
B
R

IC
S

N
S

-99-3
M

osses
&

W
att(eds.):

A
S

’99
P

roceedings

BRICS
Basic Research in Computer Science

Proceedings of the Second International Workshop on

Action Semantics
AS ’99

Amsterdam, The Netherlands, March 21, 1999

Peter D. Mosses
David A. Watt
(editors)

BRICS Notes Series NS-99-3

ISSN 0909-3206 May 1999

Copyright c© 1999, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Notes Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory NS/99/3/

AS’99
Second International Workshop on

Action Semantics

Proceedings

Amsterdam, The Netherlands

21st March 1999

Foreword

Action Semantics1 is a practical framework for formal semantic description of
programming languages. Since its appearance in 1992, action semantics has
been used to describe major languages such as Pascal, SML, ANDF, and Java,
and various tools for processing action semantic descriptions have been devel-
oped. Recently, the close relationship between action semantics and monadic
approaches to denotational semantics has been established.

The workshop was held as a satellite event of ETAPS’99 in Amsterdam. It at-
tracted 18 participants from a total of 10 different countries, several of whom
came to Amsterdam especially to attend the workshop. (The Brazilian partic-
ipants were unfortunately unable to attend, but they provided an automated
presentation of their work, which was shown at the workshop.)

As can be seen from the workshop programme and the contributed papers,
much interesting work was presented and discussed during the one day. Spe-
cial thanks to the invited speakers, Philipp Kutter and Alfonso Pierantonio, for
presenting their recent work towards providing support for action semantics
in Montages; and to all the authors for keeping closely to a tight schedule, not
only when giving their talks during the workshop, but also when preparing
their papers for this Proceedings volume.

The final discussion session revealed plans for a revised version of the action
notation used in action semantics—taking into account the experiences gained
since the first full version appeared in 1992—as well as for further development
of support tools for action-semantic descriptions.

The workshop was generally regarded as a useful and productive event by the
participants, and this Proceedings volume should help to disseminate the re-
ported work to those who did not attend. Partly in view of the planned revision
of action notation, a third workshop is to be held relatively soon—the tentative
plan is for it to take place in May 2000, in Recife, Brazil, as a 2-day satellite
event of the annual Brazilian Symposium on Programming Languages. De-
tails will be announced on the mailing list action-semantics@brics.dk ,
which is also to be used for reporting results, coordinating projects, and dis-
cussing features of action semantics and related frameworks.

The organizers of AS’99 gratefully acknowledge funding and sponsorship
from:

BRICS (Centre for Basic Research in Computer Science, Denmark)2

Computing Science Department, University of Glasgow, Scotland

Peter D. Mosses
BRICS & Dept. of Computer Science
Univ. of Aarhus, Denmark

David A. Watt
Computing Science Dept.
Univ. of Glasgow, Scotland

1Web page: http://www.brics.dk/Projects/AS/
2Established by the Danish National Research Foundation, in collaboration with the Universi-

ties of Aarhus and Ålborg.

i

Programme

08:30 Registration

09:00 Invited talk:

Philipp Kutter, Alfonso Pierantonio (TIK, ETH Zürich, Switzerland)
Generating an Action Notation Environment from Montages Descriptions

10:00 Tools:

Stephan Diehl (Universität des Saarlandes, Saarbrücken, Germany)
Bootstrapped Semantics-Directed Compiler Generation

10:30 Coffee

11:00 Tools, continued:

Hermano Perrelli de Moura, Luis Carlos de Sousa Menezes
(Federal University of Pernambuco, Recife, Brazil)
The Abaco System - An Algebraic Based Action Compiler

11:30 Kyung-Goo Doh, Hyun-Goo Kang (Hanyang University, Korea)
Online Partial Evaluation of Actions

12:00 Kent D. Lee (University of Iowa, USA)
Tuple Sort Inference in Action Semantics

12:30 Lunch

14:00 Recent action-semantic descriptions:

David A. Watt (University of Glasgow, Scotland)
The Static and Dynamic Semantics of SML

14:30 Deryck Brown (The Robert Gordon University, Aberdeen, Scotland),
David A. Watt (University of Glasgow, Scotland)
JAS: a Java Action Semantics

15:00 Coffee

15:30 Theoretical foundations:

Peter D. Mosses (SRI International, Menlo Park, USA)
A Modular SOS for Action Notation

16:00 Søren B. Lassen (University of Cambridge, England)
Towards a New Action Notation

16:30 Concluding discussion

The Future of Action Semantics

(with position statements by Peter D. Mosses and David A. Watt)

17:30 Close

ii

Contents

Generating an Action Notation Environment from Montages Descriptions 1
Matthias Anlauff, Philipp W. Kutter, Alfonso Pierantonio, and Lothar Thiele

JAS: a Java Action Semantics . 43
Deryck F. Brown and David A. Watt

Bootstrapped Semantics-Directed Compiler Generation 57
Stephan Diehl

Online Partial Evaluation of Actions 71
Kyung-Goo Doh and Hyun-Goo Kang

An Algebra of Actions . 89
Søren B. Lassen

Tuple Sort Inference in Action Semantics 111
Kent D. Lee

A Modular SOS for Action Notation 131
Peter D. Mosses

The Abaco System: An Algebraic Based Action Compiler 143
Luis Carlos de Sousa Menezes and Hermano Perrelli de Moura

The Static and Dynamic Semantics of Standard ML 155
David A. Watt

iii

iv

Generating an Action Notation Environment

from Montages Descriptions

Matthias Anlauff1, Philipp W. Kutter2,
Alfonso Pierantonio2, and Lothar Thiele2

1 GMD FIRST, D-10000 Berlin
ma@first.gmd.de

2 Federal Institute of Technology, CH-8092 Zürich
{kutter, alfonso, thiele}@tik.ee.ethz.ch

Abstract. In the present paper, a methodology is presented which en-
ables the implementation of the Action Notation formalism based on a
formal and modular specification. As a result, an interpreter and de-
bugger is automatically generated which allows the visualization of an
Action Notation program execution and the inspection of all semantic
identities in terms of the given formal specification.
These results are based on several new concepts. At first, a formal de-
scription of Action Notation is provided by means of Montages. Montages
are a semi-visual formalism for the specification of syntax and semantics
of programming languages. Moreover, the structuring of Action Notation
via facets is refined and used to define a new specification architecture
that ensures the required modularity. The tool support for Montages
(Gem-Mex) automatically generates a prototypical implementation from
the language’s Montages specification.

1 Introduction

Action Semantics [Mos92,Wat91] allows the description of large, realistic pro-
gramming languages like Standard ML [Wat99] or Java [BW99]. The main reason
is that the addition of new constructs to a described language does not require
reformulation of the already-given description. According to [Mos98b,Mos98a]
we call this property modularity. Nevertheless, experience showed that despite
of modularity and other pragmatic qualities of Action Semantics, tool support
is crucial when large languages are specified.

In Action Semantics, as in denotational semantics, semantic functions map
the abstract syntax of the described language to semantic entities. Here, however,
the semantic entities are so-called actions, which are specified in Action Notation
(AN), rather than higher-order functions expressed in lambda-notation. In this
paper, we describe how to obtain an environment for the execution and inspec-
tion of AN descriptions. Implementing such an environment by hand presents
some disadvantages. For example, it is very difficult to maintain the consistency
of such a system if the definition of AN evolves over time. Moreover, the imple-
mentation is not accessible for inspection to the user as there is no direct link

(neither formally nor visually) between the specification of AN and the execution
of a AN program.

Generating the environment from an executable specification solves the men-
tioned problems. For instance, the ASD tool [vDM96] is generated from an
ASF+SDF description of AN. The resulting environment consists of a struc-
tural editor, a consistency checker, and semantics inspection support on the ab-
straction level of term rewriting. ASF+SDF, as well as Denotational Semantics,
SOS, and Natural Semantics present the disadvantage of not being inherently
modular [Mos98b,Mos98a].

If AN is extended, as for instance in [MM93], a modular semantics is nec-
essary. Otherwise, for each extension of AN re-proving all the laws of AN is re-
quired. An approach to achieve modularity for this purpose has been presented
in [Wan97].

Independent of modular proofs, it is useful to have a modular tool support
that allows to quickly adopt the newest theoretical results and extend the ex-
isting implementations accordingly. In addition, it may be useful to test the
practicability of an extension before doing all the work of re-proving the laws of
AN. Another advantage of basing a tool on a modular description of AN is the
possibility to develop, test, and validate the specification in small pieces. Once
their correct behavior is assessed in isolation, one is able to investigate the inter-
action between modules, while putting everything together. Such a development
process structures the resulting implementation and makes it more transparent
and accessible for the user.

This work illustrates the first tool environment for AN based on and automat-
ically generated from a modular specification. AN descriptions can be visualized,
debugged, and interpreted in terms of the specification. This corresponds to ori-
gin tracking, i.e. to the direct and consistent relation of the implementation with
the underlying specification.

The described results are based on the following techniques:

– We use a a semi-visual formalism for the specification of syntax and seman-
tics of programming languages, called Montages [KP97a,AKP98]. Similar to
Action Semantics, Montages aim at being a pragmatic framework for lan-
guage engineering. Montages are based on context-free grammars (EBNF),
finite state machines for visual control flow and Abstract State Machines
(ASMs) [Gur88,Gur95] for the dynamic semantics. These concepts are infor-
mally described in Section 2.

– In Section 3, we introduce an architecture which is based on a refined par-
tition of AN in facets. The imperative and parts of the basic facet are for-
malized, and as an example of the modularity it is shown how they can
be combined. The given parts show and explain the techniques used in the
complete Montages of Action Notation [AKP97c], covering the remaining
parts of the basic facet as well as the declarative, and reflective facets. The
communicative facet has not yet been incorporated.

2

– Finally, Section 4 gives an impression of the generated AN environment and
shows how it serves as a platform for conducting empirical validation of the
design decisions using origin tracking.

2 Montages

In this section, the methodology is introduced on which the results of the paper
are based. Montages is a formalism for the specification of programming lan-
guages. We will describe informally only those features which are relevant for
the specification of Action Notation. The complete specification of Montages is
available in [KP97a,AKP98].

The aim of Montages is to document formally the decisions taken during the
design process of realistic programming languages. Syntax, static and dynamic
semantics are given in a uniform and coherent way by means of semi-visual
descriptions. The static aspects of a language are diagrammatic descriptions of
control flow graphs, and the overall specifications are similar in structure, length,
and complexity to those found in common language manuals. The intended use
of the tool Gem-Mex is, on one hand to allow the designer to ‘debug’ her/his
semantics descriptions by empirical testing of whether the intended decisions
have been properly formalized; on the other hand, to automatically generate a
correct (prototype) implementation of programming languages from the descrip-
tion, including visualization and debugging facilities.

The departure point for our work has been the formal specification of the C
language [GH93]1, which showed how the state-based formalism Abstract State
Machines [Gur88,Gur95,Hug] (ASMs), formerly called Evolving Algebras, is well-
suited for the formal description of the dynamic behavior of full-blown practical
languages. In essence, ASMs constitute a formalism in which a state is updated
in discrete time steps. Unlike most state-based systems, the state is given by an
algebra, that is, a collection of functions and universes. The state transitions are
given by rules that update functions pointwise and extend universes with new
elements. The model presented in [GH93] describes the dynamic semantics of the
C language by presuming on an explicit representation of control and data flow
as a graph (CDG). This represents a major limitation for such a model, since
the control and data flow graph is a crucial part of the specification. Therefore,
we developed Montages which extend the approach in [GH93] by introducing a
mapping which describes how to obtain the control and data flow graph starting
from the abstract syntax tree.

The formulation of Montages [KP97a] was strongly influenced by some case
studies where the Oberon language [KH95,KP97b] has been specified. Oberon
is an object-oriented language that is used for the implementation of compilers,
operating systems [WG92], various applications, and teaching [RW92]. Mon-
tages have been used also in other case studies, such as the specification of the

1 Historically the C case-study was preceded and paralleled by work on Pascal [Gur88],
Modula2, Prolog, and Occam, see [BH98] for a commented bibliography on ASM case
studies.

3

Java [Wal97] language, the front-end for correct compiler construction [HLT98],
and the design and prototyping of a domain-specific language in an industrial
context [KST98]. The logical/algebraic characterization of an extended Mon-
tages formalism has been presented in [AKP98]. The tool Gem-Mex has been
completely re-implemented with respect to the initial prototype [AKP97a]. Com-
plete references, documentation and tools can be obtained via
http://www.tik.ee.ethz.ch/∼montages/.

The experience showed that the underlying model for the dynamic semantics,
namely the specification of a control flow graph including conditional control
flow and data flow arrows and its close relationship to the well known concept
of Finite State Machines, shortens the learning curve considerably. It confers
to the formalism enhanced pragmatic qualities, such as writability, extensibility,
readability, and, in general, ease of maintenance.

In our formalism, the specification of a language consists of several compo-
nents. As depicted in Fig. 1, the language specification is partitioned into three
parts.

1. The EBNF production rules are used for the context-free syntax of the spec-
ified language L, and they allow to generate a parser for programs of L.
Furthermore, the rules define in a canonical way the signature of abstract
syntax trees (ASTs) and how the parsed programs are mapped into an AST.
Section 2.1 contains the details of this mapping. In Fig. 1 the dotted arrow
from the EBNF rules visualizes that this information is provided from the
Montage language specification.

2. The next part of the specification is given using the Montage Visual Language
(MVL). MVL has been explicitly devised to extend EBNF rules to finite state
machines (FSM). A MVL description associated to an EBNF rule defines
basically a local finite state machine and contains information how this FSM
is plugged into the global FSM via an inductive decoration of the abstract
syntax trees. To this end, each node is decorated with a copy of the finite
state machine fragment given by its Montage. The reference to descendents
in the AST defines an inductive construction of a global structured FSM. In
Section 2.2 we define how this construction works exactly.

3. Finally, any node in the FSM may be associated with an Abstract State
Machine (ASM) rule. This action rule is fired when the node becomes the
current state of the FSM. As shown in Fig. 1, the specification of these rules
is the third part of a Montages specification. The underlying abstract state
machine formalism is shortly described in Section 2.3.

The complete language specification is structured in specification modules,
called Montages. Each Montage is a “BNF-extension-to-semantics” in the sense
that it specifies the context-free grammar rule (by means of EBNF), the (local)
finite state machine (by means of MVL), and the dynamic semantics of the
construct (by means of ASMs). The special form of EBNF rules allowed in a
specification and the definition of Montages lead to the fact that each node in
the abstract syntax tree belongs exactly to one Montage.

4

Global
Finite State Machine

MVL descriptions
(local finite state machines)

Abstract Syntax Tree

Program

language specification language instances

EBNF

nodes

action rules

edges

transition rules
ASM

inductive decoration

Fig. 1. Relationship between language specification and instances.

5

As an example the Montage for a nonterminal with name Sum is shown in
Fig. 2. The topmost parts of this Montages is the production rule defining the
context-free syntax. The remaining part defines static aspects of the construct
given by means of an MVL description. Additionally, the Montage contains an
action rule, which is evaluated after the two operands, i.e. when the control
reaches the sum node.

EBNF

MVL description
(local finite state machine)

transition rule
ASM

addS-Expr
I T

@add:
value := S-Factor.value + S-Expr.value

Sum ::= Factor ”+” Expr

S-Factor

Fig. 2. Montage components.

The definition of Montages usually contains a fourth section which is devoted
to the specification of the static semantics. As we are not using this property in
the current paper, it will not be described. Future work will use this feature to
formalize the elaborated static-semantics of AN, following the work in [Ørb94].

2.1 From Syntax to AST

In this section, the first step in Fig. 1 is described. As a result of this step
we get the abstract syntax tree of the specified program. But we also compose
the Montages corresponding to the different constructs of the language. This
composition of the partial specifications is done based on the structure of the
AST.

EBNF rules The syntax of the specified language is given by the collection of
all EBNF rules. Without loss of generality, we assume that the rules are given
in one of the two following forms:

A ::= B C D (1)

E = F | G | H (2)

The first form defines that A has the components B, C, and D whereas the
second form defines that E is one of the alternatives F , G, or H . Rules of the first
form are called characteristic productions and rules of the second form are called

6

synonym productions. We guarantee that each non-terminal symbol appears in
exactly one rule as the left-hand-side. Non-terminal symbols appearing on the
left of the first form of rules are called characteristic symbols and those appearing
on the left of synonym productions are called synonym symbols.

Composition of Montages Each characteristic symbol and certain terminal
symbols define a Montage. A Montage is considered to be a class2 whose in-
stances are associated to the corresponding nodes in the abstract syntax tree.
Symbols in the right-hand side of a characteristic EBNF rule are called (direct)
components of the Montage, and symbols which are reachable as components of
components are called indirect components. In order to access descendants of a
given node in the abstract syntax tree, statically defined attributes are provided.
Such attributes are called selectors and they are unambiguously defined by the
EBNF rule. In the above given rule, the B, C, and D components of an A in-
stance can be retrieved by the selectors S-B, S-C, and S-D. In Fig. 3 a possible
representation of the A-Montage as class and an abstract syntax tree (AST)
with two instances of A and their components are depicted.

n2∈B n4∈Dn3∈C

n1∈A

S-C
S-DS-B

AST

class A
attributes

methods

S-B of type B
S-C of type C
S-D of type D
. . .

static-semantics
dynamic-semantics
. . .

n6∈B n8∈Dn7∈C
S-C

S-DS-B

n5∈A

Fig. 3. Montage class A, instances in the AST, selectors S-B, S-C, S-D

Synonym rules introduce synonym classes and define subtype relations. The
symbols on the right-hand-side of a synonym rule can be further synonym classes
or Montage classes. Each class on the right-hand-side is a subtype of the intro-
duced synonym class. Thus, each instance of one of the classes on the right-hand
side is an instance of the synonym class on the left-hand-side, e.g. in the given
example, all F-, G-, and H-instances are E-instances as well. In the AST, each

2 In this context we consider class to be a special kind of abstract data type, having
attributes and methods (actions) and, most important for us, where the notion of
sub-typing and inheritance are predefined in the usual way.

7

inner node is an an instance of arbitrarily many (possibly zero) synonym classes
and of exactly one Montage.

Terminals, e.g. identifiers or numbers, do not correspond to Montages. The
micro-syntax can be accessed using an attribute Name from the corresponding
leaf node. The described treatment of characteristic and synonym productions
allows for an automatic generation of AST from the concrete syntax given by
EBNF, see also the work in [Ode89].

Induced structures Inside a Montage class, the term self denotes the current
instance of the class. Using the selectors, and knowledge about the AST, we can
build paths w.r.t. to self. For instance, the path self.S-B.S-H.S-J denotes a node
of class J, which can be reached by following the selectors S-B, S-H, and then
S-J, see Fig. 4. The use of such a path in a Montage definition imposes a number
of constraints on the other EBNF rules of the language. The example self.S-B.S-
H.S-J requires that there is a B component in the Montage containing the path.
Further, every subtype of B must have an H component, and every subtype of
H must have an J component. In other words, the path self.S-B.S-H.S-J must
exist in all possible ASTs.

. . .
self.S-B.S-H.S-J
. . .

imposed constraints:

B = B1 | B2 | . . .
B1 ::= . . . H . . .
B2 ::= . . . H . . .
. . .

H = H1 | H2 | . . .
H1 ::= . . . J . . .
H2 ::= . . . J . . .

n2∈B, . . .

n1∈A

S-B

n9∈H, . . .

S-H

S-J

n10∈J, . . .

A ::= B C D

AST

Fig. 4. Montage A using path self.S-B.S-H.S-J, situation in AST, and constraints on
EBNF rules of B, H.

Example As a running example we give a small language S. The expressions
in this language potentially have side effects and must be evaluated from left
to right. The atomic factors are integer constants and variables of type integer.
The start symbol of the EBNF is Expr, and the remaining rules are

Expr = Sum | Factor
Sum ::= Factor “+” Expr
Factor = Variable | Constant
Variable ::= Ident

8

Constant ::= Digits

The following term is an S-program:

2 + x + 1

As a result of the generation of the AST and the composition of the individual
Montages shown in Fig. 2 and Fig. 5 we obtain the structure represented in Fig. 6.

Variable ::= Ident

lookupI T

@lookup:
value := CurrentStore(S-Ident.Name)

Constant ::= Digits

setValueI T

@setValue:
value := S-Digits.Name

Fig. 5. The Montages for the language S .

In particular, the nodes from 1 to 8 represent instances of the Montage classes
and the edges point to the successors of a particular node. The edges are labeled
with the selector functions which can be used in the Montage corresponding
to the source node to access the Montage corresponding to the target node.
The nodes themselves show the class hierarchy starting from the synonym class
and ending with the Montage class. The leaf nodes contain the definition of the
attribute Name, i.e. the micro-syntax.

2.2 From AST to Control Flow Graphs

According to Fig. 1, the next step in building the data structure for the dynamic
execution is the inductive decoration of the AST with a number of finite state
machines. Again, this process is described rather informally here.

As we have seen in Fig. 2 and Fig. 5, the second part of a Montage contains the
necessary specifications given in form of the Montage Visual Language (MVL).
Two kinds of information are represented here: (a) the local state machine to be
associated to the node of the AST and (b) information on the embedding of this

9

1

2

4
6

3

8
7

5
Factor

Variable

S-Factor S-Expr

S-ExprS-Factor
S-Digits

Expr

Sum

Factor Expr

Sum

Digits
Expr

Name = 2

Constant
Factor

Constant

S-Ident

Ident

Name = ”x”

S-Digits

Digits

Name = 1

Fig. 6. The abstract syntax tree and composition of Montages for 2 + x + 1

local state machine. Using our running example, Fig. 7 just represents the MVL
sections of the Montages as they are associated to the corresponding nodes of
the abstract syntax tree. The hierarchical state transition graph resulting from

S-Factor S-Expr

1
S-Factor TS-Expr addI

2
TsetValueI

3 S-Factor TS-Expr addI

4
5 6

setValue TI

7 8

S-Factor S-Expr

TlookUpI

S-Digits

S-DigitsS-Ident

Fig. 7. The finite state machines belonging to the nodes.

the inductive decoration is shown in Fig. 8 for the running example.

Montage Visual Language Now, the elements of the MVL and their seman-
tics can be described as follows:

– There are two kinds of nodes. The oval nodes represent states in the gener-
ated finite state machine. These states are associated to the AST node cor-
responding to the Montages. The oval nodes are labeled with an attribute. It

10

1

Taddadd

3

6

T

S-Expr

I

5

setValue
TI

I setValue T

2S-Factor

I

S-Expr

S-Factor

I lookUp T

Fig. 8. The constructed hierarchical finite state machine.

serves to identify the state, for example if it is the target of a state transition
or if it points to a dynamic action rule.

– The rectangular nodes or boxes represent symbols in the right hand side of
the EBNF rule and are called direct components of a Montages, see Section
2.1. They are labeled with the corresponding selector function. Boxes may
contain other boxes which represent indirect components. This way, paths
in the AST are represented graphically.

– The dotted arrows are called control arrows. They correspond to edges in
the hierarchical state transition graph of the generated finite state machine.
Their source or target can be any box or oval. In addition, their source or
target can be either the symbol I (I stands for initial) or T (T stands for
terminal), respectively. In a Montage, at most one symbol of each, I and T ,
is allowed. If the I symbol is omitted, the states of the Montage can only be
reached using a jump, if the T symbol is omitted, the Montages can only be
left using a jump.

– As in other state machine formalisms (such as Harel’s StateCharts), pred-
icates can be associated to control arrows. They are simply terms in the
underlying ASM formalism and are evaluated after executing the action rule
associated to the source node. Predicates must not be associated to control
arrows with source I.

– There are additional notations not used in this paper — for example data
flow edges representing the mutual access of data between Montages and box
structures representing lists in an effective way. Moreover, in this section of a
Montage, one may specify further action rules to be performed in the static
analysis phase, for example building up data structures necessary for the
static and dynamic semantics.

It remains to show how the hierarchical finite state machine, for example Fig. 8
is built and how its dynamic semantic is defined.

Hierarchical FSM Building the hierarchical FSM is particularly simple. The
boxes in the MVL are references to the corresponding local state transition
graphs. Remember that nested boxes correspond to paths in the AST. Therefore,
there are references to children only, i.e. to other state transition graphs along
the edges of the AST. After resolving the references, a representation as in Fig. 8
is obtained.

11

Dynamic Semantics After the static analysis phase action rules are executed
which define the dynamic semantics of the language.

– States of the finite state machines are visited sequentially.
– The action rule associated to a visited state is executed. The specification of

these actions is based on the ASM formalism and specified in Section 2.3.
– The control is passed to the next state along a control arrow whose predicate

evaluates to true. The control predicate, i.e. a term in the ASM formalism,
is evaluated after executing the action associated to the source node.
If there is more than one possible next state, the system behaves like a
nondeterministic FSM. Up to now we did not use nondeterministic FSMs.

– If the target of a control arrow is a T , then a control arrow leaving the
corresponding box in the enclosing parent state machine is followed. The
term parent refers to the partial ordering of local state machines as imposed
by the AST.

– If the target of a control arrow is a box, the corresponding local state machine
corresponding to it is entered via the symbol I.

More formally, the arrows from I and to the T symbols define two unary
functions, Initial and Terminal denoting for each node in the AST the first,
respectively last state that is visited. According to the above description, the
inductive definition of these functions is given as follows.

For each state s in the finite state machines,

s.Initial = s (3)

s.Terminal = s (4)

and for each instance n of a Montage N whose MVL-graph has an edge from I
to a component denoted by path tgt,

n.Initial = n.tgt .Initial

and for each instance m of a Montage M whose MVL-graph has an edge from a
component denoted by path src to T ,

m.Terminal = m.src.Terminal

Using these definitions, the structured finite state machine can be flattened.
The arrows of the flat finite state machine are given by the following equations
defining the relation ControlArrow. For each instance n of a Montage N and
each edge e in the MVL-graph of N ,

ControlArrow (n.src.Terminal , n.tgt .Initial)) = true

where src is the path of the source of e and tgt is the path of the target of e.
Applying these definitions to the running example results in the flat state

machine of Fig. 9. In the same figure the dotted lines denote the relation of a state
to its corresponding Montage, which is accessible as self. Using the Montages

12

S-Factor S-Expr

1

2 3

5 6

setValue add add

S-Factor S-Expr

setValue lookUpI T

Fig. 9. The flat finite state machine and its relation to the AST.

shown in Figs. 2 and 5 and their action rules, we can track how the ASM rule
associated with the add states can access the AST-nodes of its left and right
arguments as self.S-Factor and self.S-Expr. The results of calculations performed
by the actions are stored in the additional attributes value. The add action
accesses the values of its arguments using the selectors, and defines its own
value field to be the sum of the arguments. Assuming that CurrentStore maps
x to 4, the execution of the flat or structured finite state machine sets the value
of node two to the constant 2, sets the value of node five to the current store at
x, sets the value of node six to 1, sets the value of node three to the sum of 4
and 1, and finally sets the value of node one to the sum of 2 and 5.

Please note that all the informally described concepts have been formalized
using ASM notation. Even in the implementation, a Montages specification is at
first transformed into static functions and ASM rules which are then executed
by an ASM simulation engine. Therefore, the specification of control may also
be provided in the dynamic semantics of a Montages. We use this possibility in
the specification of AN in Section 3 via the function JumpTo. The underlying
ASM formalism is described in the next section.

2.3 Dynamic Semantics by means of ASM rules

Basic ASM formalism The fundamental concept in ASMs is the object, which
we consider an atomic entity. We call the set of all objects the super-universe
U. In any ASM, U contains the distinct objects true, false and undef. Additional
examples for objects in the Montages context are the nodes of the abstract syntax
tree, and the states of the finite state machines.

The state λ of the system is given as the mapping of a number of function
symbols, the signature Σ, to actual functions. For short we write fλ for the
function interpreting the symbol f in state λ. We write S(Σ) for the set of all
Σ–states.

13

The functions interpreting the symbols need not be strict with respect to
undef. In particular, the equality symbol is defined such that undef = undef eval-
uates to true. In our framework Σ contains a unary function for each attribute
of a Montage. Examples are the selector-attributes, the attributes denoting the
states, and specific to our running example the attribute value. Subsets3 of U
are modeled by functions from U to {true, false}. Such a function delivers true
for all members of a set (instances of a type), and false otherwise. The set or
type consisting of true and false is called Boolean. For each montage M , Σ con-
tains the set M of M -instances. In the examples we have seen the sets Expr,
Factor, Sum, Variable, Constant, Ident, and Digits. These sets can be used to
characterize the types of functions, for instance

value : Sum ∪Variable ∪ Constant → Integer

A state transition changes these functions pointwise, by so-called updates.
An update is a triple

(f, (o1, . . . , on), o0)

where f is an n-ary function symbol in Σ, and o0, . . . , on ∈ U. Intuitively, firing
this update at a state λ changes the function associated with f in λ at the point
(o1, . . . , on) to the value o0, leaving the rest of the function unchanged.

Examples for rules are the actions add, lookUp, and setValue in Figs. 2 and
5. For instance the rule in Fig. 2

value := S-Factor.value + S-Expr.value

abbreviates

self.value := self.S-Factor.value + self.S-Expr.value

The meaning is that the attribute value of self is updated to the sum of the
values of the left and right argument, which are accessed by means of the selector
attributes S-Factor and S-Expr. Not only the semantics of the action rules, but
the complete semantics of the finite state machine plus their construction is given
by an ASM rule.

The formal semantics of a rule R in a state λ is given by a deterministic
denotation Upd(R, λ) being a set α of updates [Gur97]. Given an update set α
and a state λ, firing α at λ results in the successor state λ′ = α(λ). We then
have the following relation between fλ and the new functions fλ′ :

fλ′(o1, . . . , on) 7−→
{
o0 if (f, (o1, . . . , on), o0) ∈ α
fλ′(o1, . . . , on) otherwise

(5)

3 traditionally ASM literature speaks about universes

14

Update sets are defined by transition rules. The basic update denotes one
update of a function at some point. The new values and the point are given
by terms over the signature. Rules can be composed in a parallel fashion, such
that all updates are executed at once. Conditional execution of a rule fires only
in certain cases. The do-forall rule allows to fire the same rule for all objects
satisfying some condition. Finally the extend-rule allows to introduce reserve-
objects, that have not been used before. The last rule is typically used to create
new objects of some class.

Formally, a transition rule R is built up recursively by the following con-
structions. The corresponding denotations are given. Let evalλ be the usual
term evaluation over the state λ.

(Upd 1: basic update) if R = f(t1, . . . , tn) := t0

where t0, . . . , tn are terms over Σ,
then Upd(R, λ) = {(f, (evalλ(t1), . . . , evalλ(tn)), evalλ(t0))}

(Upd 2: parallel composition) if R = R1 . . . Rm

then Upd(R, λ) =
⋃
i∈{1,... ,m}Upd(Ri, λ)

(Upd 3: conditional rules) if R = if t then Rtrue else Rfalse endif

then Upd(R, λ) =

{
Upd(Rtrue, λ) if evalλ(t) = true

Upd(Rfalse, λ) otherwise

(Upd 4: do forall) if R = do forall e : t R′ enddo

then Upd(R, λ) =
⋃
o:eval(λ∪e7→o)(t)

Upd(R, λ ∪ e 7→ o)

(Upd 5: extend) if R = extend E with e R′ endextend

then Upd(R, λ) = Upd(R, λ ∪ e 7→ o),
where o is a completely new allocated element.4

In addition to the existing ASM concepts we use a number of structuring
concepts well known from object oriented and functional programming. The
formal semantics of these concepts are given in terms of basic ASMs.

Classes and Methods In Section 2.1 we introduced classes whose instances are
the nodes in the AST. As already noted the instances of a class S are modeled
by a universe S in the signature and attributes of the class are unary functions,
whose domain are the instances of the class. In Section 3 this technique will
be used to present several ADTs which encapsulate basic concepts of Action

4 See [Gur97] for a formalization of “completely new”.

15

Notation. Experience showed that in this way, the semantics and tools support
of Montages can be freely extended in new areas.

In addition, classes allow multiple inheritance, and recursive, dynamically
bound methods. The sub-typing of classes and synonym classes mentioned in
Section 2 is an application of inheritance. The method calls have a value param-
eter semantics, and are used at several places in Section 3.

Constructors The concept of terms built up by constructors can be mapped
to the ASM approach as follows: each of the function names may be marked as
constructive, expressing that constructor functions are 1-1 and total.

Let Σc ⊆ Σ be the set of all constructive function symbols. If f ∈ Σc, with
arity n, then the following conditions hold for all states A of the ASM:

(i) ∀t1, . . . , tn, evalA(ti) 6= undef, 1 ≤ i ≤ n : f(t1, . . . , tn) 6= undef

(ii) ∀g ∈ Σc, arity of g is m; t1, . . . , tn, evalA(ti) 6= undef :
f(t1, . . . , tn) = g(s1, . . . , sm)⇔
f = g ∧ n = m
∧evalA(ti) = evalA(si), 1 ≤ i ≤ n

where evalA(t) stands for the evaluation of term t in state A of the ASM. In-
formally speaking that means that each constructive function is (i) total with
respect to U and (ii) injective. If f ∈ Σc, then f is called a constructor, and
the terms f(t1, . . . , tn) are called constructor terms. In the following, we use the
constructor term t as a synonym for its unique value evalA(t).

For instance, the stack constructors empty and push can now be defined as
follows:

constructor empty, push(,)

In addition, it is possible to define universes that are built up by constructor
terms. For example, defining a universe Stack as

universe Stack = { empty, push(,) }

introduces the constructive functions empty and push, evalA(empty) ∈ Stack and
evalA(push(t1, t2)) ∈ Stack, for all terms t1, t2.

If a constructor definition is syntactically contained in a class definition C,
then the constructor terms are put into the corresponding universe C. For ex-
ample, the following constructor definitions are equivalent to the previous ones:

class Stack is

constructors empty, push(,)

. . .

16

Pattern Matching Based on the concept of constructor terms, pattern match-
ing functionality is provided. A pattern matching equation is a conditional term
of the form t1=∼t2. The pattern term t2 may contain any numbers of pattern
variables of the form "&x". This kind of equations perform the pattern matching
operation well-known from the functional programming context.

Consider the following equational specification

x.push(y).pop = x

x.push(y).top = y

empty.top = undef

empty.pop = empty

then the ASM translation is given by the following.

class Stack is

constructor empty

constructor push(_,_)

method top is

if self =~ push(&s, &d) then

top_result := &d

else

top_result := undef

method pop is

if self =~ push(&s, &d) then

pop_result := &s

else

pop_result := empty

In Section 3 the class Stack is used to simulate structure-based control flow
concepts, which do not correspond to the finite state machine based model in
Montages.

The ADT Stack exemplified a functional specification style which in turn can
be freely mixed with the typical imperative ASM techniques based on updates of
functions, as proposed in [Ode98]. In Section 3 many examples for this technique
are shown, including a refinement from a functional specification of an ADT Map
into a more imperative specification. In [Ode98] it is show how such refinements
can be proved to be correct.

The tool support of Montages is based on the ASM compiler Aslan [Anl].
Aslan is a conservative and faithful implementation of ASM as defined by Gure-
vich in [Gur95] and [Gur97]. Furthermore Aslan presents some extensions, in-
cluding classes and constructors, whose semantics has been formalized.

17

3 Action Notation Specification

In the Montages specification of the Action Notation-formalism (MAN) the ex-
ploitation of state-based features along with structure-based ones allows an ar-
chitecture specification to reduce the interdependence between modules. This ar-
chitecture follows and refines the partition of Action Notation (AN) into facets.
In Section 3.1 an overview on this architecture is given. Section 3.2 shows how
we implemented data notation(DN), and how terms are accessed and evaluated.
The structure based features are illustrated in the description of the basic facet
(Section 3.3). The full power of the state based features are shown in Section 3.4
where we give the specification of the main aspects of the imperative facet.

3.1 Architecture

The formal description of the AN consists of an interconnection of specification
modules. Each module contains some local information, which possibly makes use
of the behavior described in some other module. The specification architecture
is illustrated in Fig. 10. The decomposition was done to separate the different

Functional

Stack Map

DataNotation

Imperative

Action Notation

DeclarativeEscapeUnfold AndOr

Basic

Reflective

Fig. 10. Specification architecture

concerns involved in the design. Solid arrows in the graph denote import relation.
The module DataNotation, described in Section 3.2, is used in all other modules.

The module Stack consists of the ADT Stack together with some functions
described in Section 3.3. Stack is used both by the module Reflective and the
four modules Or, Unfold, Escape, and And which are partitioning the actions of

18

the basic facet into four modules. Each of these modules works in isolation, e.g.
it refers to no part of other facets. In Section 3.3 the Or and Unfold modules are
introduced in detail.

The module Map consists mainly of the definition of ADT Map. This ADT
is used both in the Imperative facet and the Declarative facet. In Section 3.4
Map is informally introduced and used to explain the imperative facet. Later in
Section 3.5 a simple and a refined specification of Map are shown.

The Declarative facet combines the techniques introduced in the description
of the basic and the imperative facet. The declarative as well as the reflective
facet are not further described in this text. The communicative facet is not yet
included in our tool.

The described modules can be arbitrarily combined. The composition along
the dotted arrows can always be reduced to expressions of the following form as
depicted in figure 11.

M = M1 ⊕M0 M2 (6)

This means that the module M is obtained by the union of M1 and M2, which
shares the module M0. We call it, composition of M1 and M2 via M0.5

M0

M

M2M1

Fig. 11. A simple module decomposition.

For instance, if we consider the specification Basic, it is obtained by

Basic = Or ⊕Stack Unfold ⊕Stack Escape ⊕Stack And (7)

i.e. the composition of Or, Unfold, Escape, and And via Stack.
The complete specification of Action Notation is obtained by combining all

modules of the architecture. Among the possible combinations of a smaller num-
ber of modules, we would like to mention the binary combination of the func-
tional facet with one of the other modules. Using these combinations, useful
examples of the single facets can be tested in isolation.

5 In frameworks which have been categorically characterized, e.g. many-sorted al-
gebraic specification, this operator usually corresponds to the push-out construc-
tion [EGRW98,EM85].

19

3.2 Data Notation and Yielders

Part of the AN is the Data Notation (DN), which is a collection of abstract data
types given in terms of algebraic specifications. The predefined parts of DN can
be implemented and executed, by interpreting the equations defining them as
a term rewriting system. In MAN we include DN as a part of the underlying
algebra. For each constructor in DN we define a constructor which is part of
our ASM model. Formally the set DN contains all terms built up with these
constructors.

The function Eval is used to evaluate data notation:

Eval : DN → U

The concrete syntax rules of DN are included in the EBNF of MAN. The concrete
syntax of DN-term t is parsed and transformed in the abstract syntax tree for t.
The root of the tree (and of all subtrees) is in turn reconnected with the correct
DN constructor term by means of the attribute

data : DN-parse-tree→ DN

Fig. 12 illustrates this process. A part of the EBNF of DN is given together with
the corresponding canonical definition of constructors. The term “if true then
sum(3,5) else 2” is an example of the provided DN fragment in concrete syntax.
The corresponding abstract syntax tree is sketched, and each node is related to
the corresponding term in DN, by means of the attribute data which is depicted
by dotted arrows.

So far DN is completely static and corresponds to algebraic specifications.
So-called yielders extend DN with constructs whose evaluation depends from the
state or current information. As an example we shall see in the next subsection
yielders that depend on the current storage. The semantics of a yielder is given
by defining how it is evaluated by means of Eval.

3.3 The Basic Facet

In the basic facet four different forms of control flow are supported. These forms
differ considerably from the control flow induced by the finite state machines in
Montages. The main difference is that these forms depend on the surrounding
structure of the AST in a dynamically recursive way, while the FSM support
of Montages determines a static next-state relation. Where no static next-state
relation exists, the control flow has to be modeled by explicit jumps. To de-
termine the jump targets, we introduce a stack simulating the recursion.6 The
current value of the stack is given by a 0-ary dynamic function ranging over
Stack. Since we use that function to simulate a situation similar to the one in
structural approaches, we call it structural control-flow stack (SCS).

6 Unfortunately we realized too late that recursive ASM calls following the structure
of the ASTs could have been used to express structural control flow more directly.

20

example in concrete syntax:

abstract syntax tree in Montages:

IfThenElse

S-TruthValue

True

S2-Expr

2Sum

S1-Expr

S-Tuple

S-Expr[1] S-Expr[2]

terms in data notation:

53

EBNF:

”if” TruthValue ”then” Expr ”else” ExprIfThenElse ::=

Sum ::=

Tuple ::= ”(” Expr {”,” Expr}”)”

”sum” Tuple

...

Tuple(3,5)

Sum(Tuple(3, 5)

if true then sum(3, 5) else 2

2

IfThenElse(True, Sum(Tuple(3,5)), 2)

5

3

constructors:

IfThenElse(, ,)

Sum()

Tuple(,...)

...

Fig. 12. The mapping from DN trees to DN terms

21

SCS :→ Stack

The ADT Stack has been introduced in Section 2.

Current Information Several actions in the basic facet are manipulating
the so-called current information. Current information has several components
which are introduced in the facets. The problem is to allow a description of the
actions in the basic facet which is orthogonal to the other facets. As a solution
we use the functions

GetInformation : → Information

SetInformation : Information →
CombineInformation : Information , Information → Information

GetInformation is returning the current information; SetInformation(i) sets the
current information to i, and CombineInformation(i1,i2) returns the information
resulting out of combining i1 and i2. The concrete definition of these functions are
refined in each facet. In the basic facet, no type of information is introduced, and
the three functions correspond to skip rules. In the functional facet the transient
information is introduced and in the declarative facet the scoped information
is introduced. The state of the current store as used in the imperative facet is
considered to be stable information. AN is designed such that stable information
is not manipulated by above operations.

Unfolding and Unfold The composed action Unfolding and the primitive
action Unfold are used mainly for iterative constructs. The meaning of Unfold
is the execution of its syntactically least enclosing Unfolding. In the abstract
syntax trees, the relation of Unfold instances to their least enclosing Unfolding
instance is given by the lastUnfolding attribute.

lastUnfolding : Unfold → Unfolding

In a functional AN model, one can regard unfolding A as an abbreviation for
an action, generally infinite, formed by continually substituting A for unfold. In
MAN we model Unfold as a call to the enclosing Unfolding. The resumePoint
of the Unfold is put as return address on the stack, and control is passed to the
lastUnfolding.

SCS := SCS.push(return(resumePoint))

JumpTo(lastUnfolding)

The Unfold montage in Fig. 13 thus has two action nodes, an unlabeled one,
executing the above rule and the other serving as the resume point after a
completed Unfold.
In the Unfolding montage in Fig. 13 first the Action component is executed.
If after this execution there is a return Address return(&r) on the SCS, then
control is passed back to &r, otherwise the Unfolding terminates.

22

Unfold ::= ”unfold”

callUnfoldingI resumePoint T

lastUnfolding := EnclosingUnfolding

@callUnfolding:
SCS := SCS.push(return(resumePoint))
JumpTo(lastUnfolding)

Unfolding ::= ”unfolding” Action

S-ActionI T

returnToUnfold

SCS.top = return(&r)

@returnToUnfold:
SCS := SCS.pop
JumpTo(&r)

Fig. 13. The Unfold and Unfolding Montages

23

Example 1. The following example calculates 2 to the power of 3. The action
in the unfolding are two mutually exclusive alternatives which behave like an
imperative if-then-else clause.

give 3 then

unfolding

((check it is 0 then give 1)

or

(check it is greater than 0 then

give it - 1 then

unfold then

give it * 2

)

)

And then The action A1 and then A2 executes A1, A2 sequentially. In contrast
to Then (see Fig. 16) the current information before the execution is passed
in parallel to both, A1 and A2. The current information of A1 and then A2
is obtained by combining the current information after the execution of A1
with the current information after the execution of A2. As mentioned the stable
information is not altered by the manipulations of current information.

The control graph of the AndThen montage is a simple sequence. The first
action node pushAction pushes the current information on the stack. Then the
control is passed to the first action, and then to the action node swapAction.
The swapAction pops the information &inf from the stack, pushes the current
information on the stack, and finally sets the current information to &inf.

Or, Fail, and Commit The action A1 or A2 represents implementation-
dependent choice between alternative actions. If A1 or A2 fails, the other al-
ternative is tried.

The first action node of Or chooses nondeterministically d among left and
right. If d is equal to

left then the alternative right branch S2-Action.Initial is pushed together with
the current information as

alternative(S2-Action.Initial ,GetInformation)

where alternative(,) is a constructor. Further control is passed to the left
branch S1-Action.Initial, using the JumpTo() operation which allows for
non local and dynamically redirected arrows in the finite state machine.7

right the left branch is pushed, and control passed to the right one.

7 These jumps can be defined graphically in MVL, but the needed graphical elements
are not described here.

24

AndThen ::= Action ”and” ”then” Action

pushAction

S1-Action

swapAction

S2-Action

combineAction

I

T

@pushAction:
SCS := SCS.push(GetInformation)

@swapAction:
if SCS = &l.push(&inf) then

SCS := &l.push(GetInformation)
!SetInformation(&inf)

@combineAction
if SCS = &l.push(&inf) then

SCS := &l
!CombineInformation(&inf, GetInformation)

Fig. 14. The AndThen montage.

25

Or ::= Action ”or” Action

S1-Action

S2-Action

chooseOneI popAction T

@chooseOne:
choose d in {left, right}

if d = left then
SCS :=

SCS.push(alternative(S2-Action.Initial, GetInformation))
JumpTo(S1-Action.Initial)

else
SCS :=

SCS.push(alternative(S1-Action.Initial, GetInformation))
JumpTo(S2-Action.Initial)

@popAction:
SCS := SCS.pop

Fig. 15. The Or montage.

26

The primitive action Fail is modeled by an action node with the rule !FailSe-
mantics(SCS). The definition of FailSemantics is

method FailSemantics(x) is

if x =~ &s.push(alternative(&a, &i)) then

!SetInformation(&i)

SCS := &s.push(failed)

JumpTo(&a)

elseif x =~ &s.push(&any) then

&s.!FailSemantics

else

_println("the program failed..")

In the case of an alternative(&a, &i) on top of the SCS, the current information
is set to &i, alternative(&a, &i) is replaced with failed, and control is passed to
&a. Otherwise !FailSemantics is called with the rest of the stack as argument.
Like this the first alternative on the stack is searched recursively. If there is no
alternative at all, the whole action failed, and execution is aborted.

The primitive action Commit replaces all alternatives on the stack with failed
such that no backtracking is possible anymore.

3.4 The Imperative Facet

The imperative facet is the most natural part of AN to be specified with Mon-
tages because of the state-based nature of the framework. The simplest model
of imperative behavior is a unary, dynamic function CurrentStore as used in the
example of Section 2. A basic update CurrentStore(x) := y is used to update
the store at position x to y. In the model of the imperative facet of AN, a more
refined solution is needed.

In this section we give the specification of the imperative facet using an
abstract data type Map. In contrast to the example in Section 2, the CurrentStore
is a 0-ary function, ranging over the instances of Map.

CurrentStore :→ Map

The different operations are explained informally where needed, and in the Sec-
tion 3.5 two alternative formal definitions of Map are given. One is a simple,
abstract solution, and the other contains certain implementation-oriented deci-
sions which overcome the problem of handling the store while dealing with large
AN descriptions.

Reading the store The following yielder

YieldTheStoredAt ::= the Sort stored at Yielder

27

is used to read the store at the cell denoted by the Yielder-component. If the
result is of the specified sort, it is returned, otherwise the distinct element nothing
is returned.

Using the definitions of selector attributes, the sort and yielder components
can be accessed as S-Sort and S-Yielder, respectively.

For the integration in DN, a constructor theStoredAt(,) is introduced, and
the field data is defined according to Section 3.2:

y.data = theStoredAt(y.S-Store.data, y.S-Yielder.data)

where y ranges over the instances of YieldTheStoredAt.
The definition of Eval is extended with the following equation:

Eval(theStoredAt(s, y)) =
let r = CurrentStore.lookUp(y.Eval) in

if r of type Eval(s) then r else nothing

where .lookUp() is an operation of Map, used to read the store.
In AN one is only allowed to write and read in instances of the universe Cell.

Cells are allocated using the primitive actions Reserve, Unstore, and Unreserve.
For the ease of presentation, we do not use these, but instead we assume the
existence of some yielders

cell0 , cell1 , . . .

evaluating to instances of type Cell.

Getting a snapshot of the store A primitive yielder

YieldCurrentStorage ::= current storage

is introduced to get a snapshot of the store. The corresponding constructor is
currentStorage, the definition of data is

y.data = currentStorage

where y ranges over the instances of YieldCurrentStorage. The extension of the
definition of Eval is

Eval(currentStorage) = CurrentStore.getCopy

where .getCopy is an operation of Map returning a snapshot of the current
storage.

Writing the store The primitive action

StoreIn ::= store Yielder in Yielder

28

is used to write the datum S1-Yielder.data in the cell S2-Yielder.data.
The StoreIn-montage consists of an action node associated with the following

transition rule.

CurrentStore.upDate(S2-Yielder.data.Eval, S1-Yielder.data.Eval)

where .upDate(,) is an operation of Map used to update the store.

In the definition of the imperative facet we have seen that Map is an abstract
data type having the following operations.

upDate : Map,Datum,Datum →
lookUp : Map,Datum → Value

getCopy : Map → Map

The first operation has an imperative behavior, whereas the second and third
operations have a functional behavior. In the next section we introduce a direct
implementation of the described behavior, and then a refined version where both
the first and the third operations use imperative techniques.

Example 2. The following example makes use of the yielder cell0 , as explained
above.

store 1 in cell0 then

store 2 in cell0

First 1 is stored in cell0 , then the content of cell0 is overwritten by 2.

Example 3. The following example illustrates the use of YieldCurrentStorage.

store 5 in cell0 then

store current storage in cell0 then

store current storage in cell0

This AN description is executed in three steps. After the first step the store
maps cell0 to 5. After the second step, cell0 is mapped to a snapshot of the store
after the first step. After the third step, the store maps cell0 to a copy of the
store after the first two steps.

Then action combinator In the presented examples we made use of the Then
action combinator, although conceptually the then-action does not belong to the
imperative facet. The definition of Then by means of Montages is given in Fig.
16. The control graph of the Then-montage defines graphically

– the left action (accessible with S1-Action) to be the initial in the control
flow of Then

29

– the right action (accessible with S2-Action) to follow the left sequentially
and

– the right action to be the terminal in the control flow of Then.

The Then-combinator does not alter any kind of information thus no additional
action node is required for it. Applying this montage to the above example results
in a simple sequence of two StoreIn actions.

Then ::= Action ”then” Action

S1-Action S2-ActionI T

Fig. 16. The montage for the Then constructor

3.5 The ADT Map

The missing part for our model of the imperative facet is the definition of Map.
We start by a simple definition that illustrates the use of ASMs. Later on, a
more refined version is presented. The more refined version illustrates how our
approach allows to solve efficiency bottle-necks on the specification level.

Simple Definition of Map Both for the simple and the refined definition, the
ADT Map has an attribute map, being a unary, dynamic function from Datum
to Datum. In the imperative facet this attribute is used to map cells to values.8

In the object oriented style of our ASM interpreter the signature of Map is given
as

class Map is

funattr map(_)

method lookUp(x)

method upDate(x,y)

method getCopy

Initially the attribute map is undefined everywhere. No typing has to be pro-
vided, only the arity of attributes is needed. The lookUp and upDate operations
are defined as:

method lookUp(x) is

lookUp_result:= map(x)

8 In the declarative facet map is used to map tokens to bindable values.

30

method upDate(x,y) is

map(x) := y

upDate_result := self

The first operation is having a functional behavior, returning the result of reading
the map-attribute, while the second method has an imperative behavior, having
the side effect to update the map-attribute and returns the given instance of
Map.

Consider the execution of Example 1 starting with an empty store. After
the first store action, CurrentStore(cell0) is equal to 1. After the second store,
CurrentStore(cell0) is equal to 2.

The operation getCopy can be added to the simple definition as follows. A
new Map is allocated and then the complete definition of the map is copied:

method getCopy is

extend Map with newMap

do forall x in dom map

newMap.map(x) := map(x)

enddo

getCopy_result := newMap

This simple and abstract solution makes the tool unusable for large AN descrip-
tions using the imperative facet. Thus in the next paragraph we propose an
alternative refined definition of Map. The unusual property of this refinement is,
that we mix functional and imperative specification parts.

Refined Definition of Map A more effective solution is to use a linked list of
maps. The link from one map to the last is given by an attribute

lastMap : Map → Map

To lookUp a value in such a list, all maps starting from the head are searched
recursively. An upDate to a list of maps is performed on the head of the list only,
the rest can be built up by snapshots. If a snapshot is taken using getCopy, the
map is not cloned as above, but it is only marked by setting a flag copyTaken.
When then next upDate operation is done, first a new map is allocated, and the
lastMap attribute of the new map is set to the old map. Then the update is done
only on the new map, guaranteeing that the old map is not altered and can be
used as a valid snapshot.

The signature of Map extended with lastMap and copyTaken is

class Map is

funattr map(_)

attr lastMap

relattr copyTaken

method lookUp(x)

31

method getCopy

method upDate(x,y)

In the lookUp method, first the attribute map is searched, and then lookUp is
called recursively on lastMap:

method lookUp(x) is

if map(x) != undef then

lookUp_result := map(x)

elseif lastMap != undef then

lookUp_result := lastMap.lookUp(x)

else

lookUp_result := undef

The attribute copyTaken is declared as a 0-ary relation which is initialized as
false. It is used as a flag, to remember whether a copy has been taken. The
method upDate is functionally the identity function, and as a side effect it sets
the copyTaken flag:

method getCopy is

copyTaken := true

getCopy_result := self

The update of such a map takes into account whether a copy has been taken.
If yes, then a new map is allocated, and linked to the old one via lastMap. The
new value is updated in the new map, and this map is returned.

If no copy has been taken, then no new map is needed and the update is
made on the old map, which is returned as result.

method upDate(x,y) is

if not copyTaken then

map(x):= y

upDate_result := self

else

extend Map with m

m.lastMap := self

m.map(x) := y

upDate_result := m

Assume we execute Example 2 using the refined definition. At the end of the
execution three instances of Map exist, reflecting the state of the store after step
one, two and three. All of them are linked by lastMap.

A consequence of our proposed solution is that the evaluation of the com-
ponents of StoreIn and the execution of upDate cannot be done simultaneously.
In Fig. 17 the control flow of StoreIn consists thus of two action nodes, the first
evaluating the components and storing the results in the attributes tmpValue
and tmpCell, and the second executing the upDate operation.

32

StoreIn ::= ”store” Yielder ”in” Yielder

first secondI T

@first:
tmpValue := Eval(S1-Yielder.data)
tmpCell := Eval(S2-Yielder.data)

@second:
CurrentStorage.upDate(tmpCell, tmpValue)

Fig. 17. The Montage for the StoreIn action

4 The Generated Environment

The development environment for Montages is given by the Gem-Mex tool
[AKP97a,AKP97b]. It is a complex system which assists the designer in a num-
ber of activities related with the language design process. It consists of a number
of interconnected components

– the Graphical Editor for Montages (Gem) is a sophisticated graphical editor
in which Montages can be entered; furthermore documentation can be gen-
erated automatically; Fig. 18 shows the editor opened for the Or Montage;

– the Montages executable generator (Mex) which automatically generates cor-
rect and efficient implementations of the language;

– the generic animation and debugger tool visualizes the static and dynamic
behavior of the specified language at a symbolic level; source programs writ-
ten in the specified language and user-defined data structures can be ani-
mated and inspected in a visual environment.

In our case, the generated environment for AN has different purposes. In
particular, while developing or extending the AN specification, it served to test
empirically and validate the intended semantics of AN. At the same time, the
same support can be used to visualize, debug, and explain the behavior of AN
descriptions in terms of the specification (origin tracking).

4.1 Generation of Language Interpreters

Using the formal semantics description given by the set of Montages and the
auxiliary ASM classes, the Gem-Mex system generates an interpreter for the
specified language. No additional implementation details are requested to be
provided by the designer. The core of the Gem-Mex system is Aslan, which
stands for Abstract S tate Machine Language and provides a fully-fledged im-
plementation of the ASM approach. Aslan can also be used as a stand-alone,

33

Fig. 18. The graphical editor of the Gem-Mex tool

general purpose ASM implementation. The process of generating an executable
interpreter consists of two phases:

1. The Montages containing the language definition are transformed to an inter-
mediate format and then translated to an ASM formalization (“montages2asm”
in Figure 19).

2. The resulting ASM formalization is processed by the Aslan compiler gener-
ating an executable version of the formalization, which represents an inter-
preter implementing the formal semantics description of the specified lan-
guage.

Using Aslan as the core of the Gem-Mex system provides the user the possibility
to exploit the full power of the ASM framework to enrich the graphical ASM
macros provided by Montages with additional formalization code.

4.2 Generation of Visual Programming Environments

Besides pure language interpreters, the Gem-Mex system is able to generate
visual programming environments for the generated ASM formalization of the
programming language semantics.9 This is done by providing a generic debugging

9 This feature is again available to all kind of ASM formalizations implemented in
Aslan not only to those generated from a Montages language specification.

34

S2-ActionS1-Action

Then ::= Action ”then” Action

User-
defined
ASM

classes

montages2asm

ASM
classes

generated

Language

Definition

Executable Language Definition

LaTeX

HTML

Fig. 19. The architecture of the Gem-Mex system

and animation component which can be accessed by the generated executable.
During the translation process of the Montages/ASM code special instructions
are inserted that provide the information being necessary to visualize the exe-
cution of the formalization. In particular, the visual environment can be used
to debug the specification, animate the execution of it, and generate documents
representing snapshots of the visualization of data structures during the execu-
tion. The debugging features include stepwise execution, textual representation
of ASM data structures, definition of break points, interactive term evaluation,
and re-play of executions. Fig. 20 shows an example of this kind of visualization,
where the AN description of Example 1 is illustrated in the topmost window
(view source code). In particular, for that particular description the universe
Unfolding is containing the node denoted by #22510 (window Unfolding) and
the selector function S-ActionFactor links the unfolding node occurrence with
its action argument (node #224), which is highlighted in the text (window S-
ActionFactor).

Figure 21 shows an example of the graphical animation facility of the Gem-
Mex system. On the right-hand-side of the window the AN program of Example
1 is visualized and the position information generated during the compilation
process of the Montages is displayed. This position information is used, for ex-
ample, to highlight certain parts of the source code that correspond to values
of data structures contained in the language formalization. In Figure 21, the
change of the value of the “current-task” function CT is animated by drawing

10 The node #29 corresponds to the Aslan class definition of Unfolding.

35

Fig. 20. Textual Visualization of data structures in the Gem-Mex system

36

an arrow from unfold to its “replacement” given by the argument of unfolding.
Experiences show that especially this kind of animation is useful to explain and
document the formal semantics as specified in the Montages.

Fig. 21. Graphical animation in the Gem-Mex system

With the “write graph” button in figure 21 one can trigger the production
of a graphical representation of the syntax nodes and their interconnections,
like data and control flow arrows, selection functions, and initial and terminal
arrows. Gem-Mex generates an input file for the “VCG” tool [San95] which can
be used to visualize these data structures. As an example, Figure 22 displays a
portion of the abstract syntax tree of the examples program displayed in Figure
21.

4.3 Generation of Documentation Frames

As sketched in Figure 19 the Gem-Mex system also generates files that can
be used as frames for the documentation of the language specification. Both
paper and online presentation of the language specification are automatically
generated:

– LATEX documents illustrate the Montages and the grammar; such documents
are easily customizable for the non-specialist user; all Montages in this paper
are generated by Gem-Mex;

– HTML versions of the language specification allows to browse the specifica-
tion and retrieve pieces of specification.

37

Fig. 22. Visualization of a portion of the abstract syntax tree of the example in Figure
21

38

4.4 Library of Programming Language Features

A concept for providing libraries of programming language features is currently
under development. With this concept is shall be possible to reuse features of
programming languages that have already been specified in other Montages. Ex-
amples for this kind of features are arithmetic expressions, recursive function call,
exception handling, parameter passing techniques, standard control features etc.
The designer of a new language can then import such a feature and customize it
according to his or her needs. The customization may range from the substitu-
tion of keywords up to the selection among a set of variants for a certain feature,
like different kinds of inheritance in object-oriented languages, for example. This
would allow, for instance, to embed the AN behavior in other languages reusing
part of it or extending it. In the Verifix project [HLT98], a number of reusable
Montages has been defined with the intention to reuse not only the Montages
but as well an associated construction scheme for correct compilers.

Acknowledgments We thank Samarjit Chakraborty, Christoph Denzler, Yuri
Gurevich, Wuwei Shen, and Chuck Wallace for their collaboration in the Mon-
tages project.

References

[AKP97a] M Anlauff, P. W. Kutter, and A. Pierantonio. Formal Aspects of and
Development Environments for Montages. In M. Sellink, editor, 2nd Inter-
national Workshop on the Theory and Practice of Algebraic Specifications,
Workshops in Computing, Amsterdam, 1997. Springer.

[AKP97b] M. Anlauff, P. W. Kutter, and A. Pierantonio. The Gem-Mex Tool Home-
page. http://www.first.gmd.de/∼ma/gem/, 1997.

[AKP97c] M. Anlauff, P. W. Kutter, and A. Pierantonio. The Montages Project Web
Page. http://www.tik.ee.ethz.ch/∼montages, 1997.

[AKP98] M. Anlauff, P. Kutter, and A. Pierantonio. Enhanced Control and Data
Flow Graphs in Montages. 1998. submitted for publication.

[Anl] M. Anlauff. The Aslan Language Manual. Part of the Aslan distribution.
[BH98] E. Börger and J. Huggins. Abstract state machines 1988 – 1998: Com-

mented ASM bibliography. In H. Ehrig, editor, EATCS Bulletin, Formal
Specification Column, number 64, pages 105 – 127. EATCS, February 1998.

[BW99] D. Brown and D. A. Watt. JAS: a Java Action Semantics. In Proceedings
of AS’99 (to appear), BRICS notes series, 1999.

[EGRW98] H. Ehrig, M. Große-Rhode, and U. Wolter. Applications of category theory
to the area of algebraic specification in computer science. APCS (Applied
Categorical Structures), (6):1–35, 1998.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equa-
tions and Initial Semantics, volume 6 of EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, Berlin, 1985.

[GH93] Y. Gurevich and J. K. Huggins. The Semantics of the C Programming
Language, volume 702 of LNCS, pages 274–308. Springer, 1993.

[Gur88] Y. Gurevich. Logic and the Challenge of Computer Science. In E. Börger,
editor, Theory and Practice of Software Engineering, pages 1–57. CS Press,
1988.

39

[Gur95] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor,
Specification and Validation Methods. Oxford University Press, 1995.

[Gur97] Y. Gurevich. May 1997 Draft of the ASM Guide. Technical Report CSE-
TR-336-97, University of Michigan EECS Department Technical Report,
1997.

[HLT98] A Heberle, W. Löwe, and M. Trapp. Safe reuse of source to
intermediate language compilations. Fast Abstract, 9th Interna-
tional Symposium on Software Reliability Engineering, September 1998.
http://chillarege.com/issre/fastabstracts/98417.html.

[Hug] J. Huggins. Abstract State Machines Web Page .
http://www.eecs.umich.edu/gasm.

[KH95] P. W. Kutter and F. Haussmann. Dynamic Semantics of the Programming
Language Oberon. Term work, ETH Zürich, July 1995. A revised version
appeared as technical report of Institut TIK, ETH, number 27, 1997.

[KP97a] P. W. Kutter and A. Pierantonio. Montages: Specifications of Realistic
Programming Languages. JUCS, Springer, 3(5):416–442, 1997.

[KP97b] P. W. Kutter and A. Pierantonio. The Formal Specification of Oberon.
JUCS, Springer, 3(5):443–503, 1997.

[KST98] P. W. Kutter, D. Schweizer, and L. Thiele. Integrating Formal Domain-
Specific Language Design in the Software Life Cycle. In Current Trends in
Applied Formal Methods, LNCS. Springer, October 1998.

[MM93] M. A. Musicante and P. D. Mosses. Communicative action notation with
shared storage. Tech. Mono. PB-452, Dept. of CS, Univ. of Aarhus, 1993.

[Mos92] P. D. Mosses. Action Semantics. Number 26 in Cambridge Tracts in theo-
retical Computer Science. Cambridge University Press, 1992.

[Mos98a] P. D. Mosses. Modularity in natural semantics (extended abstract). Avail-
able at http://www.brics.dk/∼pdm, 1998.

[Mos98b] P. D. Mosses. Modularity in structural operational semantics (extended
abstract). Available at http://www.brics.dk/∼pdm, 1998.

[Ode89] M. Odersky. A New Approach to Formal Language Definition and its Ap-
plication to Oberon. PhD thesis, ETH Zürich, 1989.

[Ode98] M. Odersky. Programming with variable functions. In International Con-
ference on Functional Programming, Baltimore, 1998. ACM.

[Ørb94] P. Ørbæk. OASIS: An optimizing action–based compiler generator. In
CC’94, Proc. 5th Intl. Conf. on Compiler Construction, Edingurgh, volume
786 of LNCS, pages 1–15. Springer Verlag, 1994.

[RW92] M. Reiser and N. Wirth. Programming in Oberon - Steps Beyond Pascal
and Modula. Addison-Wesley, 1992.

[San95] G. Sanders. Graph layout through the vcg tool. In I. G. Tollis R. Tamassia,
editor, Graph Drawing, DIMACS International Workshop GD’94, Proceed-
ings, volume 894 of Lecture Notes in Computer Science, pages 194–205.
Springer Verlag, 1995.

[vDM96] A. van Deursen and P. D. Mosses. ASD: The action semantic description
tools. In Springer, editor, AMAST’96 Proc., 5th Intl. Conf. on Algebraic
Methodology and Software Technology, number 1101 in LNCS, pages 579 –
582, Munich, 1996.

[Wal97] C. Wallace. The Semantics of the Java Programming Language: Preliminary
Version. Technical Report CSE-TR-355-97, University of Michigan EECS
Department Technical Report, 1997.

[Wan97] K. Wansbrough. A modular monadic action semantics. Master’s thesis,
Dept. of CS, Univ. of Auckland, February 1997.

40

[Wat91] D. A. Watt. Programming Language Syntax and Semantics. Prentice-Hall,
1991.

[Wat99] D. A. Watt. The Static and Dynamic Semantics of SML. In Proceedings of
the AS’99 (to appear), BRICS notes series, 1999.

[WG92] N. Wirth and J. Gutknecht. Project Oberon, The Design of an Operating
System and Compiler. Addison-Wesley, 1992.

41

42

JAS: a Java? Action Semantics

Deryck F. Brown1 and David A. Watt2

1 School of Computer and Math Sciences, The Robert Gordon University,
St Andrew Street, Aberdeen AB25 1HG, Scotland. db@scms.rgu.ac.uk

2 Department of Computing Science, University of Glasgow,
Glasgow G12 8QQ, Scotland. daw@dcs.gla.ac.uk

Abstract. A formal specification of Java is badly needed. The current
Java language specification (Gosling et al., 1996), as is typical of informal
specifications, is inconsistent, incomplete and inaccurate.
The aim of the JAS project is to produce a complete formal specification
of the Java language, its virtual machine, and selected parts of its API,
all using action semantics. The first stage in the project is to produce a
formal specification of the dynamic semantics of the Java language.
The formal specification of the Java language has produced some inter-
esting insights into the design of the language, and into using action
semantics to specify object-oriented constructs.
This paper describes the use of action semantics in the specification
of the Java programming language, and shows how feedback from the
specification process has identified several issues that are not covered in
the existing informal specification.

1 Introduction

The aim of the JAS project is to produce a complete formal specification of
the Java language, the Java Virtual Machine, and the core Java classes, all
using action semantics. These specifications will be developed over a number of
stages. This paper discusses the first of these stages: the production of a formal
specification of the dynamic semantics of the Java language.

Currently, the definitive specification of the Java language is the Java Lan-
guage Specification (JLS) (Gosling et al., 1996). However, as is typical of in-
formal specifications, it is inconsistent, incomplete and inaccurate. Some of the
problems identified with the JLS are listed in the Java Spec Report (Perara &
Bertelsen, 1998).

This paper reports the work to date on the specification of the Java language
using action semantics. Section 3 discusses the current draft of our specifica-
tion of the dynamic semantics of the Java language. Like most action semantic
descriptions, this specification consists of three main parts: abstract syntax, se-
mantic functions, and semantic entities. Here, we concentrate on the semantics
entities of Java, which illustrates how action semantics can be used to specify
object-oriented features. The abstract syntax is largely based on the syntax given

? Java is a trademark of Sun Microsystems Inc.

in the JLS, and preserves most of the naming convention used therein. Most of
the semantic functions share features of other programming languages, and are
therefore less specific to Java. To illustrate the object-oriented features of Java,
we only consider the semantic function for method invocation here.

The specification of the Java language has not been without its problems.
Section 4 discusses the problems encountered with action notation, and Section 5
discusses problems encountered with the JLS and the Java language. Others
have already studied how the Java language might be formally specified (Börger
& Schlute, 1998; Wallace, 1997), and have identified some language problems
using other formalisms. However, the use of action semantics to study the Java
language is unique to the JAS project.

Finally, Section 6 discusses how the current specification will be extended to
include the concurrent features of Java, and the features added in version 1.1 of
the language.

The current (draft) version of the action semantics of Java can be found at
http://www.dcs.gla.ac.uk/~daw/publications/JAS.ps.

2 Background

Java is ubiquitous and needs little introduction in this paper. Several points,
however, do need to be made.

First, Java is much more than a programming language. Java consists of
a programming language, a virtual machine implementation, and an ever in-
creasing number of APIs (or class libraries). This paper relates only to the Java
programming language.

Second, Sun Microsystems intends to standardize Java, including the Java
language. It is their intention to “fast-track” the standardization process, and
avoid the delays associated with a standardization committee1. This means that
any defects or anomalies in the Java language need to be identified quickly,
and resolved, before it becomes a standard. We argue that the production of a
complete, formal specification of the Java language is vital in addressing these
issues.

Third, there are a number of proposals for extending and enhancing the Java
language (e.g. by adding parametric polymorphism). These enhancements must
be judged by their impact on the Java language. A good way to judge their
impact is by extending the formal specification to include these new features.

3 Java dynamic semantics

Our current action semantics of the Java language attempts to formalise the
description given in the JLS. As such, it covers version 1.0 of the Java language.

1 Recent announcements from Sun indicate that they are not going to submit Java
as an ISO standard using their ability to submit a Java specification directly as
a standards document. This would require them to hand maintenance of the Java
standard to ISO as well, which they are unwilling to do.

44

In this initial version, however, the concurrent features of the Java language are
not addressed. The addition of these features is discussed in Section 6.1.

In the following sections, we discuss the object-oriented features of Java. We
consider the representation of classes, fields, methods, constructors, interfaces,
and objects. We then consider the semantics of method invocation.

3.1 Classes

A class declaration introduces a new reference type, which denotes a class. A
class declaration contains the following items:

– a class name. This name, together with the current package name, gives the
fully qualified name of the class, which uniquely identifies it.

– an optional direct superclass. A class declaration may extend the definition of
an existing class. The extended class becomes the direct superclass of the new
class. If the superclass is not specified explicitly, then the class declaration
extends the class java.lang.Object. Only the class java.lang.Object has
no (direct) superclass.

– a (possibly empty) list of interfaces. A class declaration may implement a
number of existing interfaces. These interfaces become the direct superinter-
faces of the new class. A class may have no direct superinterfaces (but it may
have indirect superinterfaces if its superclass implements any interfaces).

– a class body. The class body may contain class member (i.e. field and method)
declarations, constructor declarations, and static initializers.

A class declaration may contain one of the modifiers public, abstract or
final. Of these modifiers, only abstract has a dynamic effect in the sense
that an abstract class may contain abstract method declarations, which have no
dynamic semantics.

A constructor is used in the creation of an object that is an instance of a
class. A constructor is invoked normally by a class instance creation expression
(using the operator new). A class may contain several constructors that are
distinguished by their signatures.

A static initializer is a block of statements, and a class may contain several
such initializers. Any static initializers of a class are executed when the class is
initialized, they (together with any field initializers) may be used to initialize
the values of any class variables belonging to the class. A class is initialized on
its first active use, i.e. when either a method or constructor in the class is called,
or when a non-constant field declared in the class is used or assigned.

A class member declaration introduces either a new variable (field) or a new
method. Such a declaration can contain a number of modifiers. Most modifiers
are used to control access to the member, and are not relevant in the dynamic
semantics. The only modifier with a dynamic effect that we will consider here is
static2. Class members (fields and methods) fall into the following four cate-
gories:

2 Other modifiers such as transient, synchronized, and volatile, which also have
a dynamic effect, are not handled in the current specification.

45

– class fields or variables. A class variable is introduced using a static field
declaration, and it is instantiated once regardless of the number of instances
of the class that exist.

– instance fields or variables. An instance variable is introduced using a non-
static field declaration, and it is instantiated in each instance of the class
that exists.

– class methods. A class method is introduced using a static method declara-
tion, and it is invoked without reference to a particular object (i.e. it cannot
access any instance members of the class).

– instance methods. An instance method is introduced using a non-static
method declaration, and it is invoked with reference to a particular object,
which is denoted by this.

Fields and methods are considered in more detail in Sections 3.2 and 3.3.

A class is defined by the following sort in action semantics:

class = class of (type-name-token,
field-bindings, field-allocator, type-initializer-cell,
class-method-bindings, instance-method-bindings,

constructor-bindings, interface-bindings, class?) .

The various components of this sort are as follows:

– The type-name-token specifies the fully-qualified name of the class.

– The field-bindings are bindings for the class variables declared in the class.

– The field-allocator is an abstraction that, when enacted, allocates storage for
the instance variables of the class and initializes them to their appropriate
values. It produces a set of bindings for the instance variables that are held
as part of an object of this class.

– The type-initializer-cell contains an abstraction that, when enacted, initializes
the class variables of the class. It represents the statements contained in static
initializers and static field initializers. When a class has been initialized,
the type-initializer is replaced by a harmless abstraction. This prevents the
class from being initialized more than once.

– The class-method-bindings are bindings for the static method declarations
in the class.

– The instance-method-bindings are bindings for the non-abstract, non-static
method declarations in the class.

– The constructor-bindings are bindings for the constructor declarations in the
class.

– The interface-bindings are bindings for the various (direct) superinterfaces of
the class.

– The class is the direct superclass of this class. It is empty only for the class
java.lang.Object.

46

3.2 Fields

A field declaration introduces a new variable. A static field declaration intro-
duces a class variable, and a non-static field declaration introduces an instance
variable.

A field declaration containing the final modifier, and whose initial value is
known at compile-time, may be denoted by a binding of the declared identifier
to a value, rather than to a variable initialized to contain that value. Since a
final field, therefore, may be represented by a binding to either a variable or
a value, we must remember which it is. We do this by associating a truth-value
with each field, which is set to true if the field is final. This is required when
using a final field, since it must always yield a value when accessed and never
a variable.

This leads to the following sort definitions:

• field = field of (truth-value, variable value) .

• field-bindings = map[token to field] .

• field-allocator = abstraction [giving field-bindings storing escaping]
[using current storage] .

A field-allocator can be enacted to produce a set of field-bindings that contains
a freshly allocated collection of instance variables, which have been initialized.
The enactment of the abstraction may escape as a result of the initialization
code throwing either an exception, such as ArithmeticException, or an error,
such as IllegalAccessError.

3.3 Methods

A method declaration introduces a new method. A static method declaration
introduces a class method, and a non-static method declaration introduces an
instance method. An abstract method declaration has no dynamic semantics
and is ignored.

A class may contain a number of overloaded method declarations that are
distinguished by their signatures. The current specification does not, however,
cover overloading.

Class methods and instance methods differ since a class method has no object
associated with it, whereas an instance method does. The sorts class-method and
instance-method therefore differ in the transients they receive. A class method
is given a tuple of values for the arguments, and an instance method is given
both the receiver object and the values for the arguments. Apart from this, both
kinds of methods are represented similarly.

This leads to the following sort definitions:

• class-method-bindings = map[token to class-method] .

• instance-method-bindings = map[token to instance-method] .

47

• method-bindings = map[token to method] .

• class-method =

abstraction [giving a value? storing diverging escaping]

[using the given value* current storage] .

• instance-method =

abstraction [giving a value? storing diverging escaping]

[using the given (object, value*) current storage] .

• method = class-method instance-method .

The result type of both kinds of method may be void, and so the correspond-
ing abstraction sorts give an optional value. The enactment of the abstraction
representing a method may escape as a result of the method body throwing an
exception or an error.

3.4 Constructors

A constructor is used in the creation of an object that is the instance of a class.
In most respects, a constructor looks like an instance method with no return
value. It receives the newly allocated object, and the actual parameters supplied
to it.

A class may contain a number of overloaded constructor declarations that are
distinguished by their signatures. The current specification does not, however,
cover overloading.

If a class contains no constructor declarations, then a default constructor,
which takes no arguments, is automatically provided. For a class that has a direct
superclass, this default constructor simply invokes the superclass constructor
with no arguments.

This leads to the following sort definitions:

• constructor =
abstraction [storing diverging escaping]

[using the given (object, value*) current storage] .

• constructor-bindings = map[token to constructor] .

The constructor itself is not responsible for the allocation of the object. This
is the responsibility of the new operator. If the constructor was responsible for
the allocation of an object, then this would complicate the construction of an
object of a subclass, as the constructor would have to call the constructor for
the superclass, which would then allocate an object of the superclass.

Like methods above, the enactment of the abstraction representing a con-
structor may escape as a result of the constructor body throwing an exception
or an error.

48

3.5 Interfaces

An interface declaration introduces a reference type, which denotes an interface.
An interface is similar to a class, but contains only final, static field (i.e.
constant) declarations, and abstract method declarations. An interface may
also extend a number of superinterfaces.

This leads to the following sort definition:

interface = interface of (type-name-token, field-bindings,
type-initializer-cell, interface-bindings) .

The representation of an interface is therefore just a reduced form of class.
It contains the fully-qualified name of the interface, the bindings for the class
variables (which are all constants), a type-initializer (to initialize the interface),
and the bindings for the superinterfaces.

3.6 Objects

An object is an instance of a class, and so an object is a member of a particular
class. An object contains its own copy of the instance variables of the class,
which are allocated and initialized when the object is created. Objects have
unique identities that can be compared to determine if two references are to the
same object, or to different objects. Finally, the class of an object is used to
determine the method body that is invoked by a method call, and to access any
class variables.

A variable does not contain an object itself, but instead holds a reference to
an object. There is a special reference, called null, that does not refer to any
object.

This leads to the following sort definitions:

• reference = null object (disjoint) .

• null : reference .

• object = object of (class, field-bindings, identity) .

• identity = cell .

An object contains a class, a set of field-bindings, and an identity.
The class denotes the class of the object. It contains the instance methods

associated with this object, and information about this object’s superclass and
superinterfaces.

The field-bindings of the object contain all of the instance variables for this
object, including the instance variables declared in the superclasses of this ob-
ject’s class. It is the concatenation of the collections of field-bindings produced
by enacting the field-allocators of the object’s class and all of its superclasses.
The field-bindings may include fields that are hidden in the current object, but
which will become visible if the object undergoes a narrowing conversion to a

49

superclass. Since the field-bindings are a map, they cannot contain more than
one binding to the same token. Thus the tokens representing the names of the
instance variables must be distinguished, even for hidden fields. This is a similar
problem to distinguishing the names of overloaded methods and constructors,
and is not handled in the current draft specification.

The identity of an object is just a cell. This makes it easy to allocate new
object identities, and to compare them for equality. The contents of the cell are
never used.

3.7 Method invocation

In this section, we consider the most important object-oriented feature, namely
method invocation. The JLS requires 17 pages to describe the semantics of
method invocation, although this also includes overloading resolution, which
is not considered here. Method invocation has six possible cases, since a method
I may represent either an instance method or a class method, and it may be se-
lected using a name, N (which ends in I), an expression, E.I, or the superclass,
super.I.

In general, a method will return a result, and so a method invocation is
evaluated to give a value. The corresponding semantic function is “evaluate ”,
which has the following definition:

• evaluate :: Method-Call →
action [giving a value? storing diverging escaping]

[using current bindings current storage] .

The first semantic equation is concerned with the case where a method is
selected by a name (N):

(1) evaluate [[N :Name “(” A:Arguments? “)”]] =
give the method and receiver denoted by N and then
respectively evaluate A

then
enact the application of the given class-method#1

to the rest of the given (class-method, value*) or
enact the application of the given instance-method#1

to the rest of the given (instance-method, object, value*) or
escape with the given throw#1 .

This action is structured as follows. First the name N is analyzed to give the
corresponding method and receiver object, using the auxiliary operation “the
method and receiver denoted by ”. If the given method is a class-method, then
there is no receiver object, otherwise the method will be an instance-method,
and the receiver will be the object identified by N . Next the arguments are
evaluated to produce a tuple of values. Finally, either the corresponding class
method or instance method is enacted with the given arguments and receiver

50

(where appropriate). If the evaluation of the arguments throws an exception,
then no method is invoked, and the action escapes with the same exception.

The second semantic equation is concerned with the case where a method is
selected by an expression (E .I):

(2) evaluate [[E :Expression “.” I :Identifier “(” A:Arguments? “)”]] =
evaluate E and then
respectively evaluate A

then
enact the application of the class-method I of the type of E

to the rest of the given (object, value*)
or

check there is the instance-method I of the type of E and then
enact the application of the instance-method I of the class of

the given object#1 to the given (object, value*)
or

check the given value#1 is the null-reference then
escape with the throw of the null-pointer-exception .

This equation is structurally similar to the first case. However, in this case,
the expression E is evaluated to produce the receiver object, and the method
selected is based on the type of the expression E (which may be different from
the class of the given object). If the evaluation of the expression E gives a null-
reference, and the method is an instance method, then no method is invoked, and
the action escapes with a null-pointer-exception. However, if the selected method
is a class-method then it is invoked, even if the evaluation of the expression E
gives null.

The third semantic equation is concerned with the case where a method is
selected by the superclass (super.I):

(3) evaluate [[“super” “.” I :Identifier “(” A:Arguments? “)”]] =
give the super-object of the object bound to this-token and then
respectively evaluate A

then
enact the application of the class-method I of the given object#1

to the rest of the given (object, value*) or
enact the application of the instance-method I of the given object#1

to the given (object, value*) .

In this final case, the receiver object is identified by narrowing the current
object (“the object bound to this-token”) to an instance of its superclass (“the
super-object of . . . ”). The class of the resulting object is then searched for the
corresponding method, and either a class-method or an instance-method is en-
acted, in a similar way to the previous equations.

Here we have concisely and accurately specified the various forms of method
invocation present in the Java language. The current specification, however, does

51

not concern itself with method overloading (i.e. multiple methods with the same
name and distinguished by their signatures). This will complicate the semantics
of method invocation. Most of the detail, however, will be hidden inside auxiliary
operations such as “the method and receiver denoted by”.

4 Specification problems

There are several features of the Java language that are awkward to formally
specify due to difficulties in action notation.

One problem relates to the scope of bindings in Java. Two or more class
declarations can make mutually-recursive references to one another. Furthermore
the member (field and method) declarations within these classes can also be
mutually-recursive. For example, the following class declarations illustrate this
problem:

class P {

public static int a = Q.c; }

class Q {

public static int c = 2;

public static int d = P.a;

}

The class P declares a class variable a that refers to the class variable Q.c for
its initialization. Next, the class Q declares the class variable c required by P.a,
and a further class variable d that is initialized to the value of P.a.

In action semantics, recursive bindings are modeled using indirections. An
indirect binding can be initially set to unknown, and later redirected to the
correct bound value. This copes well with the “shallow” recursive bindings in
languages such as Pascal. However, in Java, we have “deep” recursive bindings. In
the above example, the class declaration for P depends not only on the existence
of the class declaration for Q, but it can also look inside the class bound to Q

and refer to the member declarations it contains. It is not sufficient to create an
indirect binding for the class Q, and later replace it with the corresponding class
value.

Using the indirect bindings of action semantics to specify this behaviour is
error-prone, unclear, and unsatisfactory, even for experts in the notation. This
is one area where action semantics fails to produce a readable specification.

Other problems identified with action notation relate to the specification of
the concurrent features of Java, and are discussed in Section 6.1.

5 Java language problems

The production of the action semantics of Java has revealed a number of in-
consistencies and omissions in the JLS. One such omission concerns the scope
of declarations inside a switch-statement. The following example illustrates the
problem:

52

switch (x) {

case 1: int y = 6; ...; break;

case 2: y = 3; break;

}

The body of the switch-statement is a block, and accordingly the scope of the
variable declaration “int y” is from the point of declaration until the end of
the block. Therefore, in the second case of the switch-statement, the variable
y is still in scope. This means that all cases prior to the one selected must be
processed, and any declarations they contain must be elaborated. However, such
declarations are not initialized. So, in the above example, if the second case
attempts to print the value of y without assigning to it, then the class fails to
compile with the error “Variable y may not have been initialized”.

This problem with the switch-statement is frequently overlooked. Börger and
Schlute (1998) omit the switch-statement from their core Java subset, and Wal-
lace (1997) incorrectly specifies the meaning of the switch-statement as the mean-
ing of the selected case.

A second problem relates to the design of Java. An array assignment in Java
has the general form:

E1[E2] = E3;

As defined in the JLS, the semantics of the array assignment statement is
non-compositional, i.e. the meaning of this statement is not composed from the
meaning of its sub-phrases, namely a variable-access and an expression. Instead,
all three expressions are evaluated before the array variable is identified. This
means that, for example, any side-effects of evaluating E3 will take place even
if the value of E1 is null and results in a NullPointerException being thrown.
These side-effects also occur if the value of E2 is too large, and results in an
ArrayIndexOutOfBoundsException being thrown.

Finally, as noted in the JLS, the array assignment statement may also require
a run-time type check to ensure that the result of the expression E3 can be
assigned to the variable denoted by E1[E2]. If the type check fails, an Array-

StoreException is thrown.

6 Extending the specification

6.1 Adding concurrency

Adding the concurrent features of Java will require a significant amount of
work. A Java program may contain many threads that are instances of the
class java.lang.Thread (or one of its subclasses), and execute in parallel. Threads
are synchronized using the synchronized modifier, which allows a particular
thread to lock a given object (or class) before executing a synchronized in-
stance (or class) method. The lock prevents other threads from executing any
synchronizedmethods of the object (or class) until the lock is released. Threads
run in a shared memory space, and can see all of the variables in the entire pro-
gram.

53

There are two main difficulties associated with specifying Java threads in
action notation, and both are associated with the design of action notation itself.

The specification of threads will require the use of the communicative facet
in action notation. Each thread will be represented by a separate agent that is
contracted to perform the body of the thread. Unfortunately in action notation,
communicative agents are executed with their own storage, and do not provide
a simple mechanism for shared storage. This leads to our first problem: shared
storage will have to be specified as a separate agent that maintains the store for
all threads, and messages will have to be sent between agents to handle store
accesses and updates.

The introduction of the communicative facet to represent essentially imper-
ative behaviour has an unfortunate side-effect on the semantic description, and
leads to our second problem. Currently, the semantic functions use the impera-
tive facet to hold the values of variables, and they access the store using imper-
ative yielders. However, if the imperative facet is replaced by the sending and
receiving of messages in the communicative facet, then this would alter the style
of the semantic functions. The communicative facet uses communicative actions
to send and receive messages, so terms which are currently imperative yielders
(e.g. “the stored in ”) must be replaced by communicative actions. This has
a significant impact on the style of the semantic functions, especially as several
auxiliary functions are defined as yielders, and will now be actions instead.

6.2 Adding Java 1.1 features

The most significant addition in Java 1.1 is the introduction of inner classes. This
allows class and interface declarations to be nested inside another class. However,
since in the action semantics a class is bound to its fully-qualified name, and an
inner class has a uniquely determined name, based on the concatenation of its
name with the class it is inside, we do not expect the introduction of inner classes
in the semantics to cause undue difficulty.

Java 1.1 also introduces an object initializer, which is analogous to a static
initializer for a class, and consists of a block of instructions to initialize the
instance variables of the class. The object initializer is executed immediately after
the superclass constructor, but before the constructor of the class. Thus instance
variables of the superclass are always initialized (either in the constructor or by
an object initializer) before the instance variables of the class itself. Again, we
do expect object initializers to cause undue complications.

The remaining additions in Java 1.1 are in the APIs supported (such as
reflection, object serialization, remote method invocation, and beans). The JAS
project as a whole will need to address these changes in due course. However,
none of the changes have a direct bearing on the specification of the dynamic
semantics of the Java language.

54

7 Conclusion

The current specification of the Java language is incomplete, but has already
provided useful feedback on the design and informal specification of the Java
language. It is anticipated that as the action semantics is completed, even more
issues will be discovered.

Up until now, the JAS project has deliberately ignored other attempts at
the formal specification of Java. This was to prevent misconceptions from being
propagated, and to assess the success of action semantics at detecting problems
in the existing language specification provided by Sun. Once the specification is
completed, we will start to compare our action semantic description with other
specifications, and attempt to discover any further inconsistencies and anomalies.
A rich source of this material will be found in the recent volume on the syntax
and semantics of Java (Alves-Foss, 1998).

Finally, another attempt at an action semantics of the Java language has
come to our attention (Diaz, 1999). This specification is also currently in an
incomplete form, but it will be interesting to compare it directly with the spec-
ification produced by the JAS project.

References

Alves-Foss, J. (Ed.). (1998). Formal syntax and semantics of Java. Lecture
Notes in Computer Science, 1523. Springer-Verlag. (In press)

Börger, E., & Schlute, W. (1998). A programmer friendly modular definition of
the semantics of Java. In Alves-Foss (1998).

Diaz, R. (1999). Java action semantics. Unpublished manuscript.
Gosling, J., Joy, B., & Steele, G. (1996). The Java language specification.

Addison-Wesley.
Perara, R., & Bertelsen, P. (1998). The Java spec report. (http://www.dina.

kvl.dk/~jsr/)
Wallace, C. (1997). The semantics of the Java programming language: Prelim-

inary version (Tech. Rep. No. CSE-TR-355-97). University of Michigan,
Department of Electrical Engineering and Computer Science.

55

56

Bootstrapped Semantics-Directed Compiler

Generation

Stephan Diehl

FB 14 - Informatik, Universität des Saarlandes,
Postfach 15 11 50, 66041 Saarbrücken, GERMANY

diehl@cs.uni-sb.de, http://www.cs.uni-sb.de/~diehl

Abstract. We introduce our natural semantics-directed generator 2BIG
for compilers and abstract machines. It applies a sequence of transfor-
mations to a set of natural semantics rules including a pass separation
transformation. Then we discuss how it can be used to generate a com-
piler and abstract machine for action notation. With the help of these
components we can then generate compilers for other source languages
whose semantics has been specified in Action Notation. We also briefly
discuss the concept of an abstract machine language based on the ab-
stract machine generated for action notation.

1 Introduction

Given a semantics specification of a source language, current semantics-directed
compiler generators produce compilers from the source language into a fixed
target language.

generator - compiler - code - output

semantics program input

? ? ?

Rather than just generating compilers which translate source programs into
a fixed target language, our system generates both a compiler and an abstract
machine. The generated compiler translates source programs into code for the
abstract machine.

generator -

-

compiler - abstract machine code

abstract machine - output

semantics program

input

? ?

? ?

We chose Action Notation[8] as an example of a realistic programming lan-
guage, because it offers a rich set of primitives underlying both imperative and

functional programming languages. Since Action Notation is used to write Ac-
tion Semantics specifications, we can then combine the generated compiler for
Action Notation with an Action Semantics specification of a programming lan-
guage. As a result, we get a compiler from the programming language to the
generated abstract machine language for Action Notation.

source program

?

Action Semantics

of source language -

generator -

-

compiler - abstract machine code

abstract machine - output

semantics of

Action Notation

action term

input

?
?

? ?

Thus, in general, we can bootstrap semantics-directed compiler generators
(SDCG): Given an implementation of an SDCG for a semantics formalism F1,
we can get an SDCG for an semantics formalism F2, if we have a specification
of F2 in F1.

2 Action Semantics

Action semantics [8] has been developed to allow for useful semantics descriptions
of realistic programming languages. The language used to write such semantics
descriptions is called action notation.

The semantic entities of action semantics are actions, data and yielders. Ac-
tions are computational entities, they reflect the step-wise execution of pro-
grams. Data are mathematical entities like numbers, truth-values, lists and sets.
Finally yielders represent unevaluated data. If the action containing a yielder
is performed, the yielder evaluates to a concrete datum. Actions can become
data by encapsulating them in abstractions, which can be enacted into actions
again. The performance of an action may complete (i.e., normal termination), es-
cape (i.e., exceptional termination which may be trapped), fail (i.e., abandoning
the performance of an action which can lead to the performance of an alter-
native action) or diverge (i.e., nontermination). Actions process different kinds
of information and can be classified according to which facet they belong: ba-
sic (control-flow, no data are changed), functional (transient information, i.e.,
intermediate results), declarative (scoped information, i.e., bindings), imperative
(stable information, i.e., the store), communicative (permanent information, i.e.,
messages send between actions), directive (finite representation of self-referential
bindings). Actions which process information in more than one facet are called

58

hybrid. An action may commit and discard alternatives, e.g., in an action A1 or
A2 representing the nondeterministic choice between two sub-actions, A1 may
commit and thus A2 is discarded. Compound actions can be build from primitive
actions using a special kind of actions called action combinators.

Since action semantics provides so many actions and yielders we refrain from
giving an exhaustive listing but instead look at some examples.

Similar to denotational semantics the action semantics of a programming
language is given by semantic equations1:

• execute[[X ”:=” E]] = evaluate E
then
store the given value in the cell bound to X

evaluate is a semantic function defined by semantics equations similar to the
way the semantic function execute is defined here. For a concrete value of E the
function evaluate yields a compound action. The action combinator A1 then A2

propagates the transients given to the whole action to A1, the transients given
by A1 are propagated to A2, and only the transients given by A2 are given by the
whole action. Thus then represents the left-to-right sequencing in the functional
facet. The primitive, imperative action store Y1 in Y2 stores the datum produced
by the yielder Y1 in the store cell (a special kind of data) produced by the yielder
Y2. Note, that items of data are a special case of yielders, and always yield
themselves when evaluated. In the above example the variable name associated
with X in a concrete program would be such a special yielder.

• execute[[”while” E ”do” C ”od”]] = unfolding
evaluate E

then
execute C then unfold

else
complete

The action combinator unfolding A performs the action A, but whenever it
reaches the dummy action unfold it performs A instead. The action complete
simply completes and is thus a neutral action with respect to some action com-
binators. The action combinator A1 else A2 is actually syntactic sugar for a
compound action: check the given truth-value and then A1

or
check not the given truth-value and then A2

The action check Y completes if the yielder Y evaluates to true and fails if
it evaluates to false. The yielder not Y evaluates to true (false) if Y evaluates
to false (true). The yielder the given D evaluates to a transient datum of sort
D given by a preceding action. There can be more than one transient datum,
which is taken care of by a labeling mechanism. The action which gives a datum

1 Instead of using parentheses to indicate precedence of actions, in action semantics
we use the convention that vertical lines group actions and their arguments.

59

can label it, e.g., give Y label #n and later a yielder can access it, e.g., the given
D label #n. Now give Y is short for give Y label #0 and the given D or just the
D is short for the given D label #0.

3 The 2BIG Generator

The 2BIG generator [2, 4] applies a sequence of established techniques to a Nat-
ural Semantics specification in order to split it into a compiler and an abstract
machine. We believe that our framework, by virtue of being compositional, can
be extended over time to include even more powerful analysis and transfor-
mation methods. Actually, the transformations are mostly source-to-source and
after every transformation we have an executable specification again. Of these
transformations pass separation is the most important one. Let p be a pro-
gram and x and y the static and dynamic input to this program, then par-
tial evaluation of p with respect to x yields a residual program px, such that
px(y) = p(x, y). In contrast pass separation transforms the program p into two
programs p1 and p2 such that p2(p1(x), y) = p(x, y). Note that here p1 produces
some intermediate data, which are input to p2. When it comes to the generation
of compiler/executor pairs, pass separation provides an immediate solution, we
pass separate the interpreter interp into an executor exec and a compiler comp,
such that: interp(prog, data) = exec(comp(prog), data). Despite this potential
for compiler generation there is only little work on pass separation [7, 6, 3].

Our generator first transforms the 2BIG rules into a term rewriting system:

For this, it first removes side conditions by converting them into transitions,
thus there are now only transitions as preconditions. Then it factorizes rules
which have a common initial sequence of preconditions. Factorization replaces
these rules with a single rule which has the common initial sequence as its
preconditions and for each original rule a rule is generated with its remaining
preconditions. Next the generator adds a stack to the state in the transitions and
stores temporary variables, i.e. variables which are not used in an intermediate
transition. Variables which do not occur in the conclusion of a rule are eliminated.
The last step before the actual transformation into a term rewriting system is
called sequentialization. It converts all preconditions of a rule such that the result
state of one transition is the start state of the next. These rules can now be easily

turned into rewrite rules. Rules of the form
c1`e1→e′1 ... cn`en→e′n

c`e→e′ are

converted into 〈(c; p), e〉 → 〈(c1; . . . ; cn; p), e1〉 where p is a new variable name.

Now the resulting term rewriting system is in a form, such that pass separa-
tion can be applied which yields two term rewriting systems: one representing a
compiler and one representing the abstract machine. These term rewriting sys-
tems are then further optimized to reduce the number and complexity of the
abstract machine instructions, e.g. the number of arguments.

60

4 Transforming a 2BIG specification of Action Notation

In his PhD thesis [10] deMoura gives a natural semantics specification of a subset
of action notation used in the compiler generator Actress [9]. In this specification
the order of rules is important. We converted these rules into 2BIG rules adding
additional preconditions, when necessary, to make the rules determinate. Then
we used our system to generate a compiler and abstract machine represented as
term rewriting systems.

In Section 4.1 we demonstrate the generation process by transforming the
2BIG rules for of the GIVE action.

Our specification consists of 100 2BIG rules defining the semantics of 39 action
notation constructs including the control, functional, declarative and imperative
facets but, as in other Action Semantics directed compiler generators, neither
the communicative facet, nondeterminism nor the interleaving of actions. After
transformation of side conditions we got 135 rules. Factorization resulted in 191
rules. After sequentialization we got 276 rules. Finally pass separation yielded
216 compiler rules and 276 abstract machine rules. We tested this compiler
and abstract machine by translating Mini-∆ programs (e.g., Fibonacci numbers)
based on an action semantics specification of the language Mini-∆ [9] into action
terms. Then we compiled these action terms using the generated compiler into
an abstract machine program and executed the latter by the above abstract
machine rules. In other words we use a 2BIG semantics-based compiler generator
to generate a compiler and abstract machine for action notation. The generated
compiler is then inserted as the back end into a compiler generator based on
action semantics (see Figure 1). The front end of this compiler generator was
previously developed and used with a positive supercompiler for Prolog2 as its
back end [1].

4.1 Transforming the GIVE Action

As an example we will now demonstrate step by step how our system generated
the abstract machine instructions for the GIVE action.

In the 2BIG specification the following rules define the action give which
evaluates the yielder Y and returns the resulting value D as a transient. In the
rules, states are composed of the transients T , the bindings B and a single-
threaded store S. Furthermore there is the outcome status O, which can be
failed or completed.

Y `[T,B,S]→datum(D) D 6=nothing
give(Y,N)`[T,B,S]→[completed,[N 7→datum(D)],[],S]

Y `[T,B,S]→datum(D) not(D 6=nothing)
give(Y,N)`[T,B,S]→[failed,[],[],S]

2 Positive supercompilation [12, 11] is a program specialization technique developed in
the functional community. Its adaption to Prolog is not much different from partial
evaluation of Prolog [5].

61

P
as

s
Se

pa
ra

ti
on

an
d

ot
he

r
T

ra
ns

fo
rm

at
io

ns

...C* C*
L1 Ln

2BIG-DCAMG

L1 2BIG

AN 2BIG

Ln 2BIG

...

...

AM L1 & C L1

AMAN & CAN

AM Ln & C Ln

L1AN ... Ln AN

Interpreter

2BIG-Interpreter

Interpreter for Li

for Li

A
N

-I
nt

er
pr

et
er

 AN-DCG

Compiler from Li to AM AN

Composition with CAN

Li2BIG 2BIG specification of language Li
AN2BIG 2BIG specification of action notation
2BIG −DCAMG 2BIG directed generator of compilers and abstract machines
AMLi abstract machine for language Li
AMAN abstract machine for action notation
CLi compiler from language Li into AMLi

CLi compiler from action notation into AMLi

LiAN action semantics specification of language Li
C∗Li compiler from language Li into AMAN

AN −DCG action semantics directed compiler generator

Fig. 1. Action-Semantics Directed Compiler Generation

62

There are two side conditions in the above rules, one is the negation of the
other. Transforming the side conditions yields:

Y `[T,B,S]→datum(D) test1`[D]→true
give(Y,N)`[T,B,S]→[completed,[N 7→datum(D)],[],S]

Y `[T,B,S]→datum(D) test1`[D]→false
give(Y,N)`[T,B,S]→[failed,[],[],S]

test1 ` [D]→ D 6= nothing

After factorization of the above rules we have:

Y `[T,B,S]→datum(D) test1`[D]→R factgive(N)`[[D,S],R]→E
give(Y,N)`[T,B,S]→E

factgive(N) ` [[D,S], true]→ [completed, [N 7→ datum(D)], [], S]

factgive(N) ` [[D,S], false]→ [failed, [], [], S]

test1 ` [D]→ D 6= nothing

Now the stack (Z) is introduced and temporary variables are allocated:

Y ` [[S|Z], [T,B, S]]→ [[S|Z], datum(D)]
test1 ` [[[S,D]|Z], [D]]→ [[[S,D]|Z], R] factgive(N) ` [Z, [[D, S], R]]→ [Z,E]

give(Y,N)`[Z,[T,B,S]]→[Z,E]

factgive(N) ` [Z, [[D,S], true]]→ [Z, [completed, [N 7→ datum(D)], [], S]]

factgive(N) ` [Z, [[D,S], false]]→ [Z, [failed, [], [], S]]

test1 ` [Z, [D]]→ [Z,D 6= nothing]

Next these rules can be sequentialized:

Y ` [[S|Z], [T,B, S]]→ [[S|Z], datum(D)]
conv5 ` [[S|Z], datum(D)]→ [[[S,D]|Z], [D]] test1 ` [[[S,D]|Z], [D]]→ [[[S,D]|Z], R]
conv6 ` [[[S,D]|Z], R]→ [Z, [[D, S], R]] factgive(N) ` [Z, [[D, S], R]]→ [Z,E]

give(Y,N)`[Z,[T,B,S]]→[Z,E]

factgive(N) ` [Z, [[D,S], true]]→ [Z, [completed, [N 7→ datum(D)], [], S]]

factgive(N) ` [Z, [[D,S], false]]→ [Z, [failed, [], [], S]]

test1 ` [Z, [D]]→ [Z,D 6= nothing]

conv2 ` [[S|Z], datum(D)]→ [[[S,D]|Z], [D]]

conv3 ` [[[S,D]|Z], R]→ [Z, [[D,S], R]]

63

Now a term rewriting system is generated:

〈give(Y,N);C, [Z, [T,B, S]]〉
=⇒ 〈Y ; conv2; test1; conv3; factgive(N);C, [[[S]|Z], [T,B, S]]〉

〈factgive(N);C, [Z, [[D,S], true]] =⇒ 〈C, [Z, [completed, [N 7→ datum(D)], [], S]]〉
〈factgive(N);C, [Z, [[D,S], false]] =⇒ 〈C, [Z, [failed, [], [], S]]〉
〈test1;C, [Z, [D]] =⇒ 〈C, [Z,D 6= nothing]〉
〈conv2;C, [[[S]|Z], datum(D)]〉 =⇒ 〈C, [[[S,D]|Z], [D]]〉
〈conv3;C, [[[S,D]|Z], R]〉 =⇒ 〈C, [Z, [[D,S], R]]〉

Finally we apply the pass separation transformation and we get the following
compiler rules:

give(Y,N) =⇒ give(Y,N);Y ; conv2; test1; conv3; factgive(N)

factgive(N) =⇒ factgive(N)
test1 =⇒ test1
conv2 =⇒ conv2

conv3 =⇒ conv3

And the following abstract machine rules:

〈give(Y,N);C, [Z, [T,B, S]]〉 =⇒ 〈C, [[[S]|Z], [T,B, S]]〉
〈factgive(N);C, [Z, [[D,S], true]]〉 =⇒ 〈C, [Z, [completed, [N 7→ datum(D)], [], S]]〉
〈factgive(N);C, [Z, [[D,S], false]]〉 =⇒ 〈C, [Z, [failed, [], [], S]]〉
〈test1;C, [Z, [D]]〉 =⇒ 〈C, [Z,D 6= nothing]〉
〈conv2;C, [[[S]|Z], datum(D)]〉 =⇒ 〈C, [[[S,D]|Z], [D]]〉
〈conv3;C, [[[S,D]|Z], R]〉 =⇒ 〈C, [Z, [[D,S], R]]〉

5 Prototyping Tools

In Figure 1 we show how the different generators and interpreters can be used
for both rapid prototyping of language specifications and generation of compil-
ers and abstract machines. First we can use a 2BIG-interpreter to test a 2BIG-
specification Li2BIG of programming languages Li. Then we can generate an
abstract machine AMLi for the language Li and a compiler CLi from Li to
AMLi using our 2BIG-semantics directed compiler and abstract machine gener-
ator (2BIG-DCAMG). The generator’s central transformation is pass separation
of term rewriting rules. In addition it applies many pre- and post-processing
transformations including several optimizations.

Based on a 2BIG-specification AN2BIG of a certain language, namely action
notation, we generate a compiler and abstract machine for action notation. Now
an action semantics specification LiAN of a programming language Li can be
tested both by using an action notation interpreter or by composing the action
notation specification,i.e., semantics equations mapping Li programs to action

64

notation terms, with the compiler CAN . This composition results in an action
semantics-directed compiler generator (AN-DCG).

Our prototyping environment includes several tools written in Prolog:

– a 2BIG interpreter
– an action notation interpreter (actually we have a handwritten interpreter,

but we can also use the 2BIG interpreter to execute action terms using the
2BIG specification of action notation)

– an interpreter for compiler and abstract machine rules
– a compiler of source language programs to C using the compiler and abstract

machine rules
– a compiler of compiler rules and abstract machine rules to SML

6 An Abstract Machine Language Language

Since Action Semantics is a formal language to define programming languages,
we expect, that the abstract machine language AMAN generated for Action
Semantics is suitable to define abstract machine languages. Rather than just
composing the AMAN and the semantics equation which gives us AN-DCG, we
could try a method similar to the combinator based approach of Wand [13, 14].
Given an Action Semantics specification of a programming language L:

1. Translate the right hand sides of the semantics equation using the generated
compiler into AMAN (this results in an AN-DCG).

2. Look for recurring patterns in the translated right hand side.
3. Define new instructions based on these patterns. These new instructions form

an abstract machine specific for L.
4. Fold the patterns in the semantics equations by the new instructions. The

resulting equations constitute a compiler into the abstract machine for L.

7 Action Semantics-Directed Compiler Generation

Now we will show how our action semantics-based compiler generator works by
means of a simple example. The semantics of the language Mini-∆ is given by
equations like the following one:

• execute[[X ”:=” E]] =
evaluate E

then store the value in the cell bound to X

These semantic equations define a translation function from source language
programs to action terms. Using this action semantics specification of Mini-∆
the following program

let const i=1;

var x:integer;

in x:=2+i end

65

is translated into the following action term

• furthermore
give num(1) then bind i to the given value

before
allocate a cell of type integer then bind x to the cell

hence
give num(2) then give the value label#1

and
give the value stored in the cell bound to i

or
give the value bound to i

then
give the value label #2

then
give add(the value #1,the value #2)

then
store the given value in the cell bound to x

In our system we use prefix notation instead of the mixfix notation usually
used for action terms. Thus A1 then A2 becomes then(A1, A2). The above
action term in prefix notation is:

hence(

furthermore(

before(then(give(num(1),0),bind(i,the(value,0))),

then(allocate(cell(integer)),bind(x,the(cell,0))))),

then(

then(

and(then(give(num(2),0),give(the(value,0),1)),

then(or(give(stored(value,bound(cell,i)),0),

give(bound(value,i),0)),

give(the(value,0),2))),

give(add(the(value,1),the(value,2)),0)),

store(the(value,0),bound(cell,x))))

Now this action term is converted into a very long abstract machine program
by the generated compiler. One reason for the length of the abstract machine
program is that recurring subprograms are not shared.

66

hence(

furthermore(

before(

then(
(give(num(1), 0);
num(1);
conv2;
test1;
conv3;

factgive(0)),

(bind(i, the(value, 0));

the(value, 0);
conv14;
test5;
conv15;

factbind(i)));
give(num(1), 0);
...

The execution of the above program by the abstract machine in the empty
environment yields the expected result: a memory cell is allocated for the variable
x and the value 3 is stored in it.

In the above example the action term could be simplified before translating
it into the abstract machine language. As an example

give num(2) then give the value label#1

can be simplified to give num(2) label#1. Analyses and simplifications of action
terms have been investigated in de Moura’s PhD thesis [10]. It would be inter-
esting to use the simplified action terms produced by his Actress system and
translate those into the generated abstract machine language.

8 Experimental Results for Optimizations

For the action notation specification, the optimizations of the generated term
rewriting systems lead to a significant reduction of the number of rules both of
the compiler and the abstract machine. First, by self-application, the number of
compiler rules was reduced from 216 to 43. Second, using the other optimizations
we got 181 instead of 276 abstract machine rules.

give(Y,N) =⇒ give(Y,N);Y ; conv2; test1; conv3; factgive(N)

give(Y,N) =⇒ give;Y ; comb; factdisp(factorgive, N)

Comparing the original and the optimized compiler rule for the GIVE action
we find that the following optimizations have been applied:

67

– The arguments to the abstract machine instruction give have been removed.
– There are no more compiler rules for conv2, test1, etc.
– The sequence of instructions conv2; test1; conv3 has been combined into the

instruction comb.
– Some abstract machine rules of factorgive have been conflicting with rules of

other instructions and thus these term rewriting rules have been factorized.
This lead to the introduction of the new instruction factdisp.

9 Conclusion

So far our prototyping tools have been used to implement a considerable subset
of Action Semantics. Instead one could also try to implement subsets of Action
Semantics restricted to a few facets. As an example, to specify functional lan-
guages we could implement a version of Action Semantics without the imperative
facet. As a consequence the generated abstract machine would not have a store
as a compenent of its state. Another approach would be to implement an anno-
tated version of Action Semantics and a preprocessing phase, e.g., a binding-time
analysis, which translates action terms into annotated terms. Finally, rather than
just experimenting with existing semantics formalism, our system can also be
used to design and implement new semantics formalisms.

References

[1] Stephan Diehl. A Prolog Positive Supercompiler. in Proceedings of ”Arbeit-
stagung Programmiersprachen”, Herbert Kuchen, editor, published as Arbeits-
bericht No. 58 of the Institut für Wirtschaftsinformatik, Westfälische Wilhelms-
Universität Münster, 1997

[2] Stephan Diehl. Semantics-Directed Generation of Compilers and Abstract Ma-
chines. PhD thesis, University Saarbrücken, Germany, 1996. http://www.cs.uni-
sb.de/~diehl/phd.html.

[3] Stephan Diehl. Transformations of Evolving Algebras. In Proceedings of VIII
International Conference on Logic and Computer Science LIRA’97, pages 43–50,
Novi Sad,Yugoslavia, 1997.

[4] Stephan Diehl. Natural Semantics Directed Generation of Compilers and Abstract
Machines. Formal Aspects of Computing (to appear), 1999.

[5] R. Glück and M.H. Sørensen. Partial Deduction and Driving are Equivalent. In
PLILP’94. 1994.

[6] John Hannan. Operational Semantics-Directed Compilers and Machine Architec-
tures. ACM Transactions on Programming Languages and Systems, 16(4):1215–
1247, 1994.

[7] U. Jørring and W.L. Scherlis. Compilers and Staging Transformations. In 13th
ACM Symposium on Principles of Programming Languages, 1986.

[8] P.D. Mosses. Action Semantics. Cambridge University Press, 1992.
[9] H. Moura and D. A. Watt. Action Transformations in the ACTRESS Compiler

Generator. In CC’94, volume LNCS 768. Springer Verlag, 1994.
[10] Hermano Moura. Action Notation Transformations. PhD thesis, University of

Glasgow, 1993.

68

[11] M.H. Sørensen, R. Glück, and N. D. Jones. Towards Unifying Partial Evaluation,
Deforestation, Supercompilation and GPC. In D. Sannella, editor, Programming
Languages and Systems, volume LNCS 788. Springer Verlag, 1994.

[12] V.F. Turchin. The Concept of a Supercompiler. ACM TOPLAS, 8(3), 1986.
[13] Mitchell Wand. Semantics-Directed Machine Architecture. In Proc. of POPL’82.

1982.
[14] Mitchell Wand. From Interpreter to Compiler: A Representational Derivation. In

H. Ganzinger, N.D. Jones, editor, Programs as Data Objects, volume LNCS 217.
Springer Verlag, 1986.

69

70

Online Partial Evaluation of Actions?

Kyung-Goo Doh1 and Hyun-Goo Kang2

1 Hanyang University, Korea
doh@cse.hanyang.ac.kr

http://pllab.hanyang.ac.kr/∼doh
2 Electronics and Telecommunications Research Institute, Korea

hgkang@etri.re.kr

http://pllab.hanyang.ac.kr/∼hgkang

Abstract. In compiler-generation systems based on action semantics,
it is important to statically process the expanded action denotation –
used as an intermediate code – as much as possible so that the gener-
ated compiler can produce better object code. In fact, it is shown in
the Brown-Moura-Watt’s ACTRESS system that the action transfor-
mation by eliminating transient and binding actions greatly improve the
efficiency of object code.
In this paper, we present an automatic action-transformation method
based on online partial evaluation. The previous off-line method can-
not partially evaluate actions inside the body of unfolding-action and
abstraction without performing separate global analysis. The proposed
online method remedies the problem, thus naturally improves the quality
of residual action. We also extend the method so that imperative actions
can be partially evaluated.

1 Introduction

Action semantics is a framework for formally specifying programming languages
[6, 13]. Action-semantics-directed compiler generators take an action semantics
definition of a programming language and automatically generate a compiler
of the language. The generated compiler first expands a source program into
an action denotation of the program, and then compiles the action denotation
to a target program. An action-semantics-directed compiler generation system,
Actress [1], employs some transformation rules along with algebraic simplifica-
tion to eliminate actions that give statically known values as well as actions that
produce statically removable bindings. Doh [2] devised an automatic transforma-
tion method based on off-line partial evaluation [10] using two-level type system.
However, his off-line method cannot partially evaluate actions inside the body of
unfolding-action and abstraction without performing separate global analysis.

? This work was supported in part by grant No.971-0903-026-2 from the Basic Research
program of the Korea Science and Engineering Foundation and by grant No.96171-
IT1-I1 from the University Research Program supported by Ministry of Information
& Communication in South Korea.

In this paper we propose an online partial-evaluation method [10] which
remedies the problem, thus naturally improves the quality of residual action. We
also extend the method so that imperative actions can be partially evaluated.

The reader of this paper is assumed to be somewhat familiar with action
semantics. Curious readers who want the full exposure of the framework will find
inventors’ books and tutorials [6, 7, 13] useful. The rest of the paper is organized
as follows. Section 2 describes the subset of action notation used in this paper.
Section 3 explains the kind of action transformation to be achieved. Section 4
presents how the online partial evaluation is done. Section 5 shows test results.
Section 6 discusses related works. Section 7 concludes.

2 Action notation

Action notation was developed by Mosses and Watt as a semantic meta-language
to give meanings to programs [6, 13]. Each action represents the implementation-
independent computational behavior of programs. Actions operate upon differ-
ent kinds of facets: functional-facet actions manipulate data (transient informa-
tion), declarative-facet actions create and access the bindings of tokens to data
(scoped information), and imperative-facet actions allocate and manipulate pri-
mary storage (stable information). Action notation consists of primitive actions
(representing a single computation step), action combinators (defining the data
flow and control flow of actions), and yielders (evaluated to yield data during
action performance).

Yielder =

Integer | Truthvalue | cell(natural) | binop(Yielder,Yielder) |
it | them | it#natural | the data bound to Token |
closure abstraction of Action | the integer stored in Yielder |
(Yielder,Yielder,...,Yielder)

Action =

give Yielder | enact application Yielder to Yielder |
bind Token to Yielder |
reserve a cell | allocate a cell | store Yielder in Yielder |
Action and then Action | Action then Action |
furthermore Action hence Action | Action before Action |
Yielder then either Action or Action |
unfolding Action | unfold | complete

Fig. 1. Syntax of action notation

72

The syntax of action notation used in this paper is shown in Figure 1. 1

Constant yielders, e.g., true, 3, cell(7), yield themselves. Yielders, it and
them, yield data given to them. The only difference between the two is that the
former is only allowed to deal with a single datum. The yielder it#n yields the
nth component of the given tuple. the data bound to I yields the data bound
to the token I in the given bindings. the integer stored in Y yields the
integer value stored in the cell yielded by Y . Notice that the integer value is the
only storable data in our notation. The compound yielders, such as sum(3,the

data bound to "x"), etc., yield the result of applying the operation to the data
yielded by its operands. closure abstraction of A gives an abstraction that
incorporates A with the current bindings, which forces static scoping. Dynamic
scoping does not always guarantee safe transformation. Thus, the action notation
in this paper is only limited to static scoping, meaning that all the bindings we
deal with in this paper are statically scoped. Some criteria to determine whether
a particular action is statically scoped or dynamically scoped is described in
detail in [8, 9]. give Y gives the data yielded by Y . enact application Y1

to Y2 performs the action incorporated in the abstraction yielded by Y1. The
data yielded by Y2 and the bindings at the time of incorporating the action are
available to the performing action. bind I to Y produces the binding of a token
I to the data yielded by Y . store Y1 in Y2 stores the data yielded by Y1 in
the cell yielded by Y2. allocate a cell allocates a new cell and gives the cell.
unfolding A performs A; and when unfold is encountered, it performs A again.
Y then either A1 or A2 performs A1 if Y yields true; A2 performs if Y yields
false. A1 and then A2 performs sequentially and combines the results of both
actions. A1 then A2 also performs sequentially, but the data given by A1 is given
to A2 and the result of A2 is that of the whole action. furthermore A1 hence

A2 represents an ordinary block structure, in which the received bindings are
overridden by the ones produced by A1 and then given to A2. A1 before A2

represents the sequencing of declarations. The received bindings are overridden
by the ones produced by A1 and given to A2. Then, the whole action produces
the bindings produced by A1 overridden by the ones by A2.

The semantics of action notation has been described informally in English.
As the reader might have noticed, most of the notations more-or-less explain
themselves.

3 Action transformation

Given the action semantics definition of a programming language, a naive compiler-
generation system generates a program (called an expander) that expands a
source program into an action program (called action denotation) representing
the meaning of the source program. The expanded action denotation is normally

1 The action notation used in this paper is by no means complete. The subset has been
carefully chosen just enough to experiment with automatic action transformation
by partial evaluation. For a formal, comprehensive description of the notation, the
reader should refer to Mosses’ book, “Action Semantics” [6].

73

viewed as an intermediate representation in compiler-generation systems. The
action denotation is normally huge in size compared to the original source pro-
gram because it is mainly designed to give meanings to the program. Thus the
naively expanded action program naturally contains actions that can be per-
formed at compile-time. Even though some previous experiments (Actress [1],
Cantor[12], Oasis[11], and Genesis [4]) showed that systems employing an action
semantics approach are still favorable to the counterparts based on traditional
denotation semantics, there still is room for improvement.

Hence, the goal of this paper is to do a meaning-preserving transformation of
action by processing as many actions involving static computation as possible.
Consider an action, give 3 then give sum(it,2). The known datum 3 given
by the left subaction give 3 is passed to the right subaction give sum(it,2). It
means that the datum 3 is consumed by the right subaction and is not propagated
beyond the action (i.e., its life is over as soon as it is consumed by the right
subaction). Thus the action can be transformed into an action with the same
meaning, give sum(3,2), which, in turn, is safely transformed into give 5 by
evaluating sum(3,2). This kind of transformation is called transient elimination
in [8, 9]. Consider another example.

| give 4 and then give the data bound to "x"

then give sum(it#1,it#2)

If the data bound to token "x" is known, say 3, then the above action can surely
be transformed into give 7. On the other hand, if the data bound to "x" is
unknown, only the known datum 4 is propagated, eliminating give 4 safely as
follows:

| give the data bound to "x"

then give sum(4,it#1)

Notice that the index #2 is changed to #1. Note also that, in this particular
example, it seems to be a good idea to transform the above action even further
into:

give sum (4,the data bound to "x")

However, this kind of transformation does not always do good. For example, if
an action

| give the data bound to "x"

then give sum(it,sum(it,it))

might be transformed into

give sum(the data bound to "x",

sum(the data bound to "x",

the data bound to "x"))

74

In this case, the number of access to the bindings has been increased. Thus, this
paper does not employ this kind of transformation, but concentrates only with
consuming and propagating static data.

Next, we consider some binding actions to eliminate (called binding elimina-
tion in [8, 9]). (Recall that bindings are forced to be statically scoped in this pa-
per.) For example, bind "x" to 7 hence give the data bound to "x" can
be safely transformed to give 7 which completely eliminates the use of token
"x" at run-time. For another, yet more challenging example of binding elimina-
tion, consider:

| furthermore

| | | bind "p" to closure abstraction of give sum(it#1,it#2)

| | before

| | | bind "x" to 3

hence

| ...

| enact application the abstraction bound to "p"

| to (the data bound to "x",the data bound to "y")

| ...

which should be safely transformed to:

| furthermore

| | bind "p3" to closure abstraction of give sum(3,it#1)

hence

| ...

| enact application the abstraction bound to "p3"

| to the data bound to "y"

| ...

In addition to the transient and binding elimination discussed so far, imper-
ative actions are also partially evaluated, which will be discussed in the next
section.

The rest of this paper discusses how the action transformations discussed in
this section can be done automatically by online partial evaluation.

4 Online partial evaluation

We now explain how to transform actions using online partial-evaluation tech-
nique. At partial-evaluation time, actions are performed, if possible, using avail-
able data, bindings and/or storage. Otherwise, actions remain as a code called
residual action. For example, the give 3 action may be completely performed
giving a static value 3. Meanwhile, the give it action may be either completely
performed or not performed at all depending on the given value. If the given
value is known, it can be performed and giving the value. Otherwise, it remains
as a code. In this section, we discuss the online partial evaluation technique for
actions.

75

4.1 Semantic domain

In action notation, transients are the tuples of data. The data may be either
an integer, a truth value, a cell, or an abstraction. Since the data processed by
partial evaluation can be the given data and/or the code(residual yielder), it is
necessary to distinguish them from each other using an appropriate mark. In this
paper, the known (static) data v is represented as 〈S, v〉, and the code(residual
yielder) as 〈D, y, i〉, where i is the index in the tuple the yielder belongs to. An
abstraction is a closure containing an action, bindings and a marker. The marker
indicates whether or not the abstraction is bound to an identifier. This informa-
tion is used to partially evaluate enact ... actions. The semantic domain for
transients and bindings is as follows:

Data = Integer ∪Truth-value ∪ Cell ∪ PE-Abstraction∪ {unknown}

PE-Abstraction = Action× PE-Bindings× Is-Bound

PE-Data = ({S} ×Data) ∪ ({D} ×Yielder × Index)

PE-Transients = PE-Data× · · · × PE-Data

PE-Bindings = (ID 7→ PE-Data)× · · · × (ID 7→ PE-Data)

The semantic domain for storage is as follows:

PE-Storage = Location× Storable× SD-Marker

Storable = Integer ∪ {⊥}
Only integer values are storable, and each cell is marked with S/D and SS/DD
showing the status of (the history) of the value stored in the cell. Each marker
has the meaning as follows:

– S: the current value stored in the cell is static.
– D: the current value stored in the cell is dynamic.
– SS: the values that have been stored in the cell so far are all static.
– DD: some values that have been stored in the cell so far are dynamic.

This information is used to residualize imperative actions.

4.2 Yielders

The judgement giving the partial evaluation of yielders has the form:

(t, b, s, d) ` Y ⇒ t′

where Y ∈ Yielder, t, t′ ∈ PE-Data, b ∈ PE-Bindings, s ∈ Storage and d ∈
Depth.

The partial evaluation rules for yielders are shown in Fig. 2. Primitive data,
n (∈ Integer), true, false and cell(l) are always known, and so the results
are 〈S, n〉, 〈S, true〉, 〈S, false〉, and 〈S, cell(l)〉, respectively.

76

` n ⇒ 〈S, n〉 ` true ⇒ 〈S, true〉
` false ⇒ 〈S, false〉 ` cell(l) ⇒ 〈S, cell(l)〉

(t, b, s, d) ` Y1 ⇒ 〈S, v1〉 (t, b, s, d) ` Y2 ⇒ 〈S, v2〉
(t, b, s, d) ` binop(Y1, Y2) ⇒ 〈S, [[binop]](v1, v2)〉

(t, b, s, d) ` Y1 ⇒ 〈D, y1, i1〉 (t, b, s, d) ` Y2 ⇒ 〈S, v2〉
(t, b, s, d) ` binop(Y1, Y2) ⇒ 〈D, binop(y1, 〈S, v2〉 ⇑), 1〉

(t, b, s, d) ` Y1 ⇒ 〈S, v1〉 (t, b, s, d) ` Y2 ⇒ 〈D, y2, i2〉
(t, b, s, d) ` binop(Y1, Y2) ⇒ 〈D, binop(〈S, v1〉 ⇑, y2), 1〉

(t, b, s, d) ` Y1 ⇒ 〈D, y1, i1〉 (t, b, s, d) ` Y2 ⇒ 〈D, y2, i2〉
(t, b, s, d) ` binop(Y1, Y2) ⇒ 〈D, binop(y1, y2), 1〉

(t, b, s, d) ` it ⇒ case t of
〈S, v〉 → 〈S, v〉
| 〈D, y, i〉 → 〈D,it, 1〉

(t, b, s, d) ` it#n ⇒ case component#(n, t) of
〈S, v〉 → 〈S, v〉
| 〈D, y, i〉 → 〈D,it#i, 1〉

(t, b, s, d) ` them ⇒ t

(t, b, s, d) ` the data bound to I ⇒ case blookup(I, b) of
〈D, y, i〉 → 〈D,the data bound to I, 1〉
| 〈S,v〉 → 〈S,v〉

(t, b, s, d) ` Y ⇒ 〈S, cell(l)〉 sd(l, s) = S

(t, b, s, d) ` the integer stored in Y ⇒ 〈S, slookup(l, s)〉
(t, b, s, d) ` Y ⇒ 〈S, cell(l)〉 sd(l, s) = D

(t, b, s, d) ` the integer stored in Y ⇒
〈D,the integer stored in 〈S, cell(l)〉 ⇑, 1〉
(t, b, s, d) ` Y ⇒ 〈D, y, i〉

(t, b, s, d) ` the integer stored in Y ⇒ 〈D,the integer stored in y, 1〉

(t, b, s, d) ` yi ⇒ wi (where i ∈ {1..n})
(t, b, s) ` (y1, .., yn) ⇒ (w1, .., wn)

Fig. 2. Yielders

77

The first binary-operator rule covers the case where all the argument data are
known. In this case, we can simply evaluate both yielders and give the results
of applying the operator to the data yielded by both yielders (marked as S).
The second, third, and fourth rules deal with the case where at least one of the
arguments is unknown (that is, at least one of them is marked D). In this case,
the binary operator cannot be evaluated, and thus it must be reconstructed.
When being reconstructed, any of the data marked S must be converted to the
yielder, which is called lifting. The lifting rules are as follows:

〈S, v〉 ⇑ [[v]] −1 where v ∈ Data

〈D, y, i〉 ⇑ y where y ∈ Yielder

wi ⇑ yi

(w1, .., wn) ⇑ (y1, .., yn)
where i ∈ {1..n}

If the PE-Data is static 〈S, v〉, the yielder corresponding to v is constructed. If
the PE-Data is dynamic 〈D, y, i〉, then the yielder y is simply returned.

The yielder it is simply yields what is given. Thus, the partial evaluation
does the same. In case of the yielder it#n which gives nth component of the
given data tuple, if the nth component is 〈D, y, i〉, then the result is 〈D, it#i, 1〉.
Notice that the index has changed to i from n, which keeps the correct index
when some of the given tuple components are static and removed from the tuple.
For example,

| give 3 and then give the data bound to "x"

then give it#2

partially evaluates to, if the data bound to x is unknown,

| give the data bound to "x"

then give it#1

The yielder the data bound to I yields the data bound to I in the given
bindings as it is. The yielder the integer stored in Y yields the value stored
in the cell yielded by Y . As the third rule shows, if the cell yielded by Y is
unknown, the residual yielder is constructed accordingly. If the cell is known,
then the result is different depending on the status of the integer value stored
in the cell. If the value is known, then the value with a mark S is returned (the
first rule). Otherwise, the residual yielder is constructed accordingly (the second
rule).

For a tuple, each component is partially evaluated and then tupled.

4.3 Primitive actions

The judgement giving the partial evaluation of actions has the form:

(t, b, s, δ) ` A⇒ (t′, b′, s′, a)

78

(t, b, s, δ) ` complete ⇒ (∅, ∅, s, complete)

eliminable(δ) (t, b, s, d) ` Y ⇒ w all-static(w)

(t, b, s, δ) ` give Y ⇒ (w, ∅, s, complete)

eliminable(δ) (t, b, s, d) ` Y ⇒ w not all-static(w)

(t, b, s, δ) ` give Y ⇒ (w, ∅, s, residualize(w, δe))
not eliminable(δ) (t, b, s, d) ` Y ⇒ w

(t, b, s, δ) ` give Y ⇒ (w, ∅, s, residualize(w, δe))

eliminable(δ) (t, b, s, d) ` Y ⇒ 〈S, v〉
(t, b, s, δ) ` bind I to Y ⇒ (∅, {I 7→ 〈S, v′〉}, s, complete)

where v′ = case v of
abstraction(a′, b′,)⇒ abstraction(a′, b′, bound)
| ⇒ v

(t, b, s, d) ` Y ⇒ w

(t, b, s, δ) ` bind I to Y ⇒ (∅, {I 7→ w}, s, bind I to w ⇑)

statically allocatable(δ) allocate(s) = (l, s′)

(t, b, s, δ) ` allocate cell ⇒ (〈S, cell(l)〉, ∅, s′, reserve a cell)

not statically allocatable(δ)

(t, b, s, δ) ` allocate cell ⇒ (〈D, given cell#1, 1〉, ∅, s, allocate a cell)

(t, b, s, d) ` Y1 ⇒ 〈S, v〉 (t, b, s, d) ` Y2 ⇒ 〈S, cell(l)〉
(t, b, s, δ) ` store Y1 in Y2 ⇒ (∅, ∅, d2s(update(s, l, v), [l]), complete)

(t, b, s, d) ` Y1 ⇒ 〈D, y1, 〉 (t, b, s, d) ` Y2 ⇒ 〈S, cell(l)〉
(t, b, s, δ) ` store Y1 in Y2 ⇒ (∅, ∅, s2d(s, [l]), store y1 in 〈S, cell(l)〉 ⇑)

(t, b, s, d) ` Y1 ⇒ w (t, b, s, d) ` Y2 ⇒ 〈D, y2, 〉
(t, b, s, δ) ` store Y1 in Y2 ⇒ (∅, ∅, s, store w ⇑ in y2)

Fig. 3. Primitive actions

79

where A ∈ Action, t, t′ ∈ PE-Data, b, b′ ∈ PE-Binding, s, s′ ∈ Storage, δ keeps
the inherited information necessary for the partial evaluation of A, and a (∈
Action) represents a residual action. An action which can be performed com-
pletely at partial-evaluation time is called static action. A static action is basi-
cally eliminable except where there is no enclosing action or that it is the body
of abstraction. For example, give 3 is a static action giving a static value 3,
but since the result of partial evaluation should become an action, the action
is not eliminable. As another example, consider an action give abstraction

of give 3. The action give 3 in the body of the abstraction is static, but it
should be reconstructed because it is the body of the abstraction. Of course, all
dynamic actions are not eliminable. An ”eliminable tag” is maintained in the
environment(δ) to help decide whether or not a particular action is eliminable.

The partial evaluation rules for some primitive actions are shown in Fig. 3.
We call a functional-facet action static if it gives data which are all known, and
dynamic otherwise. The first rule for give Y shows that an eliminable static
action is transformed into complete which might be removed later when it is
combined with an action combinator. Notice that the dynamic action may give
data, some of whose components are static. The second rule indicates that an
eliminable dynamic action is residualized, but its static components are not
reconstructed. For an action which is not eliminable, both static and dynamic
data should be residualized as the third rule shows.

Since bindings are forced to be statically scoped in our subset of action no-
tation, binding actions may be performed at compile-time. For example, every
constant identifier may be replaced by its constant value at compile-time, and
every variable may be replaced by its relative address at compile-time. An elim-
inable and static binding action is transformed into complete (see the first rule).
If an abstraction is to be bound, it is marked with ”bound” so that the infor-
mation can be used when an enaction of the abstraction takes place. (We will
get back to this issue later again in the section.) A dynamic or non-eliminable
action is residualized as the second rule shows.

In order to perform imperative actions at partial-evaluation time, great care
must be taken. In a block-structured language, the allocate a cell action
may be statically performed unless it appears in the body of unfolding action
or dynamic branch (then either .. or .. combinator). The information on
whether or not an action is statically allocatable during partial evaluation is
maintained in the environment δ. When partially evaluated, the action allocate

a cell is transformed into reserve a cell and then give a cell(l). If the
integer value stored in the cell is known, the value may be used to perform the
partial evaluation. We call the cell in which a known value is stored, static,
and otherwise dynamic. If a cell is static, the cell might be updated with a
known value, and marked with ”static” indicating the value in the cell is static.
The action processing a static cell may be eliminable during partial evaluation.
If every value stored in a cell is static throughout the computation, then the
reserve a cell action does not have to be residualized, thus removed. For
example, the following (not very realistic) action:

80

| allocate a cell

| and then allocate a cell

| and then allocate a cell

then

| | store 3 in the given cell#2

| and then

| | give the value stored in the cell#1

is transformed into:

| reserve a cell

then

| give the value stored in the cell(0)

4.4 Abstraction and enaction

The body action inside a statically-scoped abstraction, closure abstraction

of A, is partially evaluated with completely unknown transient data, current
bindings and storage. The result is a static abstraction with its body partially
evaluated as shown in the first rule in Fig.4. The partially evaluated abstraction
may be either given as a transient or bound to an identifier. In the former case,
when it is enacted, it is merely partially evaluated with respect to available
data. But in the latter case, if it is not completely enacted (which means the
abstraction is specialized with respect to some known data), it is necessary to
reconstruct a binding action producing the specialized abstraction. The process
of partially evaluating enact application Y1 to Y2 is formally described in
Fig.4. Let’s look at a few examples. The action

furthermore

| bind "f" to closure abstraction of give sum(it#1,it#2)

hence

| enact application abstraction bound to "f" to (1,2)

is transformed to

give 3.

The action

furthermore

| bind "f" to closure abstraction of give sum(it#1,it#2)

hence

| enact application abstraction bound to "f"

| to (3,the value bound to "x")

is transformed to, if the value bound to x is unknown,

furthermore

| bind "f1" to closure abstraction of given sum(3,it#1)

hence

| enact application abstraction bound to "f1"

| to the value bound to "x".

81

l = length-of-tuple-in(A)
δ = [statically allocatable← true,

eliminable← false,

unfolding body ← complete,

depth← d+ 1,
in dynamic branch← false]

((〈D,it#1, 1〉, ..., 〈D,it#l, l〉), b, s, δ) ` A ⇒ (t′, b′, s′, a′)

(t, b, s, d) ` closure abstraction of A ⇒ 〈S, abstraction(a′, b, unbound)〉

(t, b, s, d) ` Y1 ⇒ 〈S, abstraction(A, b′,)〉
(t, b, s, d) ` Y2 ⇒ w2

all-static(w2)
(w2, b

′, s, δ) ` A⇒ (t1, b1, s1, a1)

(t, b, s, δ) ` enact application Y1 to Y2 ⇒ (t1, b1, s1, a1)

(t, b, s, d) ` Y1 ⇒ 〈S, abstraction(A, b′, unbound)〉
(t, b, s, d) ` Y2 ⇒ w2

not all-static(w2)
(w2, b

′, s, δ) ` A⇒ (t1, b1, s1, a1)

(t, b, s, δ) ` enact application Y1 to Y2 ⇒
(t1, b1, s1, enact application 〈S, abstraction(a1, b

′, unbound)〉 ⇑
to eliminate S(w2) ⇑)

(t, b, s, d) ` Y1 ⇒ 〈S, abstraction(A, b′, bound)〉
(t, b, s, d) ` Y2 ⇒ w2

not all-static(w2)
(w2, b

′, s, δ) ` A⇒ (t1, b1, s1, a1)
I w2 = update stack(I,w2, abstraction(a1, b

′, bound))

(t, b, s, δ) ` enact application Y1 to Y2 ⇒
(t1, b1, s1, (enact application abstraction bound to I w2

to eliminate S(w2) ⇑)

(t, b, s, d) ` Y1 ⇒ 〈D, y1, i〉
(t, b, s, d) ` Y2 ⇒ w2

l = length-of-tuple-out(enact application Y1 to Y2)

(t, b, s, δ) ` enact application Y1 to Y2 ⇒
(〈D,it#1〉, ..., 〈D,it#l〉, ∅, s, (enact application 〈D, y1, i〉 ⇑ to w2 ⇑))

Fig. 4. Abstraction and enaction

82

e = if (A2 = unfold and in dynamic branch(δ) = true) then false
δ1 = δ[eliminable← e]

(t, b, s, δ1) ` A1 ⇒ (t1, b1, s1, a1)
(t1, b, s1, δ) ` A2 ⇒ (t2, b2, s2, a2)

(t, b, s, δ) ` A1 then A2 ⇒ (rearrange(t2), b2, s2, a3)
where a3 = case (a1, a2) of

(complete,) → a2

| (, complete) → complete

| (,) → a1 then a2

e = if (A2 = unfold and in dynamic branch(δ) = true) then false
δ1 = δ[eliminable← e]

(t, b, s, δ1) ` A1 ⇒ (t1, b1, s1, a1)
(t, b, s1, δ) ` A2 ⇒ (t2, b2, s2, a2)

(t, b, s, δ) ` A1 and then A2 ⇒ (rearrange(t1, t2), disjoint(b1, b2), s2, a3)
where a3 = case (a1, a2) of

(complete,) → a2

| (, complete) → a1

| (,) → a1 and then a2

e = if (A2 = unfold and in dynamic branch(δ) = true) then false
δ1 = δ[eliminable← e]

(t, b, s, δ1) ` A1 ⇒ (t1, b1, s1, a1)
δ2 = increase depth(δ)

(t, b@b1, s1, δ2) ` A2 ⇒ (t2, b2, s2, a2)
b a = residualize specialized abstraction()

(t, b, s, δ) ` furthermore A1 hence A2 ⇒ (rearrange(t2), b2, s2, a3)
where a3 = case (a1, b a, a2) of

(, , complete) → complete

| (complete, complete,) → a2

| (complete, ,) → furthermore b a hence a2

| (, complete,) → furthermore a1 hence a2

| (, ,) → furthermore a1 before b a hence a2

e = if (A2 = unfold and in dynamic branch(δ) = true) then false
δ1 = δ[eliminable← e]

(t, b, s, δ1) ` A1 ⇒ (t1, b1, s1, a1)
(t, b@b1, s1, δ) ` A2 ⇒ (t2, b2, s2, a2)

(t, b, s, δ) ` A1 before A2 ⇒ (rearrange(t2), b@b1@b2, s2, a3)
where a3 = case (a1, a2) of

(complete,) → a2

| (, complete) → a1

| (,) → a1 before a2

Fig. 5. Action combinators

83

4.5 Action combinators

Fig.5 describes the partial evaluation of action combinators. In the action com-
binator A1 then A2, when A1 is static, A1 is eliminable because the data given
by A1 is not alive anymore outside A1 then A2. In the action combinator A1

and then A2, both A1 and A2 are partially evaluated sequentially, and then the
results are combined in a proper way. Since the components of resulting tran-
sient tuple can either be static or dynamic, they should be rearranged to have
only dynamic values and the index should be changed accordingly. In the ac-
tion furthermore A1 hence A2, when A1 is static, A1 is eliminable because the
bindings produced by A1 is not alive anymore outside A2. As we explained in
the previous subsection on enaction, after the partial evaluation of A2, the spe-
cialized abstraction-binding actions are reconstructed. In the action A1 before

A2, A1 and A2 are partially evaluated in turn, and then the results are com-
bined accordingly. In all of these four action combinators, if the right subaction
A2 is unfold and the whole action is in a dynamic branch, then when the left
subaction A1 is partially evaluated, the eliminable tag should be set to false so
that A1 is not eliminated even if it is static. The details are formally described
in Fig.5.

δ1 = δ[statically allocatable← false, unfolding body ← A]
(t, b, s, δ1) ` A ⇒ (t1, b1, s1, a1)

(t, b, s, δ) ` unfolding A ⇒ (t1, b1, s1, a1)

not in dynamic branch(δ)
(t, b, s, δ) ` unfolding body(δ) ⇒ (t1, b1, s1, a1)

(t, b, s, δ) ` unfold ⇒ (t1, b1, s1, a1)

in dynamic branch(δ)

(t, b, s, δ) ˜̀ unfolding body(δ) ⇒ (t1, b1, s1, a1)

(t, b, s, δ) ` unfold ⇒ (t1, b1, s1, push(a1))

Fig. 6. Unfolding action

The unfolding action retains the termination problem of online partial evalu-
ation, meaning that if the original action does not terminate, it is not guaranteed
the partial evaluation terminates. Another problem is the code explosion. We do
not deal with this problem in detail in this paper. The current version of our
partial evaluator keeps unfolding if it is possible to unfold. If the unfold action
is in one of the dynamic branches, the body of the unfolding action is partially
evaluated just once. As shown in Fig.6, a static allocation is not allowed in the
body of an unfolding action.

84

(t, b, s, d) ` Y ⇒ 〈S, true〉 (t, b, s, δ) ` A1 ⇒ (t1, b1, s1, a1)

(t, b, s, δ) ` Y then either A1 or A2 ⇒ (t1, b1, s1, a1)

(t, b, s, d) ` Y ⇒ 〈S, false〉 (t, b, s, δ) ` A2 ⇒ (t2, b2, s2, a2)

(t, b, s, δ) ` Y then either A1 or A2 ⇒ (t2, b2, s2, a2)

(t, b, s, d) ` Y ⇒ 〈D, y, 〉
l = length-of-tuple-out(Y then either A1 or A2)

δ1 = δ[statically allocatable← false,

in dynamic branch← true]
(t, b, s, δ1) ` A1 ⇒ (t1, b1, s1, a1)
(t, b, s, δ1) ` A2 ⇒ (t2, b2, s2, a2)

(t, b, s, δ) ` Y then either A1 or A2 ⇒
((〈D,it#1, 1〉, ..., 〈D,it#l, l〉), ∅, s∗, (y then either a′′1 or a′′2))

where • s∗ = s′1 t s′2
• (a′1, s

′
1) = B(s1, s2)

(a′2, s
′
2) = B(s2, s1)

• B(s1, s2) =
Find all cell(i)’s in s1 that satisfies the following condition:

the cell(i) in s1 is static and
(the values of cell(i) in s1 and s2 are different or
the cell(i) in s2 dynamic)

Let them be cell(i1), · · · , cell(im)
Then

(store n1 in cell(i1) and then · · · and then store nm in cell(im), s′)
where n1 = slookup(i1, s1)

n2 = slookup(i2, s1)
· · ·
nm = slookup(im, s1)
s′ = s2d(s1, [i1, . . . , im]) {mark cell(i1), · · · , cell(im) all dynamic}

• if there is unfold in(a1) then
a′′1 = a1[a′1 and then unfolding pop()/unfold]

else
a′′1 = a1 and then a′1

• if there is unfold in(a2) then
a′′2 = a2[a′2 and then unfolding pop()/unfold]

else
a′′2 = a2 and then a′2

Fig. 7. Branch combinators

85

As shown in Fig.7, in the action Y then either A1 or A2, if Y is static,
then according to the yielded truth value, either A1 or A2 is partially evaluated.
If Y is dynamic, the followings should be taken into account:

1. It is impossible to allocate a cell at partial-evaluation time.
2. If it appears in the body of unfolding action and the unfold action appears

either in A1 or in A2, the unfolding action must not be partially evaluated
since it causes an infinite unfolding.

3. Even if any of A1 and A2 are static, they should be residualized because
one of them may be used by enclosing action. The store Y1 in Y2 action
is residualized if different branches alter the same cell with different values.
This particular residual action is known as an explicator in partial evaluation
terminology [5]. The details on the explicator actions are specified in Fig.7.

4. The resulting stores of partially evaluating both branches should be joined
because it is impossible to know at partial-evaluation time which branch will
be executed at run time.

5 Implementation

The system presented in this paper has been implemented in Standard ML.
We have collected and tested four action programs including three test pro-
grams used in the ACTRESS system [1]. The table below compares the action-
expansion time with the partial-evaluation time (including expansion time), and
the interpreting time of naively expanded action programs with that of partially
evaluated ones. The system used is the Sun SPARC Station under Sun OS 5.5.

Program Compile Time Running Time
normal with P.E. normal with P.E. advantage

loop 0.39 11.9 5.37 0.30 17.9
binding 0.33 1.02 0.73 0.30 2.43
loopfact 0.32 10.00 3.37 0.30 11.23

looppower 0.32 4.61 1.61 0.90 1.79

6 Related works

Moura and Watt first identified and formalized action transformations by defin-
ing transformation rules and algebraic laws [9] for their Actress compiler gen-
eration system [1].

Doh and Schmidt also employed the static evaluation (constant propagation
and dead code removal) of action denotation using the binding-time information
in their action-semantics prototyping system [3].

86

In Doh’s previous work [2], action transformations were carried out by off-
line partial evaluation using two-level type system. The transformations achieved
by his system include transient and binding elimination. However, his off-line
method cannot partially evaluate actions inside the body of unfolding-action
and abstraction without performing separate global analysis.

7 Conclusion

We have presented an automatic action-transformation method based on online
partial evaluation. Not like the previous off-line method, we achieved the par-
tial evaluation of actions inside the body of unfolding-action and abstraction
using online approach. In addition to the transient and binding elimination, we
extended the method so that imperative actions can be partially evaluated.

Our future investigation will be on proving the correctness of our online
partial evaluation and on improving the performance of the current online partial
evaluator for actions. However, it is not quite certain at this point of time that
the full-powered partial evaluation of actions is actually beneficial to action-
semantics-directed compiler generators. If we see actions as intermediate code
in compilers, there might be some trade-off on how much needs to be partially
evaluated. It could be enough to do merely some constant folding and binding
elimination just for compiling purposes. This leaves us more experiments to be
done.

References

1. Deryk F. Brown, Hermano Moura, and David A. Watt. Actress: an action seman-
tics directed compiler generator. In CC’92, Proceedings of the 4th International
Conference on Compiler Construction, Paderborn, Lecture Notes in Computer Sci-
ence 641, pages 95–109. Springer-Verlag, 1992.

2. Kyung-Goo Doh. Action transformation by partial evaluation. In PEPM’95, Pro-
ceedings of Symposium on Partial Evaluation and Semantics-Based Program Ma-
nipulation, pages 230–240. ACM, June 1995.

3. Kyung-Goo Doh and David A. Schmidt. Action semantics-directed prototyping.
Computer Languages, 19(4):213–233, 1993.

4. Kent D. Lee. Action Semantics-based Compiler Generation. PhD thesis, University
of Iowa, 1999.

5. Uwe Meyer. Techniques for partial evalution of imperative languages. In PEPM’91,
Proceedings of Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, pages 94–105. ACM, June 1991.

6. Peter D. Mosses. Action Semantics. Cambridge Tracts in Theoretical Computer
Science 26. Cambridge University Press, 1992.

7. Peter D. Mosses. A tutorial on action semantics. In Notes for FME’94, Formal
Methods Europe, Barcelona, October 24–28 1994.

8. Hermano Moura. Action Notation Transformations. PhD thesis, University of
Glasgow, 1993.

87

9. Hermano Moura and David A. Watt. Action transformations in the actress

compiler generator. In Peter Fritzon, editor, CC’94, Proceedings of the 5th In-
ternational Conference on Compiler Construction , Edinburgh, Lecture Notes in
Computer Science 786, pages 1–15. Springer-Verlag, April 1994.

10. Carsten K. Gomard Neil D. Jones and Peter Sestoft. Partial Evaluation and Au-
tomatic Program Generation. Prentice-Hall International, 1993.

11. Peter Ørbæk. OASIS: An Optimizing Action-based Compiler Generator. In Peter
Fritzon, editor, CC’94, Proceedings of the 5th International Conference on Com-
piler Construction , Edinburgh, Lecture Notes in Computer Science 786, pages
16–30. Springer-Verlag, April 1994.

12. Jens Palsberg. Provably Correct Compiler Generation. PhD thesis, Aarhus Uni-
versity, 1992.

13. David A. Watt. Programming Language Syntax and Semantics. Prentice-Hall
International, Englewood Cliffs, New Jersey, 1991.

88

An Algebra of Actions

S. B. Lassen?

University of Cambridge Computer Laboratory
Soeren.Lassen@cl.cam.ac.uk

Abstract. A long-standing challenge concerning the foundations of ac-
tion semantics is the development of the algebraic theory of actions, the
computational entities used in action-semantic descriptions of program-
ming languages. In the development of action semantics, much emphasis
has been placed on the algebraic laws that are to be satisfied by the com-
binators and primitives of the action notation. Yet, because of the size
and certain features of the notation, the task of developing its algebraic
theory appears insurmountable. Towards circumventing these difficulties,
this paper introduces a new core algebra of actions: a smaller core nota-
tion of actions with more algebraic laws and equipped with a syntactic
reduction semantics. The core algebra should be more amenable to the-
oretical analysis. It is designed to facilitate a direct mapping of almost
all existing action notation into it, so it may serve as an interface for
theoretical work on action semantics.

1 Introduction

Action semantics (www.brics.dk/Projects/AS) is a formal semantics frame-
work with good pragmatic properties. These derive from the design of action
notation, the metalanguage for expressing the semantic entities, called actions,
used in action-semantic descriptions of programming languages. Action nota-
tion is a rather large combinator-based language with a range of primitives and
combinators for directly specifying many common programming language con-
cepts, including under-specified evaluation order, imperative operations on an
underlying store, and asynchronous processes and message-passing. This makes
it ideally suited for directly describing most programming language constructs.

The syntax and semantics of action notation are defined in [Mos92] and,
recently, a new, modular structural operational semantics has been specified
[Mos99]. However, the size of the notation and certain aspects of its design make
formal reasoning about actions cumbersome. A set of equational laws are spec-
ified in [Mos92, App. B] and laws for a substantial functional fragment have
been verified operationally in [Las97]. Rather few equational laws are specified
for the remaining notation and these have not been formally verified. Mosses
[Mos92,Mos96] has repeatedly stressed the need for further development of the
algebraic theory of actions and theories for action semantics reasoning about pro-
grams. In particular, he has asked for a useful proof calculus for the concurrent
and communicative part of action notation.

? Supported by grant number GR/L38356 from the UK EPSRC.

This paper presents a compact core algebra of actions which should be better
suited for formal reasoning, in particular equational reasoning. The algebra is
basically an extension of the abstract semantic algebras in [Mos83], a precursor
to action semantics. The operational behaviour of the core actions is specified
by a reduction semantics. The core algebra includes a new construct that allows
flexible wiring of the information flow, supporting formulations of many laws
involving information flow, including (1) laws that reduce the many sequencing
combinators of action notation to one basic sequencing combinator and (2) new
expansion laws that reduce interleaving to non-determinism. A novel, uniform
syntactic treatment of storage cells, spawned processes, and sent messages fa-
cilitates the formulation of reduction rules and algebraic laws for imperative,
concurrent and communicating actions.

The core algebra is designed to facilitate a direct mapping of almost all
existing action notation into it. Foremost, the algebra is meant as an interface for
theoretical work on action semantics, but it also suggests potential simplifications
to standard action notation.

Much work remains to be done. First of all, the consistency of the alge-
braic theory should be verified. The algebraic laws have been formulated with
a form of testing equivalence [DH84] in mind but, regardless, it is likely to be
a formidable task to provide verification techniques for all facets of the algebra.
Another interesting challenge is whether our expansion laws can contribute to
an equational completeness result for any worthwhile fragment of the algebra.

The paper is organised as follows. In §2 the syntax of the core algebra is
defined and compared with standard action notation. The reduction semantics
and algebraic properties of the core primitives and combinators are presented
step-wise in §3–§6, roughly structured according to the standard facets of action
notation. Then §7 discusses the interleaving of control flow and gives expansion
laws for reducing interleaving to non-determinism. Finally, §8 takes stock of the
core algebra.

The reader is assumed to be familiar with action notation.

Relations The paper uses the following notations for relations between action
terms. Firstly, Φ ≡ Φ′ denotes syntactic equality between syntactic phrases Φ
and Φ′. The relations = and v are, respectively, the semantic equivalence and
semantic preorder on actions defined by the equational and inequational laws
of the algebra. A finer structural congruence relation between actions terms is
denoted by
. The reduction relation→ is also a relation between action terms.

The labelled transition relation, written A, ~O
ρ−→ A′, ~O′, is between configu-

rations consisting of an action term paired with a sequence of objects, and is
labelled by a renaming ρ of any references to the objects in ~O.

90

2 The notation

The abstract syntax of the actions of the core algebra is defined as a syntactic
sort Action specified by the grammar in Table 1 together with auxiliary syntactic
sorts Object, Informer, token, and data.

Action A ::= I | raise | unfoldingA | unfold#p (p ≥ 1)

| A or A | A >A \A | A andA | indivisiblyA

| A ◦ I | find t | (dataop) | enact | copyingA

| A with new ~O | update | access | receive | compare

Object O ::= cell I | agentA | message I

Informer I ::= complete | skip | I and I | I ◦ I | rebind | bind t | regive | d
| copying I | copy#p

token t ::= . . . (e.g., alphanumeric text strings)

data d ::= () | (d, d) | abstraction of A | cell#p | agent#p | self#p | . . .

~O denotes a finite, possibly empty sequence of objects O1, . . . , On (n ≥ 0)

Table 1. Syntax

The sort data is open-ended: it may include application-specific data types,
including compound data built from abstractions (abstraction of A) and object
references (cell#p, agent#p, and self#p). Similarly, dataop ranges over application-
specific data operations.

The remainder of this section gives a quick introduction to the algebra by
highlighting the most important differences compared with action notation.

– The #p suffixes in unfold#p, copy#p, and object references are de Bruijn in-
dices with static scope, referring to the p’th lexically enclosing combinator of
the appropriate kind (unfolding, copying, with new, or agent /abstraction of).
The scope of these combinators extends into abstractions occurring in data
constants in their scope. The indices are optional; the default is #1. For in-
stance, unfold abbreviates unfold#1 and has the same meaning as in action
notation.

– There are only two kinds of termination, namely by completing and by es-
caping; skip completes with the incoming information flow as outcome and,
likewise, raise escapes with all incoming information flow (for uniformity,
both functional and declarative information, not just functional information
as the escape primitive in action notation). The notions of failure and com-
mitment in action notation are omitted. Instead the exception mechanism is
intended to express error reporting, error handling and branching.

– The ternary sequencing combinator A0 > A1 \ A2 combines sequencing and
exception handling. It is the only sequencing combinator in the core algebra.

91

In conjunction with the copying and copy#p constructs that allow flexible
wiring of information flow, all other standard sequencing combinators may
be encoded.

– In place of yielders there is the slightly different notion of informers. They
are more restricted than yielders in that they must act as total functions on
the incoming information flow—they must complete, they may not access
the state, and they cannot even look up bindings because this is a partial
operation as tokens may be unbound.

– For every data operation dataop, (dataop) is the action which applies dataop
to the incoming functional information flow and completes with the result on
the functional data flow, if defined, otherwise it raises an exception. Every
data constant d is a completing action with outcome d. The compare action
compares object references for equality.

– The directive facet for specifying circular bindings is omitted, in part be-
cause the core algebra provides enhanced facilities for specifying recursive
structures, and in part because redirections, when needed, can be adequately
represented by means of cells from the imperative facet.

– The store model is in the style of Standard ML: memory cells are always
initialised and cannot be (explicitly) deallocated, and there is no primitive
corresponding to action notation’s current storage yielder for reading out the
contents of all memory cells.

– The creation and referencing of the different kinds of state objects—cells,
messages, and agents—are treated uniformly. The A with new ~O construc-
tion creates a sequence of possibly mutually recursive objects, ~O before per-
forming A. The objects in ~O are referenced by means of references of the
form cell#p and agent#p, and lexically enclosing agents are referenced by
self#p. In this formalism, cells are naturally shared between agents (follow-
ing [MM93] rather than standard action notation).

All in all, the constructs of the core notation are designed to support the
formulation of equational laws and symbolic computation of actions, and they
appear to offer a convenient expressive power practically equivalent to the ex-
isting action notation. The notation of the core algebra is about half the size of
the kernel action notation in [Mos92, App. C].

3 The basic facet

The basic facet of the core algebra consists of primitives and combinators for
specifying the flow of control in actions. They are given by the grammar:

Action A ::= skip | raise | unfoldingA | unfold#p (p ≥ 1)

| A or A | A >A \A | A andA | indivisiblyA

Actions either complete, escape, or diverge, or choose non-deterministically
between two or more of these termination behaviours. The skip primitive com-
pletes and raise escapes. (These two basic primitives are not called complete

92

and escape as in action notation because they behave differently with regard to
information flow in the next section.)

The unfold#p primitive marks a recursive unfolding of the p’th innermost lex-
ically enclosing unfolding combinator, i.e., #p is a de Bruijn index. The indexed
unfolds facilitate the coding of nested recursion. (Although it is not obvious that
this generality is really needed, indexed unfolds are included here in analogy with
several other indexed reference constructs in the remainder of the core algebra.)

There are no notions of failure and commitment in the core algebra. Hence
the or choice combinator is just an erratic choice. This simplification compared to
action notation appears to be useful towards obtaining a strong algebraic theory:
although the or combinator is also associative, commutative and idempotent in
action notation, its behaviour with regard to failure and commitment leads to
complex interactions with the other language constructs which are difficult to
capture equationally.

The ternary combinator (A>A1\A2) first performs A whereupon it forwards
control to A1 if A completes, and to A2 if A escapes.

The and and indivisibly combinators have their usual meaning from action
notation: (A1 and A2) interleaves the performance of A1 with that of A2, and
(indivisiblyA) performs A as one atomic step not interleaved with anything else.

3.1 Substitution

Several kinds of references other than unfold appear in the full algebra. For
each reference kind ref we define some standard notation for expressing and
manipulating de Bruijn indices:

↑ref , {ref #p := ref #p+1 | p ≥ 1}
dref := Ae , {ref #1 := A, ref #p+1 := ref #p | p ≥ 1}

↓ref , dref := ref #1e

Notation Φ{ref#p := Ap | p ≥ 1} denotes the simultaneous substitution of
actions A1, A2, . . . for references ref#1, ref#2, . . . in the syntactic phrase Φ,
with indices suitably adjusted as substitution enters under binders. In the case
of unfold, the definition is:

(unfold#p){unfold#p := Ap | p ≥ 1} , Ap
(unfoldingA){unfold#p := Ap | p ≥ 1} ,

unfolding (A{unfold#1 := unfold#1, unfold#p+1 := Ap↑unfold | p ≥ 1})

and for all other action constructors θ of arity |θ| ≥ 0,

(θ(Φ1 . . . Φ|θ|)){unfold#p := Ap | p ≥ 1} ,
θ((Φ1{unfold#p := Ap | p ≥ 1}) . . . (Φ|θ|{unfold#p := Ap | p ≥ 1}))

93

3.2 Reduction semantics

We specify the operational behaviour of actions by a binary reduction relation,
→, between action terms (i.e., terms of the free term algebra, not quotiented by
the ensuing equational laws). It is defined inductively by the following actions
and rules.

A1 or A2 → A1 ; A1 or A2 → A2(1)

unfoldingA→ Adunfold := unfoldingAe(2)

skip >A1 \A2 → A1 ; raise >A1 \A2 → A2(3)

raise andA→ raise ; A and raise→ raise(4)

A→ A′

A >A1 \ A2 → A′ > A1 \A2
(5)

A1 → A′1
A1 and A2 → A′1 andA2

;
A2 → A′2

A1 and A2 → A1 andA′2
(6)

A→∗ T
indivisiblyA→ T

(7)

where →∗ denotes the reflexive, transitive closure of →, and T ranges over irre-
ducible actions generated by the grammar:

Terminated T ::= skip and . . . and skip | raise

Let evaluation contexts, E, be action terms with a hole, [], at redex position.
They are generated by the grammar:

Evaluation context E ::= [] | E >A \A | E andA | A andE

Notation E[A] denotes the term obtained from E be replacing its hole by A. The
three reduction rules in (5)–(6) express that reduction is preserved by evaluation
contexts: A→ A′ implies E[A]→ E[A′].

3.3 Equations

The equational theory of the algebra is specified by a set of axioms, or ‘laws’. It
is defined inductively as the smallest congruent equational theory which contains
all instances of the laws.

The following laws specify algebraic properties of the basic action combina-
tors and primitives.

unfoldingA = Adunfold := unfoldingAe(8)

A or A = A ; (A or A′) or A′′ = A or (A′ or A′′) ; A or A′ = A′ or A(9)

skip >A \A′ = raise >A′ \A = A = A > skip \ raise(10)

(A >A1 \A2) >A′1 \A
′
2 = A > (A1 >A

′
1 \A

′
2) \ (A2 > A

′
1 \A

′
2)(11)

94

(A or A′) >A1 \A2 = (A >A1 \A2) or (A′ > A1 \A2)(12)

A > (A1 or A′1) \A2 = (A > A1 \A2) or (A > A′1 \A2)(13)

A >A1 \ (A2 or A′2) = (A > A1 \A2) or (A > A1 \A
′
2)(14)

skip and raise = raise and skip = raise and raise = raise(15)

(A andA′) andA′′ = A and (A′ and A′′)(16)

(A or A′) andA′′ = (A andA′′) or (A′ and A′′)(17)

A and (A′ or A′′) = (A andA′) or (A andA′′)(18)

indivisibly indivisiblyA = indivisiblyA ; indivisibly T = T(19)

indivisibly (A or A′) = (indivisiblyA) or (indivisiblyA′)(20)

indivisibly ((indivisiblyA) >A1 \ A2) = indivisibly (A > A1 \A2)(21)

indivisibly (A > (indivisiblyA1) \ A2) = indivisibly (A > A1 \A2)(22)

indivisibly (A > A1 \ (indivisiblyA2)) = indivisibly (A > A1 \A2)(23)

Remark 1. The laws for indivisibly anticipate the introduction of state. In the
absence of state, indivisibly is redundant, so

indivisiblyA = A(24)†

holds, rendering the above algebraic laws for indivisibly trivial.

3.4 Inequations

The erratic choice combinator or induces a partial order on the equational alge-
bra, by taking or to be the greatest lower bound operator. That is, we define a
relation v between actions as follows.

A v A′ def⇔ A = (A or A′)

It is a refinement relation, ordering less deterministic actions below more deter-
ministic ones. We are going to use v for specifying a number of inequational
laws. By the definition of v, these may all be read as equational laws.

Because or is idempotent, associative, and commutative, the relation v is
a partial order: reflexive, transitive, and anti-symmetric. Furthermore, the next
rule specifies that v is compatible with respect to every action combinator θ
with arity |θ| ≥ 1.

A1 v A′1 · · · An v A′n
θ(A1 . . . An) v θ(A′1 . . . A′n)

(|θ| = n)(25)

Some reductions A → A′ resolve non-determinism so that the possible out-
comes of A′ are fewer than those of A. These cannot be equational laws but
every reduction may be read as an inequational law:

A v A′, if A→ A′(26)

95

4 Information flow

Actions process several kinds of information and are structured into so-called
facets according to the information being processed. In the core algebra the
different kinds of information are grouped under two main headings. One is
the information flow of the functional and declarative facets—this information
consists of associative tuples of data and bindings; they can be copied and dis-
carded. The other is the state of the imperative and communicative facets—this
information consists of sets of persistent objects: cells, agents, and messages.

In this section the algebra is first extended with ‘generic’ information flow
primitives which make only very general assumptions about the information that
is flowing. Next, the two actual kinds of information, transient data and bindings,
are introduced as the functional and declarative facets of the algebra. Finally,
a new copying construct is added to facilitate the encoding of action notation’s
many sequencing combinators.

Our general assumptions about the information flow are (1) that there is
an associative binary operation for merging information, and (2) that there is
a notion of empty information which is unit for merge. The complete primitive
completes with the empty information. The merge operation is expressed by
means of the and combinator.

To obtain a syntactic representation of information, we introduce a new syn-
tactic sort, Informer, consisting of deterministic, completing actions with no
interaction with the underlying state:

Informer I ::= complete | skip | I and I | I ◦ I
Action A ::= I | A ◦ I

The new composition combinator (A◦ I) forwards incoming information to I
and pipes the resulting information into A. (Semantically, the new construct is
superfluous, as (A◦I) is equivalent to I >A\raise, but it is useful in the syntactic
formulation of reduction, below.) We shall sometimes use the abbreviations

AI , A ◦ I
A(I1, I2) , A ◦ (I1 and I2)

when A is is an action primitive, e.g., we shall write raise I rather than raise ◦ I.
The information flow follows the control flow in the basic actions from the

previous section. Hence the information flow through (A>A1\A2) is sequential—
after A the information flow follows the flow of control into A1 or A2—and the
information flow through (A1 and A2) is parallel—upon normal completion of
both branches the parallel information flows are merged (if one branch escapes
the other branch is aborted and does not contribute to the information flow).

Structural congruence In order to specify the meaning ofA◦I, it is convenient
to introduce a structural congruence relation,
, between action terms. It is the

96

smallest congruence relation on action terms given by the following equational
axioms. They describe the propagation of information into actions plus some
further equational properties of informers.

complete and I = I and complete = I ; (I and I ′) and I ′′ = I and (I ′ and I ′′)(27)

A ◦ skip
 A ; skip ◦ I
 I(28)

(A1 or A2) ◦ I
 (A1 ◦ I) or (A2 ◦ I) ; (A1 andA2) ◦ I
 (A1 ◦ I) and (A2 ◦ I)(29)

(indivisiblyA) ◦ I
 indivisibly (A ◦ I) ; complete ◦ I
 complete(30)

(A ◦ I) ◦ I ′
 A ◦ (I ◦ I ′) ; (A >A1 \ A2) ◦ I
 (A ◦ I) >A1 \A2(31)

Reduction semantics The following reduction rule specifies that reduction is
in effect a relation between structural congruence equivalence classes of action
terms:

A′1 → A′2
A1 → A2

if A1
 A′1 and A′2
 A2(32)

The terminated actions in the reduction rule (7) for the indivisibly combinator
are now those generated by the grammar:

Terminated T ::= I | raise | T ◦ I

The next reduction rule exploits that reduction is defined on ‘open’ actions,
viz. actions which refer to incoming information.

A→ A′

A ◦ I → A′ ◦ I(33)

Here are two simple reductions, derived from (32), (33), and (3):

I >A1 \A2 → A1 ◦ I ; raise I > A1 \A2 → A2 ◦ I

Equations

A = A′, if A
 A′(34)

complete andA = A and complete = A ; (raise I) andA = A and (raise I)(35)

(raise I) and I ′ = raise I ; (raise I) and (raise I ′) = (raise I) or (raise I ′)(36)

4.1 The declarative and functional facets

The core syntax of the declarative facet is:

Action A ::= find t

Informer I ::= bind t | rebind

token t ::= . . .

For simplicity, tokens are not first-class.

97

Computed bindings are represented syntactically by informers which merge
together individual singleton bindings bind t I by the and combinator. The merg-
ing of the bindings of I and I ′ in (I andI ′) is obtained by overlaying the bindings
of I ′ over those of I (i.e., and is actually interpreted like action notation’s more-
over combinator; this form of merging is better behaved than disjoint union
because the latter is a partial operation). Some of action notation’s sequential
declarative combinators will be defined later on.

The functional facet is the interface between the algebra of actions and some
algebraic specification of underlying data types. The facet also includes higher-
order primitives (classified as the separate reflective facet in action notation).

Action A ::= (dataop) | enact

Informer I ::= d | regive

data d ::= () | (d, d) | abstraction of A | . . .

The underlying data types should include the sort data with (abstraction of A)
as an element for all actions A, with the empty tuple () as element, and equipped
with an associative tupling operator (·, ·) with () as unit. Furthermore, one should
impose a uniformity requirement on data operations with respect to abstractions;
see [Las97].

The metavariable dataop ranges over data operations provided by the data
types, and d ranges over elements of sort data.

The data types can be specified in any formalism. In the following we assume
that a unified algebra specification is used, as in [Mos92]. We use notation ` d =
d′ and ` d′ : ds (where ds is any subsort of data) for unified algebra judgements
concerning the algebraic specification.

Structural congruence The structural congruence axioms are grouped into
declarative, functional, and hybrid axioms.

rebind ◦ rebind
 rebind ; rebind ◦ complete
 complete(37)

rebind ◦ (I and I ′)
 (rebind ◦ I) and (rebind ◦ I ′) ; rebind ◦ bind t
 bind t(38)

regive ◦ regive
 regive ; regive ◦ complete
 complete(39)

regive ◦ (I and I ′)
 (regive ◦ I) and (regive ◦ I ′) ; regive ◦ d
 d(40)

complete
 () ; d and d′
 (d, d′) ; d ◦ I
 d(41)

rebind ◦ regive
 regive ◦ rebind
 complete ; rebind and regive
 copy(42)

(rebind ◦ I) and (regive ◦ I ′)
 (regive ◦ I ′) and (rebind ◦ I)(43)

The structural congruence axioms reduce the somewhat unwieldy syntactic
sort of informers to a smaller subsort info generated by the grammar:

info i ::= complete | skip | i and i | rebind | bind t i | regive | d

This result is useful as some definitions are more easily specified by structural
induction on info than on Informer. For instance:

98

· at · : info× token ⇀ info] {unbound}

(i1 and i2) at t ≡

i if i2 at t ≡ i
i if i1 at t ≡ i and i2 at t ≡ unbound
unbound if i1 at t ≡ i2 at t ≡ unbound

(bind t′ i) at t ≡
{
i if t = t′

unbound if t 6= t′

i at t ≡ unbound, if rebind ◦ i
 complete

i at t is undefined otherwise

(The penultimate clause abbreviates three clauses for complete, regive, and d.)

Reduction semantics The reduction rules for the find t primitive are:

find t I → I ′, if I at t ≡ I ′(44)

find t I → raise I, if I at t ≡ unbound(45)

The general schema for error exceptions is that any incoming information is
passed through to the exception handler.

The functional primitives (dataop) and enact only reduce if the incoming
information is a data constant d; and in the case of enact, d must even be equal
to an abstraction. (It may be preferable to let enact and data operations ignore
bindings rather than, as here, insist that they are empty—then regive is also
definable as (id) where id is the identity function on data.)

For conciseness and to eschew possible error situations when unified algebra
data operations return proper sorts, we let (dataop) choose any individual in the
resulting sort if dataop does not map the incoming data to a vacuous sort; an
error exception is raised if the resulting sort is nothing

(dataop) d→ d′, if ` d′ : dataop(d)(46)

(dataop) d→ raise d, if ` dataop(d) = nothing(47)

enact d→ A ◦ complete, if ` d = abstraction of A(48)

Equations

(bind t I) and (bind t I ′) = bind t I ′(49)

(bind t I) and (bind t′ I ′) = (bind t′ I ′) and (bind t I), if t 6= t′(50)

find t I = raise I, if rebind ◦ I = complete(51)

find t (I,bind t′ I ′) =

I ′ if t = t′

I ′′ if t 6= t′ and find t I = I ′′

raise (I,bind t′ I ′) if t 6= t′ and find t I = raise I
(52)

d = d′, if ` d = d′(53)

(dataop) d v d′, if ` d′ : dataop(d)(54)

(dataop) d = raise I, if ` dataop(d) = nothing(55)

enact abstraction of A = A ◦ complete(56)

99

4.2 Copying

So far the algebra lacks much of the power of action notation for expressing
information flow. For instance, even though we have both the and combinator
and the ternary sequencing combinator, there does not seem to be an easy way
of expressing the control and information flow represented by action notation’s
and then combinator. In fact, of the many sequential standard action combinators
only the thence combinator is easily expressed by the core constructs introduced
thus far:

A1 thenceA2 , A1 >A2 \ raise

Another significant shortcoming is that it is not possible to express the closure
of an abstraction with the current bindings.

These deficiencies are all rectified by the following new copying and copy#p
constructs, syntactically similar to unfolding and unfold#p.

Action A ::= copyingA

Informer I ::= copying I | copy#p (p ≥ 1)

The copy#p primitive refers to the information that flows into the p’th en-
closing copying combinator, cf. the structural congruence laws:

copy#p ◦ I
 copy#p ; copying copy
 skip(57)

I
 copying (I↑copy) ; copying copying I
 copying (I↓copy)(58)

(copyingA) ◦ (copying I)
 copying (A{copy := I ◦ copy} ◦ I)(59)

copying (I1 and I2)
 (copying I1) and (copying I2)(60)

Remark 2. Now, informers are reducible to info’s of the extending grammar:

info i ::= complete | skip | i and i | rebind | bind t i | regive | d
| copy#p | rebind copy#p | regive copy#p | copying d

which is still a convenient characterisation, e.g., usable in the definition of at .

With the new constructs, we define:

A1 and thenA2 , copying (A1 thence (skip and (A2 ◦ copy)))

A1 henceA2 , copying (A1 >A2 ◦ (rebind and regive copy) \ raise)

A1 thenA2 , copying (A1 >A2 ◦ (regive and rebind copy) \ raise)

escape , raise ◦ regive

A1 trap A2 , copying (A1 > skip \A2 ◦ (regive and rebind copy))

If as in action notation we overload then and hence to also be data operations
on abstractions, we can define:

close , (hence) (copying abstraction of rebind copy, regive)

apply , (((rest) thence copying abstraction of copy) and (first)) then (then)

100

where first and rest are the standard data notation operations on tuples. Given
bindings and an abstraction as incoming information close builds a closure ab-
straction as in action notation. The action apply takes a data tuple with an
abstraction as first component and builds an abstraction which is the applica-
tion of the abstraction to the rest of the data tuple as in action notation.

Reduction semantics Reduction is permitted under the copying combinator:

A→ A′

copyingA→ copyingA′
(61)

For instance, the next two derived reductions are derived from (61) and (4):

(raise I) andA→ raise I ; A and (raise I)→ raise I

Equations We have the following equational laws for copying.

copying (A↑copy) = A ; copying copyingA = copying (A↓copy)(62)

copying (A1 or A2) = (copyingA1) or (copyingA2)(63)

(copyingA) >A1 \A2 = copying (A >A1↑copy \A2↑copy)(64)

copying (A1 andA2) = (copyingA1) and (copyingA2)(65)

A refinement relationship between the combinators ‘and’ and ‘and then’ is
asserted by the inequational law:

A1 and A2 v A1 and thenA2(66)

5 State and the imperative facet

The imperative and communicate facets are state-based. Both create and process
objects that are accessed and referred to by means of references. The core algebra
provides the following common structure for the state facets:

Action A ::= A with new ~O | compare

Object O ::= obj Φ

Objects O are of the form obj Φ where obj is the object’s kind (cell, agent,

or message) and Φ is a syntactic phrase or is empty. The A with new ~O action

creates the possibly mutually recursive objects ~O before performing A.
The information flow into A with new obj1Φ1, . . . , objnΦn is specified by:

(A with new obj1Φ1, . . .) ◦ I
 (A ◦ I) with new obj1(Φ1 ◦ I), . . .(67)

Some kinds of objects may be referenced, and for each such object kind obj
there are object references obj#p of sort data.

data d ::= obj#p

Within A with new ~O the p’th object of some kind, obj, can be referred to
from A and from the objects in ~O via the reference obj#p, but it is hidden from
the outside. The compare primitive compares two object references for equality.

101

Imperative Each state facet specifies a collection of objects that can go into
the state together with action primitives for interacting with the objects. The
imperative facet introduces the object kind cell, and provides primitives update
and access for assigning to and dereferencing cells, respectively. There is no
construct for explicitly deallocating cells.

Action A ::= update | access

Object O ::= cell I

data d ::= cell#p

5.1 Reduction semantics

First, we specify the ‘generic’ reductions for state, those that make no assump-
tions about the actual objects in the state.

Let Φ↑ ~O , Φ↑obj1
· · ·↑objn

if ~O ≡ obj1 Φ1, . . . , objn Φn.

(A with new ~O) > A1 \A2 → (A > A1↑~O \A2↑~O) with new ~O(68)

(A1 with new ~O) andA2 → (A1 andA2↑~O) with new ~O(69)

A1 and (A2 with new ~O)→ (A1↑~O andA2) with new ~O(70)

(A with new ~O1) with new ~O2 → A with new ~O1, ~O2↑~O1
(71)

compare(obj#p, obj#p)→ complete(72)

compare I → raise I, if I ≡ (obj#p, obj#q) and p 6= q(73)

A→ A′

A with new ~O → A′ with new ~O
(74)

The next axioms and rule define the behaviour of the imperative facet and
extend the semantics of the indivisibly combinator to imperative state.

Notation | ~O|obj denotes the number of objects of kind obj in ~O.

E[access(cell#| ~O1|cell+1)] with new ~O1, cell I, ~O2 →
E[I] with new ~O1, cell I, ~O2

(75)

E[update(cell#| ~O1|cell+1, I ′)] with new ~O1, cell I, ~O2 →
E[complete] with new ~O1, cell I ′, ~O2

(76)

A with new ~C →∗ T with new ~O, ~C′

E[indivisiblyA] with new ~C → E↑~O[T] with new ~O, ~C′
if | ~C| = | ~C′|(77)

5.2 Equations

A with new () = A(78)

(A or A′) with new ~O = (A with new ~O) or (A′ with new ~O)(79)

(A with new ~O) > A1 \A2 = (A > A1↑~O \ A2↑~O) with new ~O(80)

102

indivisibly (T with new ~O) = T with new ~O(81)

indivisibly ((A with new ~O) with new ~O′) = indivisibly (A with new ~O, ~O′↑~O)(82)

(copyingA) with new ~O = copying (A with new ~O↑copy)(83)

The order of the objects ~O in A with new ~O is indifferent modulo suitable
renaming of all references to ~O in A and in ~O. In order to formulate this law, we
define a relation π : ~O ↪→ ~O′ where π is an object reference substitution which
permutes object references, and ~O′ is a corresponding permutation of ~Oπ (i.e.,
~O′ is a permutation of ~O with all mutual object references suitably updated).
The law reads as follows:

A with new ~O = Aπ with new ~O′, if π : ~O ↪→ ~O′(84)

The formal definition of π : ~O ↪→ ~O′ is specified inductively by the following
axioms and rule:

id : ~O1, obj Φ, obj ′ Φ′, ~O2 ↪→ ~O1, obj ′ Φ′, obj Φ, ~O2 , if obj 6= obj ′

π : ~O1, obj Φ, obj Φ′, ~O2 ↪→ ~O1π, obj Φ′, obj Φ, ~O2π ,

if | ~O1|obj = p− 1 and π = {obj#p := obj#p+1, obj#p+1 := obj#p}

id : ~O ↪→ ~O ;
π : ~O ↪→ ~O′ π′ : ~O′ ↪→ ~O′′

π ; π′ : ~O ↪→ ~O′′

where id is the identity substitution and π ;π′ is the composition of substitutions
π and π′ satisfying Φ(π ; π′) = (Φπ)π′.

In the following laws for the imperative facet C ranges over cell objects.

indivisibly update = update ; indivisibly access = access(85)

A > (A1 with new ~C) \ A2 = (A↑~C >A1 \ A2↑~C) with new ~C(86)

A >A1 \ (A2 with new ~C) = (A↑~C >A1↑~C \ A2) with new ~C(87)

(A1 with new ~C) and A2 = (A1 and A2↑~C) with new ~C(88)

A1 and (A2 with new ~C) = (A1↑~C and A2) with new ~C(89)

indivisibly (A with new ~C) = (indivisiblyA) with new ~C(90)

(A with new ~C) with new ~O = A with new ~C, ~O↑~C(91)

(A with new ~O) with new ~C = A with new ~O, ~C↑~O(92)

A↑~C with new ~C = A(93)

(update(cell#1, I ′) >A \A′) with new cell I, ~C =

(A ◦ complete) with new cell I ′, ~C

(94)

(access(cell#1) > A \A′) with new cell I, ~C = (A ◦ I) with new cell I, ~C(95)

(indivisibly (update(cell#1, I ′) >A \ A′) >A1 \A2) with new cell I, ~C =

(indivisibly (A ◦ complete) >A1 \ A2) with new cell I ′, ~C

(96)

(indivisibly (access(cell#1) >A \A′) >A1 \A2) with new cell I, ~C =

(indivisibly (A ◦ I) >A1 \A2) with new cell I, ~C

(97)

103

A final inequational law:

A v indivisiblyA(98)†

holds only in the absence of concurrent agents with fairness constraints.

6 The communicative facet

The communicative facet introduces asynchronous processes, called agents, and
messages. Agents are actions with a process identity. Each message must be
addressed to a specific agent.

Action A ::= receive

Object O ::= agentA | message I

data d ::= agent#p | self#p

The A with new ~O construction sends all messages in ~O and spawns all agents
in ~O before performing A. The fairness constraints of action notation on agents’
progress and on message delivery are intended but they are not modelled in the
reduction semantics that is given below. This aspect is left for future work, cf. §8.

There are no message references because messages are removed from the state
upon receipt, and they should not leave behind dangling references. The self
reference is not an object reference like the others, although it refers to agents.
Its index counts the lexically enclosing agents and abstractions: if it points to
an agent it refers to that agent; if it points to an abstraction it refers to the
agent which is self#1 at the point where that abstraction was enacted. Thus,
the self#1 reference effectively has dynamic scope and corresponds to the yielder
performing-agent in action notation. It is useful to be able to refer to enclosing
agents when setting up communication protocols in connection with creation of
agents (although there is not an exact correspondence, self#p references should
be able to replace the uses of the contracting-agent yielder in action notation).
It is not obviously useful to refer to the self#1’s of enclosing abstractions, but
this feature is necessary in order to obtain the desired dynamic scope of self#1.

Cells and agents may cross-reference each other and it is most natural to let
cells be shared between agents.

The receive primitive either removes from the current state a message ad-
dressed to the performing agent and completes with the message contents as
outcome, or escapes. The intended fairness constraint on message delivery is
that, whenever a message is sent to an agent that infinitely often attempts to
receive, the message is eventually received and removed by the agent, i.e., the
agent must not indefinitely choose to receive other messages or escape.

Remark 3. In action notation the action:

receive message [containing ds]

104

awaits the arrival of a message with contents of sort ds . In our algebra this
behaviour is expressed by the compound action:

unfolding (receive > (ds&) > skip
\ (unfold with new message (self#1, skip))

\ unfold)

where ds& is the data operation that intersects its argument with the sort ds .

6.1 Reduction semantics

The reduction rule (77) for the indivisibly combinator in the imperative facet

forces the constraint on reductions between actions of the formA with new ~O that
the new objects ~O are not reordered by reductions, as otherwise any references in
E to the new objects become corrupted. This constraint is difficult to maintain
in the reductions for communicative actions. Instead, we introduce an auxiliary

labelled transition relation A, ~O
ρ−→ A′, ~O′ between configurations A, ~O and

A′, ~O′ each consisting of an action paired with a sequence of objects. The label
ρ is a renaming of references to the objects ~O on the left hand side.

A configuration A, ~O corresponds to the action A with new ~O except that
references to the objects ~O are bound in the action Awith new ~O but not in the
configuration A, ~O.

Labelled transitions and reductions are interrelated by the two rules:

A→ A′

A
id−→ A′

(99)

A, ~O
ρ−→ A′, ~O′

A with new ~O → A′ with new ~O′
(100)

The renaming ρ of references to the objects of the configuration A, ~O is only
used internally in the definition of the transition relation; it is discarded in the
reduction where the relevant object references are bound.

The transition relation is free to reorder objects and we also let it operate
under evaluation contexts and in the absence of selected objects:

A, ~O1
ρ−→ A′, ~O′1

E[A], ~O
π;ρ−→ (Eπρ)[A′], ~O′1, ~O2ρ

if π : ~O ↪→ ~O1, ~O2(101)

The rules (99)–(101) subsume the reduction rule (74).
Now the reduction rule (77) for indivisibly is no longer valid. Instead, we define

A, ~Q ≡ A0, ~O0
ρ1−→ · · · ρn−→ An, ~On ≡ T, ~O

indivisiblyA, ~Q
id;ρ1;...;ρn−→ T, ~O

(n ≥ 0)(102)

where Q ranges over non-agents, i.e., every Q is either a cell or a message, so that
the reduction of A is not interleaved with the reduction of concurrent agents.

105

The reduction rule (77) is subsumed by the transition rule (102) together with
(100) and (101).

Similarly, the following transition axioms subsume the reduction axioms (68)–
(71) and (75)–(76).

A with new ~O
↑~O−→ A, ~O(103)

access(cell#p), cell I
id−→ I, cell I(104)

update(cell#p, I ′), cell I
id−→ complete, cell I ′(105)

There are the following transition axioms and rules for message receipt and
concurrency.

receive I,message(self#1, I ′)
id−→ I ′(106)

(A1, ~O↑self)dagent := self#1e ρ−→ A′1, ~O
′

A, agentA1, ~O
ρ′−→ Aρ′, agentA′1, ~O

′↑objdself := agent#1e
if ρ′ = ρ ; ↑obj(107)

The following reduction and transition axioms specify the effect of comparing
self references with other self references or agent references.

compare(self#p, self#p)→ complete(108)

compare I, agentA
id−→ raise I, agentA ,

if I ≡ (self#p, agent#1) or I ≡ (agent#1, self#p)
(109)

Remark 4. In some cases the same agent is referred to by a self reference and
an agent reference or a different self reference, e.g., in the actions

A with new agent compare (self#1, agent#1)

enact ◦ abstraction of (compare(self#1, self#2))

It is not clear whether the present reduction rules for comparing references to
agents are an adequate operational semantics for compare.

Finally, we need to modify (48) to take into account that the abstraction of
constructor binds the self reference to the value of self (the performing agent)
at the point where it is enacted:

enact d→ A↓self ◦ complete, if ` d = abstraction of A(110)

6.2 Equations
enact abstraction of A = A↓self ◦ complete(111)

indivisibly receive = receive(112)

A with new agent(A1 or A′1), ~O =

(A with new agentA1, ~O) or (A with new agentA′1, ~O)

(113)

A with new agent(copyingA1), ~O = copying (A↑copy with new agentA1, ~O↑copy)(114)

A with new agent (A′ with new ~O′), ~O =

A↑~O′ with new ~O′dself := agent#| ~O′|agent+1e, agentA′, ~O↑~O′
(115)

106

A↑obj with new agent (receive I > A1 \A2),message(agent#1, I ′) =
(A↑obj with new agent (A1 ◦ I ′)) or
(A↑obj with new agent (A2 ◦ I),message(agent#1, I ′))

(116)

It would be nice if (82) held without the indivisibly wrapper:

(A with new ~O) with new ~O′ = A with new ~O, ~O′↑~O(117)†

This would express an important property of asynchrony: the indifference of
mutual timing of message transmissions and process spawning. But the combi-
nation of interleaving and exceptions from the basic facet renders (117)† invalid:
if interleaved with an escaping action, the left hand side may be aborted between
the creation of ~O′ and ~O and this may be observable if there are messages or
agents in both ~O and ~O′.

7 Interleaving and expansion

One of the characteristic features of action notation, going back to the abstract
semantic algebras of [Mos83], is the and combinator which interleaves the control
flow of its arguments. But interleaving is left out in most work on action notation,
and there does not seem to be much research on interleaving in higher-order, im-
perative languages in the literature. Interleaving is described straightforwardly in
our reduction semantics and in other small-step operational semantics of action
notation [Mos92,Mos99], yet the theory of interleaving is rather intricate.

One of its undesirable effects on the equational laws was mentioned in con-
nection with the equational theory of the communicative facet.

Another problematic feature of interleaving is that it does not interact well
with first-class continuations, as discussed in [Las94]. Indeed, I believe that first-
class continuations can be added cleanly to the present core algebra along with
a decent set of algebraic laws, provided that the interleaving operation of the
and combinator is left out.

On the other hand, the core algebra may offer a positive result about the
equational theory of interleaving: I conjecture that the algebra together with the
set of expansion laws given below can reduce interleaving to non-determinism
for first-order, non-recursive actions. This would be a kind of relative complete-
ness result for the equational laws, as it were, indicating that they exhaust the
equational properties specific to interleaving. The expansion laws rewrite ac-
tions into “disjunctive normal forms”, that is, non-deterministic choices N ≡
(B1 or · · · or Bp) between actions B1 through Bp generated by the grammar:

B ::= I | raise I | copyingC

C ::= (indivisiblyA) >B \B | B with new ~O

The rewriting strategy is bottom-up. Consider (N andN ′) where N ≡ (B1 or
· · ·orBp) and N ′ ≡ (B′1 or · · ·orB′q) with p, q ≥ 1. Since or distributes over and, it
suffices to rewrite (Bi andB′j) into the desired form for 1 ≤ i ≤ p and 1 ≤ j ≤ q.
We consider four cases; the remaining cases are similar or simpler.

107

Case Bi ≡ Ii and B′j ≡ copying ((indivisiblyA′j) >B
′
j1 \B

′
j2)

Bi andB′j = copying((indivisiblyA′j) > ((Ii↑copy ◦ copy) andB′j1)
\ ((Ii↑copy ◦ copy) andB′j2))

(118)

Case Bi ≡ raise Ii and B′j ≡ copying ((indivisiblyA′j) >B
′
j1 \B

′
j2)

Bi andB′j = raise Ii or
copying((indivisiblyA′j) > ((raise Ii↑copy ◦ copy) and B′j1)

\ ((raise Ii↑copy ◦ copy) and B′j2))

(119)

Case Bi ≡ copyingC and B′j ≡ copyingC′ where
C ≡ (indivisiblyAi) >Bi1 \Bi2 and C′ ≡ (indivisiblyA′j) > B

′
j1 \B

′
j2

Bi andB′j =
copying ((indivisiblyAi) > (Bi1 and (C′ ◦ copy)) \ (Bi2 and (C′ ◦ copy))) or
copying ((indivisiblyA′j) > ((C ◦ copy) andB′j1) \ ((C ◦ copy) andB′j2))

(120)

Case Bi ≡ copyingC and B′j ≡ copyingC′ where

C ≡ (indivisiblyAi) >Bi1 \Bi2 and C′ ≡ B′ with new ~O′

Bi andB′j =
copying ((indivisiblyAi) > (Bi1 and (C′ ◦ copy)) \ (Bi2 and (C′ ◦ copy))) or

copying ((C and B′) with new ~O′)

(121)

Applying the laws left-to-right, they may be applied recursively to the resid-
ual occurrences of and on the right-hand sides of the equations (up to structural
congruence the arguments of and are all of the form dictated by the B grammar,
above).

8 Assessment

The notation is very tentative. We have seen that it is well suited for expressing
reduction and equations between actions but its utility for expressing the actions
that are needed in action semantics has not been tested. Certain data calcula-
tions that are easily expressed with action notation’s yielders become rather
tedious in the core algebra where all information flow has to be passed explicitly
by combinators. The new constructs for specifying information flow and mutu-
ally recursive state objects seem to offer a convenient expressive power, but their
syntactic manipulation in the reduction semantics may appear complicated. Per-
haps a modular structural operational semantics as in [Mos99] would make the
formalisation of these constructs more concrete.

The reduction semantics only specifies the possible outcomes of actions, not
their divergence behaviour. The specification of divergence is complicated by
the concurrent and communicating actions’ fairness constraints on progress and
message delivery. Possibly, the technique of integer delays used in Mosses’ struc-
tural operational semantics [Mos92] can be adapted to the communicative part
of the reduction semantics.

108

To assess the laws of the algebra, some form of completeness results should
be established. For instance, are the equational laws sufficient to symbolically
evaluate some class of first-order actions? Expansion laws have led to complete-
ness results for equational theories of (restricted) process calculi. One can hope
for something similar for a suitable first-order fragment of our action algebra.
Perhaps the equational completeness result for an imperative language in [MT93]
can be adapted to a suitable imperative fragment of our algebra.

The consistency of the algebraic theory remains to be verified. Preferably,
its correctness should be established with respect to a notion of operational
equivalence—the laws have been formulated with a form of testing equivalence
in mind. The results in [Las97] ought to be applicable to the stateless part of the
algebra but the remainder is likely to be a formidable task that will need to be
approached in stages by developing the necessary theory for suitable fragments.

Acknowledgements I thank Keith Wansbrough for discussions on actions. He and
Peter Mosses helpfully commented on drafts of this paper.

References

[DH84] R. DeNicola and M.C.B. Hennessy. Testing equivalences for processes. The-
oretical Computer Science, 34:83–133, 1984.

[Las94] S. B. Lassen. Design and semantics of action notation. In Peter D. Mosses, ed-
itor, Proc. 1st Intl. Workshop on Action Semantics, Edinburgh, 1994, number
NS-94-1 in BRICS Notes Series, pages 16–33. BRICS, 1994.

[Las97] S. B. Lassen. Action semantics reasoning about functional programs. Math-
ematical Structures in Computer Science, 7(5):557–589, 1997.

[MM93] Mart́ın A. Musicante and Peter D. Mosses. Communicative action notation
with shared storage. Tech. Mono. DAIMI PB–452, Dept. of Computer Science,
Univ. of Aarhus, 1993.

[Mos83] Peter D. Mosses. Abstract semantic algebras! In Dines Bjørner, editor, Formal
Description of Programming Concepts II. IFIP, 1983.

[Mos92] Peter D. Mosses. Action Semantics. Number 26 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1992.

[Mos96] Peter D. Mosses. Theory and practice of action semantics. In Proc. 21st Math-
ematical Foundations of Computer Science, Cracow, Poland, volume 1113 of
Lecture Notes in Computer Science, pages 37–61. Springer-Verlag, 1996.

[Mos99] Peter D. Mosses. A Modular SOS for Action Notation, 1999. In this volume.
[MT93] I. A. Mason and C. L. Talcott. Inferring the equivalence of functional programs

that mutate data. Theoretical Computer Science, 105(2):167–215, 1993.

109

110

Tuple Sort Inference in Action Semantics

Kent D. Lee1,2

1 University of Iowa
2 Luther College

leekentd@luther.edu

Abstract. Sort inference over actions has been studied in the Actress
compiler generator. The sort inference algorithm in Actress is based on
record sort inference first proposed by Even and Schmidt. However, Ac-
tress does not support sort inference over tuples, an important sort in
action semantics. In this paper the sort inference algorithm of Even and
Schmidt is extended to perform sort inference over tuples. With the de-
velopment of this algorithm it is now possible to implement a richer and
more natural subset of action semantics as compared to the action nota-
tion supported by the Actress system. Genesis, a new compiler generator
based on Actress, has been developed to demonstrate this new algorithm
and is also described in this paper.

1 Introduction

Syntax analysis of programming languages has a well-developed theory that com-
piler writers take advantage of when constructing parsers and scanners. However,
formal semantic descriptions are generally not used in developing compilers. In-
stead, compiler writers usually rely on English or some other natural language
to give the meaning of a programming language. While the English language is
well-suited for conversation, its ambiguity causes it to be ineffective in defining
programming languages because it may lead to inconsistent interpretations. For
example, because the semantics of Pascal was defined informally, the first two
compilers for the language treated type equivalence differently: one implemented
structural equivalence while the other expected name equivalence, even though
Niklaus Wirth himself over-saw the construction of both compilers [12]. Needless
to say, mistakes like these are expensive in general and are a good motivation
for using unambiguous specifications in compiler design.

Action semantics is one such formal method for language description that
has many nice properties. In action semantics, an action formally describes the
meaning of a source language program. Since action semantics is formally de-
fined, in theory it is possible to automatically generate a compiler for a language
given a mapping from its syntax to its action semantics. Action semantics-based
compilers and compiler generators are being studied by a small group of people.
Research in this area began with the development of action semantics by Peter
Mosses [7] and David Watt [12]. In 1991, the first compiler generator based on
action semantics was designed by Jens Palsberg in his PhD thesis and was called

the Cantor system. Palsberg was assisted by Peter Ørbæk, who implemented the
Cantor system in 1991, and a paper [10] about it was published in 1992. Later
in 1992, Brown, Moura, and Watt described an action semantics-based compiler
generator that they named Actress [3]. In 1993, Bondorf and Palsberg developed
another version of the Cantor system based on partial evaluation [1]. Kyung-Goo
Doh and David Schmidt developed an action semantics prototyping system that
employed many of the same techniques used in automated compiler generation
about the same time [4]. Doh and Schmidt’s system was partially based on the
Actress system. In 1994, Peter Ørbæk enhanced the original Cantor system to
develop his own system [8], which he called OASIS.

This paper introduces a new action semantics-based compiler generator called
Genesis[6], which is based on the structure of the Actress compiler generator,
and discusses its sort inference algorithm.

Semantic Specification

Action Semantic Definition (ASD)

Assembly

Tokens ActionProgram

Postfix
Actionfiles

.class

Jasmin Assembler Code Generator

ParserScanner Sort Checker

Transformer

Lexical Specification Grammar

ML-yaccML-lex

Common Language SpecificKey:

Annotated Action

Generator
Parser

Generator
Scanner

Fig. 1. Structure of Genesis

Figure 1 illustrates the structure of Genesis. An action semantics-based com-
piler begins by translating a source program to its program action. The action
notation implemented by Genesis is based on the notation introduced in the
Actress system. However, Genesis improves on it in several respects. The next
section introduces action semantics and describes the action notation supported
by Genesis while pointing out a key difference between the action notation sup-
ported by Actress and the notation implemented in the Genesis system.

112

Both Actress and Genesis sort check program actions using a unification-
based sort inference algorithm developed by Even and Schmidt [5]. Section 3
describes an algorithm for sort checking tuples in actions including the special
tuples called transients. While Actress implemented a limited form of sort in-
ference over transients, this paper describes an extension to the sort inference
algorithm that enables it to sort check transients and, more generally tuples, in
the context of a unification-based sort inference algorithm.

After sort checking an action, an Action Transformer transforms the program
action into a postfix form to get it ready for code generation. While Actress
generated C target programs, Genesis generates Java Virtual Machine assembly
language programs. Transforming the program action to a postfix form gets it
ready for code generation targeting low-level languages. Postfix transformations
of actions are studied in [6].

To demonstrate the Genesis system a statically typed programming language
called Small was developed. Small is a small subset of ML. Small is a block
structured language with nested functions of zero or more parameters, functional
composition, recursion, and imperative features. For a full description of Small
see [6].

2 Action Notation

Like Actress, Genesis supports enough action notation to describe programming
languages containing functions of one or more parameters, iteration, selection,
and sequential execution. Actress and Genesis support action notation covering
the functional, declarative, imperative, and reflective facets. The communicative
facet is not considered.

Every action is either a primitive action or a compound action, composed
of other primitive and compound actions that are combined through the use of
combinators. Combinators dictate how the current information is propagated to
their sub-actions. It is useful to study combinators with respect to their facets.
Combinators affect how the current information is passed to their sub-actions,
and how the information generated by sub-actions is combined. Most combi-
nators are binary, combining two sub-actions into one compound action. For
instance, consider the action

give 4
then

bind “x” to the given value

In the functional facet the then combinator propagates the transients given
by the first sub-action to the transients used by the second sub-action. So, in
this example, (4) is given as the outgoing transient of the first sub-action and the
second sub-action uses the singleton tuple (4) as its incoming transient value.

The behavior of the then combinator is described by figure 2. Combinator
diagrams were first introduced by Watt[12] and were revised by Slonneger [11].
They help in understanding the properties of combinators with respect to each

113

B

bindings bindings

transients

transients

complete

A then B

A

Fig. 2. The then Diagram

facet. The diagrams show the flow of transients and bindings through a com-
pound action with respect to a specific combinator. Transients flow from top to
bottom, while bindings flow from left to right. For instance, the then combinator
propagates the incoming transients to A. The transients given by A are passed
to B, the second sub-action. The transients given by the compound action are
the transients given by B. The bindings received by the compound action, A
then B, are propagated to each of the sub-actions. Bindings produced by the
compound action are the merged bindings produced by sub-actions A and B.
The dashed line in figure 2 indicates control flow. The then combinator requires
that A completes first, followed by the performance of B. Since storage is part
of the imperative facet, changes made to storage by A are seen by B when it is
performed.

The behavior of the and then combinator is given in figure 3, which gives the
incoming transients to both sub-actions and concatenates the outgoing transient
tuples of both sub-actions to form the outgoing transients for the compound
action. For instance, the action

give 4
and then

give 5

gives the tuple (4,5). This is a big difference between the action notation sup-
ported by Actress and Genesis. In Actress’ notation this action would be written

give 4 label 1
and then

give 5 label 2

114

bindings bindings

A

B

transients

transients

A and then B

complete

Fig. 3. The and then Diagram

Actress was based on an earlier, working version of action semantics where tran-
sients were defined as a map from naturals to sorts. The need to explicitly label
positions within the transients means that Actress’ notation is not modular,
which is one of the goals of action semantics.

Like Actress, Genesis supports the sorts integer, truth-value, cell, and abstrac-
tion. Actress supports the list sort. In contrast, Genesis supports the tuple sort.
Genesis also supports the use of incomes and outcomes to qualify the sorts of
action and yielder.

3 Sort Inference in Action Semantics

The sort inference algorithm used in Genesis is based on the sort inference algo-
rithm used in Actress [2], which is based on the algorithm of Even and Schmidt
[5]. The algorithm performs sort unification over records. Records, represent-
ing transients and bindings, are unified to infer the sorts of actions, yielders,
and data. Genesis extends this algorithm by using records to represent tuples
in general and not specifically transients. Unification of two records produces a
substitution of variables in the two records that must hold for the two records
to be identical, or unified. If no substitution is possible, then the two records
are not unifiable. The sort inference algorithm presented here is an imperative
version of unification. A global substitution is maintained. This is allowable since
each variable is unique and is never re-used. The purpose of sort inference is to
check that an action is well-formed. An action is well-formed if all references to
sorts, either explicitly or implicitly, within the action are consistent.

Actress was the first action semantics-based compiler generator to use Even
and Schmidt’s sort inference algorithm. The version of the algorithm presented

115

here extends the algorithm in two ways. This implementation includes two con-
straints as opposed to Actress’ algorithm that allowed one type of constraint.

The extension of sort inference to tuples is the other improvement, which
has a major impact on the action notation supported by Genesis as compared to
Actress. Sort checking of tuples of data has been studied by Ørbæk[9] in his dis-
sertation. However, Ørbæk’s approach traces the flow of data over the functional
facet through the use of a dependence analysis on the semantic equations of an
action semantic definition. His approach does not perform unification of sorts,
resulting in difficulties when sort checking actions that contain unfolding/unfold.
Ørbæk deals with this by introducing new semantic equations. The new seman-
tic equations become infinite actions that may grow as they are performed much
like applying a fix-point. Ørbæk’s algorithm for tuple sort inference is sufficiently
different from this algorithm that the two are not compared in detail. Ørbæk
says that true tuple sort inference cannot be achieved by Even and Schmidt’s
sort inference algorithm since tuples are represented as records[9]. The algorithm
presented here shows how Even and Schmidt’s sort inference algorithm can be
extended to perform sort inference over tuples. Furthermore, since this algorithm
is based on unification of sorts, it handles actions that contain unfolding/unfold.
The following sections describe the inference algorithm.

3.1 Sort Schemes

Data Sort σ → nothing datum integer truth-value I

[σ]cell σ1 | σ2 θ abs(τ, β) ↪→ (τ ′, β′)
(τ, β); σ (τ, β) ↪→ (τ, β′) Γ

Incoming Transients τ → Γ

Outgoing Transients τ ′ → Γ

Incoming Bindings β → Γ

Outgoing Bindings β′ → Γ

Record Γ → Γ1 ∧ Γ2 ΦΨ

Fields Φ → {id1 : φ1, · · · , idn : φn}
Field φ → absent σ ∆

Row Ψ → ε γ ρ

Individual I → false true 0 1 -1 ...

Fig. 4. Sort Schemes in Genesis

Records are structures that are used to represent tuples, transients, and bind-
ings in actions. Records were first introduced by Even and Schmidt[5] to repre-
sent the sorts of bindings and transients in actions. Bindings are a map where the
domain is a set of identifiers and the range is Sort. In action semantics the tran-
sients are a tuple, but are represented as records in the sort inference algorithm.
The domain of tuple records are non-negative integers and the range again is

116

Sort. The first position in a tuple is always mapped to by 1, the next by 2, and
so on. Sort checking actions involves unifying records, which implies that there
are some sorts in the two records that are unknown. Unknown information is
represented by variables. Sorts containing variables are called sort schemes and
their syntax is given in figure 4. I represents all individuals. Γ represents records.
A tuple also may be constructed by concatenating two tuples as in Γ1 ∧ Γ2 in
figure 4. Tuple concatenation is a new addition to the sort inference algorithm
and is described in more detail in the next sections.

At this point it is important to notice that records are also sorts. Previ-
ous versions of this algorithm distinguished between records and sorts. In this
version of the sort inference algorithm steps are taken to consider tuples, and
therefore records, themselves as sorts. Allowing records to be considered sorts
has implications that must be considered and dealt with.

Cell sorts are qualified by a sort that may be stored in them because target
languages typically have different storage requirements for storing an integer as
opposed to a truth-value for instance. There are infinitely many cell sorts, but
only a few are of interest. In particular, integer and truth-value cells are of interest
in the Small language. However, other sorts of cells can be constructed to suit
the needs of other languages. Nothing in the sort inference algorithm precludes
other kinds of cell sorts.

The productions for incoming and outgoing transients and bindings are not
needed by the grammar but are included here because it is convenient to use
τ ,β,τ ′,β′ in the sort inference rules presented in appendix A. The sort (τ, β) ↪→
(τ ′, β′) represents the sort of actions. An action is a function of the current in-
formation. In the case of sort inference the current information is the transients
and bindings that are given to an action. Actions produce new bindings and
give new transients when performed. τ and β are the incoming transients and
bindings and τ ′ and β′ are the outgoing transients and bindings, respectively.
The sort of yielders is represented by (τ, β); σ. Yielders may also be a function
of the current information and they yield data, which is given by σ. The sorts of
abstractions are represented like actions since they affect the current informa-
tion in the same way when they are enacted. The abs(τ, β) ↪→ (τ ′, β′) notation
represents the sort of an abstraction in the sort inference algorithm.

4 Unification of Sort Schemes

In Genesis, two sort schemes are unified according to the algorithm presented in
figure 5, which is written in the ML programming style. ML implements pattern-
matching, which is used extensively in this algorithm description to conserve
space. Pattern-matching proceeds from top to bottom, matching the first correct
pattern for the two sorts being unified. Many details of the algorithm are omitted
here. More details can be found in [6]. Unification of two sort schemes finds a
substitution for the variables in the two sorts. There are three kinds of variables
in sort schemes.

– Sort Variables

117

unify : σ → σ → σ (perhaps altering the global subsitution)
(1) unify θi θj = ([θi 7→ θ,θj 7→ θ]; θ)
(2) | unify θi σj = ([θi 7→ σj]; θi)
(3) | unify σi θj = unify θj σi
(4) | unify ({} ∧ σj) σk = unify σj σk
(5) | unify (σi ∧ {}) σk = unify σi σk
(6) | unify (Φi ∧ Φj) σk = unify (Φi · Φj) σk
(7) | unify (ΦiΨi ∧ ΦjΨj) Φk =

if (length(Φi · Φj) = length(Φk) then ([Ψi 7→ {},Ψj 7→ {}]; unify (Φi · Φj) Φk)
else raise concatFailure

(8) | unify (Γi ∧ Γj) Γk = raise concatFailure
(9) | unify σi (σj ∧ σk) = unify (σj ∧ σk) σi
(10) | unify (σi1 | · · · | σin) (σj1 | · · · | σjm) =

let val m = (σi1 | · · · | σin) & (σj1 | · · · | σjm)
val σ′i = prune (unify σi1m | · · · | unify σinm)

val σ′j = prune (unify σj1m | · · · | unify σjnm) in
case (σ′i,σ

′
j) of

(σ′i1 | · · · | σ
′
ig ,σ′j1 | · · · | σ

′
jh

) ⇒ |g,hk=1,l=1 unify σikσjl where σik&σjl 6= nothing

| (,) ⇒ unify σ′iσ
′
j end

(11) | unify (σi1 | · · · | σin) σj =
let val m = (σi1 | · · · | σin) & σj in

unify σjm; ∀k unify σikm; ∀k unify σikσj where σik&σj 6= nothing;
prune (σi1 | · · · | σin) end

(12) | unify σi (σj1 | · · · | σjm)= unify (σj1 | · · · | σjm) σi
(13) | unify [σi]cell [σj]cell = [unify σiσj]cell
(14) | unify Γi Γj = combine unifyF ield unifyRow ΓiΓj
(15) | unify abs(τi, βi) ↪→ (τ ′i , β

′
i) abs(τj , βj) ↪→ (τ ′j , β

′
j) =

abs(unifyτiτj , unifyβiβj) ↪→ (unifyτ ′iτ
′
j , unifyβ

′
iβ
′
j)

(16) | unify I integer = I , if I <integer
(17) | unify I truth-value = I , if I <truth-value
(18) | unify σ I = unify I σ

(19) | unify I1 I2 = I1 if I1 = I2 else nothing
(20) | unify I datum = I

(21) | unify datum I = I

(22) | unify integer integer = integer
(23) | unify truth-value truth-value = truth-value
(24) | unify [σi]cell σj = (unify σi nothing; nothing)
(25) | unify σi [σj]cell = (unify σj nothing; nothing)
(26) | unify σi σj = nothing

Fig. 5. The unify Operation

118

Sort variables, θ, represents an unknown sort that may be bound to any σ.

– Field Variables

Field variables, ∆, represent fields in a record that are either present (i.e.
may be bound to some σ) or absent, but it is unknown which is true.

– Row Variables

γ variables represents unknown fields in a record that are ignored and ρ
variables represent information that is propagated by an action or yielder.

The symbol ε represents the absence of a row variable, meaning the record does
not contain any additional fields that are not represented in the Φ part of the
record. Records that do not contain a row variable usually omit the ε. In figure 5,
sort variables are assumed to be unbound. If a sort variable, θi, were bound to
a sort, σi, then the substitution could be applied to unify σi instead.

The result of a successful unification of sorts is a (possible) change in the
global substitution and a sort. Unifications in figure 5 that cause a modification
of the global substitution show the effects of the alteration inside of brackets.
For instance, in the first unification unbound θi and θj are bound to a new sort
variable θ as a result of unifying the two unknown sorts and the result of the
unification is θ.

In general, if a valid substitution is found, then unification is successful. If
no substitution exists, then unification algorithms normally report failure. This
is not the case in action semantics. Action semantics is based on the principle of
sorts, not types. There is a complete partial ordering of sorts in action semantics.
This means that two sort schemes in action semantics are always unifiable. It is
trivial to report that unification always yields the sort nothing, which is the sort
that appears at the bottom of the complete partial ordering of sorts. A unification
algorithm that always returns nothing, while much simpler than the algorithm
presented here, is uninteresting! The goal of unification in action semantics is
to find a substitution that results in the greatest lower bound of the two sort
schemes being unified. As such, the unify operation given in figure 5 returns
nothing as a last resort instead of reporting failure.

Unification of tuples is complex enough to warrant some further explana-
tion. Equations 4-7 represent unification between two sorts, one of which was
constructed by concatenating two tuples (i.e. σi ∧ σj). Tuple concatenation can
only be carried out in certain restricted cases. Equations 4-6 are straightforward
applications of equations involving tuple concatenation. If the size of the result-
ing tuple is known, or if one tuple is empty, tuple concatenation is possible.
Equation 7 states that a concatenated tuple of unknown size, ΦiΨi ∧ΦjΨj , may
be unified with another sort, Φk, of known size if the number of known fields
in the concatenated tuple, length(Φi · Φj), is equal to the number of fields that
are expected in Φk. Tuple concatenation should not be carried out if the size
of the resulting tuple is unknown. For instance, the only possible unification of
Φiγi ∧Φjγj and {}γk would result in nothing since the size of the resulting tuple
is unknown due to the unbound row variables.

119

5 Unifying Records

Combinators like then and and then dictate how transients and bindings flow
through an action. For instance, from figure 3 it is easy to see that the incoming
transients are given to both sub-actions and the outgoing transients of the entire
action are comprised of the concatenation of the outgoing transients of the two
sub-actions. The and then combinator dictates tuple concatenation be used to
arrive at the appropriate outgoing transients for the entire action. In other words,
arising from the intended behavior of action semantic combinators are a set
of derived sort operations over the sorts of incoming and outgoing transients
and bindings. In this version of the sort inference algorithm, six derived sort
operations are described. Brown named five of these operations in his version of
the sort inference algorithm[2]. This work has led to the discovery of one more
for tuple concatenation.

The derived sort operators can be visualized by looking at Slonneger’s com-
binator diagrams[11]. For instance, consider the and then combinator in figure 3.
In this diagram there are three different derived sort operators presented. They
are unify, concat, and merge. The same incoming transients are given to each of
the sub-actions. Unification is the appropriate sort operator to use in this case.
Brown distinguishes between records and sorts in his sort inference algorithm.
As a result, he also distinguishes between unification of sorts and unification of
records. He calls the unification of records the distribute operator in his algo-
rithm. The distribute operator in the Actress system and the unify operation
over records in Genesis are handled identically. The incoming bindings are also
given to each of the sub-actions and unify is again the sort operator for the
incoming bindings to the and then combinator.

The outgoing bindings of the two sub-actions are merged to form the out-
going bindings of the entire action. The merge operator insists the bindings
be disjoint. The two sub-actions may not bind the same identifier. The outgoing
transients of the two sub-actions are concatenated together. Tuple concatenation
is represented by the concat sort operator.

ConcatUnify OverlayMerge

Switch Select

Fig. 6. Combinator Operators

120

There are three other derived sort operators that arise from action seman-
tics and appear in combinator diagrams presented in [6]. Each sort operation
combines two record sorts in different ways. These operators are used in the sort
inference rules presented in appendix A and each of the operators are graphically
depicted in figure 6 and described informally here.

– unify
The unify operation is simply unification over sorts. There is no distinction
made in this algorithm between unification of sorts and unification of records,
since records are themselves sorts. This operator is applied to both incoming
and outgoing transients and bindings.

– concat
This operator denotes tuple concatenation and is used to concatenate out-
going transients of sub-actions for the appropriate combinators. In addition,
this operator is used to implement sort inference over tuples.

– merge
The merge sort operator merges two disjoint maps. merge is used to repre-
sent the merging of outgoing bindings from actions.

– overlay
The overlay operation is a union of two maps where the bindings of the
second subaction take precedence over bindings of the same identifiers pro-
duced by the first subaction. Scoped variables in a program are obtained by
overlaying one binding map on another.

– switch
The switch operator is used to choose between one of two possibilities for
incoming transients and bindings. It is used by the or and else combinators.

– select
The select operator models the choice of sorts that can be given or produced
from the outgoing transients or bindings of the two sub-actions of an action
involving the or or else combinator.

Each sort operator combines the fields and row variables of two records in a
unique way. Details of how all but the concat operator work are ommitted here,
but can be found in [6].

6 Constraints

The sort inference rules presented in appendix A contain a few constraints, which
are restrictions on sorts that must be enforced at the end of the sort inference
algorithm. Brown defines one type of constraint in the Actress sort inference
algorithm, namely to check θ&σ 6=nothing for some bound sort variable θ and
sort σ. In this version of the algorithm, constraint checking is expanded to two
different types of constraints. The first of these is called a sub-sort constraint,
stated σ1 ≤ σ2, which means at the end of the sort inference σ1 must be less than
or equal to σ2 in terms of the complete partial ordering of sorts. The σ1 ≤ σ2

constraint has slightly different semantics than a θ&σ 6=nothing constraint. The

121

sub-sort constraint is advantageous in sort checking several rules[6]. For instance,
the sub-sort constraint allows sort checking of polymorphic abstractions and the
is yielder. While Actress’ constraint is most general, it sometimes leads to run-
time sort checks. One goal of Genesis is to remove all run-time sort checks.

concat (Φiρi) Γj = (unity((Φiρi) ∧ Γj ,{}ρ); {}ρ)
| concat Γi (Φjρj) = (unity(Γi ∧ (Φjρj),{}ρ); {}ρ)
| concat Γi Γj = (unity(Γi ∧ Γj ,{}γ); {}γ)

Fig. 7. The concat Operator

Genesis’ version of the sort inference algorithm introduces one more type of
constraint, called a unity constraint. Unity constraints are actually unifications
that are to be performed in the second stage of the sort inference algorithm.
They currently have one purpose, which is to assist in implementing the concat
operator, as given in figure 7. The unity function imperatively adds a unity
constraint to the unity constraint list but does not attempt any unification,
which is an important distinction from the unify sort operator, since tuple
concatenations are not always possible during the first stage of the sort inference
algorithm. Instead, the unity constraint declares an intention to unify in the
second stage of the algorithm. How unity constraints are satisfied is described
in the next section.

7 The Sort Inference Algorithm

The sort inference algorithm consists of three stages: annotating the action, sat-
isfying constraints, and reducing the sorts. The following sections describe what
happens during each stage. The algorithm is given a program action with no sort
annotations and either ends in sort inference failure or succeeds in annotating
the program action and its sub-actions with sort information.

7.1 Annotating the Action

The first stage compositionally annotates the program action and its sub-actions
with sort information as dictated by the sort inference rules in appendix A. Sort
operators are applied to records, constraints are added to the subsort and unity
constraint lists, and sort, row, and field variables are bound to sorts schemes,
field schemes, and record schemes in the global substitution, respectively.

7.2 Satisfying Constraints

Constraint checking is performed during the second stage. This stage starts by
looping over the list of subsort and unity constraints, attemptying to satisfy

122

them. Every pass of the loop performs each constraint operation, refining sorts
that are involved in the constraints. If failure occurs during constraint satis-
faction, the sort inference algorithm fails. It is possible that unification of two
sorts in a unity constraint could result in concatFailure, indicating that there
is insufficient information to concatenate two tuples that are referred to in a
unity constraint. concatFailure does not result in sort inference failure or re-
turn nothing since tuple concatenation may succeed on a subsequent iteration.
The loop continues until a complete pass produces no further refinements in the
sorts being constrained. The loop is guaranteed to terminate since a canonical
form exists for sorts. At some point, each constraint will either be satisfied, will
result in failure, or will result in concatFailure.

Following the constraint loop, any remaining unbound sort, field, or row
variables are instantiated to datum, absent, and {}, respectively. Finally, each
constraint is performed one more time to refine any sorts that might be further
refined due to instantiating the unbound variables.

7.3 Reducing the Sorts

At this point, the sort inference algorithm has succeeded in assigning a sort
to the program action and its sub-actions. However, there are typically many
bound sort, field, and row variables that form long substitution chains. The
last stage of the algorithm applies the variable substitution to remove all non-
essential variables from the sorts. All field and row variables are removed. All
absent fields in records are also eliminated. All sort variables except those bound
directly to a sort, and not another sort variable, are removed from the sorts of
the action. The remaining sort variables represent information that is needed by
the action transformer.

8 An Example of Sort Inference

This section presents an example of sort inference over tuples. Consider the Small
program

let fun f(x,y) = x+y
in

output(f(4,5))
end

This program can be translated to the action according to the action semantic
description found in [6]. Tuples occur in two places in the program’s action. The
first is where 4 and 5 are passed to the function.

give 4 and then give 5
then

enact application of the abstraction
bound to “f” to the given data

123

The second occurrence is where the two parameters are given to the function.

bind “f” to closure of the abstraction of
furthermore

bind “x” to the given (integer|truth-value)#1
and then

give the rest of the given data
then

bind “y” to the given (integer|truth-value)
thence ...

To annotate the first action the two sub-actions ‘give 4’ and ‘give 5’ are annotated
using the Individual and Give-Individual rules as in

give 4
: ({}γ154,{}γ155) ↪→ ({1:θ45},{})

give 5
: ({}γ156,{}γ157) ↪→ ({1:θ46},{})

[θ45 7→4,θ46 7→5]

with the given substitution. Next, the sorts of the two sub-actions are combined
as dictated by the And-Then rule to annotate the whole action

give 4
and then

give 5
: ({}γ154,{}γ155) ↪→ ({}γ158,{})

[γ156 7→{}γ154]
constraint: unity({}γ158,{1:θ45}∧{1:θ46})

At this point a unity constraint is introduced by the concat operation in the
And-Then sort inference rule. There is enough information to carry out tuple
concatenation, but the algorithm does not attempt to do the concatenation now.
Instead it introduces the unity constraint and represents the concatenated tuple
as {}γ158.

To annotate the other action the Given#, Bind-To, Rest, and Give-Data

rules are applied to annotate these two sub-actions

bind “x” to the given (integer|truth-value)#1
: ({1:θ12}γ59,{}γ60) ↪→ ({},{x:θ12})

give the rest of the given data
: ({}ρ71,{}γ69) ↪→ ({}ρ70,{})

[θ12 7→(integer|truth-value),θ13 7→datum]
constraint: unity({1:θ13}∧{}ρ70,{}ρ71)

124

Another unity constraint is introduced by the concat invocatoin in the Rest

rule. This is an instance where the power of a unification based algorithm is
needed. In this case, the concat operator is used to reverse the effects of tuple
concatenation by selecting all but the first element of the incoming transients.
The compound action is annotated using the And-Then rule

bind “x” to the given (integer|truth-value)#1
and then

give the rest of the given data
: ({1:θ12}ρ72,{}γ60) ↪→ ({}ρ73,{x:θ12})

[γ59 7→{}ρ72,ρ71 7→{1:θ12}ρ72]
constraint: unity({}∧{}ρ70,{}ρ73)

Next, the Bind-To and Given rules are now used to annotate the action that
binds “y”.

bind “y” to the given (integer|truth-value)
: ({1:θ16},{}γ75) ↪→ ({},{y:θ16})

[θ16 7→(integer|truth-value)]

And finally, the entire action can be annotated using the Then rule

bind “x” to the given (integer|truth-value)#1
and then

give the rest of the given data
then

bind “y” to the given (integer|truth-value)
: ({1:θ12}ρ72,{}γ60) ↪→ ({},{x:θ12 ,y:θ16})

[ρ73 7→{1:θ16}]

The rest of the action is annotated as well, but is ommitted.
Once annotation is complete, constraint satisfaction begins. After applying

the substitution, the three unity constraints are

1. unity({}γ158,{1:θ45}∧{1:θ46})
2. unity({1:θ13}∧{}ρ70,{1:θ12}ρ72)
3. unity({}∧{}ρ70,{1:θ16})

[θ12 7→(integer|truth-value),θ13 7→datum,
θ16 7→(integer|truth-value),θ45 7→4,θ46 7→5]

During the first pass of constraint satisfaction, the first and third tuple concate-
nations can be performed immediately. Attempting to unify the two sorts in the
second constraint results in concatFailure according to the algorithm for unify
in figure 5. The first pass of constraint satisfaction alters the substitution to

[γ158 7→{1:θ45,2:θ46},ρ70 7→{1:θ16}]

125

The remaining unity constraint can now be updated by applying the new sub-
stitution. The resulting constraint is unity({1:θ13}∧{1:θ16},{1:θ12}ρ72). At this
point the final tuple concatenation can be performed resulting in the final change
in the substitution

[θ12 7→ θ50,θ13 7→ θ50,θ50 7→(integer|truth-value),ρ72 7→{1:θ16}]

Applying the final substitution the sorts of the two actions can be determined.
The final annotated actions are

give 4
and then

give 5
: ({}γ154,{}γ155) ↪→ ({1:θ45,2:θ46},{})

and

bind “x” to the given (integer|truth-value)#1
and then

give the rest of the given data
then

bind “y” to the given (integer|truth-value)
: ({1:θ50,2:θ16},{}γ60) ↪→ ({},{x:θ50 ,y:θ16})

Since there was a change in the substitution on the second pass of constraint
satisfaction, a third pass over the constraints would be attempted. On the third
pass no further constraint satisfaction (i.e. no changes in the substitution) would
occur and the constraint satisfaction loop terminates. The sorts are reduced by
applying the final substitution to the annotated action. In Genesis, the annotated
action becomes the input to the action transformer, which transforms the action
to postfix form. The postfix action serves as input to the code generator, which
generates a Java Virtual Machine program.

9 Conclusion

Previously, it was thought that sort inference over tuples was not possible in the
context of Even and Schmidt’s algorithm[5]. This paper has demonstrated an
extension to the algorithm that implements sort inference over tuples in action
semantics. In addition, a set of sort inference rules allowing the expression of
tuples in actions is given in appendix A.

The existence of an algorithm to perform tuple sort inference in action se-
mantics means a truer subset of action notation can be implemented. Where
the action notation implemented by the Actress system was not modular[3], the
notation presented here does not have to label positions within transient values
explicitly. The result is modular action semantic definitions that can be re-used
easily.

Tuples are also valuable when passing parameters to abstractions. To give
data to abstraction enactions, the Actress system requires the data be packaged

126

in the form of a list, resulting in the possibility of lost sort information. Using
the algorithm presented here, data can be given to abstractions in the form of a
tuple, which does not result in a loss of sort information.

Finally, this paper provides an overview of a new compiler generator based
on action semantics called Genesis. Genesis builds on the work of the Actress
project and serves as a demonstration of the sort inference algorithm presented
in this paper.

A Action Sort Inference Rules

A.1 Rule Format

The set of representable sort shemes are given by the grammar presented in figure 4.
A complete set of the sort inference rules of Genesis is given in [6].

The sort inference rules presented below have the format:
(Rule Name)

Antecedent1;Antecedent2; ...;Antecedentn
Conclusion

Each rule has a conclusion that is satisfied assuming each antecedent is satisfied. An-
tecedents may be an inference of the form ε ` α : σ, a record sort expression of the
form Γ 6= nothing involving one or more of the record unifiers presented in section 5,
a constraint of the form σ1 ≤ σ2, or a binding of the form θ&σ 6= nothing. The list of
antecedents may be empty. Quantification of free variables occurring in the antecedents
are omitted since all variables are universally quantified.

A.2 Rules

(And-Then)

ε ` a1 : (τ1, β1) ↪→ (τ ′1, β
′
1); ε ` a2 : (τ2, β2) ↪→ (τ ′2, β

′
2)

ε ` a1 and then a2 : (unify τ1τ2, unify β1β2) ↪→ (concat τ ′1τ
′
2,merge β

′
1β
′
2)

(Then)

ε ` a1 : (τ1, β1) ↪→ (τ ′1, β
′
1); ε ` a2 : (τ2, β2) ↪→ (τ ′2, β

′
2);unify τ ′1τ2 6= nothing

ε ` a1 then a2 : (τ1, unify β1β2) ↪→ (τ ′2,merge β
′
1β
′
2)

(Furthermore)

ε ` a : (τ, β) ↪→ (τ ′, β′)

ε ` furthermore a : (τ, unify β{}ρ) ↪→ (τ ′, overlay β′{}ρ)

(Bind-To)

ε ` y : (τ, β); σ

ε ` bind id to y : (τ, β) ↪→ ({id : σ}, {})
(Enact)

ε ` y : (τ, β); (abs({}, {}) ↪→ (τ ′, β′))

ε ` enact y : (τ, β) ↪→ (τ ′, β′)

127

(Give-Individual)

ε ` y : (τ, β); σ;σ&I 6= nothing

ε ` give y : (τ, β) ↪→ ({1 : σ}, {})

(Give-Data)

ε ` y : (τ, β); σ;σ&Γ 6= nothing

ε ` give y : (τ, β) ↪→ (σ, {})
(Individual)

ε ` I : σ; θ&σ 6= nothing

ε ` I : ({}γ1, {}γ2); θ

(Abstraction)

ε ` a : (τ, β) ↪→ (τ ′, β′); θ&abs(τ, β) ↪→ (τ ′, β′) 6= nothing

ε ` abstraction of a : ({}γ1, {}γ2); θ

(Closure)

ε ` y : (τ, β); abs(τa, βa) ↪→ (τ ′a, β
′
a); θ&abs(τa, {}) ↪→ (τ ′a, β

′
a) 6= nothing

ε ` closure y : (τ, unify ββa); θ

(Application)

ε ` y1 : (τ1, β1); σ1; ε ` y2 : (τ2, β2); σ2; abs(τa, {}) ↪→ (τ ′a, {}) ≤ σ1;
unify σ2τa 6= nothing; θ&abs({}, {}) ↪→ (τ ′a, {}) 6= nothing

ε ` application of y1 to y2 : (unify τ1τ2, unify β1β2); θ

(Rest)

ε ` y : (τ, β); σ; θ&datum 6= nothing;unify σ(concat {1 : θ}{}ρ) 6= nothing

ε ` rest y : (τ, β); {}ρ

(Given-Data)

ε ` given data : (τ, β); τ

(Given)

ε ` s : σ; θ&σ 6= nothing

ε ` given s : ({1 : θ}, {}γ1); θ

(Given#)

ε ` s : σ; θ&σ 6= nothing

ε ` given s#n : ({n : θ}γ1, {}γ2); θ

(Bound-To)

ε ` s : σ; θ&σ 6= nothing

ε ` s bound to id : ({}γ1, {id : θ}γ2); θ

(Sum)

ε ` y : (τ, β); σ; θ1, θ2, θ3&integer 6= nothing;
unify σ{1 : θ1, 2 : θ2} 6= nothing; θ3 ≤ d(θ1 | θ2)e

ε ` sum y : (τ, β); θ3

(Tuple)

ε ` yi : (τi, βi); σi;unify τi{}γ1 6= nothing;unify βi{}γ2 6= nothing

ε ` (y1, · · · , yn) : ({}γ1, {}γ2); concat Γ1 · · ·Γn;Γi = σi or Γi = {1 : σi}

128

References

1. A. Bondorf and J. Palsberg. Compiling actions by partial evaluation. In Proceedings
of Conference on Functional Programming Languages and Computer Architecture
(FCPA ’93), Copenhagen, DK, 1993.

2. D.F. Brown. Sort Inference in Action Semantics. PhD thesis, Department of
Computer Science, University of Glasgow, 1996.

3. D.F. Brown, H. Moura, and D.A. Watt. Actress: an action semantics directed
compiler generator. In Proceedings of the Workshop on Compiler Construction,
Paderborn, Germany, 1992.

4. K.G. Doh and D.A. Schmidt. Action semantics-directed prototyping. Computer
Languages, Vol.19, No. 4:213–233, 1993.

5. S. Even and D.A. Schmidt. Type inference for action semantics. In ESOP ’90, 3rd
European Symposium on Programming, volume 432 of Lecture Notes in Computer
Science, pages 118–133, Berlin, Germany, 1990. Springer-Verlag.

6. K.D. Lee. Action Semantics-based Compiler Generation (forthcoming). PhD thesis,
Department of Computer Science, University of Iowa, 1999.

7. P.D. Mosses. Action Semantics: Cambridge Tracts in Theoretical Computer Science
26. Cambridge University Press, 1992.

8. P. Ørbæk. Oasis: An optimizing action-based compiler generator. In Proceedings of
the International Conference on Compiler Construction, Volume 786, Edinburgh,
Scotland, 1994. LNCS.

9. P. Ørbæk. Trust and Dependence Analysis. PhD thesis, University of Aarhus,
Denmark, 1997.

10. J. Palsberg. A provably correct compiler generator. In Proceedings of the 4th
European Symposium on Programming (ESOP92). LNCS, 1992.

11. K. Slonneger and B.L. Kurtz. Formal Syntax and Semantics of Programming
Languages. Adisson Wesley Publishing Company, Inc., New York, NY, 1995.

12. D. Watt. Programming Language Syntax and Semantics. Prentice-Hall, Inc., En-
glewoods Cliffs, New Jersey 07632, 1991.

129

130

A Modular SOS for Action Notation

(Extended Abstract)

Peter D. Mosses1 ,2

1 BRICS and Department of Computer Science,
University of Aarhus, Denmark

2 Visiting SRI International and Stanford University, USA

Abstract. Modularity is an important pragmatic aspect of semantic
descriptions: good modularity is needed to allow the reuse of existing de-
scriptions when extending or changing the described language. In deno-
tational semantics, the issue of modularity has received much attention,
and appropriate abstractions have been introduced, so that definitions of
semantic functions may be independent of the details of how computa-
tions are modelled. In structural operational semantics (SOS), however,
this issue has largely been neglected, and SOS descriptions of program-
ming languages typically exhibit rather poor modularity; the original
SOS given for Action Notation (the notation for the semantic entities
used in action semantics) suffered from the same problem.
This extended abstract recalls a recent proposal, called MSOS, for ob-
taining a high degree of modularity in SOS, and introduces the MSOS
description of Action Notation (which is provided only in the full paper).
Due to its modularity, the MSOS description pin-points some complica-
tions in the design of Action Notation, and should facilitate the design
of an improved version of the notation. It also provides a major example
of the applicability of the MSOS framework.
The reader is assumed to be familiar with conventional SOS and with
the basic concepts and constructs of Action Notation. The description of
Action Notation is formulated entirely in Casl, the common algebraic
specification language.

1 Background

This section recalls the main features of MSOS [9], Casl [3], and Action Notation
[6]. Subsequent sections introduce and discuss the MSOS of Action Notation,
which is provided in the full paper [10].

1.1 Modular SOS

Conventional SOS [1, 12] involves abstract syntax, computed values, configura-
tions (some of which may be distinguished as terminal), and inference rules for
(labelled) transitions. An SOS specifies a labelled transition system (Γ ,T ,A,→),
where Γ is the set of configurations, T ⊆ Γ is the set of terminal configurations,

A is the set of labels, and → ⊆ Γ × A × Γ is the transition relation. For con-
figurations γ, γ′ ∈ Γ and labels α ∈ A, the assertion that (γ, α, γ′) is in the

transition relation is written γ
α−→ γ′.

Modular SOS, abbreviated MSOS [9], is a particularly simple and uniform
discipline of SOS with the following features:

– Configurations γ ∈ Γ are restricted to abstract syntax trees (where nodes
may be replaced by the values that they have computed, as in conventional
SOS).

– Initial configurations are pure syntax, and terminal configurations are simply
computed values.

– All the usual semantic components of configurations (such as environments
and stores) are incorporated in the labels α ∈ A on transitions.

– The labels on transitions are equipped with a partial composition operation,
written α ; α′ (associative whenever the composition is defined), and each
label can always be composed on the left and right with identity labels
ι ∈ I[A]. The labels α ∈ A are considered to be the arrows of a category,
also written A. The objects o ∈ O[A] of the category correspond to the
usual semantic components of configurations; let us refer to them as states.

– Transitions γ1
α1−→ γ′1 and γ2

α2−→ γ′2 may be adjacent in a computation
only when γ′1 = γ2 and moreover the composition α1 ;α2 of their labels is
defined.

– The actual representation of the labels α is abstracted from the rules that
define the transition relations, allowing the former to be changed without
invalidating the latter.

1.2 Label Categories

Label categories are defined succinctly using three standard label transformers,
which correspond to some simple monad transformers. The following three la-
bel transformers, enriching label categories with further labels and states, are
fundamental:

– Context Info adds an extra component of a particular sort both to labels
and to states, and its value is preserved by the pre and post operations.
The composition α;α′ is defined only when the new component has the
same value in both α and α′, and the composition preserves that value. This
transformer is typically used for dealing with environments.

– Mutable Info adds an extra component to states, and a pair of extra
components (of the same sort) to labels, corresponding to the components
of their pre and post states. The composition α;α′ is defined only when this
component has the same value in both post(α) and pre(α′). This transformer
is typically used for dealing with stores.

– Emitted Info adds an extra component only to labels. The composition
α;α′ combines the values of this component in α and α′ using the operations
of a given monoid. This transformer is typically used for dealing with output,
the given monoid then being sequences with their concatenation.

132

The notation associated with the above label transformers is specified generically
in Casl in [10]. It includes the operations set , for initializing or overwriting a
particular component of a label or state, and get , for returning the value of a par-
ticular component (or a default value, if that component has not been set). Also
the operations get pre and set post are provided in the case of Mutable Info,
to avoid having to deal with pairs explicitly.

1.3 Casl Specifications

For defining abstract syntax, values, configurations, the notation used for labels,
and transition relations, it is convenient to use Casl, the Common Algebraic
Specification Language [3, 8]. Casl is quite expressive, providing direct sup-
port for specifying sort inclusions, partial operations, predicates, definedness
assertions, and first-order axioms. Casl also provides datatype declarations (re-
sembling grammars in BNF) that allow sorts equipped with constructors and
selectors to be specified concisely. For structuring specifications, Casl provides
union, extension, free extension (with initiality as a special case) and generic
specifications. Casl does not allow the specification of inference rules for transi-
tions, but we may write SOS transition rules as implications in Casl; the least
relation satisfying the implications is obtained by letting the specification of
transitions be a free extension.

Action Notation incorporates Data Notation [6, App. E], which provides var-
ious familiar datatypes: truth-values, numbers, characters, strings, lists, trees,
sets, and finite maps, as well as some that are more closely connected with ac-
tions: data tuples, bindings, tokens, stores, cells, and agents. Data Notation is
specified algebraically in the framework of Unified Algebras [4, 5]. Action No-
tation does not depend on the way that data is specified, except that a few
primitive actions and yielders do require sorts of data as arguments (e.g., the
action written ‘choose natural’ gives an arbitrary element of the sort natural),
which is not allowed by Casl . To specify Data Notation in Casl, sorts that
are to be used as arguments have to be represented by ordinary constants (or
terms).

In fact the unified algebra treatment of sorts as values in a universe Univ
can easily be simulated in Casl by distinguishing a subsort of ‘individual’ val-
ues Indiv < Univ , and declaring suitable operations and relations on Univ . The
constant nothing : Univ corresponds to an empty subsort of Univ . The unified
algebra operations of sort union | and intersection & are provided as ordi-
nary operations on Univ , whereas the unified algebra subsort inclusion =<
and individual inclusion :< 1 are simply binary predicates in Casl. The
predicate u :< s holds iff the value u is both in Indiv and in the subsort repre-
sented by the value s . For instance, the unified algebra sort data is represented
in Casl by declaring the subsorts Data < Indiv and DataSort < Univ , and the
constant data : DataSort , with d : Data ⇐⇒ d :< data. The full properties of
the general unified algebra notation are specified in Casl in [10].

1 The unified algebra notation ‘ : ’ cannot be declared as a symbol in Casl.

133

Furthermore, Casl specifications of various basic abstract datatypes have
recently been proposed [13], subsuming much of the standard Data Notation.

Therefore we may employ Casl for specifying both Action Notation (op-
erationally, in the MSOS style) and Data Notation (algebraically), and avoid
any involvement of the Unified Algebras framework in the foundations of Action
Semantics.

1.4 Action Notation

Action Notation is a rich algebraic notation for expressing actions, which are
used (along with data, and ‘yielders’ of data) to represent the semantics of
constructs of conventional programming languages. Actions are essentially dy-
namic, computational entities. The performance of an action directly represents
information processing behaviour and reflects the gradual, step-wise nature of
computation: each step of an action performance may access and/or change the
current information. Yielders occurring in actions may access, but not change,
the current information. The evaluation of a yielder always results in a data en-
tity (including a special entity used to represent undefinedness). For example, a
yielder might always evaluate to the datum currently stored in a particular cell,
which could change during the performance of an action, and become undefined
when the cell is freed.

A performance of an action either: completes , corresponding to normal ter-
mination; or escapes , corresponding to exceptional termination; or fails , corre-
sponding to abandoning an alternative; or diverges.

Action notation consists of several rather independent parts, corresponding
to the following so-called ‘facets’ of information processing:

Basic: for specifying the flow of control in actions;
Functional: for specifying the flow of the data that are given to and by actions;
Declarative: for specifying the scopes of the bindings that are received and

produced by actions;
Reflective: for specifying procedural abstraction and application;
Imperative: for specifying the allocation of storage for the values of variables;

and
Communicative: for specifying (asynchronous) message passing.

Compound actions are formed from primitive actions and action combina-
tors . Each primitive action is single-faceted, affecting information in only one
facet—although any yielders that it contains may refer to all kinds of informa-
tion. An action combinator determines control and information flow for each
facet of the combined actions, allowing the expression of multi-faceted actions,
such as an action that both (imperatively) reserves a cell of storage and then
(functionally) gives the identity of the reserved cell. For instance, one combina-
tor determines left-to-right sequencing together with left-to-right transient data
flow, but letting the received bindings flow to its sub-actions; another combina-
tor differs from that only regarding data flow: it concatenates any transients that

134

the sub-actions give when completing, not passing transients between the actions
at all. Some selections of control and information flow are disallowed, e.g., inter-
leaving together with transient data flow between the interleaved sub-actions. In
particular, imperative and communicative information processing always follows
the flow of control.

Further informal explanation of the design of Action Notation may be found
in the main sources for action semantics [6, 7, 14].

2 Introduction to the MSOS of Action Notation

The intended interpretation of Action Notation was originally defined [6, App. C]
using a rather unorthodox style of SOS, exploiting the novel algebraic specifica-
tion framework of Unified Algebras [4, 5]. The main features of unified algebras
are that operations can be applied to, and return, entire sorts, and that indi-
vidual values are regarded as singleton sorts. Transition relations can thus be
represented as functions that map individual configurations to entire sorts of
configurations (representing the sets of alternative transitions).

Unfortunately, the unorthodox style of the original SOS of Action Nota-
tion, combined with the unfamiliarity of Unified Algebras, made the specifica-
tion somewhat inaccessible. Its lack of modularity also meant that even minor
changes to Action Notation (or extensions of it, such as the proposal to allow
agents to share storage [11]) might require a major reformulation of the given
SOS. Moreover, to decrease the size of the description, the full Action Notation
was reduced to a substantially-smaller kernel notation (by means of algebraic
equations), and only the latter was given a direct operational semantics.

The full version of this paper gives an MSOS for all of Action Notation. It is
structured in much the same way as [6, Apps. B and D], describing the various
facets of Action Notation in turn; however, the semantics of each construct is
here specified directly, without resort to an intermediate kernel notation.

Each section of the MSOS specifies the data notation, abstract syntax, com-
puted values, configurations, label notation, and transition rules for the action
notation in the facet concerned. The following explanatory comments apply to
all the sections.

2.1 Data

Data notation is specified by reusing abstract datatypes that are already avail-
able, perhaps with renaming or instantiation of generic specifications and adding
declarations and axioms for new notation. For instance:

spec Basic Data =
Truth Values

with Truth Value, true value, false value, either
and

sorts Data < Indiv ; DataSort < Univ

135

The symbols listed above after ‘with’ are assumed to be declared by the Casl

specification of Truth Values (which uses slightly different identifiers than
those in [6, App. E], to avoid confusion with the reserved Casl predicate symbols
true and false). Many of the symbols of Data Notation are not valid Casl

symbols, but generally become so once internal spaces and hyphens have been
replaced by underscores.

As mentioned earlier, it is envisaged that the standard Data Notation used in
Action Semantics may be replaced by a library of Casl specifications, perhaps
incorporating the basic Casl datatype specifications that have recently been
proposed [13].

By the way, only the data notation actually needed for the MSOS of Action
Notation is specified in [10]. In particular, the declarations of constants such as
data : DataSort , representing proper sorts in unified algebras, are omitted, since
assertions such as d :< data can be expressed equivalently as d ∈ Data, and
ds =< data as ds ∈ DataSort .

2.2 Syntax

Abstract syntax is specified in Casl using a datatype declaration, which resem-
bles a BNF-like grammar. Mixfix notation is allowed—for instance, the following
fragment specifies and as an infix operation:

spec Basic Syntax =
Basic Data then

types Action ::= . . . | and (Action; Action) | . . . ;
Yielder ::= . . . | sort DataSort | . . .

The abstract syntax for actions and yielders extends the associated data nota-
tion, and data components are regarded as already evaluated.

It is possible to specify a syntactic congruence by adding axioms to the given
datatype declarations, for instance asserting that A1 and A2 = A2 and A1 ,
thereby reducing the need for various symmetric pairs of inference rules when
specifying the transition relation.

By the way, several of the words used in Action Notation, such as ‘and ’,
are reserved keywords in Casl, and cannot be complete tokens in Casl input
symbols. So-called display annotations (not shown here) allow them to be pro-
duced in the formatted specification (using a distinct font, as in ‘and ’, to avoid
confusion between symbols and keywords).

One might expect the types for the abstract syntax of actions and yielders for
each facet of Action Notation to be specified as ‘free’, to ensure that there can
be no syntactic ‘junk’ (i.e., all syntactic values can be expressed by the declared
constructors) nor ‘confusion’ (i.e., different terms denote different syntactic val-
ues, up to syntactic congruence) in models of the specification. However, that
would prevent the subsequent combination of facets (as well as the extension of
abstract syntax to configurations, see below). Instead, a free extension is speci-
fied after the facets have been combined.

136

2.3 Outcomes

The values that may be computed by action performance (and yielder evaluation)
are specified algebraically in Casl, by declaring sorts, operations, and predicates,
and asserting their essential properties. The specifications often use datatype
declarations for conciseness. For instance:

spec Functional Outcomes =
Basic Outcomes and
Functional Data

then
types Terminated ::= sort Completed | . . . ;

Completed ::= completed | gave(Data)
axioms
%[1] gave(none) = completed ;
. . .

2.4 Configurations

The ‘value-added’ syntax used for configurations is specified simply by adding
further alternatives for the datatype declarations which specified abstract syntax:
for each sort of the abstract syntax, the sort of value computed by elements
of that sort is included as a subsort. Auxiliary syntactic constructs for use in
configurations may be added here too.

In fact the configurations for non-distributed action performance are always
the same, as specified by:

spec Basic Configurations =
Basic Syntax and
Basic Outcomes

then
type Action ::= sort Terminated | @ (Action; Action)

The sort Terminated (of values computed by actions) depends on the facet. (The
auxiliary construct A1 @ A2 is used only in the basic facet, in connection with
unfolding.)

The distributed performance of communicative actions by separate agents is
described by embedding Action in an auxiliary sort of configurations, Processing,
which allows collections of agents (with their actions), pending messages, and
contracts all to be composed in parallel.

The datatype declaration for Action above augments the constructors for
this sort, which is left loosely specified in Basic Syntax.

2.5 Labels

Each facet of Action Notation generally requires the transformation of the cat-
egory of labels A to include one or more further components. This is specified

137

concisely in Casl by instantiating one of the generic specifications correspond-
ing to the three fundamental kinds of enrichment described in Section 1.2. For
example, the functional facet specifies:

spec Functional Labels =
Basic Labels and
Functional Data

then
Context Info

[sort A] [op data : Index]
[sort Data < ContextInfo op none : Data]

which defines the operation set(α, data, d) to return a label α′ with data com-
ponent d , and the operation get(α, data) to return the data component of d ,
if defined (otherwise none).2 The values of sort Index (such as data) may be
thought of as selection indices; their only property is that different constants
denote distinct values.

The fitting morphisms from the parameter specifications of Context Info

to the argument specifications above are uniquely determined, and may therefore
be left implicit.

2.6 Transitions

Transition rules are of three main kinds:

– Rules that allow performance of a compound construct to start (or continue)
with a particular sub-construct: a transition for the sub-construct gives rise
to a transition for the enclosing construct, often with the same unrestricted
label α. For instance, the following rules allow interleaved performance of
A1 and A2 :

A1
α−→ A′1

%% %% ⇒
A1 and A2

α−→ A′1 and A2 ;

A2
α−→ A′2

%% %% ⇒
A1 and A2

α−→ A1 and A′2

(The line between the conditions and the conclusion is not part of Casl

notation, and has to be enclosed in comment signs ‘%%’.) Rules that specify
the computation of a value by an atomic construct: the label on the transition
is generally well-determined by the current state. For instance, the following
rule lets the value computed by regive depend on the current state, which
is not changed by the identity ι:

d = get(ι, data)
%% %% ⇒

regive
ι−→ gave(d)

2 set(α, data, d) might be written even more suggestively as α[data := d], and
get(α, data) as α.data.

138

– Rules that reduce a compound configuration: once one or more compo-
nents of a compound construct have computed values, the construct may
be ‘silently’ reduced to a single computed value or syntactic component, the
label on the transition being an identity ι. For instance, the following rule
combines the values computed by performing the sub-actions of A1 and A2 :

gave(d1) and gave(d2)
ι−→ gave(concatentation(d1 , d2))

An action is regarded as ‘incorrect’ when its performance can get stuck, i.e., lead
to a configuration (other than a computed value) from which there is no further
transition. For example, the action ‘check abstraction of A’ is incorrect, since
transitions are possible for ‘check tv ’ only when tv ∈ Truth Value. The question
of whether or not an arbitrary action is ‘correct’ is undecidable; a static semantics
using type inference for action notation could however provide a useful decidable
safe approximation to this notion.

The mathematical nature of the evaluation of yielders to data (sorts or indi-
viduals) is reflected by the labels on the transitions always being identities ι:

Y
ι−→ ds.

In general, the evaluation of yielders in a primitive action may be done in any
order, and the result is independent of the chosen order. (Primitive actions are
supposed to be indivisible, so a small-step gradual evaluation of yielder argu-
ments would be incorrect.)

The ordinary transitive closure
α−→+ of

α−→ is used in the rule for indivisible
actions; its inductive definition is standard:

A
α−→ A′

%% %% ⇒
A

α−→+ A′

A
α′−→ A′ ∧ A′

α′′−→+ A′′ ∧ α = α′;α′′
%% %% ⇒

A
α−→+ A′′

It is occasionally convenient to abbreviate two rules with the same conclusion
by use of a single rule that has a disjunction of conditions. (Casl requires the
intended grouping of a mixture of conjunctions and disjunctions to be made
explicit, so there can be no doubt about the expansion of such an abbreviated
rule.)

3 Discussion

The full MSOS of Action Notation is about 25 pages long, which is roughly twice
as long as the original SOS for the kernel of Action Notation. The main reason
for this expansion is not so much the difference in size between the kernel and
full Action Notation, but more that the author went to great pains to achieve
brevity in the original SOS. For instance, various subsorts that corresponded to

139

restrictions of the original grammar were used—such subsorts are easy to express
with the sort union operation of unified algebras. Auxiliary operations, effecting
internal simplifications of the configuration, were introduced. Each combinator
was classified into subsorts, e.g., according to whether it was sequential or inter-
leaving; this allowed transitions to be specified for many combinators at once,
rather concisely. Although such techniques might also be applicable in the MSOS
of Action Notation, they would tend to undermine its modularity, and make it
more difficult to cut down the description when removing entire facets.

The main hope for reducing the size of the MSOS of Action Notation is by
means of a substantial simplification of Action Notation during the current re-
consideration of its design. For instance, it appears that there is not much use
for actions that simultaneously give some transient data and produce some bind-
ings; eliminating them would allow all the hybrid combinators to be removed,
and reduce the size of the MSOS of Action Notation by about 10%. The high de-
gree of modularity of MSOS facilitates pin-pointing just which Action Notation
constructs are excessively complicated.

It is hoped that the MSOS of Action Notation is much easier to follow than
the original SOS—once one has grasped how dependencies between labels deter-
mine the flow of processed information, that is. (Readers who have difficulty with
this aspect of MSOS might like to contemplate the reduction of MSOS to SOS
[9] by moving the pre and post components of the labels to the configurations.)

Given the good modularity properties of MSOS, one might ask which is
better: to describe the operational semantics of a programming language directly,
using MSOS, or indirectly, using Action Semantics? In the author’s opinion, it
is generally better to use Action Semantics, for the following reasons.

The main advantage of the Action Semantics approach over MSOS is that
the combinators of Action Notation provide concise abbreviations for particu-
lar patterns of MSOS (or SOS) transition rules. For instance, the combinator
for sequential action performance without data-flow (written A1 and then A2)
abbreviates the pattern of transitions that occurs in many (M)SOS rules for
left-to-right evaluation. A further advantage would show up in connection with
the description of ML-style exceptions: Action Notation provides the escape
primitive for escaping from normal action performance (with a value), and the
combinator A1 trap A2 for trapping such escapes; in (M)SOS, the propaga-
tion of the exception value through all the syntactic constructs—apart from the
exception handler—has to be specified explicitly.

However, MSOS also has some advantages over Action Semantics. Perhaps
the main one is that the only unfamiliar notation provided by MSOS is that
for the label transformers, whereas the full standard Action Notation is quite
rich, and becoming familiar with it requires a significant initial investment of
effort. Another stems from the very generality of the full Action Notation: its
equational theory is too weak to be of much practical use. With MSOS, one may
be able to prove stronger properties, exploiting awareness of the exact patterns
of transitions and configurations that can arise.

140

Finally, for practical large-scale use of semantic descriptions, tool support is
just as crucial as good modularity. Various tools have already been developed
for Action Semantics (see other papers in this volume), whereas implementation
of tools for MSOS is only just starting.

Those who have grown attached to the expressiveness provided by the frame-
work of Unified Algebras may regret the switch to the more orthodox algebraic
specification language Casl; indeed, the author himself has somewhat mixed
feelings about abandoning this major application of the Unified Algebras frame-
work, despite the ease with which it can be simulated in Casl . However, the
adoption of Casl should not only increase the accessibility of Action Nota-
tion (by removing the need to learn first about Unified Algebras), but also it
should pave the way for future exploitation of Casl libraries of standard ab-
stract datatypes, and of Casl-based interfaces to existing tools (such as theorem-
provers), in connection with action-semantic descriptions. The author was in any
case happy to discover that Casl, itself originally designed for algebraic speci-
fication and development of software, appears to be quite well-suited also as a
meta-notation for MSOS.

Acknowledgements The author is supported by BRICS (Centre for Basic Re-
search in Computer Science), established by the Danish National Research Foun-
dation in collaboration with the Universities of Aarhus and Aalborg, Denmark;
by an International Fellowship from SRI International; and by DARPA-ITO
through NASA-Ames contract NAS2-98073.

References

1. E. Astesiano. Inductive and operational semantics. In E. J. Neuhold and M. Paul,
editors, Formal Description of Programming Concepts, IFIP State-of-the-Art Re-
port, pages 51–136. Springer-Verlag, 1991.

2. CoFI. The Common Framework Initiative for algebraic specification and develop-
ment, electronic archives. Notes and Documents accessible by WWW3 and FTP4.

3. CoFI Language Design Task Group. Casl – The CoFI Algebraic Specification
Language – Summary. Documents/CASL/Summary, in [2], Oct. 1998.

4. P. D. Mosses. Unified algebras and institutions. In LICS’89, Proc. 4th Ann. Symp.
on Logic in Computer Science, pages 304–312. IEEE, 1989.

5. P. D. Mosses. Unified algebras and modules. In POPL’89, Proc. 16th Ann. ACM
Symp. on Principles of Programming Languages, pages 329–343. ACM, 1989.

6. P. D. Mosses. Action Semantics. Number 26 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1992.

7. P. D. Mosses. Theory and practice of action semantics. In MFCS ’96, Proc. 21st
Int. Symp. on Mathematical Foundations of Computer Science (Cracow, Poland,
Sept. 1996), volume 1113 of LNCS, pages 37–61. Springer-Verlag, 1996.

8. P. D. Mosses. Casl: A guided tour of its design. In J. L. Fiadeiro, editor, Recent
Trends in Algebraic Development Techniques, Proceedings, volume 1589 of LNCS.
Springer-Verlag, 1999.

3 http://www.brics.dk/Projects/CoFI
4 ftp://ftp.brics.dk/Projects/CoFI

141

9. P. D. Mosses. Foundations of Modular SOS (extended abstract). In MFCS’99,
Proc. 24th Intl. Symp. on Mathematical Foundations of Computer Science, Szk-
larska Poreba, Poland, to appear in LNCS. Springer-Verlag, 1999. The full version
is to appear in the BRICS Report Series.

10. P. D. Mosses. A modular SOS for Action Notation. To appear in BRICS Report
Series, BRICS, Dept. of Computer Science, Univ. of Aarhus, 1999.

11. P. D. Mosses and M. A. Musicante. An action semantics for ML concurrency primi-
tives. In FME’94, Proc. Formal Methods Europe: Symposium on Industrial Benefit
of Formal Methods, Barcelona, volume 873 of LNCS, pages 461–479. Springer-
Verlag, 1994.

12. G. D. Plotkin. A structural approach to operational semantics. Lecture Notes
DAIMI FN–19, Dept. of Computer Science, Univ. of Aarhus, 1981.

13. M. Roggenbach and T. Mossakowski. Basic datatypes in Casl. Note M-6, in [2],
Mar. 1999.

14. D. A. Watt. Programming Language Syntax and Semantics. Prentice-Hall, 1991.

142

The Abaco System
An Algebraic Based Action Compiler

Luis Carlos de Sousa Menezes ?

Hermano Perrelli de Moura ??

Federal University of Pernambuco - Department of Informatics
Caixa Postal 7851 - CEP 50732-970

Recife, Brazil

Abstract. In this article we propose an architecture for a new semantic
directed compiler generator system named Abaco (Algebraic Based Ac-
tion COmpiler). This system is based on a unified algebras compiler that
produces C++ code from source specifications using an object oriented
approach. The main advantage of this system is the ability of being eas-
ily extended with descriptions of new semantic entities defined as unified
algebras specifications.

1 Introduction

In order to use action semantics descriptions for automatic compiler construc-
tion, many semantics directed compiler generation systems were proposed. Some
examples of these systems are Actress [Mou93, Bro97], Oasis [Ørb93] and Cantor
[Pal92]. These systems are limited in the sense that they use a fixed subset of
action notation. This restriction difficultes the definition of new semantic enti-
ties, which could be useful to describe some particularity of the programming
language.

In order to solve that limitation, we present the architecture of a new action
semantic based compiler generation system named Abaco (Algebraic Based
Action COmpiler) [dSM98]. The most important characteristic of this system
is to produce dynamic implementations for action semantics by processing the
meta-notation used to describe the semantics entities of action notation. This
property enables the system to be easily extended with the description of new
semantic entities using the meta-notation.

The Abaco system is formed by the following tools: a parser generator; an
unified algebras compiler; and an action compiler. The next sections will describe
in more detail each one of these tools and the process of building a compiler from
an action semantics description of a programming language.

? E-mail: lcsm@di.ufpe.br
?? E-mail: hermano@di.ufpe.br

2 Parser Generator

The parser generator is the simplest system’s tool. It just extracts the syntax
definition and the lexical symbols from the language’s abstract syntax and pro-
duces a lexical and syntactical descriptions that are compiled by tools like Lex

[LS79] and Yacc [Joh79]. The resulting program is able to recognize source
programs and call the functions produced by the system’s tools to generate
the action-program and the equivalent C++ program. An example of using the
parser generator is showed in Figure 1.

Abstract Syntax

Command =
... [[“while” Exp “do” Command “end”]] ...

⇓
Parser Generator

⇓
Lex File Yacc File

‘‘while’’ return token1; Command :

‘‘do’’ return token2; ... token1 Exp token2 Command token3

‘‘end’’ return token3; { $$ = [[$1 $2 $3 $4 $5]] } ...

Fig. 1. Example of parser generation

3 Unified Algebras Compiler

The unified algebras compiler produces object oriented libraries from unified alge-
braic specifications [Mos88], meta-notation used by action semantics to describe
its notation. These libraries have the following features:

– represent the terms of the specification as object-oriented expressions. For ex-
ample, the term of the natural numbers specification (Figure 2): sum 0 0, will
be expressed like the C++ object-oriented expression: zero->sum(zero);

– when these expressions are executed, the returning object will correspond to
the most simple equivalent term according the rewriting equations existing in
the source specification. For example, when the expression: zero->sum(zero),
is executed the result value will be the object zero.

The process of building this library is based on the following similarities existing
between the concepts of unified algebras and object-oriented paradigm:

– due the ambiguous nature of the unified algebras’ sorts, they are equivalent
to objects and classes of the object oriented paradigm. Classes implement
sorts’ properties like sort inclusion, operators, etc; and objects are used to
represent them in object-oriented expressions;

144

– the sort inclusion relationship has similar properties of the class inheritance;
and

– sorts’ operators are represented by “operator” classes that represent the
terms produced by the operator’s application. Objects of these classes are
produced by “operator” methods that implement the process of building a
term using these operator. These operator’s methods can:

• return the result of another operator method’s call, if there is a rewriting
rule that matches with the represented term.

• return a new instance of the equivalent operator class, otherwise.

Using these similarities we define a compilation process of unified algebras
formed by the following steps: (1) simplification of the source specification, (2)
source specification’s analysis, (3) construction of the class structure and (4)
definition of the generated methods. These steps will be defined in the next
sections. To exemplify the process of unified algebras compilation we will use a
natural numbers specification, showed in Figure 2.

introduces: natural, 0, successor , sum , fib .
• 0 : natural.
• successor :: natural → natural.
• sum :: natural, natural → natural.

(1) sum 0 x = x .
(2) sum successor x y = successor sum x y .
• fib :: natural → natural.

(3) fib 0 = successor 0.
(4) fib successor 0 = successor 0.
(5) fib successor successor x = sum (fib successor x) (fib x).

Fig. 2. Natural numbers specification

3.1 Simplification of the Source Specification

The first step of the compilation is intended to remove some “syntactic sugar”
existing in the model by replacing them to equivalent’s forms. The main ad-
vantage of this simplification is to reduce the number of kinds of sentences to
be handled in the next steps. Some examples of rules used to simplify unified
algebras specifications are:

1. Functionality declarations:

o :: x(a1, ...an), p2,... → pm.

145

which declares that the operator o receives arguments formed by the applica-
tion of another operator x can be simplified by declaring a new sort s equal
to the term x(a1, ...an) and replacing it by s in the functionality declaration,
resulting in these declarations:

o :: s, p2,... → pm.
s = x(a1, ...an).

2. Supersorts declarations like:
x ≥ y.

can be expressed using equality and the join operation resulting in the fol-
lowing declaration:

x = x y.

3.2 Source Specification’s Analysis

This step is intended to identify:

– Equality, individual and inclusion relationship of sorts defined by the source
specification.

– The sorts produced by the operator’s application.

These information can be found using rules obtained from the semantic of unified
algebras. Some examples of these rules are:

1. Sentences like:
s1 = ... s2 ...

defines that the sort s2 is a subsort of the sort s1.
2. Sentences like:

s1 = ... o(a1,a2...) ...
defines that the operator o when applied with arguments of sorts a1, a2, etc;
produces a subsort of the sort s1.

In the example showed in Figure 2 the following information is obtained:

– 0 is an individual of sort natural
– the operators successor , sum and fib , produces subsorts of natural when

applied to natural arguments.

3.3 Construction of the Class Structure

This step defines the classes and objects that will be produced by the process of
unified algebras compilation. The definition of these elements uses the following
rules, obtained from the similarities described before:

– The non-individual sorts will define classes that implement their properties.
– Each sort will have an object which represent it in the object-oriented world.
– If a sort r is subsort of another sort s then the class that implements the

sort r is a subclass of the class that implements the sort s.

146

– If some operator o applied to arguments a1, a2,etc; produces individuals of
sort s, then there will be defined an operator class to represent the appli-
cation of o to subsorts of a1, a2,etc. This class will be subclass of the class
generated by the sort s.

In the example of the natural numbers, we define the class structure showed
(using a C++ like notation) in Figure 3. In this figure the name Fib[natural]

represents the class designed to model the objects produced by the application
of operator fib to subsorts of natural as arguments.

class Natural {}

Natural *natural = new Natural;

Natural *zero = new Natural;

class Successor[natural] : public Natural

{

Natural *a1;

};

class Sum[natural,natural] : public Natural

{

Natural *a1,*a2;

};

class Fib[natural] : public Natural

{

Natural *a1;

};

Fig. 3. Generated class structure for natural numbers

3.4 Definition of the Generated Methods

The last step of the compilation process will decorate the class structure defined
in the last step with instance methods that will implement the source specifica-
tion’s operators. The process defines two kinds of methods: default methods and
operator methods.

Default methods enables the generated objects to answer general questions
about the represented term (inclusion relationship, operator matching, etc). Fig-
ure 4 shows default methods generated by the operator sum . The method

147

Match sum checks if the term modeled by the current object is formed by appli-
cation of the operator sum and updates the method’s parameters with the
arguments values.

int Natural::

Match_sum(Natural *p1, Natural *p2)

{

return 0;

}

int Sum[natural,natural]::

Match_sum(Natural **p1, Natural **p2)

{

*p1 = a1;

*p2 = a2;

return 1;

}

Fig. 4. Default methods for operator sum

Operator methods implement the application of the operators. The current
object and the arguments received by the method represent the term’s arguments
and the method’s returning object represents the resulting term in its most
reduced form. An operator o of functionality:

o :: s1, s2, ... → sn

will produce the following operator method skeleton:

C sn C s1::o(C s2, ..., C sn−1)

{
Check Equations
Create Objects

}

where:

– C x is the class that implements the sort x.
– Check Equations is the code segment that checks if the current building term

matches with rewriting equations in the form:
o(a1,...,an−1) = t

– create objects is the code segment responsible to create a new object of the
correct operator class if no rewriting equation could be applied.

148

Figure 5 shows an operator method generated to implement the operator sum
. The first conditional command (lines 5-6) tests if the first argument (current

object this) is the object used to represent the sort 0 (object zero), returning
the value of the second argument if it is true. This segment implements the
rewriting equation:

sum 0 x = x .

The next command (lines 7-8) checks if the first argument is formed by the appli-
cation of the operator successor by calling the default method Match successor.
If the test succeeds the temporary variable t1 will be assigned with the ar-
gument of the successor term and the command will return the expression
(t1->sum(a2))->successor() that represents the right term of the following
rewriting equation (implemented by this code segment):

sum successor x y = successor sum x y.

Finally, the method produces, in lines (9-10), a new object of the Sum[natural,natural]
class if no rewriting rule could be applied. This class is designed to implement
terms produced by the application of operator sum to proper sorts of natural.

(1) Natural *Natural

(2) ::sum(Natural *a2)

(3) {

(4) Natural *t1;

(5) if (this==zero)

(6) return a2;

(7) if (this->Match_successor(&t1))

(8) return t1->sum(a2)->successor();

(9) return new Sum[natural,natural]

(10) (this,a2);

(11) }

Fig. 5. Operator method for operator sum

3.5 Performance Tests

In order to analyze the results of the unified algebras compiler, we have process
the natural numbers specification using a beta version of the unified algebras
compiler (UAC) and three others systems: OBJ3 [GKK+88], a‘ compiler for
OBJ [Ham95] and Maude [Mau]. These tests were made in a Sun SparcStation
running the Solaris operating system. The results of these tests are showed in
Table 1.

149

UAC OBJ3 OBJ Compiler Maude

fib(13) 0.02 1.18 0.40 0.01

fib(14) 0.03 1.70 0.71 0.02

fib(20) 1.13 * 15.31 0.98

fib(23) 5.51 * * 4.91

Table 1. Test of performance (in seconds, * means stack overflow)

4 Action Compiler

The action compiler produces C++ compilable code from program actions. The
process of generating the C++ code is formed by the following steps:

1. The program action is converted into a more compact notation. This compact
notation uses a more expressive action combinator to reduce the number of
cases that the code generator should deal;

2. The action compiler produces a first version of the C++ compiled code from
the simplified action produced in the previous step using some rules like the
ones described in [Mou93]; and

3. The produced source code is optimized by reducing some existing redundan-
cies, producing the final C++ code.

Figure 6 shows an example of action compilation.

Source Action Simplified Action
|give 10 |give 10
then ⇒ functionally composed with
|bind “x” to the given data |bind “x” to the given data

⇓
Optimized Code Generated Code

b1 = bind(‘‘x’’,10); t0 = transients(10);

t1 = empty transients; ⇐ b1 = bind(‘‘x’’,t0->given());

t1 = empty transients;

Fig. 6. Example of action compilation

5 Building a Compiler Using the Abaco System

Building a compiler for a language L using the Abaco system requires the
following steps, showed graphically in Figure 7:

150

1. The definition of the abstract syntax of L is processed by the parser generator
which will generate a parser for L.

2. The programming language description for L is processed by the unified
algebras compiler that will produce a library, named dynamic library. The
dynamic library will contain:
– The abstract syntax tree of the L programs implemented as classes by

compilation of the L abstract syntax;
– Methods of the abstract syntax classes that will be able to give the

meaning of programs using the action notation. This functionality is
obtained by compiling the L semantic functions.

– A class library that implements the action notation produced by compi-
lation of the action notation description, imported by the programming
language description

3. Compiled programs produced by the generated compiler will need a library
which defines the data types used by the language to be correctly compiled.
This library, named static library, is obtained compiling the semantics enti-
ties of L with the unified algebras compiler.

4. The dynamic library is linked with the action compiler to produce the code
generator for the specified language. This program is able to produce C++
programs from AST produced by the parser generated in Step 1. The C++
programs generated by the code generator can be compiled using a generic
C++ compiler.

The generated compiler is formed by the parser, the code generator, the static
library and a generic C++ compiler (Figure 8).

Abstract Syntax

Semantic Functions

Semantic Entities

1

2

3

C++ Compiler 4

Parser Generator

Unified Algebras Compiler

Unified Algebras Compiler

Action Compiler

Dynamic Library

AS Description

Parser

Dynamic Library

Static Library

Code Generator

Fig. 7. Compiler generation using the Abaco System

6 Performance of the Abaco System

In order to test the system, an Abaco’s implementation was created (without the
described optimizations). This implementation was able to produce compilers for

151

Static Library

C++ CompilerCode GeneratorParser

Generated Compiler

Abstract Syntax Tree C++ Program

Compiled
ProgramProgram

Source

Fig. 8. Architecture of the generated compiler

small programming languages descriptions. We compared the execution of the
programs in a small imperative pascal-like language, showed in figures 9 and
10 compiled using an Abaco generated compiler and their equivalents in C++
language compiled using the GNU C++ compiler. The results of the tests are
showed in Table 2.

By analyzing the generated code we conclude that the Abaco system in-
troduced a new performance problem formed by the implementation of basic
types (numbers and truth-values) using classes, which introduced the overhead
of method calls in the program’s execution. This problem is not present in other
compiler generation systems because they implements these types directly as
primitive values. We are planing to work out a solution to implement these basic
types directly as values and use object orientation to implement only the more
complex ones.

program FIB =

let

fun fib n =

if (n==0 or n==1) then

return 1;

else

return fib(n-1) + fib(n-2)

end fun

in

write(fib(25))

end program

Fig. 9. Test program for the Abaco system (FIB program)

152

program WHILE =

let

var x;

var y

in

x := 10000;

y := 0;

while (x>0) do

y := y + x;

x := x - 1;

end while

write(y)

end program

Fig. 10. Test program for the Abaco system (WHILE program)

GNU C++ compiler Abaco compiler

FIB 0.015 4.510

WHILE 0.110 127.100

Table 2. Execution times (in seconds)

7 Conclusions and Future Works

By using the dynamic and static libraries to implement the semantic entities
found in semantic descriptions of the source language, the implementation of
action notation incorporates some language’s properties and contains new se-
mantic entities defined in the description. It makes the compilers produced by
the Abaco system more flexible than the compilers produced by others compiler
generator systems. The main drawback of using this system is the overhead of
building the action notation implementation when processing the source descrip-
tion. We are working in faster analysis algorithms to reduce this overhead.

Future works on the Abaco system includes:

– Reimplementation of the system in Java to produce more portable compilers.
– Description of the compiler generation process using a formal language and

verification of some properties like the formal soundness of the method. In
the present moment we have only an informal verification of the method’s
soundness.

– Adapting to the Abaco’s context several optimizations techniques proposed
in research papers about automatic compiler generation. Some examples of
these techniques can be found in [Mou93], [Bro97] and [Ørb93].

153

– Inclusion of some Abaco’s specific optimization techniques like the imple-
mentation of basic types (numbers and booleans) as privitive values.

More information about the Abaco system and its beta implementation can be
found in the RAT (Recife Action Tools) website [RAT].

References

[Bro97] Deryck F. Brown. Sort Inference in Action Semantics. PhD thesis, Depart-
ment of Computing Science, University of Glasgow, 1997.

[dSM98] Luis Carlos de Sousa Menezes. Uso de orientação a objetos na prototipação
de semântica de ações. Master’s thesis, Universidade Federal de Pernam-
buco, 1998.

[GKK+88] Joseph Goguen, Claude Kirchner, Hélèno Kirchner, Aristide Mégrelis, and
José Meseguer. An introduction to OBJ3. In Conference on Conditional
Term Rewriting, volume 308 of Lecture Notes in Computer Science, Springer
1988.

[Ham95] Lutz H. Hamel. Behavioural Verification and Implementation of an Op-
timising Compiler for OBJ3. PhD thesis, Oxford University Computing
Laboratory, 1995.

[Joh79] S. C. Johnson. Yacc - yet another compiler compiler. Technical report, Bell
Laboratories, 1979.

[LS79] M. Lesk and E. Schmidt. Lex - a lexical analyzer generator. Technical
report, Bell Laboratories, 1979.

[Mau] Web site of maude. http://maude.csl.sri.com/.
[Mos88] P. D. Mosses. Unified algebras and action semantics. Departamental Re-

port DAIMI PB–272, Aarhus University, Computer Science Department,
Denmark, December 1988.

[Mou93] H. Moura. Action Notation Transformations. PhD thesis, University of
Glasgow, Department of Computing Science, 1993.

[Ørb93] Peter Ørbæk. Analysis and optimization of actions. M.Sc. dissertation,
Depto. of Computer Science, Univ. of Aarhus, September 1993.

[Pal92] Jens Palsberg. An automatically generated and provably correct compiler
for a subset of Ada. In ICCL’92, Proc. Fourth IEEE Int. Conf. on Computer
Languages, Oakland, pages 117–126. IEEE, 1992.

[RAT] Web site of the RAT Project. http://www.di.ufpe.br/∼rat.

This article was processed using the LATEX macro package with LLNCS style

154

The Static and Dynamic Semantics of Standard

ML

David A Watt

Department of Computing Science, University of Glasgow,
Glasgow G12 8QQ, Scotland. daw@dcs.gla.ac.uk

Abstract. This paper presents an action-semantic specification of the
static and dynamic semantics of Standard ML. The specification is struc-
tured in the same way as the language itself, with separate modules for
the core language and the full language.
Several aspects of the specification are of special interest. The specifi-
cation of functors in the dynamic semantics turns out to be remarkably
straightforward and transparent. The specification of polymorphic type
inference in the static semantics uses sorts of types in a novel way, in
order to make the specification truly declarative (as opposed to an en-
coding of the unification algorithm).
I will demonstrate that the action-semantic specification is not only more
readable and more modular than the official natural-semantic specifica-
tion [2]; it is actually more formal.

1 Introduction

Action semantics (AS) [4, 8] was conceived by Peter Mosses to be, above all, a
practical formalism for specifying real programming languages. Until the 1990s,
however, practical experience was somewhat limited. To the best of my knowl-
edge, there was only one (nearly) complete AS specification of a real program-
ming language, namely that of Standard Pascal [6].

Pascal is, of course, a classical imperative language. It is equally important to
test the effectiveness of AS for specifying languages in other paradigms, including
functional and object-oriented languages. For this purpose I chose to specify
Standard ML (SML) and Modula-3.1

I had already written an AS specification of the dynamic semantics of ML
using a now-obsolete version of action notation [7]. However, that work addressed
only the ML bare language, which (as its name implies) is a small functional
language, much simpler than SML.

SML is certainly a major challenge to any semantic formalism. It is a type-safe
polymorphic functional programming language, with imperative features such
as reference, assignment, and exceptions. It has a module layer that supports
“structures” (simple modules), and “functors” (structures parameterised with

1 My choice of Modula-3 just preceded the explosion of interest in Java. I later aban-
doned the Modula-3 specification in favour of Java [1].

respect to other structures). Its static semantics is characterised by polymorphic
type inference.

The specific goals of this project were as follows:

1. To test the effectiveness of AS for specifying the dynamic semantics of SML.
2. To test the effectiveness of AS data notation for specifying the static seman-

tics of SML.
3. To compare the AS specification of SML with the official natural-semantic

(NS) specification of Milner et al. [2].

The rest of this paper is structured as follows. Section 2 is a brief overview
of the SML language, focussing on those features that proved most challenging
to specify. Section 3 is an overview of the AS specification, focussing on its mod-
ular structure. Section 4 presents selected extracts from the dynamic semantics
of ML’s core layer, and compares them with corresponding extracts from the
NS specification. Section 5 similarly presents, discusses, and compares the static
semantics of ML’s core layer. Section 6 presents and discusses the dynamic se-
mantics of ML’s module layer. Section 7 concludes.

2 The Standard ML Language

SML is stratified into two layers:

– The core layer is a conventional polymorphic functional language that pro-
cesses ordinary typed values. ML values include primitive values, tuples, con-
structions, references, arrays, recursively-structured values, functions, and
exceptions. All of these are first-class values.

– The module layer adds structures, signatures, and functors. A structure is
just an encapsulated group of component declarations. A signature defines
the types of a structure’s components but not their implementations.2 A
functor is a structure parameterised with respect to another structure. Since
the parametric structure is unknown, the functor declaration must state its
signature. (It may also, optionally, state the result structure’s signature.)

The stratification of SML is rigorous. Functions are parameterised with re-
spect to ordinary values only; functors are parameterised with respect to struc-
tures only. In other words, structures are not first-class.

In this paper, I use Core ML when referring to the language subset consisting
of the core layer alone; SML when referring to the full language consisting of
both the core layer and the module layer; and ML when neutrality is sufficient.

Fig. 1 illustrates some features of the core layer.
ML has numerous name spaces: value-variables, value-constructors, type-

variables, type-constructors, exception-constructors, etc. Of these, only type-
variables (’a, ’b, etc.) are syntactically distinct. In the example of Fig. 1(a),
pair is both a type-constructor and a value-constructor in the same scope. The

2 A signature can be viewed as the “type” of a structure.

156

syntactic context allows the compiler to distinguish: in the declaration of p, the
first occurrence of pair is a type-constructor, whereas the second occurrence of
pair is a value-constructor. However, the same identifier cannot be both a value-
variable and a value-constructor in the same scope. So a declaration of pair

as a value-variable denoting a function would hide its declaration as a value-
constructor in the example, since in the context of an application pair(...)

the compiler could not otherwise distinguish between the value-variable and the
value-constructor.

The syntax of an application is heavily overloaded in ML. It is used for both
constructions and function calls. Moreover, ML makes no semantic distinction
(and very little syntactic distinction) between operators and identifiers denoting
functions. Thus the expression “n + 1” simply abbreviates the function call “op
+(n, 1)”; and the expression “m + 2 * n” abbreviates the function call “op
+(m, op *(2, n))”.3

ML’s imperative features are based mainly on reference types. In the exam-
ple of Fig. 1(b), the expression “ref 0” allocates an integer cell and initialises
it to zero. Here ref denotes the special reference-value-constructor. The decla-
ration “val count = ref 0” binds count to a newly allocated and initialised
integer cell. The expression “count := !count + 1” increments the integer con-
tained in that cell. Here “!” denotes the special dereferencing function, and
“:=” denotes the special assigner function. The above expression abbreviates op
:=(count, op +(!count, 1))”.

Returning to Fig. 1(a), notice that the type of the function snd is not stated.
ML relies on polymorphic type inference. Many types could be inferred for snd,
including ’t pair -> ’t, int pair -> int, and (’u list)pair -> ’u list.
Of these, ’t pair -> ’t is the principal type — the most general type, which
is unique up to renaming of type-variables. In type-theoretic notation, this prin-
cipal type would be written as a type scheme:

∀τ.(τ pair→ τ)

which emphasises that τ is universally quantified over the type expression.
Fig. 2 illustrates the module layer. The first declaration defines ORDERED to be

a signature that is satisfied by any structure whose components include at least:
(i) a type named t, and (ii) a function named less that takes a pair of t argu-
ments and returns a bool result. The second declaration defines OrderedString
to be one such structure, where the type named t happens to be string. The
third declaration defines Set to be a functor that maps an argument structure to
a result structure. Because the functor’s formal parameter is written “Members:
ORDERED”, the argument structure is locally named Members and must satisfy
the ORDERED signature. The functor maps Members to a result structure that
in fact supports sets of values of type Members.t. The last declaration applies
functor Set to structure OrderedStrings, resulting in a structure that supports
sets of strings.

3 “op +” is the prefix equivalent of the infix “+”. “(..., ...)” is just a tuple con-
structor.

157

(a) Value-variables, value-constructors, type-constructors, and polymorphism:

let

datatype ’a pair = pair of ’a * ’a;

fun snd (pair of (x, y)) = y;

val p: string pair = pair("Mosses", "Watt")

in

snd p

(b) Imperative features:

let

val count = ref 0;

fun inc () = count := !count + 1

in

(...; inc(); ...; inc(); ...)

Fig. 1. Examples of code in the ML core layer.

signature ORDERED =

sig

type t;

val less: t * t -> bool

end

structure OrderedStrings: ORDERED =

struct

type t = string;

fun less (x: string, y: string) = x < y

end

functor Set (Members: ORDERED) =

struct

type set = set of (Members.t)list;

(* A set is represented by an ordered list. *)

val empty: set = set[];

fun single (x: Members.t) = set[x];

fun union (s1: set, s2: set) =

... if Members.less(x, y) then ...

end

structure StringSets = Set(OrderedStrings)

Fig. 2. Example of code in the ML module layer.

158

3 Overview of the Action-Semantic Specification

To facilitate comparison of the AS specification of SML with the official NS spec-
ification [2] (goal 3 in the introduction), I chose to structure the AS specification
in the same way as the NS specification. A (slightly simplified) overview of the
structure is shown in Fig. 3.

The symmetry of the structure should be evident. Modules Core ML and
SML specify Core ML and SML, respectively. Each has submodules Abstract
Syntax, Static Semantics, Dynamic Semantics, and Programs, with the
dependencies between them made explicit by the needs clauses. Moreover, the
inclusion of Core ML in SML is made explicit by the includes clauses: in most
cases, a submodule of SML includes the corresponding submodule of Core ML.

The submodules are in turn subdivided (not shown in Fig. 3). Each Static
Semantics and Dynamic Semantics module is subdivided into Semantic
Functions and Semantic Entities. Each Abstract Syntax and Semantic
Functions module is subdivided into Expressions, Declarations, and so on.

Comparison

We see already an important difference between the NS and AS specifications of
SML. The AS specification is formally structured into modules, with explicit de-
pendencies and inclusions, using the meta-notation of [4]. In the NS specification
[2], the “modules” are just book chapters, and the dependencies and inclusions
are stated informally.

4 Core ML/Dynamic Semantics

Fig. 4 and 5 show extracts from the dynamic semantics of Core ML (value) dec-
larations, patterns, and expressions. The denotations are actions with a variety
of possible outcomes:

– binding is the normal outcome for a declaration or pattern;
– giving a value is the normal outcome for an expression;
– diverging is a possible outcome for an expression that might loop forever, or

any other construct that evaluates such an expression;
– changing state is a possible outcome for an expression that might have side

effects, or any other construct that evaluates such an expression;
– escaping with a packet is a possible outcome for an expression that might

raise an exception, or any other construct that evaluates such an expression;
– misfitting is a possible outcome for a pattern that might be a bad fit for the

given value.

The outcomes changing state and misfitting are defined in Semantic Entities.
Identifiers are mapped by the operations var , con , etc., into disjoint sub-

sorts of token. When the value declaration val red = 0 is elaborated, the value-
variable var “red” is bound. When the data-type declaration datatype colour

159

Core ML.
Core ML/Abstract Syntax.

needs: [4]/Data Notation.

Core ML/Static Semantics.

needs: Abstract Syntax, [4]/Data Notation.

Core ML/Dynamic Semantics.

needs: Abstract Syntax, [4]/Data Notation, [4]/Action Notation.

Core ML/Static Basis.

needs: Static Semantics.

Core ML/Dynamic Basis.

needs: Dynamic Semantics.

Core ML/Programs.

needs: Abstract Syntax, Static Semantics, Dynamic Semantics,
Static Basis, Dynamic Basis,
[4]/Data Notation, [4]/Action Notation.

SML.

SML/Abstract Syntax.

needs: [4]/Data Notation.
includes: Core ML/Abstract Syntax.

SML/Static Semantics.

needs: Abstract Syntax, [4]/Data Notation.
includes: Core ML/Static Semantics.

SML/Dynamic Semantics.

needs: Abstract Syntax, [4]/Data Notation, [4]/Action Notation.
includes: Core ML/Dynamic Semantics.

SML/Programs.

needs: Abstract Syntax, Static Semantics, Dynamic Semantics,
Core ML/Static Basis, Core ML/Dynamic Basis,
[4]/Data Notation, [4]/Action Notation.

Fig. 3. Structure of AS specification of ML.

160

= red | green | blue is elaborated, on the other hand, the value-constructors
con “red”, con “green”, and con “blue” are bound. (Each value-constructor is
bound to itself.) In this way, elaborating a group of declarations produces a set
of bindings for value-variables, value-constructors, etc., all mixed together.

In Fig. 5 the key equation is (4), which specifies the semantics of an appli-
cation [[E1 E2]]. After evaluating E1 and E2, this resolves itself into five cases.
If the value of E1 is a normal function, that function (represented by an ab-
straction) is enacted as usual. If the value of E1 is the special assigner function
(denoted by “:=”), the value of E2 will be a pair consisting of a reference (cell)
and a value, so that value is stored in that reference. If the value of E1 is a
normal value-constructor, a construction is made of that value-constructor and
the value of E2. If the value of E1 is the special reference-value-constructor
(denoted by ref), a reference is allocated and the value of E2 is stored in it.
Finally, if the value of E1 is an exception-constructor, an exception is made of
the exception-constructor and the value of E2.4

Comparison

The NS specification [2] handles separate name spaces for value-variables, value-
constructors, etc., by carrying around a tuple of separate environments. The
usual operations for retrieving a binding from an environment, adding a bind-
ing to an environment, etc., are lifted to the tuple of environments. The AS
specification shows that this complexity is unnecessary.

In the AS specification it is the semantic equations that decide which of the
operations var , con , etc., should be used to map a given identifier occurrence
to a token. The NS specification, on the other hand, assumes an abstract syntax
in which each identifier occurrence has already been mapped to a value-variable,
a value-constructor, or whatever. Moreover, this mapping is defined only infor-
mally.

Fig. 6 shows a short extract from the NS specification. I have made cosmetic
changes to the notation of [2] in order to facilitate comparison.

The inference rule in Fig. 6(a) specifies the dynamic semantics of the expression-
series [[E1 “;” E2]]. Compare this with equation (5) of Fig. 5. The styles are very
different, as we would expect: AS is English-like and verbose, NS uses a logical
notation that is mathematical and cryptic.

Unexpectedly, however, the AS specification is actually more formal! The “
then ” combinator in equation (5) states precisely that evaluate E1 is performed
before evaluate E2, with the received bindings distributed to both of these ac-
tions. The inference rule in Fig. 6(a) does specify the distribution of bindings
(e), but is silent about the flow of control. In fact, it exploits the so-called state
convention, whereby states (s) are omitted from most inference rules. The first

4 In ML, evaluating an expression can yield an exception as its (normal) result. This is
not the same as raising an exception, whereby evaluation is abandoned and the ex-
ception is propagated to a handler in some enclosing expression. Raising an exception
is specified in the AS specification by an escape.

161

Core ML/Dynamic Semantics/Semantic Functions/Declarations.

introduces: establish .

• establish :: Declaration →
action [binding escaping with a packet diverging changing state]

[using current bindings current state] .

(1) establish [[“val” B :Value-Binding]] =
establish B .

• establish :: Value-Binding →
action [binding escaping with a packet diverging changing state]

[using current bindings current state] .

(2) establish [[P :Pattern “=” E :Expression]] =
evaluate E then
fit P
else misfittingly
escape with the packet of the bind-exception .

(3) establish 〈B1:Value-Binding “and” B2:Value-Binding 〉 =
establish B1 and then establish B2 .

Core ML/Dynamic Semantics/Semantic Functions/Patterns.

introduces: fit .

• fit :: Pattern →
action [completing misfitting binding]

[using the given value current bindings current storage] .

(1) fit “ ” =
complete .

(2) fit V :Value-Variable =
bind var V to the given value .

Fig. 4. AS specification of dynamic semantics of Core ML declarations and patterns
(extracts).

162

Core ML/Dynamic Semantics/Semantic Functions/Expressions.

introduces: evaluate , serially evaluate .

• evaluate :: Expression →
action [giving a value escaping with a packet diverging changing state]

[using current bindings current state] .

(1) evaluate V :Value-Variable =
give the value bound to var V .

(2) evaluate C :Value-Constructor =
give con C .

(3) evaluate [[“let” D :Declaration “in” E :Expression “end”]] =
furthermore establish D
hence evaluate E .

(4) evaluate [[E1:Expression E2:Expression]] =
evaluate E1 and then evaluate E2

then
check there is given (a function, a value) and then
enact the application of the given function#1 to the given value#2

or
check there is given (the assigner, a pair) and then
give the components of the given pair#2 then
store the given value#2 in the given reference#1 and
give the unit-record

or
check there is given (a normal-value-constructor, a value) and then
give the construction of them

or
check there is given (a reference-value-constructor, a value) and then

allocate an reference and
give the given value#2

then
store the given value#2 in the given reference#1 and
give the given reference#1

or
check there is given (an exception-constructor, a value) and then
give the exception of them .

• serially evaluate :: Expression-Series →
action [giving a value escaping with a packet diverging changing state]

[using current bindings current state] .

(5) serially evaluate 〈E1:Expression “;” E2:Expression 〉 =
evaluate E1 then evaluate E2 .

Fig. 5. AS specification of dynamic semantics of Core ML expressions (extracts).

163

Expressions e ` E ⇒ v/p

(a) Using the state and exception conventions:

e ` E1 ⇒ v1 e ` E2 ⇒ v2

e ` [[E1“; ”E2]]⇒ v2

(b) In full:

e, s ` E1 ⇒ v1, s
′ e, s′ ` E2 ⇒ v2, s

′′

e, s ` [[E1“; ”E2]]⇒ v2, s
′′

e, s ` E1 ⇒ p, s′

e, s ` [[E1“; ”E2]]⇒ p, s′

e, s ` E1 ⇒ v1, s
′ e, s′ ` E2 ⇒ p, s′′

e, s ` [[E1“; ”E2]]⇒ p, s′′

(e ∈ Env; s ∈ State; v ∈ Val; p ∈ Pack)

Fig. 6. NS specification of dynamic semantics of Core ML expressions (extract).

inference rule in Fig. 6(b) shows the effect of re-instating the states. This ex-
panded inference rule does specify the flow of control, indirectly, by means of
the state thread.

But what happens if evaluation of E1 raises an exception? In equation (5)
of Fig. 5, this is again captured by the “ then ” combinator: if evaluate E1

escapes, the whole action escapes, i.e., the exception is propagated out of the
expression-series. In the NS specification, if E1 raises an exception, its result
is an exception packet (p) rather than a value. However, the inference rule in
Fig. 6(a) is silent about this issue too. In fact, it exploits the so-called exception
convention, whereby exception propagation is omitted from most inference rules.
The second inference rule in Fig. 6(b) re-instates exception propagation. It shows
that, when E1 evaluates to a packet p, E2 is skipped and p is taken as the result
of the whole expression-series. The third inference rule in Fig. 6(b) similarly
shows what happens when E2 raises an exception.

The state convention and exception convention are essential to keep the NS
specification manageable. Without these conventions, there would be 2–3 times
as many inference rules, and these would be less readable. Looking at the prob-
lem from a different viewpoint, if Milner et al. had chosen to develop their NS
specification by building up from a purely applicative subset of ML, as soon as
they added state and exceptions they would have had to modify most of their
existing inference rules [9].

Despite their pragmatic importance, the state convention and exception con-
vention are informal. A more principled approach to the same problem is possi-
ble, as shown by Peter Mosses’ recent development of modular SOS [5].

164

5 Core ML/Static Semantics

We have already seen, in Section 2, that an ML expression does not, in general,
have a unique type, although it does have a unique principal type. Any formal
specification must adopt one of two alternative approaches:

1. Define a function that maps each expression to its principal type.
2. Define a relation between expressions and types.

Approach 1 makes the specification, in effect, an encoding of the unification
algorithm.5 Approach 2 is the one adopted in [2], the judgements of natural
semantics being well suited for expressing relations.

In order to facilitate goal 3 (Sect. 1), I decided to adopt approach 2. At first
sight this seems paradoxical, for the semantic functions of an AS specification are
(what else?) functions! But the unified-algebraic foundations underlying AS can
be exploited to define functions whose results are sorts, rather than individuals.
Such functions model relations.

In the AS specification, the function “the types of in ” maps each expression
to the sort of all its possible types. Similarly, the function “the elaboration of in
” maps each declaration to the sort of all environments6 that it might possibly

produce. Each of these functions has a second operand that is a context.7

A corollary of the decision to adopt approach 2 above is that the AS spec-
ification of the static semantics of ML does not use action notation. Actions
cannot give sorts, only individual data.

In any case, it is surely preferable to specify static semantics in a declarative
fashion; whereas dynamic semantics benefits from an operational specification
in, for example, action notation.

Fig. 7 shows extracts from the static semantics of Core ML expressions. The
key equation is (4), which specifies the typing of an application [[E1 E2]]. It
simply asserts that if the types of E1 include a function type whose domain is
t′ and whose range is t, and if the types of E2 include t′, then the types of the
application include t.8

We see that the use of a semantic function mapping each expression to a
sort of types, together with the use of notation for testing an individual type’s
membership of a sort of types, allows us to define the expression–type relation
in data notation.

Comparison

Figs. 9 and 10 show inference rules for the static semantics of selected expressions
and declarations in the NS specification [2].

5 This approach has been successfully tested by Deryck Brown, in an unpublished AS
specification of the static semantics of a small subset of ML.

6 An environment binds value-variables, value-constructors, etc., to their types.
7 A context consists of an environment plus other information of no concern here.
8 Equation (4) in Fig. 7 does not need several cases like equation (4) in Fig. 5, because

normal and special functions, normal and special value-constructors, and exception-
constructors all have function types.

165

Core ML/Static Semantics/Semantic Functions/Expressions.

introduces: the types of in .

• the types of in :: Expression, context → type .

• the types of E :Expression in c:context ≤ type .

(1) the types of V :Value-Variable in c:context =
the types generalised by the type-scheme bound to var V in c .

(2) the types of C :Value-Constructor in c:context =
the types generalised by the type-scheme bound to con C in c .

(3) the elaboration of D in c :- e:environment ;
the overlay of (e, c) with distinct type-names = c′:context ;
the types of E in c′ :- t :type
⇒
the types of [[“let” D :Declaration “in” E :Expression “end”]] in c:context :- t .

(4) the types of E1 in c :- the function-type of (t ′:type, t :type) ;
the types of E2 in c :- t ′

⇒
the types of [[E1:Expression E2:Expression]] in c:context :- t .

Fig. 7. AS specification of static semantics of Core ML expressions (extract).

Core ML/Static Semantics/Semantic Functions/Declarations.

introduces: the elaboration of in .

• the elaboration of in :: Declaration, context → environment .

• the elaboration of D :Declaration in c:context ≤ environment .

(1) the elaboration of B in c :- e:variable-environment ;
the imperative closure of e with respect to (

the free type-variables of the environment of c,
the value-variables expansively defined by B)
= e ′:variable-environment ;

the intersection of (the type-variables scoped at B , the free type-variables of e ′)
= the empty-set

⇒
the elaboration of [[“val” B :Value-Binding]] in c:context :- e ′ .

Fig. 8. AS specification of static semantics of Core ML declarations (extract)

166

Expressions c ` E ⇒ t

c ` V � t
c ` V ⇒ t

c ` C � t
c ` C ⇒ t

c ` D ⇒ e c⊕ e ` E ⇒ t

c ` [[“let”D“in”E“end”]]⇒ t

c ` E1 ⇒ t′ → t c ` E2 ⇒ t′

c ` [[E1E2]]⇒ t

(c ∈ Context; t ∈ Type)

Fig. 9. NS specification of static semantics of Core ML expressions (extracts).

Declarations c ` D ⇒ e

c+ u ` B ⇒ e e′ = Closc,B(e) u ∩ tyvars(e′) = ∅
c ` [[“val”uB]]⇒ e′ in Env

(c ∈ Context;u ∈ TyVarSet; e, e′ ∈ VarEnv)

Fig. 10. NS specification of static semantics of Core ML declarations (extract).

167

The AS specification of the static semantics follows very closely the structure
of the NS specification. This can be seen by comparing Figs. 7 and 8 with Figs. 9
and 10, respectively. The main difference is in readability.

The NS specification relies on a variety of auxiliary operations. Some like
“tyvars(e)” are intuitive and easy to internalise; others like “Closc,B(e)” are
very much less so. The AS specification has similar auxiliary operations,9 such
as “free type-variables of e” and “imperative closure of e with respect to (. . ., . . .)”.
The latter are certainly more readable and arguably easier to internalise.

More importantly, all auxiliary operations in the AS specification of the static
semantics are formally specified in Semantic Entities. Some of the auxiliary
operations in [2] are specified only informally or semi-formally.

6 SML/Dynamic Semantics

In the AS specification of the dynamic semantics of SML, a structure is rep-
resented by an encapsulated set of bindings. A functor is represented by an
abstraction that uses a given structure (its argument) and gives a structure (its
result). These representations are summarised in Fig. 11.

Figs. 12 and 13 show extracts from the AS specification of the dynamic
semantics of SML structure-expressions and (structure and functor) declarations,
respectively.

Equations (3) and (4) in Fig. 13 specify structure-bindings. Equation (4)
shows the effect of stating a signature for the structure. The operation “the
interface described by G” maps signature G to an interface (see Fig. 11). The
operation “s restricted to i” prunes the structure s of any components not in the
interface i.10

Of particular interest are equation (3) in Fig. 12, which specifies functor
application, and equation (5) in Fig. 13, which specifies functor-bindings. These
should look familiar to anyone accustomed to AS. They are in fact analogous to
semantic equations for function application and function definition, with functors
replacing functions, and structures replacing values.11 Note, however, that the
operation “ restricted to ” is applied to the functor’s argument structure. The
argument might be a structure with more components than those represented in
the parameteric structure’s signature; these extra components are simply ignored
by the functor.

9 However, specifying the auxiliary operations formally in the AS specification exposed
opportunities to simplify some of them.

10 This operation is partial. The structure s must have at least the components repre-
sented in the interface i, and these must have the same types, otherwise the operation
yields nothing.

11 It is actually simpler to specify functors than functions in ML, since the semantics
of function-bindings are complicated by recursion and clausal definitions.

168

SML/Dynamic Semantics/Semantic Entities.

introduces: structure , structure-bindings , structure of .

• structure = structure of structure-bindings .

• structure-bindings = map[structure-label to structure-field] .

introduces: interface , interface of , restricted to .

• interface = interface of (interface-map, value-variable-set,
exception-constructor-set) .

• restricted to :: structure, interface → structure (partial) .

introduces: functor , functor of , application to .

• functor = functor of abstraction [giving a structure escaping with a packet
diverging changing state]

[using the given structure current state] .

• application to :: functor, structure →
abstraction [giving a structure escaping with a packet

diverging changing state]
[using current state] (total) .

Fig. 11. AS specification of dynamic semantic entities of SML (extracts).

SML/Dynamic Semantics/Semantic Functions/
Structure-Expressions.

introduces: structure-evaluate .

• structure-evaluate :: Structure-Expression →
action [giving a structure escaping with a packet

diverging changing state]
[using current bindings current state] .

(1) structure-evaluate [[“struct” D :Structure-Level-Declaration “end”]] =
establish D hence
give the structure of the current bindings .

(2) structure-evaluate I :Long-Structure-Identifier =
give the structure denoted by I .

(3) structure-evaluate [[I :Functor-Identifier “(” S :Structure-Expression “)”]] =
structure-evaluate S then
enact the application of the functor denoted by I to the given structure .

Fig. 12. AS specification of dynamic semantics of SML structure-expressions.

169

SML/Dynamic Semantics/Semantic Functions/Declarations.

• establish :: Structure-Level-Declaration →
action [binding escaping with a packet diverging changing state]

[using current bindings current state] .

(1) establish [[“structure” B :Structure-Binding]] =
establish B .

(2) establish [[“functor” B :Functor-Binding]]
establish B .

• establish :: Structure-Binding →
action [binding escaping with a packet diverging changing state]

[using current bindings current state] .

(3) establish [[I :Structure-Identifier “=” S :Structure-Expression]] =
structure-evaluate S then
bind strid I to the given structure .

(4) establish [[I :Structure-Identifier “:” G:Signature-Expression
“=” S :Structure-Expression]] =

structure-evaluate S then
bind strid I to (the given structure

restricted to the interface described by G) .

• establish :: Functor-Binding →
action [binding] [using current bindings] .

(5) establish [[I1:Functor-Identifier
“(” I2:Structure-Identifier “:” G:Signature-Expression “)”
“=” S :Structure-Expression]]

bind funid I1 to the functor of the closure of the abstraction of
furthermore bind strid I ′2 to (the given structure

restricted to the interface described by G)
hence structure-evaluate S .

Fig. 13. AS specification of dynamic semantics of SML declarations (extracts).

170

7 Conclusion

The goals set out in the introduction have largely been achieved:

1. The AS specification of the dynamic semantics of SML is complete. It has
demonstrated that AS is very suitable for specifying the dynamic semantics
of functional programming languages in ML’s category, i.e., polymorphic
and strict.12 Also, AS has no difficulty in coping with ML’s module layer,
which is more advanced than that found in any other major programming
language.

2. The AS specification of the static semantics of ML’s core layer is more-or-
less complete. This has demonstrated the versatility of the unified-algebraic
notation, even to the extent of mimicking a relational specification. No re-
sort to action notation proved necessary. An AS specification of the static
semantics of ML’s module layer, which would undoubtedly be challenging,
has not yet been attempted.

3. A systematic comparison of the AS specification of SML with the NS specifi-
cation [2] is highly revealing. As expected, the AS specification is much more
readable than the NS specification, although less concise. Unexpectedly, the
NS specification is partly informal or semi-formal, whereas the AS specifi-
cation is completely formal. The informal state and exception conventions
were essential to keep the NS specification tractable. Without them, the NS
specification of the dynamic semantics would have been no more concise,
and vastly less readable, than the corresponding AS specification.

The current draft of the AS specification of SML is available for inspection
and comment. See:

www.dcs.gla.ac.uk/~daw/publications/SMLAS.ps

References

1. Brown, D.F., and Watt, D.A.: JAS – a Java action semantics, in these Proceedings
(1999).

2. Milner, R., Tofte, M., and Harper, R.: The Definition of Standard ML, MIT Press,
Cambridge, Massachusetts (1990).

3. Milner, R., and Tofte, M.: Commentary on Standard ML, MIT Press, Cambridge,
Massachusetts (1991).

4. Mosses, P.D.: Action Semantics, Cambridge University Press, Cambridge, England
(1992).

5. Mosses, P.D.: A modular SOS for action notation, in these Proceedings (1999).
6. Mosses, P.D., and Watt, D.A.: Pascal action semantics — towards a denotational

description of ISO Standard Pascal using abstract semantic algebras, Computer
Science Department, Aarhus University, Denmark (1986).

7. Watt, D.A.: An action semantics of Standard ML, in Mathematical Foundations of
Programming Language Semantics (ed. M. Main et al.), LNCS 298, Springer, Berlin
(1987), 572–598.

12 Specifying a lazy functional programming language would be a very different matter.

171

8. Watt, D.A.: Programming Language Syntax and Semantics, Prentice Hall Interna-
tional, Hemel Hempstead, England (1991).

9. Watt, D.A.: Why don’t programming language designers use formal methods? in
XXIII Seminário Integrado de Software e Hardware (ed. R. Barros), Universidade
Federal de Pernambuco, Recife, Brazil (1996).

172

Recent BRICS Notes Series Publications

NS-99-3 Peter D. Mosses and David A. Watt, editors.Proceedings of the
Second International Workshop on Action Semantics, AS ’99,
(Amsterdam, The Netherlands, March 21, 1999), May 1999.
iv+172 pp.

NS-99-2 Hans Ḧuttel, Josva Kleist, Uwe Nestmann, and Ant́onio
Ravara, editors. Proceedings of the Workshop on Semantics of
Objects As Processes, SOAP ’99,(Lisbon, Portugal, June 15,
1999), May 1999. iv+64 pp.

NS-99-1 Olivier Danvy, editor. ACM SIGPLAN Workshop on Par-
tial Evaluation and Semantics-Based Program Manipulation,
PEPM ’99, (San Antonio, Texas, USA, January 22–23, 1999),
January 1999.

NS-98-8 Olivier Danvy and Peter Dybjer, editors. Proceedings of
the 1998 APPSEM Workshop on Normalization by Evaluation,
NBE ’98 Proceedings,(Gothenburg, Sweden, May 8–9, 1998),
December 1998.

NS-98-7 John Power.2-Categories. August 1998. 18 pp.

NS-98-6 Carsten Butz, Ulrich Kohlenbach, Søren Riis, and Glynn
Winskel, editors. Abstracts of the Workshop on Proof Theory
and Complexity, PTAC ’98,(Aarhus, Denmark, August 3–7,
1998), July 1998. vi+16 pp.

NS-98-5 Hans Ḧuttel and Uwe Nestmann, editors. Proceedings of the
Workshop on Semantics of Objects as Processes, SOAP ’98,(Aal-
borg, Denmark, July 18, 1998), June 1998. 50 pp.

NS-98-4 Tiziana Margaria and Bernhard Steffen, editors.Proceedings
of the International Workshop on Software Tools for Technol-
ogy Transfer, STTT ’98,(Aalborg, Denmark, July 12–13, 1998),
June 1998. 86 pp.

NS-98-3 Nils Klarlund and Anders Møller. MONA Version 1.2 — User
Manual. June 1998. 60 pp.

NS-98-2 Peter D. Mosses and Uffe H. Engberg, editors.Proceedings
of the Workshop on Applicability of Formal Methods, AFM ’98,
(Aarhus, Denmark, June 2, 1998), June 1998. 94 pp.

