtained by extending a helix

formed by a distinct pattern and its complementary pattern by further stacking base

pairs. A proof where the energy function rewards stacking of all combinations of A, U
base pairs, C, G base pairs and G, U base pairs can be achieved by a more involved

construction of the clauses part of sφ. However, to limit the complexity of the proof,

we have chosen to present the above version.

5 Discussion

The NP-completeness of the RNA secondary structure prediction problem in the

Nearest Neighbour Pseudoknot Model tells us, that any algorithm allowing energy

functions su�ciently general to be specialised to the energy functions in the Near-

est Neighbour Pseudoknot Model, and running in worst case polynomial time, would

imply P = NP. The question whether or not P is equal to NP is one of the fun-

damental open problems in computer science. Based on strong evidence, the large
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majority of computer scientists believe that P 6= NP. The NP-completeness of the

RNA secondary structure prediction problem in the Nearest Neighbour Pseudoknot

Model thus hints that there is only little hope for a worst case polynomial time algo-

rithm for RNA secondary structure prediction in the Nearest Neighbour Pseudoknot

Model, or models extending it. Moreover, it hints that any algorithm for predict-

ing RNA secondary structures with general pseudoknots most likely have to exploit

speci�c properties of a �xed energy function to obtain polynomial running time.

One approach to obtain a polynomial time algorithm for RNA secondary structure

prediction with pseudoknots is to limit the types of legal pseudoknots. This is the

approach taken by Rivas and Eddy in [10] and by us in section 3. Another approach

is taken by Tabaska et al. in [13], where interactions between neighbouring base pairs

are ignored, thus reducing the problem of RNA secondary structure prediction (with

pseudoknots) to compute a maximal weighted matching. If we are satis�ed to �nd

not necessarily the structures of least free energy, then heuristics can be applied to

search for structures of low energy. For example, van Batenburg et al. in [17] report

on successful experiments with applying genetic algorithms to the problem of �nding

low energy RNA secondary structures containing pseudoknots.
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