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1 Why 2-categories?

Consider an idealized programming language such as the simply typed λ-
calculus with some constants and a call-by-name operational semantics. One
can take models in a cartesian closed category. Examples of such cartesian
closed categories that have been studied extensively are

1.1 Examples

1. Set
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2. the category of ω-cpo’s with least element and functions that preserve
colimits of ω-chains but need not preserve the least element

3. the fully abstract model

4. models given by axiomatic domain theory, and

5. models given by synthetic domain theory.

Thus, one is interested not just in one cartesian closed category but in the
class of all cartesian closed categories. One is also interested in the maps
between them because a structure preserving functor J : C −→ D sends one
model of the language to another.

1.2 Example In O’Hearn and Tennent’s work, extending the λ-calculus
to an Algol-like language, they use the fact that the Yoneda embedding Y :
C −→ [Cop, Set] preserves cartesian closed structure, to extend a model for
the simply typed λ-calculus to another category in which one can incorporate
an account of state.

Consequently, one seeks a study not just of the class of all cartesian closed
categories but in the category of small cartesian closed categories and struc-
ture preserving functors.

These considerations are not special to the simply typed λ-calculus. They
apply equally to a simple imperative programming language, for which one
might use a symmetric monoidal structure on the category of sets and partial
functions to model contexts, finite coproducts to model conditionals, and
countable products to model states.

This leads us to ask, for a general class of structure on categories, can we
give an account of the category of small structured categories and structure
preserving functors?

We need to ask exactly what we mean by a structure preserving functor
here. Fundamental to category theory are results like

1.3 Theorem If a functor U : C −→ D has a left adjoint F : D −→ C,
then F preserves whatever colimits exist in D.

That theorem is only true if the notion of preservation of colimits means
their preservation up to coherent isomorphism. For instance, left adjoints are
only defined up to isomorphism, so if F is any left adjoint to U , and F ′ is
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isomorphic to F , then F ′ is also a left adjoint. So it is impossible in general
for both F and F ′ to preserve colimits strictly.

For another example, let M denote the Lawvere theory for a monoid.
Then, we have

1.4 Theorem The category of monoids is equivalent to the category of
finite product preserving functors from M into Set and natural transforma-
tions between them.

This theorem only holds if, by preservation of finite products, we mean
preservation up to coherent isomorphism. The reason is that, in any Lawvere
theory, products are strictly associative with strict left and right unit; but
in Set, with the Kuratowski definition, finite products do not have strict
left and right unit. So if H : M −→ Set strictly preserves finite products,
then H(1) × H(X) = H(1 × X) = H(X), but that equality is not true for
any nonempty set H(X), yet a monoid must have a unit element, thus be
nonempty, a contradiction.

Thus, when we say we want to study the category of small structured
categories and functors that preserve the structure, we mean that the functors
preserve the structure up to coherent isomorphism.

Returning to our leading example, that of CartClosed, the category of
small cartesian closed categories and functors that preserve cartesian closed
structure, an immediate question arises:

1.5 Question Does the forgetful functor U : CartClosed −→ Cat have a
left adjoint?

The answer is No! If it did, CartClosed would have an initial object, but it
does not!

1.6 Proposition CartClosed does not have an initial object.

Proof Suppose I was an initial object in CartClosed. The category Iso
containing two objects and an isomorphism between them is cartesian closed.
The category I must have at least one object, as it has a terminal object. So
consider the two functors from I to Iso given by the two constant functors.
Both must preserve cartesian closed structure, but they are not equal as they
differ on the terminal object of I.
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Despite this example, CartClosed does have an object, namely 1, that
behaves like an initial object. Moreover, the forgetful functor U : CartClosed
−→ Cat does have a construction that behaves like a left adjoint. So we seek
to make the sense in which CartClosed has an initial object and the sense in
which U : CartClosed −→ Cat has a left adjoint precise. That, and similar
considerations, such as the non-existence of equalizers but the existence of
some weakened sort of equalizer, leads us to the study of 2-categories, with
which one can resolve these questions.

2 Calculus in a 2-category

2.1 Definition [6] A small 2-category is a small Cat-category. So a small
2-category C has a small set obC of objects; for all objects X and Y , a
small category C(X, Y ); and composition functors; subject to three axioms
expressing associativity of composition and left and right unit laws.

One can draw an elegant picture, treating objects, also known as 0-cells,
as labelled points in space; with objects of the homs, also known as arrows, or
1-cells, as labelled lines in space from domain to codomain; and with arrows
of the homs, also known as 2-cells, as labelled faces in the plane determined
by domains and codomains (see [6]).

2.2 Examples Leading examples of 2-categories are

1. the 2-category Cat of small categories, functors, and natural transfor-
mations.

2. the sub-2-category Catg of Cat with the same 0-cells and 1-cells as Cat,
but with 2-cells given by natural isomorphisms.

3. the 2-category V − Cat of small V -categories for symmetric monoidal
V , together with V -functors, and V -natural transformations.

4. the 2-category Cat(E) of internal categories in any category E with
finite limits, together with internal functors and internal natural trans-
formations. If E = Set, this gives the usual category Cat. If E = Cat,
it gives the 2-category of small double categories. If E = Group, it
gives the 2-category of crossed modules.
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5. the 2-category MonCat of small monoidal categories, monoidal func-
tors, and monoidal natural transformations. This is an instance of a
class of 2-categories of the form T − Algl for a 2-monad T on Cat
(see [2]).

6. the 2-category Fib/E of fibrations over E, cartesian functors, and carte-
sian natural transformations.

2.3 Definition A 2-functor U : C −→ D is a Cat-functor, i.e., it has an
object function obU : obC −→ obD, and for each pair of objects, a functor
U : C(X, Y ) −→ D(UX,UY ), subject to two axioms to the effect that
U respects composition and identities. A 2-natural transformation is a Cat-
natural transformation, i.e., a natural transformation between the underlying
ordinary functors that also respects 2-cells.

2.4 Definition An adjunction in a 2-category consists of 0-cells X and
Y , 1-cells u : X −→ Y and f : Y −→ X, and 2-cells η : idY ⇒ uf and
ε : fu⇒ idX subject to the usual triangle equations, i.e., (uε)(ηu) = idu and
(εf)(fη) = idf .

One can draw delightful pictures representing this: see [6].

2.5 Examples

1. An adjunction in Cat is an adjunction in the usual sense.

2. An adjunction in Catg is an (adjoint) equivalence.

3. An adjunction in V −Cat is a V -adjunction in the usual sense. In fact,
that is how V -adjunctions are defined in the canonical reference [4].

4. An adjunction in Cat(E) is an internal adjunction.

5. An adjunction in MonCat is a monoidal adjunction (see [2]).

6. An adjunction in Fib/E is a fibred adjunction.

In general, if anyone claims to have a new notion of adjunction, it is well
worthwhile to try to find a 2-category such that the new notion of adjunction
is an adjunction in that 2-category. That attempt was a considerable help in
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refining the notion of local adjunction, and it offered insight into a notion of
free higher dimensional category. Often, the attempt helps to get the axioms
right.

2.6 Definition A monad in a 2-category consists of a 0-cell X, a 1-cell
t : X −→ X, and 2-cells µ : t2 ⇒ t and η : idX ⇒ t, subject to the evident
three axioms.

Again, it is possible to draw elegant pictures to depict the axioms [6].

2.7 Examples

1. A monad in Cat is a monad as usual.

2. A monad in V − Cat is a V -monad, and again, that is how the notion
of V -monad may be defined.

3. A monad in Cat(E) is an internal monad in E.

4. A monad in SymMonCat is a symmetric monoidal monad, which is
equivalent to a commutative monad, i.e., a monad with a commutative
strength.

5. A monad in Fib/E is a fibred monad.

It is routine to verify

2.8 Proposition Every adjunction in a 2-category gives rise to a monad.

Proof Just copy the usual construction: given f left adjoint to u, define
t = uf , and η to be the unit of the adjunction, and define µ using the counit
as usual. It is routine to verify the axioms.

If a 2-category has some finite limits (to be discussed in a later section),
there is a construction in the other direction, i.e., a construction that given
a monad, yields an adjunction. In the case of Cat, it is the usual Eilenberg
Moore construction. In the presence of finite colimits, then one may deduce,
by considering the 2-category Kop for a 2-category K, that there is a dual,
yielding the Kleisli construction. This work is ultimately by Ross Street [12].
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It gives universal properties of the Eilenberg Moore and Kleisli construc-
tions that are stronger than one might imagine. This is best described with
pictures: see [6].

We have mentioned many pictures in the above analysis. We have not
drawn them owing to my mediocre latex skills. However, they are well worth
using, at least on paper and on blackboards; and the 2-category literature is
full of them, especially in older papers for which secretaries did the typing,
and when journals accepted hand-drawn figures. They are returning now as
typesetting is becoming more accessible to mathematicians. See [9] for an
account of the pictures. The condition therein has been improved a little by
Alex Simpson, so here we give his version, which alas has not been published.

The central question is which figures in the plane (or on paper or on a
blackboard) may be drawn to represent precisely one composite of 2-cells in
a 2-category. So we make that precise now.

By a graph, we mean a (non-empty) connected finite directed graph. A
path in a graph is an alternating sequence v0e1 · · · vn of vertices vi and edges
ei in the graph such that the endpoints of each ei are vi and vi+1, and such
that all the vi’s are distinct. A path is directed if each ei goes from vi to vi+1.
A plane graph is a graph together with an embedding into the (oriented)
plane: for practical purposes, this means a graph written on a blackboard or
a sheet of paper, with no crossings of edges. Note that there may be many
topologically different embeddings.

A plane graph divides the rest of the plane into one exterior region and
a finite number of interior regions. These are called faces. Given an interior
face, consider the boundary as an alternating sequence of vertices and edges,
moving clockwise around the face.

2.9 Definition A plane graph with source and sink is a plane graph with
vertices s and t in the exterior face such that

• s only has edges out of it,

• t only has edges into it, and

• every other vertex has edges both in and out of it.
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2.10 Definition A pasting scheme is a plane graph with source and sink
such that for every interior face F , there exist distinct vertices s(F ) and t(F )
and directed paths σ(F ) and τ(F ) from s(F ) to t(F ) such that the boundary
of F is given by σ(F )(τ(F ))∗.

We call σ(F ) the domain of F and τ(F ) the codomain of F .
It follows from the definition, and this is the heart of the proof we need,

that

2.11 Proposition A pasting scheme has no directed loops.

Proof (Sketch) Suppose a pasting scheme had a directed loop. Take a loop
containing the smallest number of faces. Take an interior face of the loop with
an edge on the boundary of the loop. With some effort, one can construct
another loop that is inside the given loop but does not contain that face, a
contradiction.

2.12 Definition A labelling of a pasting scheme in a 2-category is a la-
belling of each vertex by a 0-cell, each edge by a 1-cell, and each face by a
2-cell, respecting domains and codomains.

Now we have

2.13 Theorem Every labelling of a pasting scheme has a unique composite.

Proof Induction on the number of faces of the pasting scheme. The unicity
is easy; it is the existence that requires a little work. Essentially, you need
to prove that a pasting scheme has a topmost face, i.e., that there exists an
interior face whose domain lies entirely on the exterior face of the graph. So
one proceeds by induction, starting at s, and using heavily the fact that a
pasting scheme has no directed loops. Either s is s(F ) for some face, or it is
not. If it is not, pass to the unique vertex to which there is an edge from s

and continue inductively. If it is, then consider the topmost such F and see
whether its domain lies entirely on the exterior. If so, we are done. If not,
then using no directed loops, it follows that there is another point on the
exterior face and on the domain of F that is itself of the form s(F ′) for some
F ′ with domain commencing along the exterior. Proceed inductively. .

See [9] for more detail of pasting.
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3 The calculus of 2-categories

In the previous section, we studied calculus in a 2-category. We now study
the calculus of 2-categories. By that, I mean that we study the relation-
ship between several 2-categories, rather than restricting our attention to an
individual one.

The basic notion here is that of a 2-categorical version of adjunction.
Typically, the underlying ordinary functor of a 2-functor does not have a left
adjoint, although in principle it should. For instance, the forgetful functor
U : CartClosed −→ Cat from the category of small cartesian closed cate-
gories and structure preserving functors into Cat does not have a left adjoint,
although there is clearly some sort of free construction of a cartesian closed
category on any small category. This leads to the notion of a biadjunction.
It is a horrible word, due to Ross Street [13].

It may have come time now to replace the “bi” notation, possibly by a
consistent use of “pseudo”. The problem with that has been that “pseudo”
has been used for a different meaning, so there would have been a clash.
However, the clash may be disappearing now as the other use, in connection
with limits, is proving to be a false direction.

3.1 Definition A left biadjoint to a 2-functor U : C −→ D is given by, for
each object X of D, a 1-cell ηX : X −→ UFX in D such that composition
with ηX induces an equivalence of categories from C(FX, Y ) to D(X,UY ).

For a reasonably easy example of this

3.2 Example Consider, given a 2-category C, what it means for the unique
2-functor t : C −→ 1 to have a left biadjoint. That amounts to the statement
that C has a bi-initial object. In elementary terms, it means that there is an
object 0 such that for every object X, there is a 1-cell from 0 to X, and such
that, for every pair of 1-cells f, g : 0 −→ X, there is a unique 2-cell from f
to g.

So, to check that a 2-functor has a left biadjoint, one needs to check
two conditions: that application of U followed by composition with ηX is
essentially surjective, and that it is fully faithful. Many people forget the
latter point, and that can lead to considerable error.

The existence of a left biadjoint does not imply that F can be extended
to a 2-functor and η to a 2-natural transformation: if we had demanded an
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isomorphism of categories in the definition, it would have done so; but we only
demanded an equivalence of categories, and that weaker condition is all that
is true of the leading examples. So we need to extend the notions of 2-functor
and 2-natural transformation. The following definitions, stated in the mildly
more general setting of bicategories, ultimately came from Benabou’s [1].

3.3 Definition A pseudo-functor or homomorphism of 2-categories consists
of

• an object function obF : obD −→ obC,

• functors F : D(A,B) −→ C(FA, FB), and

• natural isomorphisms to replace the equalities in the definition of 2-
functor,

subject to three coherence axioms, representing associativity and left and
right unit laws.

3.4 Definition A pseudo-natural transformation or a strong transformation
from F to G consists of,

• for each object X of D, a 1-cell αX : FX −→ GX, and

• for each 1-cell f : X −→ Y , an isomorphism in what would be the
commutative square for a 2-natural transformation,

subject to three coherence conditions making the latter isomorphisms respect
composition and identities in D and respect 2-cells in D.

3.5 Definition A modification between pseudo-natural transformations with
the same domain and codomain consists of an obD-indexed family of 2-cells
γX : αX ⇒ βX subject to coherence with respect to 1-cells in D.

3.6 Proposition Given a left biadjoint (FX, ηX) to U , the construction F
extends to a pseudo-functor and η to a pseudo-natural transformation.

Proof This is a routine generalisation of the usual situation.

As usual, we could define the notion of biadjunction in terms of a pair of
pseudo-functors. One can routinely extend the notion of left biadjoint from

10



being that of a 2-functor to that of a pseudo-functor, upon which F is left
biadjoint of U if and only if U is right biadjoint of F , with the notion of
right biadjoint defined by duality. Moreover, a left biadjoint is unique up to
coherent pseudo-natural equivalence. Putting some of this together, we have

3.7 Proposition Given a pseudo-functor U : C −→ D, the following are
equivalent:

• to give a left biadjoint to U ,

• to give, for each X and Y , an equivalence of categories between C(FX, Y )
and D(X,UY ) subject to coherence laws, and

• to give a pseudo-functor F : D −→ C and pseudo-natural transforma-
tions η and ε, and isomorphic modifications where the usual triangle
identities hold, subject to coherence axioms.

Again, a proof is routine; see [13] for more detail. Observe also, that it
follows from the above definitions, that

3.8 Proposition and Definition Given 2-categories C and D, the struc-
ture given by

• 0-cells are pseudo-functors from C to D

• 1-cells are pseudo-natural transformations

• 2-cells are modifications

with composition determined pointwise by that in D, forms a 2-category.

Again, this follows by routine calculation.
We attempt to follow the usual development of category theory here. In

ordinary category theory, if a functor has a left adjoint, it preserves limits.
We know that is not true here because, in the dual situation, recall that we
have
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3.9 Example CartClosed does not have an initial object. So the left
biadjoint F to the forgetful 2-functor U : CartClosed −→ Catg cannot
preserve the initial object 0 of Catg.

Obviously however, such pseudo-functors as F here do preserve some
colimiting constructions in some weakened sense, as we know that F0 is in
some sense initial in CartClosed. In order to make that precise, we need to
generalise the notion of limit a little, just as we had to generalise the notion
of adjunction. This leads to the notion of bilimit, perhaps now better called a
pseudo-limit despite a clash with old terminology as for instance in [2] or [3].

The most natural general notion here is that of weighted bilimit [13],
but I specifically want to avoid the notion of weight, as it adds complexity
that I think, although elegant and valuable, would distract from the main
exposition. So I shall use (and outline the definitions of the notions in)

3.10 Theorem [13, 14] A 2-category has all weighted bilimits if and only
if it has all biproducts, biequalizers, and bicotensors. A pseudo-functor pre-
serves all bilimits if and only if it preserves each of the above classes of
bilimits.

3.11 Theorem If U : C −→ D has a left biadjoint, then U preserves all
bilimits.

For the definitions used here (see [13] for more detail)

3.12 Definition A 2-category C has biproducts if for every small set X,
the diagonal 2-functor ∆ : C −→ Bicat(X,C) has a right biadjoint.

3.13 Definition A 2-category C has biequalizers if the diagonal 2-functor
∆ : C −→ Bicat(Pair, C) has a right biadjoint, where Pair is the category
with two objects and a pair of 1-cells from one to the other.

3.14 Definition A 2-category C has bicotensors if for every object X and
every small category c, there is an object Xc such that for every object Y ,
there is an equivalence of categories between Cat(c, C(Y,X)) and C(Y,Xc),
pseudo-naturally in X and Y .

Bicotensor generalises the usual notion of cotensor in a V -category [4].
One does not see the notion of cotensor explicitly in ordinary categories
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because it is subsumed by the notion of product: a cotensor of an object
A by a set s in an ordinary category is just the s-fold product of copies of
A. Often, bicotensors are easy to describe. For instance, in Cat, a cotensor,
which is necessarily a bicotensor, amounts exactly to a functor category. The
same is true in CartClosed and in many other categories of small categories
with structure. The dual, bitensors, are often more difficult to describe
explicitly, for much the same reason as coproducts tend to be difficult to
describe.

3.15 Definition A pseudo-functor U preserves a bilimit if, modulo the
coherence isomorphisms in the definition of U , it sends a bilimiting diagram
to a bilimiting diagram.

Note that bilimits are only unique up to coherent equivalence, not up to
isomorphism as is the case for ordinary limits in ordinary categories. More-
over, there is not a unique comparison map. So one must be much more
careful about coherence here.

In fact, there are somewhat simpler but equivalent versions of the above
definitions. For instance, for the definitions of biproduct and biequalizer, it is
routine to verify that every pseudo-functor from the index category (X and
Pair respectively) is equivalent to a 2-functor. So one need only verify the
biadjointness condition with respect to 2-functors, not all pseudo-functors.
This is an easy example of a coherence result. We shall see more of coherence
in the next section. Remember that in checking for the existence of bilimits,
one must verify both the essential surjectivity condition of an equivalence
and the fully faithfulness condition.

These definitions rapidly become spectacularly complicated. Try to spell
out the definition of biequalizer, or bipullback. Thus we seek stronger, albeit
less natural structures, that a wide class of 2-categories possess, and we
seek coherence theorems that state when we may, without loss of generality,
replace a complex structure such as those we have described here, by a less
complex structure: that is what we did in saying that we could restrict our
attention to 2-functors in defining biproducts and biequalizers. We shall
study coherence in depth in the next section.
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4 Coherence

In this section, we see how the complexity that arises from the definitions
of pseudo-functor, pseudo-natural transformation, bilimit, and preservation
of bilimits, can be eased to a substantial extent. Much of this simplification
relies upon coherence results, which we shall outline here (see [7, 8, 10, 11]).
Also, we can see by careful analysis of large classes of 2-categories that we
often have a simpler situation than those of full generality of the definitions.

There have been many attempts at defining good notions of limit in 2-
categories. These have gone under names such as pseudo-limits, lax limits,
oplax limits, flexible limits, and pie limits. In my view, the best of these is
the class of pie limits. They include all of the others except flexible limits,
which I think are mildly unnatural. For a detailed account of these notions,
see [5]. For an idea of pie-limits,

4.1 Definition A pie limit is any 2-limit generated by 2-products, inserters,
and equifiers.

4.2 Definition A 2-product is a Cat-product.

For example, a binary 2-product in a 2-category C is just a binary product
diagram in the underlying ordinary category, for which a two-dimensional
property also holds.

4.3 Definition Given parallel 1-cells f, g : X −→ Y in a 2-category C, an
inserter of f and g is a universal 2-cell j : Ins −→ X together with a 2-cell
α : fj ⇒ gj, i.e., for every (h : Z −→ X, β : fh⇒ gh), there exists a unique
2-cell k : Z −→ Ins such that jk = h, and αk = β, and a two-dimensional
property holds.

4.4 Definition Given 2-cells α, β : f ⇒ g : X −→ Y in a 2-category, an
equifier is a universal 1-cell j : E −→ X such that αj = βj, universal with
respect to both one- and two-dimensional properties.

Note that these are not just bilimits: the universal property asserts the
existence of unique 1-cells, with commutation strictly, not just up to isomor-
phism. This makes life considerably easier. Moreover, plenty of 2-categories
have such limits: see [2] for a large class of them. In general, for any 2-monad
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T on Cat, the 2-category of strict T -algebras and functors that preserve the
structure in the usual sense has pie limits given as in Cat. For instance,
CartClosed has pie limits, as have Cart, FL, and the 2-category of accessi-
ble categories. The defining paper is [11]. A central but easy theorem here
is

4.5 Theorem All pie limits are bilimits, and if a 2-category has all pie
limits, then it has all bilimits, and the latter are given by pie limits.

The existence of pie limits is a remarkably strong condition. For example,
any 2-category with pie limits has cotensors, as a cotensor can be given by a
equifier of an inserter of a product. There is some analysis of pie limits in the
various papers such as [5], showing that they include lax, oplax, and pseudo-
limits, and in particular, Eilenberg Moore objects, which are lax limits. This
makes precise a remark earlier herein when we said that a 2-category has
Eilenberg Moore objects if it has some limits. What pie limits specifically do
not include are equalizers.

4.6 Example The 2-category CartClosed has all pie limits, but does not
have equalizers. Consider the two constant functors from 1 to Iso, where the
latter is the category consisting of two objects and an isomorphism between
them. Both categories are cartesian closed, and both functors preserve the
cartesian closed structure. Any equalizer must be empty, as the two functors
do not agree on any object, but an equalizer must be cartesian closed, hence
contain a terminal object, a contradiction.

Now we consider coherence theorems. The central coherence theorem in
this regard is

4.7 Theorem [8] Every bicategory with finite bilimits is biequivalent to
a 2-category with finite pie limits.

We have not addressed bicategories at all here, so we shall restrict our
attention to 2-categories. In fact, the theorem was stated a little more gener-
ally, in that one can prove biequivalence with a 2-category with finite flexible
limits, but the latter are a strange class of 2-limits that I think are better
left to history.

The proof of this result, once one knows it, is not difficult, but relies upon
a few key ideas. First, we generalise the Yoneda lemma to
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4.8 Theorem (bicategorical Yoneda) For every pseudo-functor H : C −→
Cat and every object X of C, there is an equivalence, pseudo-natural in H

and X, between Bicat(Cop, Cat)(C(−, X), H) and HX.

4.9 Corollary The Yoneda pseudo-functor Y : C −→ Bicat(Cop, Cat) is
locally an equivalence, i.e., on each homcategory, it is an equivalence.

Now recall that since Cat is a 2-category, so is Bicat(Cop, Cat). Moreover,
it is routine to verify that it has pie limits, given pointwise. Just as for the
ordinary Yoneda functor, it is also routine to verify

4.10 Theorem The Yoneda pseudo-functor Y : C −→ Bicat(Cop, Cat)
preserves whatever bilimits exist in C.

Putting this together gives a proof of our main theorem, by taking the full
sub-2-category of Bicat(Cop, Cat) given by closing the representables under
finite pie limits. This 2-category is biequivalent to C. You need to be just
a little careful about size, but it is routine to account for it. See [8] for the
small extra amount of detail required.

Coherence for finite bilimit preserving pseudo-functors is considerably
more difficult. To say that a pseudo-functor preserves bilimits means that
it need only preserve the bilimit up to equivalence, not isomorphism. So,
given 2-categories with pie limits, to say that a 2-functor between them
preserves bilimits is a weaker statement than saying it preserves pie limits,
because preservation of pie limits is preservation in the usual sense, up to
isomorphism. It seems not to be the case that every finite bilimit preserving
pseudo-functor from a small 2-category C with finite pie limits into Cat need
be equivalent to a finite pie limit preserving 2-functor from C into Cat: there
is a counterexample for the corresponding statement with a terminal object.

But there is a theorem here. It is quite difficult, and a proof still has not
been published, although an outline appears in [10]. But the statement is

4.11 Theorem For every bicategory B with finite bilimits, there is a 2-
category C that has finite pie limits and is biequivalent to B, for which the
2-category FB(B,Cat) of finite bilimit preserving pseudo-functors from B
to Cat and pseudo-natural transformations is biequivalent to the 2-category
FPie(C,Cat) of finite pie limit preserving 2-functors from C to Cat and
pseudo-natural transformations.
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To prove this result, we would first need to explain two-dimensional
monad theory, as in [2], then show how that extends to a weak version of
three-dimensional monad theory, then prove a coherence result in three di-
mensions extending the main result of [2], which is in two dimensions. That
seems too much for now!
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