
BRICS
Basic Research in Computer Science

PLAN-X 2006 Informal Proceedings

Charleston, South Carolina, January 14, 2006

Giuseppe Castagna
Mukund Raghavachari
(editors)

BRICS Notes Series NS-05-6

ISSN 0909-3206 December 2005

B
R

IC
S

N
S

-05-6
C

astagna
&

R
aghavachari(eds.):

P
LA

N
-X

2006
Inform

alP
roceedings

Copyright c© 2005, Giuseppe Castagna & Mukund Raghavachari
(editors).
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Notes Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory NS/05/6/

1 let ans(φ, t,u) = if Sat[φ,u] then
2 match φ with
3 | � → {ε}
4 | c(x).φ′ →

S
u′∈Qa(c,u){(x,u′) ·ν | ν ∈ ans(φ′, t,u′)}

5 | φ′ ∧φ′′ → ans(φ′, t,u)×ans(φ′′, t,u)
6 | φ′ ∨φ′′ → ans(φ′, t,u)∪ans(φ′′, t,u)
7 | ∃xφ → {ν : dom(ν) = dom(ν′)\x,ν = ν′|dom(ν)\x,ν′ ∈ ans(φ, t,u)}
8 else /0
9 in
10 ans(φ, t,root(t))

Figure 5. Answering algorithm with implicit memoization

instance composition of XPath formula, Monadic Dat-
alog programs or node selection automata. We proved
our language to capture MSO as soon as the underlying
monadic query language capture MSO too. We proved
the satisfiability problem to be NP-hard and proposed
an efficient fragment E (L) of the composition language
which remains MSO-complete as soon as L captures
MSO. We gave an algorithm for the query answering
problem in time O(M(φ, t)|t||φ|+ |φ|2|t|2|φ(t)|), where
|φ(t)| is the output size and M(φ, t) is the maximal com-
plexity of the query answering problem over subtrees of
t, of the monadic queries appearing in φ.

8.2 Future Work.

A more practical aspect is the extension of the exist-
ing implementation of query composition to the algo-
rithms in Section 7 and the comparison of their query
answering efficiencies with other querying languages,
such as implementations of XQuery, and programming
languages such as CDuce .

We would like to investigate the correspondence – men-
tioned in Section 4 between the underlying query for-
malism of Lixto and our query composition language
over Monadic Datalog programs. In particular, we think
that there exists a systematic translation between the two
formalisms.

Finally, in some cases it seems to be more efficient to
have the possibility to navigate everywhere in the tree,
without restriction on subtrees. The binary query exam-
ple given in Section 3, on the tree of figure 1 seems to
be more natural when one first selects a node labeled by
name, and then its sibling. In this way it is interesting
to investigate the more general problem of binary query
composition.

We would like to thank Manuel Loth who worked on the
implementation of monadic query composition.

9 References

[1] Robert Baumgartner, Sergio Flesca, and Georg
Gottlob. Visual web information extraction with
lixto. In 28th International Conference on Very
Large Data Bases, pages 119–128, 2001.

[2] Véronique Benzaken, Giuseppe Castagna, and
Alain Frisch. Cduce: an XML-centric general-

purpose language. ACM SIGPLAN Notices,
38(9):51–63, 2003.

[3] Julien Carme, Aurlien Lemay, and Joachim
Niehren. Learning node selecting tree transducer
from completely annotated examples. In 7th Inter-
national Colloquium on Grammatical Inference,
volume 3264 of Lecture Notes in Artificial Intel-
ligence, pages 91–102. Springer Verlag, 2004.

[4] Giuseppe Castagna. Patterns and types for query-
ing XML. In 10th International Symposium
on Database Programming Languages, Lecture
Notes in Computer Science. Springer Verlag, Au-
gust 2005.

[5] Markus Frick and Martin Grohe. The complex-
ity of first-order and monadic second-order logic
revisited. In Proc. LICS ’02: Proceedings of the
17th Annual IEEE Symposium on Logic in Com-
puter Science, pages 215–224, Washington, DC,
USA, 2002. IEEE Computer Society.

[6] G. Gottlob, C. Koch, R. Baumgartner, M. Her-
zog, and S. Flesca. The Lixto data extraction
project - back and forth between theory and prac-
tice. In 23rd ACM SIGPLAN-SIGACT Symposium
on Principles of Database Systems, pages 1–12.
ACM-Press, 2004.

[7] G. Gottlob, C. Koch, and K. Schulz. Conjunctive
queries over trees, 2004.

[8] Georg Gottlob and Christoph Koch. Monadic
datalog and the expressive power of languages
for web information extraction. In 21rd ACM
SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems, pages 17–28. ACM-
Press, 2002.

[9] Georg Gottlob and Christoph Koch. Monadic
queries over tree-structured data. In 17th Annual
IEEE Symposium on Logic in Computer Science,
pages 189–202, Copenhagen, 2002.

[10] Georg Gottlob, Christoph Koch, and Reinhard
Pichler. Efficient algorithms for processing xpath
queries. ACM Transactions on Database Systems,
30(2):444–491, 2005.

[11] Haruo Hosoya and Benjamin Pierce. Regular ex-
pression pattern matching for XML. Journal of
Functional Programming, 6(13):961–1004, 2003.

[12] Leonid Libkin. Logics over unranked trees: an

69

overview. In Automata, Languages and Program-
ming: 32nd International Colloquium, number
3580 in Lecture Notes in Computer Science, pages
35–50. Springer Verlag, 2005.

[13] Frank Neven and Jan Van Den Bussche. Expres-
siveness of structured document query languages
based on attribute grammars. Journal of the ACM,
49(1):56–100, 2002.

[14] Frank Neven and Thomas Schwentick. Query au-
tomata. In Proceedings of the Eighteenth ACM
Symposium on Principles of Database Systems,
pages 205–214, 1999.

[15] Frank Neven and Thomas Schwentick. Query au-
tomata over finite trees. Theoretical Computer Sci-
ence, 275(1-2):633–674, 2002.

[16] Joachim Niehren, Laurent Planque, Jean-Marc
Talbot, and Sophie Tison. N-ary queries by tree
automata. In 10th International Symposium on
Database Programming Languages, volume 3774
of Lecture Notes in Computer Science, pages 217–
231. Springer Verlag, September 2005.

[17] J. W. Thatcher and J. B. Wright. Generalized finite
automata with an application to a decision prob-
lem of second-order logic. Mathematical System
Theory, 2:57–82, 1968.

70

Type Checking For Functional XML Programming Without
Type Annotation

(Extended Abstract)

Akihiko Tozawa
IBM Tokyo Research Lab

1623-14, Shimotsuruma, Yamato-shi,
Kanagawa-ken 242-8502, Japan

atozawa@jp.ibm.com

1 Introduction

We discuss the type checking for XML programming with higher-
order functions. Our type checking does not require type an-
notations on programs. This is beneficial for programmers. In
XDuce [HP03] and CDuce [FCB02], programmers always need to
figure out, for all functions in the program, what type annotations
are necessary. This task sometimes becomes very tedious, in par-
ticular, when structures of target XML documents are complex.

To achieve the type checking without type annotation, we use
the tree transducer type-checking technique. In particular, we
employ the high-level tree transducer, first introduced by Engel-
friet [EV88]. We can enjoy much benefits of functional program-
ming with this transducer, because we can use higher order func-
tions. Given input trees, the high-level tree transducer emits func-
tional values.

Our method has two steps. The first step is a conversion from func-
tional programs to high-level tree transducers. The second step is
the inverse type inference, which receives an output XML type and
a high-level tree transducer and creates an input XML type.

• The conversion in the first step is made possible by imposing
restrictions on functional programs. These restrictions ensure
that (1) a program is not allowed to examine what it creates,
(2) a program does not receive more than one input tree, (3)
the number of internal states a program can reach is finite.
These restrictions are obviously necessary, and are even suffi-
cient for the conversion to tree transducers. We impose these
restrictions by using simple types called sorts.

• The key idea for the second step is the abstract interpretation
of values emitted by transducers. For this interpretation, we
start from the finite algebras called binoids. Any XML type
can be captured by some binoid and homomorphism from
XML values to this binoid. Such homomorphism can be ex-
tended to functional values. As far as type-checking is con-
cerned, we always consider functional values under abstract
interpretation by this homomorphism. Our inverse type in-
ference is done by combining Maneth’s algorithm and such
abstract interpretation.

Let us outline the rest of the paper. Section 2 discusses the problem
we deal with in a ML-style functional language. Section 3 gives a
formal discussion and k-level tree transducers. Section 4 gives the
type checking algorithm. Section 5 summarizes the related work.
Section 6 discusses the future work.

2 The Language and Problem

An ML-like Language for XML Programming We first intro-
duce an ML-like yet simply-typed functional language with higher
order functions. This language supports XML programming. In
particular, this language manipulates two XML values, input XML
values and output XML values. Input XML values are only pro-
cessed. We however cannot create input XML values in the lan-
guage, so that such values are always supplied from the outer
world. On the other hand, output XML values, or we can say, non-
observable XML values, are only constructed. We do not have any
method to inspect their structures.

Let us explain the language step by step. As an example, we use the
following program representing the identity tree transformation.

letrec id(i→o) x :=
∗x[if x |= 1 then id x·1 else ()],
(if x |= 2 then id x·2 else ())

in
id

First, we have sorts. In the program, we see a superscript i→ o
appearing on id. This superscript indicates a sort, i.e., simple type,
of the function variable id. Let B = {i,o,B,L}. This B is the set
of base sorts. Sort i corresponds to input XML values. Input XML
values indicate some nodes in the input XML document. Sort o cor-
responds to output XML values. Output XML values are sequences
of XML trees. Sorts B and L are sorts for boolean values and la-
bels, respectively. We use b to range over base sorts. We extend
base sorts B to sorts S(B) for functional values as

S(B) � s ::= b | s→ s

where b ∈ B. We use s to range over sorts. Here→ associates to the
right as usual. Note that in sorts, their constructors i,o,B,L and→,
are just syntactical objects.

In the rest of the paper, we often make sorts of function variables
explicit for readability. In practice, sorts of variables as well as
those of expressions can be, though not uniquely, inferred by known
unification-based algorithms such as the one in a textbook [Mit96].
Note that sorts are not types in this paper – we will introduce types
themselves later.

Next, this language allows the set of specific constant primitives.
They operate on input and output XML values of sorts i and o.

XML instances given as inputs, are seen as binary trees which are
navigated by using the set of primitives. For input XML values of

71

sort i , we define operators ·0, ·1, and ·2 as follows.

a

·0

·1 ·2

b c

This figure illustrates an XML instance a[b[]] ,c[] seen as a binary
tree. Assume that a node x(i) is the root of the above XML instance.
From x, we reach a node labelled by b using x·1, and a node la-
belled by c using x·2, and from these nodes we can move back to
the root node by x·1·0 or x·2·0. Predicates x |= 0, x |= 1 and x |= 2
represent tests whether it is allowed to move to that direction. If
there are no nodes in that direction the test fails. We can also obtain
the label of the node by ∗x. For instance, we have ∗x = a on the root
node x.

For construction of output XML values, we have a constant ()(o)

which represents a null sequence, and two operators; [](L→o→o)

and (,)(o→o→o). The operator [](L→o→o) creates a node �[t] from
the label � and an output XML value t. The operator (,)(o→o→o)

concatenates two output XML values.

Furthermore, the language has the if-construct and equality test on
the finite set of labels. We also have letrec for defining mutually
recursive functions.

Finally, we emphasize what this language does not have. Although
we can convert an XML value x of sort i into the same value of
sort o using id(i→o) x, the conversion in the reverse direction is not
expressed in the language. Namely, the language does not have a
primitive constant of sort o→ i representing this reverse conversion.
Neither we can define a program performing such a conversion. In
general, our language can neither create input XML values, e.g.,
x(i) := a[], nor inspect the information of some output XML values,
e.g., ∗t for an output XML value t.

Using Higher-order Functions In XML programming, the use
of higher order functions have a number of advantages. Here we
look through several use cases of higher order functions through ex-
amples. Note that we later translate functional programs into trans-
ducers, and we here only discuss functions to which such translation
can be applied.

A typical higher order function is the map function, which applies
a function given as an argument to a set of elements at once. In
XML programming, it is particularly useful to have map functions
which apply argument functions to nodes selected by a certain crite-
ria, e.g., children, following siblings, etc. The following functions
chilren and siblings take argument functions of sort i→ o, and re-
turn the concatenation of the results of applications.

children(i→(i→o)→o) x f := if x |= 1 then siblings x·1 f else ()
siblings(i→(i→o)→o) x f := f x ,if x |= 2 then siblings x·2 f else ()

Example 1. For example, when applied to the root node x of an
input tree a[b[] ,c[] ,d[]], children x f returns f (x·1) , f (x·1·2) , f
(x·1·2·2).

Note that functions such as chilren and siblings are usually supplied
as library functions, rather than being a part of the user program.
With such library functions, programmers do not have to deal with
primitive navigation operators such as x·m (x·0, x·1 and x·2).

The function dept in Figure 2 implements the transformation in Fig-
ure 1. The function recursively applies itself to a set of nodes se-
lected by children, root, etc. Readers familiar with XSLT should
be aware that the program is written in a style similar to XSLT pro-
grams.

Not only map functions, but we can also provide library functions
for testing the document structure. For example, a function which
tests the existence of a child node of x(i) with a certain label l(L)

i.e., corresponding to the XPath predicate [x/l], can be written in a
manner similar to the function children.

More generally, we can even implement a deterministic (binary)
tree automaton which tests the substructure of x through the fol-
lowing trick. This function autom takes a transition function trans
and initial state ini as arguments.

autom(i→L→(L→L→L→L)→L) x ini trans :=
trans
(∗x)
(if x |= 1 then autom x·1 ini trans else ini)
(if x |= 2 then autom x·2 ini trans else ini)

The transition function trans l q1 q2 takes a label l, two successor
states q1 and q2, and returns the result of the transition. Here, we
assume that we encode the finite set of states of the automaton as
a subset of the finite label set of sort L. We do not show the de-
tail but this technique can be also extended to implement pattern
match constructs in the style of XDuce based on regular expression
patterns [HP03].

Another interesting application of higher order functions is to use
them for representing XML values containing holes. Such holes
are also called gap in the language JWIG [CMS02]. For instance,
a value p(o→o) represents a (first-order) gapped value whose gaps
can be filled at once by a value v(o) by the application (p v)(o).
E.g., p(o→o) v := dept[v] is a gapped value dept[�] where � is
the position of a gap. This gap can be filled by emp[] as p emp[] =
dept[emp[]].

We can implement a set of gap operators using higher order func-
tions.

(i) gap(o→o) v := v
(ii) nogap(o→o→o) v w := v
(iii) concgap((o→o)→(o→o)→o→o) p q v := p v ,q v
(iv) nodegap(L→(o→o)→o→o) l p v := l[p v]
(v) pluggap((o→o)→(o→o)→o→o) p q v := p (q v)

The gap operators implement the following operations.

Example 2. Some examples on the use of the gap operators. (i)
gap = �. (ii) nogap dept[] is a gapped value dept[] with no
gaps. (iii) concgap dept[�] � = dept[�] ,�. (iv) nodegap comp
dept[�] = comp[dept[�]]. (v) pluggap dept[�] dept[�] = dept[
dept[�]].

The function dept in Figure 2 traverses the input tree many times
due to the call to the root function. Interestingly, a similar function
can be written by the function using gapped values, shown in Fig-
ure 3.1 This function computes an answer by the single traversal.

The earlier examples of higher order functions are just useful in

1In this program we use sort B→ s to implement pairs. It is not
difficult to extend the language with pairs and projections. We do
not do this here for simplicity.

72

writing concise programs. Their use is however not essential. The
last example using gapped values, essentially uses higher order
functions. As Engelfriet observed [EV88], by raising the order of
sorts for output values, i.e., o, o→ o, (o→ o)→ o→ o and so on,
we can arbitrarily increase the expressive power of the language.

Type-Checking Problem Types for XML values, i.e., instances
of sorts i or o, are described by tree regular expressions, such as
τ = (a[b[]∗]∪ c[])∗. For example, id transforms any XML value
into itself, hence a value of type (a[b[]∗]∪c[])∗ into the value of the
same type. This observation is denoted by id : (a[b[]∗]∪ c[])∗ →
(a[b[]∗]∪ c[])∗. For a function with sort i→ o, the type checking
problem f (i→o)

I : υI→ τI can be stated as follows.

Problem 1. (Type checking) Given a program f (i→o)
I , an input type

υI and output type τI, the type checking problem f (i→o)
I : υI→ τI is

to test whether or not the transformation of any XML value of type
υI produces an XML value of type τI.

In understanding Problem 1, we need to clarify the case when the
transformation does not terminate. For example, the program given
in Figure 2 does not terminate if there are occurrences of dept-
nodes inside emp-nodes in the input tree.

comp[
dept[],
emp[akihiko[]],
emp[dept[]]

]

⇒

comp[
dept[
emp[akihiko[]],
emp[
dept[
emp[akihiko[]],
· · ·

We can use the input type υI to guarantee that dept-nodes never
occurs inside emp-nodes, so that the function terminates for any
input of type υI. There is a choice whether or not we include the
non-termination in type errors. In this paper, we chose to include it.

Restrictions on the Functional Language We can solve the type
checking problem for the language introduced so far, when the pro-
gram of interest can be translated into a high-level tree transducer.
Unfortunately, not all programs can be translated into such tree
transducers. We here explain sufficient restrictions on programs
which make this translation possible.

• Any functions or variable f (s) declared in let or letrec as
f (s)x := e, either has their sort s = b or s = s1→ ·· · → sn−1→
b, such that none of s2, ..., sn−1,b are i. Namely, only the first
argument can be of sort i. Note that we do not restrict sorts
in the form i → s to appear other argument positions, e.g.,
children(i→(i→o)→o).

• Any function of sort i→ s must be declared in the top-level
letrec of the program. In other words, they must not be
defined in a letrec within another letrec.

These two restrictions correspond to the fact that the tree transducer
only have a single input parameter (= first restriction) and a finite
set of states (= first and second restrictions). Obviously, we cannot
have a function definition of sort i→ i→ s, because it means that
this function has multiple input parameters (we underline the erro-
neous part). In the translation, functions of sort i→ s are seen as the
finite set of states. This is guaranteed only if there are finitely many
possibilities for such functions. Assume that there is a function f

with sort (i→ s)→ i→ s and g with sort i→ s. In our language,
we can create f g, f (f g) = f 2g, f (f (f g)) = f 3g, and so on. In par-
ticular, we can enumerate such functional values up to f ng, where,
for example, n is the size of the input to the program. This makes
the translation into tree transducers impossible, since the number
of states should not be related to the size of any input. The use of
nested let and letrec for functions of sort i→ s also causes the
same problem.

Let us give another explanation from a different point of view. As
we discussed in the introduction, the decidability results for the tree
transducer type checking come from the fact that the inverse image
f−1
I (τI) of a transformation with respect to a regular language τI,

is always regular. Since the subsumption for regular languages is
decidable, the type checking amounts to check whether υI is con-
tained by f−1

I (τI).

Here, consider the following program which has a sort i→ i→ o.

letrec cmp(i→i→o) x y :=
if not(x |= 2) && not(y |= 2) then ok[] else cmp x·2 y·2
in cmp

This program checks whether two sequences starting from nodes x
and y have the same length (not and && here can be defined using
if). Clearly the inverse image of such a program for τI = ok[] does
not have a regular property. For example, we cannot test by means
of tree automata, if a tree l[t1] , t2 has the width of t1 is equal to the
width of t2. This is the source of difficulty with programs having
sorts such as i→ i→ o.

3 Values, Tree Automata and High-level tree
transducers

We introduce XML values, and then tree automata which are the
model of XML types. The high-level tree transducer is the model
of XML transformations as given, using a functional language, in
examples in the last section. We discuss its syntax and semantics in
the latter half of this section.

Here are some notations used throughout. We consistently use bold
font, e.g., a, to emphasize meta-variables denoting words or tuples.
We use ε ∈ A∗ for an empty word, and an associative operator (·) for
word concatenation. We let B = {true, false} be the set of boolean
values. This B appears in the text, so that there should be no confu-
sion with the symbol B appearing in sorts.

XML Values An XML value is a sequence of unranked ordered
trees over the finite set L of labels. The set of XML values is defined
as follows.

V � t ::= () | �[t] | t , t
where � ∈ L. We omit () if it is directly enclosed in �[]. We assume
that , is associative and () is an identity. As explained earlier,
an XML value can also be seen as a binary tree, since each t is
represented either as �[t1] , t2 or (). For each t, its domain dom(t) ⊆
{1,2}∗ is the set of locations, when seen as a binary tree, of that tree.
We define the set of tree nodes U by

U =
⋃
t∈V

(
{t}×dom(t)

)
.

That is, U is the set of all nodes in all trees. The label of a node
u ∈ U is denoted by ∗u ∈ L. We can move inside XML trees by the

73

comp[
dept[],
emp[akihiko[]],
emp[yoshinori[]]

]

⇒

comp[
dept[
emp[akihiko[]],
emp[yoshinori[]]

]
]

Figure 1. The dept-transformation. Namely, we collect all nodes labelled emp, as well as subtrees of such emp-nodes, and put them into all
dept-nodes in the document.

letrec
(∗ libraries ∗)

children(i→(i→o)→o) x f := if x |= 1 then siblings x·1 f else ()
siblings(i→(i→o)→o) x f := f x ,if x |= 2 then siblings x·2 f else ()
root(i→(i→o)→o) x f := if x |= 0 then root x·0 f else f x

(∗ user program ∗)
dept(i→o) x :=
if ∗x = dept then dept[root x emp]
else if ∗x = emp then ()
else ∗x[children x dept]

emp(i→o) x :=
if ∗x = emp then ∗x[children x dept]
else children x emp

in
dept

Figure 2. Function dept x first looks at the label of the node x. If it is dept, the function creates a copy of this dept-node, in which it puts
the result of call to the function emp at the root. If the label is emp the function dept skips this node, and otherwise it creates the copy of the
given node. The function emp collects and copies all emp nodes inside the tree. This function emp has some problem, because it again calls
dept to copy its substructure. See the Type-Checking Problem paragraph.

letrec
...
(∗ user program ∗)

deptgap(i→B→o→o) x :=
let n(B→o→o) b := nogap () in
let p(B→o→o)

1 := if x |= 1 then deptgap x·1 else n in

let p(B→o→o)
2 := if x |= 2 then deptgap x·2 else n in

let l(L) := ∗x in
let p(B→o→o)

0 b :=
if b then
if l = dept then

concgap (nodegap dept gap) (p2 true)
else if l = emp then

p2 true
else

concgap (nodegap l (p1 true)) (p2 true)
else
if l = emp then

pluggap (concgap (nogap (p1 true ())) gap) (p2 false)
else

pluggap (p1 false) (p2 false)
in p0

dept(i→o) x :=
let p := deptgap x in
p true (p false ())

in
dept

Figure 3. A similar function as the one in Figure 2, using first order gapped values. The function deptgap returns p(B→o→o) which represents
two gap values, namely p true and p false. For example, for the left hand side document of Figure 1, deptgap returns a pair of gapped values
p true = comp [dept[�]] and p false = emp[akihiko[]] ,emp[yoshinori[]] ,�. They are finally plugged by p true (p false ()) and create the
resulting document on the right hand side of Figure 1.

74

operator (·m) (m = 0,1,2). For k ∈ dom(t)

(t, k)·m = (t, k·m) if m = 1,2 and k·m ∈ dom(t)
(t, k·k)·m = (t, k) if m = 0 and k = 1,2
u·m = ⊥ otherwise

The value ⊥ here represents a non-existing node such that ⊥ � U.
Finally, the set of root nodes Λ(U) ⊆ U is a set {(t, ε) | t ∈ V}.

XML Types and Tree Automata We introduce XML types.
Each XML type represents a certain set of XML values. We use
metavariables τ,υ for ranging over XML types throughout the pa-
per. As a candidate of models of XML types, we have tree regular
expressions as defined by Hosoya et al. For � ∈ L, and α ranging
over a set of type variables, tree regular expressions use the syntax
such as

TXML � τ,υ ::= () | �[τ] | τ ,τ | τ∪τ | τ∗ | letrec α := τ; ... in τ | α
Example 3. This is an example of XML type. By constraining input
XML values, this type guarantees the termination of the program
dept in Figure 2.

letrec ds := dept[es]∗; es := emp[]∗ in comp[ds]

It says that the root node is always comp and in which we have a
sequence of dept nodes. Inside depts, we have emp nodes, and so
on.

In this paper, we do not directly discuss the semantics �τ�⊆V of the
above syntax. Instead, we introduce tree automata which is well-
known as a canonical model of XML types τ. Here we actually
introduce three forms of them. The first one is the most standard.

Definition 1. A (total) non-deterministic tree automaton M =
(Q,L,∆,F,•) is a tuple where ∆ ⊆ L × Q × Q × Q is a set of
transitions, F ⊆ Q is a set of final states and • ∈ Q is an ini-
tial state. A mapping µ ∈ U → Q is called a run of M if
(∗u,µ(u),µ(u·1),µ(u·2)) ∈ ∆ for any u ∈ U, where we define µ(⊥) =
•. An XML value with root node u ∈ Λ(U) is accepted if there is a
run µ such that µ(u) ∈ F.

We can assume for each XML type τ that we have a tree
automaton M(τ) which defines the semantics �τ� = {t ∈ V |
t accepted byM(τ)}. This is a standard assumption in the study
of typed XML programming. See Hosoya et al. [HVP00], for this
detail.

The second model of XML types has a form of algebra whose do-
main is finite. This algebra is called binoid [PQ68] in the literature,
and is similar to syntactic monoid [Per90] for word languages. We
employ this representation as a canonical model of output XML
types in the type inference algorithm in Section 4. As we can see
from the definition, this algebra classifies a set V of XML values
into a certain set of finite equivalence classes. The equivalence
classes are still diverse enough to check whether or not, an arbitrary
XML construction creates the result inside �τI�. In other words, bi-
noids provide the means of abstract interpretation of XML values.

Definition 2. A binoid for τI is an algebra V(τI) = (V,•,F,
([]), (,)) such that (1) V is a finite set, • ∈ V and F ⊆ V, and
(2) (V, (),�τI�, ([]), (,)) is homomorphic to V(τI). That is, we
have a mapping (◦) ∈ V →V satisfying (i) ()◦ = •, (ii) v ∈ �τI� iff
v◦ ∈ F, (iii) (�[t])◦ = �[t◦], and (iv) (t , t′)◦ = t◦ , t′◦.

An algorithm, given a non-deterministic tree automaton represent-
ing τI, that constructs one binoid satisfying the above definition is

known. For binoidsV(τI) with homomorphism ◦, in what follows,
we often use ()◦ and �τI�◦ instead of • and F above, respectively.

Example 4. Consider the XML type comp[ds] in Example 3. Here,
we give one binoid corresponding to this XML type. We here take
a certain set of tree regular expressions as the domain of the binoid
V(comp[ds]). In the following, assume that τE represents a type
for values that do not belong to other elements in the domain of
V(comp[ds]).

V = {(),dept[es]+,emp[]+,comp[ds], τE}
()◦ = ()
�comp[ds]�◦ = {comp[ds]}

[] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dept,emp[]+ �→ dept[es]+

dept, () �→ dept[es]+

comp,emp[]+ �→ τE
...

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(),dept[es]+ �→ dept[es]+

dept[es]+,dept[es]+ �→ dept[es]+

...

⎫⎪⎪⎪⎬⎪⎪⎪⎭
We can confirm that thisV(comp[ds]) satisfies Definition 2 by using
(◦) ∈ V →V(comp[ds]) such that t ∈ �t◦�. For example, take t =
dept[] , dept[]. We have (t , t)◦ = dept[es]+ = dept[es]+ , dept[
es]+ = t◦ , t◦.

We lastly give yet another form of tree automaton, which can be
efficiently converted into a non-deterministic tree automaton. This
automaton provides a trick which will be used at the last step of the
type inference algorithm as the model of inferred input XML types.
A short explanation of the automaton is that (1) it is a variant of
deterministic 2-way tree automaton; (2) it allows cyclic runs; and
(3) the transition function can look at a set of locations in the tree
bounded by the finite set Mov.

We first explain the transition function δ of the look-around tree
automaton. This δ takes as an argument, a set of information (the
state-label pair) for each node u·mi at the relative position mi in
Mov = {m1,m2, ...mn}, and returns the state for the node u.

u

label : *u·mi

state : µ(u·mi)

Mov = {m1, m2 , ... , mn}

mi

δ

state : µ(u)

For each node u, this set of information is given as a look-around
function, say h ∈Mov→ (L×Q)⊥ (= (L×Q)� {⊥}). This h takes
an argument m representing a relative position, and returns the pair
of the label of, and the state assigned to, the node u·m. If there is
no node at m i.e., u·m= ⊥, this h returns ⊥.

Definition 3. A look-around tree automaton is M = (Q,L,Mov,
δ,F) such that Mov ⊂ {0,1,2}∗ is a finite set of moves, δ ∈ (Mov→
(L×Q)⊥)→ Q is a transition function. A mapping µ ∈ U → Q is
called a run of M, if µ(u) = δ(h) for all u ∈ U, where the look-
around function h ∈Mov→ (L×Q)⊥ for this u, is defined from µ
as

h(m) = (∗u·m,µ(u·m)) if u·m ∈ U
h(m) = ⊥ otherwise

75

Term(C,X) � e ::=
| c (c ∈C, constants)
| x (x ∈ X, variables)
| ee (application)
| if e then e else e (conditional)
| letrec f x := e; · · · in e (recursive def.)

Con(L) � c ::=
| true(B), false(B) (boolean constants)
| �(L) (� ∈ L, label constants)
| (=)(L→L→B) (label equality)
| ()(o) (empty tree)
| ([])(L→o→o) (node constructor)
| (,)(o→o→o) (tree concatenation)

Figure 4. Definition of Term(C,X) and Con(L).

The automaton accepts u iff µ(u) ∈ F for some µ.

Example 5. A deterministic tree automaton uses a transition func-
tion δ ∈ L × Q × Q → Q instead of the transition relation ∆ ∈
L×Q×Q×Q of non-deterministic tree automaton. A deterministic
tree automaton (Q,L, δ,•,F) is an instance of look-around automa-
ton. For this, define the transition function δ′ of the look-around
automaton (Q, {ε,1,2},L, δ′,F), as

δ′(h) = δ(lab(h(ε)),st(h(1)),st(h(2)))

where lab(�,q) = �, st(�,q) = q and st(⊥) = •. Note here that we
always have h(ε) � ⊥ because h is computed for each u ∈ U,

Look-around tree automata can be efficiently converted into non-
deterministic tree automata. This is formalized by the following
proposition.

Proposition 1. Look-around tree automata accept exactly regular
tree languages. In particular, they can be efficiently converted into
non-deterministic tree automata.

Proof. GivenM = (Q,L,Mov, δ,F). Without loss of generality, we
assume that Mov is prefix-closed, i.e., m·m ∈Mov⇒ m∈Mov. We
create a non-deterministic tree automatonM′ = ((Mov→ (L×Q)�
⊥)� {•}(= Q′),L,∆,F′,•) which accepts the same language asM.
We define ∆ so that (�,h0,h1,h2) ∈ ∆ iff (i) h0(ε) = (�,δ(h0)), (ii)
h0(k) = ⊥ iff hk = •, (iii) hk(0) � ⊥ if hk � •, and (iv)

h0(m·k) = hk(m) (m·k ∈Mov)
hk(m·0) = h0(m) (m·0 ∈Mov)

where k = 1,2 and •(m) = ⊥ for all conditions (i-iv). We define
F′ = {h | st(h(ε)) ∈ F} where st(�,q) = q (always h(ε) � ⊥). Note
here that if µ′ ∈ U →Q′ is a run ofM′ then µ ∈ U →Q defined by
µ(u) = snd(µ′(u)(ε)) is a run ofM. If µ ∈U→Q is a run ofM then
define µ′ by µ′(u)(ε) = (∗u,µ(u)) and µ′(u)(m) = µ′(u·m)(ε).

High-level Tree Transducer We introduce the high-level tree
transducer as a model of XML transformation. Type checking for
XML transformations in high-level tree transducers is decidable.

Tree transducers are tree automata with outputs. Recall that tree
automata assign states to nodes. Another way to look at this is
that tree automata associates state-node pairs with boolean values.
That is, a state-node pair (q,u) is associated with the truth value

exactly when q is assigned to u. On the other hand, tree transducers
associate each such pair with an output value. For example, the
identity function id given earlier, can be seen as a very simple tree
transducer. This tree transducer has one state, say id, and for each
node u in the input tree, id is associated with an output tree identical
to the subtree of u.

High-level tree transducers provide an extension of tree transducers.
The distinction is that each evaluation step of the transducer creates
a functional value rather than a tree value. In this sense, high-level
tree transducers are closer to functional programs.

A rule of high-level tree transducer is of the form f : y� e where
f is a state, y is a sequence of parameter variables, and e is called
a term. Here is an example of the rule, which corresponds to a
function given in Section 2.

autom :(i→L→(L→L→L→L)→L) ini trans �
trans
(∗)〈ε〉
(if (|= 1)〈ε〉 then autom〈1〉 ini trans else ini)
(if (|= 2)〈ε〉 then autom〈2〉 ini trans else ini)

In this example, autom is a state, ini and trans are parameter vari-
ables, and trans(... ini) is a term. As we can see from above, a
term is almost an expression of the functional language. Terms also
should be well-sorted, cf., the definition of sorts S(B) in Section 2.
The only difference is that sorts for terms do not have any occur-
rences of i. Parameter variables y are also the same as those in let
and letrec. They just abbreviate λ-abstractions, i.e., f : y� e is
equivalent to f : �λy : e or f : �let g y := e in g.

The meaning of autom〈1〉, (∗)〈ε〉, (|= 2)〈ε〉, etc. in terms are sup-
plied by looking into neighbor nodes. For example, the meaning of
autom〈m〉 is supplied by evaluating the state autom at relative posi-
tion m. Similarly, the meaning of (∗)〈m〉 is the label of the node at
relative position m. And, the meaning of (|= 2)〈m〉 is whether or not
|= 2 holds at relative position m. Recall that the meaning of the tree
transducer is given at each node u ∈ U. Therefore, when this node
u is supplied, such relative positions 1 and ε are interpreted by u·1
and u·ε = u, respectively.

We call an arbitrary set X whose each element is associated with a
sort, as sorted set,

• Figure 4 defines the sorted set Term(C,X) of terms over sorted
sets C and X of constants and variables, respectively. We re-
quire that each term to be well-sorted in the usual sense for
simple types.

• Figure 4 also defines a sorted set of basic constants Con(L)
over a set of labels L.

Let N be a set of states, C be a set of constants which may include
Con(L), and Mov ⊆ {0,1,2}∗ be a set of moves. We call (|= m) and
(∗) predicates, whose set is denoted by P. We define (N�P)〈Mov〉
to be a set of pairs in the form n〈m〉 such that n ∈ N � P and m ∈
Mov. Each term e appearing in the rule f : y� e, is an element of
Term(C, y� (N �P)〈Mov〉).
Let us define the high-level tree transducer. Note that our high-level
tree transducers are not exactly equivalent to transducers by Engel-
friet [EV88]. An essential difference is that our tree transducer is a
tree-walking transducer with upward moves inside the input tree us-
ing (·0)-operator. Also our transducer allows the recursive inspec-
tion of the input tree. For example, the function autom in Section 2

76

cannot be captured by the Engelfriet’s definition of the deterministic
high-level tree transducer which is a top-down tree transducer. This
is comparable to the transducer with regular look-ahead [Eng77],
which in our case, is regular look-around.

In the following, for each sorted set X, we denote by X(s), a subpart
of X whose elements are associated with sort s.

Definition 4. A (look-around deterministic) high-level tree-trans-
ducerH over a finite set of labels L is a tupleH = (B,N,C,P,Var,
Mov, f

I
,R) where

• B is a set of base sorts. We have o,L,B ∈ B, but not i ∈ B. In
the following, all elements of sorted sets have sorts in S(B).

• N is a sorted set of states.

• C is a sorted set of constants. We have Con(L) ⊆C.

• P ⊆ {(|= m) | m ∈ {0,1,2}} � {(∗)} is a set of predicates. Predi-
cates (|= m) and (∗) are associated with sort B and L respec-
tively.

• Var is a sorted set of variables.

• Mov ⊆ {0,1,2}∗ is a finite set of moves.

• f
I
∈ N is an initial state.

• R is a finite set of rules in the form f : y� e.
– For each f ∈ N, we have exactly one rule in R.
– If f ∈ N(s1→ ·· · → sn) and y = y1, ...,yn−1, we have (i) y j ∈
Var(s j) for j ∈ 1..n−1, (ii) e ∈Term(C, y�(N�P)〈Mov〉)(sn).

We do not fix the set of base sorts B, so that we can add a new sort.
However we always require that such sorts are associated with finite
domains. See Figure 6.

Functional programs introduced and satisfying the restriction in
Section 2, can be translated into high-level tree transducers. Recall
that those programs are already in the similar shape to the trans-
ducer, i.e., functions of sort i→ s only occur at top-level letrec.
Therefore, the translation is straightforward. We here just give
ideas. See [Toz05] for the detailed steps.

Essentially, what we need is to remove the occurrence of expres-
sions of sort i, i→ i, and i→ s. Functional variables of sorts i→ s
defined in the top-level letrec correspond to the finite set of states
N. Their definitions are easily translated into rules of the tree trans-
ducer. However, variables of sort i→ s may also occur as parameter
variables, e.g., an argument of children(i→(i→o)→o). In this case, we
interpret such variables as variables of a new base sort N. We then
prepare a finite set of constants of sort N, which has one-to-one
correspondence to the state set N. We also prepare the equality
operator (=)(N→N→B) over N.

As a result, we translate programs into transducers with base sorts
B = {o,L,B,N} and constants C = Con(L)�N � {(=)(N→N→B)}.
A program given in Figure 2 is translated into the high-level tree
transducer (B,N,C,P,Var,Mov, fI,R) in Figure 5.

Semantics of High-Level Tree Transducers In the original def-
inition by Engelfriet, the semantics of high-level tree transducers

B = {o,L,B,N}
N =

⎧⎪⎪⎨⎪⎪⎩
children(N→o),siblings(N→o),

root(N→o),dept(o),emp(o)

⎫⎪⎪⎬⎪⎪⎭�P,

P = {(|= 0), (|= 1), (|= 2), (∗)},
C = Con(L)�N �{(=)(N→N→B)}
Var = { f (N)},
Mov = {ε,0,1,2},
fI = dept

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

children :(N→o) f �
if (|= 1)〈ε〉 then siblings〈1〉 f else ()

siblings :(N→o) f �
(if f = dept then dept〈ε〉 else emp〈ε〉),
if (|= 2)〈ε〉 then siblings〈2〉 f else ()

root :(N→o) f �
if (|= 0)〈ε〉 then root〈0〉 f else
if f = dept then dept〈ε〉 else emp〈ε〉

dept :(o) �
if ∗〈ε〉 = emp then ()
else if ∗〈ε〉 = dept then dept[root〈ε〉 emp]
else ∗〈ε〉[children〈ε〉 dept]

emp :(o) �
if ∗〈ε〉 = emp then ∗〈ε〉[children〈ε〉 dept]
else children〈ε〉 emp

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Figure 5. A high-level tree transducer corresponding to the func-
tion dept in Figure 2

is given by means of the rewrite system, which corresponds to the
operational semantics. In this paper, we give a denotational seman-
tics. This gives a clear meaning to functional values emitted by the
high-level tree transducer.

In the denotational semantics, a transducer H has a meaning on
each node u in U, which is an assignment ρ ∈ (N � P)(·)→D�·�
such that each element in subset N(s) of states, as well as P(s) of
predicates, is associated with an element in D�s�. Here D�s� is
the cpo-based semantic domain given in Figure 6. In other words,
D�s� is the set of functional values of sort s. See the end of this
paragraph. The above meaning to each node is given by the follow-
ing function semH : U → (N �P)(·)→D�·�.

Definition 5. Given H = (B,N,C,P,Var,Mov, f
I
,R). The mean-

ing function semH : U → (N �P)(·)→D�·� is defined as the least
solution satisfying the following equations. For any f ∈ N such that
(f : y� e) ∈ R, and (∗), (|= m) ∈ P,

semH (u)(∗) = ∗u
semH (u)(|= m) = (u·m) ∈ U
semH (u)(f) =D�λy : e�[n〈m〉 �→ semH (u·m)(n)]n∈N�P,m∈Mov

where D�e�ρ is a semantics of term e under ρ given in Figure 7,
in which λy : e abbreviates letrec g y := e in g. In particular,
for the root node u ∈ Λ(U), semH (u)(fI) defines the output of the
transducer.

The definition of D�e�ρ is the standard cpo semantics of simply-
typed call-by-value languages [Mit96].

Let us briefly recall this semantics. A cpo (X,�) is a poset whose
any directed subset has the lub. Starting from flat cpos D�b� for

77

D�o� = V⊥
D�b� = b⊥ where b � o
D�s′ → s� = (D�s′�→⊥ D�s�)⊥

Figure 6. Semantic domains

D� � ∈ Term(C,X)(·)→ (X(·)→D�·�)→D�·�
D�x�ρ = ρ(x)
D�c�ρ = c
D�ee′�ρ = D�e�ρ(D�e′�ρ)

D�if e then e′ else e′′�ρ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D�e′�ρ ifD�e�ρ = true
D�e′′�ρ ifD�e�ρ = false
⊥ otherwise

D�letrec θ in e�ρ = D�e�lfp(ζθ,ρ)
where
ζθ,ρ′ (∈ (X(·)→D�·�)→ (X(·)→D�·�)) = λρ :
ρ′[f �→ λv ∈D�s1, ..., sn−1� :D�e�ρ[x �→ v]](f (s1→···→sn) x:=e(sn))∈θ

Figure 7. Semantics of terms in Term(C,X)

A�o� = V(τI)⊥
A�b� = D�b� where b � o
A�s′ → s� = (A�s′�→⊥ A�s�)⊥

Figure 8. Abstract semantic domain

base sorts, we can obtain cpos for function spaces D�s′ → s�. Par-
tial orders for functions are defined as f � g iff ∀x : f (x) � g(x). In
the case of call-by-value, we use a strict function space A⊥ →⊥ B⊥
(� A→ B⊥) such that f ∈ A⊥ →⊥ B⊥ satisfies f (⊥)=⊥, i.e., the ap-
plication of a function to an error value results in an error value, i.e.,
non-termination. In the cpo-based semantics, the meaning of recur-
sive functions is the least fixpoint of some equations. The above
semH is indeed such a least fixpoint.

4 Type Checking

So far, we have introduced three tools, namely

• Binoids with homomorphism ◦,
• Look-around tree automata, and

• Tree-transducer and its semantics.

Here we connect these tools and derive our type inference algo-
rithm. In particular, the key idea is the extension of the homomor-
phism ◦ for binoids to functional spacesD�s′ → s�.

As we discussed, a common technique to the tree transducer type
checking is based on the inverse type inference. In the case of
tree transducers or macro tree transducers (mtts), the inverse image
f−1
I (τI) is regular. The expressiveness of high-level tree transducers

is the same as k-composition of mtts [EV88], where k is the height
of sorts. Therefore the inverse image f−1

I (τI) should be a regular
language also for high-level tree transducers. However, as far as we
know, there is no direct construction algorithm of the inverse image
of high-level tree transducers. We give one such construction here.

Maneth [Man04] gave a simple algorithm for inferring regular in-
verse images for deterministic mtts. His idea was to run the au-

tomaton, representing τI, on the term e of the rule f : y� e. In his
case, this term defines a tree value, while in our case, it defines a
functional value. To interpret e in our case, we extend the homo-
morphism ◦ between the set of XML values V and the binoidV(τI).

Extending Homomorphism ◦ to Functional Space Given a
type τI, we can obtain a finite binoidV(τI) with the homomorphism
◦ from V to V(τI). This homomorphism is seen as an abstraction
function from infinite values to finite elements.

Here let us extend this definition of ◦ to domains D�s� where s is
other than o. We define the domain of images of ◦ as in Figure 8,
so that for v ∈ D�s� we have v◦ ∈ A�s�. Then, the idea is to define
◦ ∈ D�·�→A�·� so that it further satisfies

v◦(v′◦) = (v(v′))◦

for v ∈ D�s′ → s� and v′ ∈ D�s′�.
Example 6. We assume the binoid V(comp[ds]) in Example 4.
Let us consider gapped values of sort o → o. For example, p =
comp[dept[�]] (∈ D�o → o�). What we need here is to define
p◦ ∈ (V(comp[ds])⊥ →⊥ V(comp[ds])⊥)⊥ (=A�o→ o�) as a func-
tion.

p◦(a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
comp[ds] if a = emp[]+ or a = ()
τE otherwise, a � ⊥
⊥ a = ⊥

This function indeed satisfies p◦(v′◦) = (p(v′))◦ for v′ ∈ V. For ex-
ample, assume v′ = dept[]. We have p◦(v′◦) = p◦(dept[es]+) = τE,
and (p(v′))◦ = (comp[dept[dept[]]])◦ = τE.

Note that the homomorphic images A�s� of D�s� are finite sets.
The function ◦ gives a way to interpret each values as abstract val-
ues. Such abstract values are suitable for analysis, because they are
finitely enumerable.

Definition 6. The abstraction function ◦ ∈ D�·�→A�·� is a par-
tial function defined as follows. We use the induction of the size of
s in extending ◦ toD�s�→A�s�.
• v◦ = v (∈ A�b�), if v ∈ D�b� for b ∈ B\ {o}.
• A value v ∈ D�s′ → s� is in the domain of ◦ written v ∈

Dom(◦), if for any v′ and v′′ (∈ Dom(◦)∩D�s′�) such that
v′◦ = v′′◦, this v satisfies (v(v′))◦ = (v(v′′))◦.

• For v ∈Dom(◦), we define v◦ (∈A�s′ → s�) to be the function
defined as v◦(v′◦) = (v(v′))◦.

The above definition, however, seems incomplete, since it just says
that we ignore values v � Dom(◦). That is, values do not satisfy the
desired property. What is more interesting is the following result.

Lemma 1. [Toz05] For any ◦, all outputs v (∈D�s�) of transducers
are in Dom(◦).

From this lemma, we can show that any output of transducers of sort
o→ B is a constant function. We take a singleton setV = {•} as the
homomorphic image of V . Then for any t, t′, we have t◦ = t′◦ = •,
so that f (t) = (f (t))◦ = (f (t′))◦ = f (t′). We belive that this is the
meaning of non-observability of output values of sort o.

Negative Inverse Type Inference The remaining steps of the
type inference algorithm are as follows.

78

• Interpreting the meaning function semH by ◦, and obtain
sem◦H .

• Defining the look-around tree automatonM capturing sem◦H .
ThisM gives the result of type inference.

Accurately speaking, what the above M represents, is a negative
inverse image f−1

I (V \τI). This is fortunate. After we inferred such
an image, what we need is the emptiness check, known to be effi-
cient.

�υI�∩� f−1
I (V \τI)� = ∅

If this holds, the type checking succeeds. If M was f−1
I (τI), the

above emptiness check turns to the containment test, which is not
always efficient. We later explain why our construction creates an
automaton for such a negative image.

First, we interpret the semantic function semH by means of ◦ just
introduced. Indeed, this can be done. This gives a function sem◦H
(∈ U → (N � P)(·)→A�·�) which satisfies, for all u ∈ U and n ∈
N �P

(semH (u)(n))◦ = sem◦H (u)(n)

cf., Lemma 2(a). The definition of sem◦H in Figure 9 is exactly the
copy of Definition 5 while it uses operators onV(τI).

What remains is to define the look-around automaton that captures
this sem◦H . The resulting automaton is given in Figure 10. This
automaton has its state set Q = (N�P)(·)→A�·�. This set Q clas-
sifies the nodes of the input XML tree according to the (abstract)
output value of the transducer at its each state. A run of M gives
one such classification of nodes in the input XML tree. Now, recall
that the same information was given by sem◦H , which defines the ab-
stract semantics of the transducer for each state-node pair. Indeed,
this automaton captures sem◦H in the sense that sem◦H is always a
run ofM. Confirm that the run of automaton µ ∈U→Q and sem◦H
(∈U→ (N�P)(·)→A�·�) has the same signature. Also notice the
similarity between the transition function δ ofM and the definition
of sem◦H . This δ is defined so that it simulates sem◦H .

As readers may expect, thisM exactly defines the negative inverse
image we want.

Lemma 2. [Toz05] (a) For all u ∈ U and n ∈ N � P, we have
(semH (u)(n))◦ = sem◦H (u)(n). (b) sem◦H is the least run ofM. (c)
The automatonM in Definition 8 accepts u iff semH (u)(fI) � �τI�.

The detailed proof is omitted here. Here we just note why we need
to infer the negative inverse image. This is related to our treatment
of non-termination as error, cf., Section 2.

In Definition 8, we define the final states F of M negatively, i.e.,
acceptance means type error. Note that if the program is correct,
i.e., semH (u)(fI) ∈ �τI�, then sem◦H should also give the correct re-
sult in �τI�◦. From the above lemma (b), if sem◦H gives the correct
result, i.e., is a non-accepting run ofM, then “any run” is also non
accepting. This shows the only-if direction of Lemma (c) (the other
direction is easy).

Now, assume that we include ⊥ (non-termination) to the correct
result. In this case, we cannot say more than “some run is correct”
from the fact that sem◦H gives the correct result. In fact, in this case,
we must have defined the set of final states ofM positively.

Definition 7. The abstract meaning function sem◦H : U → (N �
P)(·)→A�·� is the least solution of the following equations. For
any f ∈ N such that (f : y� e) ∈ R, and (∗), (|= m) ∈ P,

sem◦H (u)(∗) = ∗u
sem◦H (u)(|= m) = (u·m) ∈ U
sem◦H (u)(f) =A�λy : e�[n〈m〉 �→ sem◦H (u·m)(n)]n∈N�P,m∈Mov

whereA�e�ρ is an abstract semantics of term e under ρ given simi-
larly to Figure 7, except that it uses operators on abstract semantic
domains.

Figure 9. The abstract meaning function sem◦H

Definition 8. Given a transducer H , and a binoid V(τI), we de-
fine a look-around automatonM = (Q,L,Mov, δ,F) as follows.
• Mov,L are the same asH ,
• Q = (N �P)(·)→A�·�,
• δ ∈ (Mov→ (L×Q)⊥)→Q is defined as
δ(h)(|= m) = (h(m) � ⊥)
δ(h)(∗) = lab(h(ε))
δ(h)(f) =A�λy : e�[n〈m〉 �→ st(h(m))(n)]n∈N�P,m∈Mov

for all f : y� e ∈ R
where lab(�,q) = �, st(�,q) = q and lab(⊥) = st(⊥) = ⊥.

• F = {ρ ∈ Q | ρ(fI) � �τI�◦}.
Figure 10. The definition of the inferred automatonM

Running Example We apply the algorithm explained so far to
a small example. We use the following type checking problem id :
υI→ τI. Let L = {a,b}.
• The function id is translated into the following transducerH =

(B,N,C,P,Var,Mov, f
I
,R) with one rule

id(N→o) : �
((∗)〈ε〉[if (|= 1)〈ε〉 then id〈1〉 else ()),
if (|= 2)〈ε〉 then id〈2〉 else ()

We have N = {id}, P = {(∗), (|= 1), (|= 2)}, Mov = {ε,1,2} and
f
I
= id.

• υI = b[a[]], and

• τI = letrec α := a[α]∗ in α.

We haveV(τI) = {(),a[α]+, τE}.
For this problem, we compute the look-around automaton in Defi-
nition 8 whose transition function δ is shown below. The state set Q
ofM is a set of mappings (N�P)(·)→A�·�, so that the transition
function δ ∈ ({ε,1,2}→ (L×Q)⊥)→Q, given h ∈ {ε,1,2}→ (L×Q)⊥
again returns functions.

δ(h)(|= 1) = (h(1) � ⊥)
δ(h)(|= 2) = (h(2) � ⊥)
δ(h)(∗) = lab(h(ε))
δ(h)(id) ={
a[α]+ st(h(ε))(∗) = a and st(h(k))(id) ∈ {⊥, (),a[α]+} (k = 1,2)
τE otherwise

We can convert this automaton M to a non-deterministic tree au-
tomaton using the construction in Proposition 1. We here instead
just test the input type υI usingM.

79

In this case, since υI just defines a single tree with two nodes, the
type checking problem amounts to check whether or notM accepts
the tree b[a[]] with two nodes, u0 = (b[a[]], ε) and u1 = (b[a[]],1).
In this example, we only have one run µ shown below.

µ(u0)(|= 1) = true
µ(u0)(|= 2) = false
µ(u0)(∗) = b
µ(u0)(id) = τE

µ(u1)(|= 1) = false
µ(u1)(|= 2) = false
µ(u1)(∗) = a
µ(u1)(id) = a[α]+

Now we can see that µ(u0)(id) � �τI�◦. So this run is an accepting
run of M. Thus the type checking id : υI → τI in this case is not
successful.

5 Related Work

Milo et al. [MSV00] first propose a solution, based on inverse
type inference, to the type checking for XML programming mod-
eled by tree transducers. Milo et al. solve this problem for k-
pebble transducers. The k-pebble transducers are in theory k+ 1-
fold composition of mtts [Man04], and it is comparable to high-
level tree transducers, which is also represented by k-composition
of mtts where k is the height of sorts [EV88]. Similar ap-
proaches have been studied for different kinds of tree transducers
[Toz01][AMN+01][MN02][MBPS05].

XDuce is a pioneering work [HVP00, HP03] on typed functional
XML programming, which employs type checking with type-
annotation. XDuce is a first order language. Its approach has
also been employed in a number of typed XML processing lan-
guages, including an industrial language such as XQuery. Frisch
et al. [FCB02] extended tree regular expression types in XDuce to
higher order functional types. Their language is called CDuce.

XDuce and CDuce require type annotations. In general, they cannot
solve the type checking problem such as id : a[b[]]→ a[b[]] as it is,
by the following reasons.

• When using XDuce, we can annotate id only by trivial types,
e.g., Any→ Any. For example, when we type-check id against
a[b[]]→ a[b[]], we have to check id also against b[]→ b[].
This is not possible in XDuce which associates a single arrow
type with each recursive function.

• CDuce has intersection types. By giving a type annotation
a[b[]]→ a[b[]]∩b[]→ b[], the function id passes the type
check. It is even possible to prove that id : a[b[]]→ a[b[]]
holds. This is based on their subtyping algorithm.

a[b[]]→ a[b[]]∩b[]→ b[]<:a[b[]]→ a[b[]]
However this process is still not automatic. Users need to
figure out what type annotation is necessary in beforehand.

6 Future Work

As a concluding remark, we note several future directions of this
work.

• Practical use with XML programming

We implemented a prototype type-checker, and tried several
experiments. Our implementation works well for simple pro-
grams using small sorts, such as i → o. Unfortunately, for
programs with larger sorts, the initial result was not promis-
ing. This reflects the time complexity of the algorithm, which
is k-exponential to the height of sorts. However, in practical

programming, it is not so usual to use functions whose order
is more than second. So it is too early to conclude that the ap-
proach is infeasible. Our implementation naively implements
the enumeration of states of automataM in Section 4. We are
currently seeking a different algorithm for the practical use,
i.e., in XML programming languages.

• Connection to the type theory

Type-checking is the central issue of functional programming.
There are many approaches to type-check programs based on
type systems. However, as far as we know, there are no such
type systems which capture the tree transducer type checking
as shown here. In particular, the restrictions as we gave in
Section 2, do not seem to be natural assumptions in the study
of type systems. We are seeking their meaning.

7 Acknowledgment

I thank to anonymous referees for detailed reading and suggestive
comments to the earlier draft of this paper. I also thank to Makoto
Murata for proof-reading this version of the paper.

8 References

[AMN+01] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu.
XML with data values: Typechecking revisited. In
Proceedings of the 20th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Sys-
tems, pages 138–149, 2001.

[CMS02] Aske Simon Christensen, Anders Möller, and
Michael I. Schwartzbach. Static analysis for dynamic
XML. In Proceedings of 1st Workshop on Program-
ming Languages Technology for XML (PLAN-X 2002),
2002.

[Eng77] Joost Engelfriet. Top-down tree transducer with
regular look-ahead. Mathematical Systems Theory,
9(3):289–303, 1977.

[EV88] Joost Engelfriet and Heiko Vogler. High level tree
transducers and iterated pushdown tree transducers.
Acta Informatica, 26(2):131–192, 1988.

[FCB02] Alain Frisch, Giuseppe Castagna, and Veronique Ben-
zaken. Semantic Subtyping. In Proceedings, Sev-
enteenth Annual IEEE Symposium on Logic in Com-
puter Science, pages 137–146. IEEE Computer Soci-
ety Press, 2002.

[HP03] Haruo Hosoya and Benjamin C. Pierce. Regular ex-
pression pattern matching for XML. J. Funct. Pro-
gram., 13(6):961–1004, 2003.

[HVP00] Haruo Hosoya, Jérôme Vouillon, and Benjamin C.
Pierce. Regular expression types for XML. In Pro-
ceedings of the International Conference on Func-
tional Programming (ICFP), pages 11–22, Sep., 2000.

[Man04] Sebastian Maneth. Models of Tree Translation. PhD
thesis, Proefschrift Universiteit Leiden, 2004.

[MBPS05] Sebastian Maneth, Alexandru Berlea, Thomas Perst,
and Helmut Seidl. Xml type checking with macro tree
transducers. In PODS 2005, to appear, 2005.

[Mit96] John C. Mitchell. Foundations of programming lan-
guages. MIT Press, 1996.

80

[MN02] Wim Martens and Frank Neven. Typechecking top-
down uniform unranked tree transducers. In ICDT
2002, pages 64–78, 2002.

[MSV00] Tova Milo, Dan Suciu, and Victor Vianu. Type-
checking for XML transformers. In Proceedings of the
19th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 11–22, 2000.

[Per90] Dominique Perrin. Finite automata. In Handbook of
Theoretical Computer Science, volume B, pages 1–57.
1990.

[PQ68] C. Pair and A. Quere. Definition et etude des bilan-
gages reguliers. Information and Control, (6):565–
593, Dec 1968.

[Toz01] Akihiko Tozawa. Towards static type checking for
XSLT. In Proceedings of the 1st ACM Symposium on
Document Engineering. ACM Press, 2001.

[Toz05] Akihiko Tozawa. Type checking for functional XML
programming using high-level tree transducer, 2005.
full paper, in prepation, http://www.trl.ibm.com/
people/akihiko/pub/curry-full.pdf.

81

Accelerating XPath Evaluation against XML Streams

Dan Olteanu
Database Group, Saarland University, Germany

olteanu@cs.uni-sb.de

Streams are an emerging technology for data dissemination in cases
where the data throughput or size make it unfeasible to rely on the
conventional approach based on storing the data before processing
it. Querying XML streams without storing and without decreasing
considerably the data throughput is especially challenging because
XML streams can convey tree structured data with unbounded size
and depth. We demonstrate a novel compile-time optimization of
SPEX [1], an XML stream query processor with polynomial com-
bined complexity. This optimization is achieved by stream filters
that exploit the structural relationships between XML fragments en-
countered along the stream at various processing states in order to
skip large stream fragments irrelevant to the query answer. The effi-
ciency of optimized SPEX is positively confirmed by experiments.

Querying XML Streams with SPEX. SPEX compiles XPath
queries into networks of deterministic transducers, after rewriting
them to forward equivalents. A network for a given forward query
consists of two connected parts. The upper part has the shape of the
query, i.e., it is a sequence if the query is a simple path, a tree if
the query has predicates, and a directed acyclic graph, if the query
has set operators. Each step in the query induces a corresponding
transducer, and each predicate induces a begin-scope transducer in
the network. The upper part is extended with a stream-delivering
in transducer at its beginning, and with an answer transducer af-
ter the transducer corresponding to the last step outside the query
predicates. The lower part is an answer-collecting funnel, i.e., a
subnetwork of auxiliary transducers serving to collect the potential
answers. This funnel mirrors in in out transducers, and begin-scope
in end-scope transducers while preserving their nesting.

Processing an XML stream corresponds to a depth-first, left-to-
right, preorder traversal of its (implicit) tree. Exploiting the affinity
between preorder traversal and stack management, the transducers
use their stacks for remembering the depth of the nodes in the tree.
Thisway, binary relations expressed as axes, e.g., child and descen-
dant, can be computed in a single pass. The transducer network pro-
cesses the stream annotated by its first transducer in, and generates
progressively the output stream conveying the answers to the orig-
inal query. The other transducers in the network process stepwise
the received annotated stream and send it with changed annotations
to their successor transducers. E.g., a transducer child moves the
annotation of each node to all children of that node. The answers
computed by a transducer network are among the nodes annotated
by the answer transducer. These nodes are potential answers, as
they may depend on a downstream satisfaction of predicates. The
information on predicate satisfaction is conveyed by annotations to
the stream. Until the predicate satisfaction is decided, the potential
answers are buffered by the out transducer.

Structural Filters. We exemplify structural filters on a (DBLP-
like) stream containing information about articles possibly followed
only at the very end of the stream by information about books. Con-
sider the SPEX network for a query asking for authors of books
with given prices and publishers. In case the transducer instructed
to find books-nodes, say the books-transducer, encounters such a
node, then it sends it further to its successors, with an additional
non-empty annotation signaling amatch. In case it encounters other
nodes, e.g., article-nodes, then it still sends it further, but with an
empty annotation, signaling a non-match. Either way, all nodes
from the stream reach all transducers from the network, although
this is not necessary. We can reduce the stream traffic between
transducers in (at least) two ways.

1. Because all transducers following the books-transducer in the
network look always for nodes in the stream following the books-
nodes, the query evaluation is not altered, if the books-transducer
sends further only the nodes starting with the first books-node and
ending together with the stream, and the other transducers do the
same for the nodes they are instructed to find relative to nodes found
by their previous transducers.

2. Assume the transducers receiving (directly or indirectly) nodes
from the books-transducer look for nodes to be found only in-
side the fragments corresponding to books-nodes (like their descen-
dants, or siblings of their descendants). Then, the books-transducer
can safely send further only such stream fragments corresponding
to books-nodes.

Both aforementioned approaches to stream traffic minimization can
be easily supported by SPEX extended with special-purpose push-
down transducers, called structural filters. For example, in the sec-
ond case above, a vertical filter, placed immediately after the books-
transducer, sends further only stream fragments corresponding to
books-nodes. Also, in the first case above, this filter can be a di-
agonal filter and send further only stream fragments starting with
an opening tag books. Diagonal filters are not always superseded
by vertical filters, as for the above examples. It is enough to con-
sider a slightly modified example, where the query asks for Web
links following books, thus a following-transducer gets the stream
processed by the books-transducer. Furthermore, if the query con-
strains the Web links to appear at the same depth with books in the
tree conveyed by the stream, then the filter, here a horizontal one,
would send further only the stream fragments corresponding to the
following siblings of the books-nodes.

1 References
[1] F. Bry, F. Coskun, S. Durmaz, T. Furche, D. Olteanu, and M. Span-
nagel. The XML stream query processor SPEX. In Proc. of Int. Conf.
on Data Engineering (ICDE), 2005.

82

An XQuery-based imperative XML
programming language with a

database optimizer

Anguel Novoselsky
Zhen Liu

Daniela Florescu
Oracle Corporation

XML data programming will become an
increasing important problem of the
years to come. The currently proposed
solutions fall in one of the two major
categories: extensions of existing major
programming languages with native
XML type and native processing
capabilities (e.g. Xlinq) or extensions of
existing XML processing languages like
XQuery (e.g. XL). The language we
propose (temporarily called XScript) is
another variant of an XML scripting
language based on XQuery.

Two major avenues were investigated in
the past to extend XQuery to a full
programming language. The first
approach added the notion of statements
to XQuery, and duplicating the iterators
(FLWOR expressions) and conditionals
both as expression constructors as well
as statement constructors. The second
approach is a pure compositional
approach: the side-effect operators
become normal expressions, and are
composed with the rest of the language.

We investigate here a third stylistic
approach. We added the notion of
statements to XQuery and kept the
expressions side-effect free. Statements
include update operations, variable
assignments and error handling. They
also include the iteration and
conditionals. However, the iteration and
conditions are eliminated the expression
part of the language. The main goal in
the design of this particular approach is
simplicity and ease of use for a large
number of developers who might not be
familiar or comfortable with a

declarative XQuery s ty le of
programming. The demo will show that
despite of the fact that the expression
part of the language is less rich then
XQuery the language has the same
oppor tun i t i e s fo r in te l l igen t
optimizations, provided that one admit to
pay the price of a more complex
optimizer.

The demo will show the compiler of
such a language, and its virtual machine,
and will exemplify the optimization
opportunities on a couple of application
programs. The virtual machine is
common to all three languages: XSLT
2.0, XQuery and XScript and uses
extensively Oracle’s XML infrastructure
(e.g. parsers, type system, runtime). The
compiler uses extensive data flow
analysis to recover from the imperative
style of programming the opportunities
for rewriting and optimization traditional
in declarative languages. Due to this
type of optimization Xscript programs
can effectively scale to manipulate large
volumes of data, similar to the way
databases scale to process large amounts
of data.

We will show four different execution
scenarios for XScript programs:

(a) standalone execution in the
middle-tier

(b) standalone execution in the
database server

(c) execution in the middle tier
with query shipping to the
database server

(d) execution in the database
server exploiting the exiting
relational optimizer and
runtime

The goal of this work is to create a
bridge between the imperative style of
programming, natural to programmers,
and the performance advantages of a
declarative compiler and optimizer,
hence obtaining the best of both worlds.

83

Xcerpt and visXcerpt: Integrating Web Querying
Sacha Berger François Bry Tim Furche

University of Munich, Institute for Informatics, http://www.ifi.lmu.de/

Xcerpt [2] and visXcerpt [1], cf. http://xcerpt.org/, are Web
query languages related to each other in an unusual way: Xcerpt
is a textual query language, visXcerpt is a visual query language
obtained by rendering Xcerpt query programs. Furthermore, Xcerpt
and visXcerpt, short (vis)Xcerpt, have been conceived for querying
both standard Web data such as XML and HTML and Semantic
Web data such as RDF and Topic Maps.

This paper describes a demonstration focusing on three aspects of
(vis)Xcerpt. First its core features, especially the pattern-oriented
queries and answer-constructors, its rules or views, and its spe-
cific language constructs for incomplete specifications. Incomplete
specifications are essential for retrieving semi-structured data. Sec-
ond, the integrated querying of standard Web and Semantic Web
data to ease the accessing of the two kinds of data in a same query
program. Third, the complementary and integrated nature of the
two languages.

Setting of the Demonstration. In the demonstration, proto-
types of both, the textual query language Xcerpt and its visual ren-
dering visXcerpt are demonstrated in parallel on the same exam-
ples. Both prototypes rely on the same run time system for eval-
uating queries, but differ in rendering: visXcerpt provides a two-
dimensional rendering of textual Xcerpt programs implemented us-
ing mostly HTML and CSS. Additionally, the visual prototype pro-
vides an interactive environment for editing visXcerpt queries, as
well as for data, query, and answer browsing.

Excerpts from DBLP1, and from a computer science taxonomy
form the base for the scenario considered in the demonstration.
DBLP is a collection of bibliographic entries for articles, books,
etc. in the field of Computer Science. DBLP data are represen-
tatives for standard Web data using a mixture of rather regular
XML content combined with free form, HTML-like information.
A small Computer Science taxonomy has been built for the pur-
pose of this demonstration. Very much in the spirit of SKOS [3],
this is a lightweight ontology based on RDF and RDFS. Combin-
ing such an ontology as metadata with the XML data of DBLP is
a foundation for applications such as community based classifica-
tion and analysis of bibliographic information using interrelations
between researchers and research fields. Realizing such applica-
tions is eased by using the integrated Web and semantic Web query
language (vis)Xcerpt that also allows reasoning using rules.

Technical Content of the Demonstration. The use of query and
construction patterns in (vis)Xcerpt is presented, both for binding
variables in query terms and for reassembling the variables in so-
called construct terms. The variable binding paradigm is that of
Datalog, i.e. the programmer specifies patterns (or terms) includ-
ing variables. Special interactive behavior of variables in visXcerpt
highlights the relation between variables in query and construct
terms. Arguably, pattern based querying and constructing together

1http://www.informatik.uni-trier.de/˜ley/db/

This research has been funded by the European Commission and by the Swiss Fed-
eral Office for Education and Science within the 6th Framework Programme project
REWERSE number 506779 (cf. http://www.rewerse.net/).

with the variable binding paradigm make complex queries easier to
specify and read. This is demonstrated by online query authoring
and refactoring.

To cope with the semistructured nature of Web data, (vis)Xcerpt
query patterns use a notion of incomplete term specifications with
optional or unordered content specification. This feature distin-
guishes (vis)Xcerpt from query languages like Datalog and query
interfaces like “Query By Example” [4]. Simple, yet powerful tex-
tual and visual constructs of incompleteness are presented in the
demonstration.

An important characteristic of (vis)Xcerpt is its rule-based nature:
(vis)Xcerpt provides rules very similar to SQL views. Arguably,
rules or views are convenient for a logical structuring of complex
queries. Thus, in specifying a complex query, it might ease the pro-
gramming and improve the program readability to specify (abstract)
rules as intermediate steps—very much like procedures in conven-
tional programming. Another aspect of rules is the ability, to solve
simple reasoning tasks. Both aspects of rules are needed for the
demonstration scenario.

Referential transparency and answer closedness are essential prop-
erties of Xcerpt and visXcerpt, surfacing in various parts of the
demonstration. They are two precisely defined traits of the rather
vague notion of “declarativity”. Referential transparency means
that within a definition scope, all occurrences of an expression have
the same value, i.e., denote the same data. Answer-closedness
means that replacing a sub-query in a compound query by a pos-
sible single answer always yields a syntactically valid query. Ref-
erentially transparent and answer-closed programs are easy to un-
derstand (and therefore easy to develop and to maintain), as the
unavoidable shift in syntax from the data sought for to the query
specifying this data is minimized.

A novelty of the visual language visXcerpt is how it has been de-
rived from the textual language: as a rendering without changing
the language constructs and the runtime system for query evalu-
ation. This rendering is mainly achieved via CSS styling of the
constructs of the textual language Xcerpt. The authors believe that
this approach to twin textual and visual languages is promising, as
it makes those languages easy to learn—and easy to develop. The
first advantages is highlighted in the demonstration by presenting
both languages side-by-side.

References.

[1] S. Berger, F. Bry, S. Schaffert, and C. Wieser. Xcerpt and visX-
cerpt: From Pattern-Based to Visual Querying of XML and
Semistructured Data. In 29th Intl. Conf. on Very Large Data
Bases, 2003.

[2] S. Schaffert and F. Bry. Querying the Web Reconsidered: A
Practical Introduction to Xcerpt. In Extreme Markup Lan-
guages, 2004.

[3] W3C. Simple Knowledge Organisation System (SKOS), 2004.

[4] Moshé M. Zloof. Query-by-Example: A Data Base Language.
IBM Systems Journal, 16(4):324–343, 1977.

84

XJ: Integration of XML Processing into JavaTM

Rajesh Bordawekar Michael Burke Igor Peshansky Mukund Raghavachari

IBM T.J. Watson Research Center
{bordaw, mgburke, igorp, raghavac}@us.ibm.com

1 Introduction

XML has emerged as the de facto standard for data
interchange. One reason for its popularity is that it
defines a standard mechanism for structuring data as
ordered, labeled trees. The utility of XML as an ap-
plication integration mechanism is enhanced when in-
teracting applications agree on the structure and vo-
cabulary of labels of the XML data interchanged. This
requirement has led to the development of the XML
Schemastandard — an XML Schema specifies a set of
XML documents whose vocabulary and structure sat-
isfy constraints in the XML Schema.

Despite the increased importance of XML, the avail-
able facilities for processing XML in current program-
ming languages are primitive. Programmers often use
runtime APIs such as DOM [6], which builds an in-
memory tree from an XML document, or SAX [5],
where an XML document parser raises events that are
handled by an application. None of the benefits as-
sociated with high-level programming languages, such
as static type checking of operations on XML data are
available. The responsibility of ensuring that opera-
tions on XML data respect the XML Schema associ-
ated with it falls entirely on the programmer.

The alternative approach to using standard inter-
faces to process XML data is to embed support for
XML within the programming language. Support for
query languages such as XPath in the programming
language provides a natural, succinct and flexible con-
struct for accessing XML data. Extending current pro-
gramming languages with awareness of XML, XML
Schema, and XPath through a careful integration of
the XML Schema type system and XPath expression
syntax can simplify programming and enables useful
services such as static type checking and compiler op-
timizations.

The subject of this demonstration is XJ, a research
language that integrates XML as a first-class construct
into Java. The design goals of XJ distinguish it from
other projects that integrate XML into programming
languages. The goal of introducing XML as a type into
an object-oriented imperative language is not new —
Cω [1], Xtatic [3], Xact [4] have studied the integra-
tion of XML into C� and Java. What sets XJ apart

from these and other languages is its consistency with
XML standards such as XML Schema and XPath, and
its support for in-place updates of XML data, thereby
keeping with the imperative nature of general-purpose
languages like Java.

2 Demonstration Overview

This demonstration will introduce XJ and its language
features using an Eclipse-integrated development en-
vironment [2], and demonstrate how the XJ compiler
converts XJ code into Java code that uses DOM[6] to
perform accesses to XML data. We will also discuss
optimizations, such as common sub-expression elim-
inations, which are applicable broadly to any XML
processing language, including XQuery.

References

[1] G. Bierman, E. Meijer, and W. Schulte. The
essence of data access in Cω. In Proceedings of
the European Conference on Object-Oriented Pro-
gramming, 2005.

[2] Eclipse project. XML schema infoset model. http:
//www.eclipse.org/xsd/.

[3] V. Gapeyev and B. C. Pierce. Regular object
types. In Proceedings of the European Conference
on Object-Oriented Programming, pages 151–175,
2003.

[4] C. Kirkegaard, A. Møller, and M. I. Schwartzbach.
Static analysis of XML transformations in Java.
IEEE Transactions on Software Engineering,
30(3):181–192, March 2004.

[5] Simple API for XML. http://www.saxproject.
org.

[6] World Wide Web Consortium. Document Object
Model Level 2 Core, November 2000.

85

XML Support In Visual Basic 9

Erik Meijer∗ Brian Beckman†

XML Programming Using DOM

Programming against XML using the DOM API today is a bitch. The
accidental complexity of working with the DOM is so high that many
programmers are giving up on using XML altogether, cursing the
hype that XML makes dealing with data simple, which no one who
has actually written DOM code could claim. The W3C DOM was
not designed with ease of programming in mind, but rather evolved
as a design by committee from the existing DHTML object model
originally created by Netscape.

The DOM implementation as surfaced in the .NET frameworks as
the System.Xml.XmlDocument API is extremely imperative, irreg-
ular, and complex. Nodes are not first class citizens and have to
be created and exist in the context of a given document. The ac-
cess patterns for attributes and elements are gratuitously different,
and the handling of namespaces is confusing at best. Finally even
pretty-printing an XML document takes several lines of arcane and
complex code since the .ToString() method is not properly over-
ridden.

XML Programming Using XLinq

To adress the complexity of working with XML, we designed XLinq,
a new modern lightweight XML API that is designed from the ground
up with simplicity and ease of programming in mind. Moreover
Xlinq integrates smoothly with the language integrated queries of
the LINQ framework. The XLinq object model contains a handful of
types. The abstract class XNode is the base for element nodes; the
abstract class XContainer is the base for element nodes that have
children. The XElement class represents proper XML elements,
and the XAttribute class represents attributes and is stand-alone;
it does not derive from XNode. The XName class represents fully
expanded XML names.

In XLinq nodes are truly first class citizens that can be passed
around freely independent of an enclosing document context.
Nested elements are constructed in an expression-oriented fashion,
but XLinq also supports imperative updates in case programmers
need them. Elements and attributes are accessed uniformly using
familiar XPath axis-style methods, while namespace handling is sim-
plified using the notion of universal names throughout the API. Last
but not least, .ToString() actually works, so it is trivial to pretty
print XML documents using a single method call.

∗Erik.Meijer@microsoft.com
†Brian.Beckman@microsoft.com

XML Programming Using VB

On top of the base XLinq API, Visual Basic adds XML literals with full
namespace support, and late bound axis member for attribute, child,
and descendant access. Programming against XML now actually is
easy, as it was originally intended.

With XML literals, we can directly embed XML fragments in a Vi-
sual Basic program. Inside XML literals we can leave holes for at-
tributes, attribute names, or attribute values, for element names by
using (expression), or for child elements using the ASP.Net style
syntax <%= expression %>, or <% statement %> for blocks. The
Visual Basic compiler takes XML literals and translates them into
constructor calls of to the underlying XLinq API. As a result, XML
produced by Visual Basic can be freely passed to any other compo-
nent that accepts XLinq values, and similarly, Visual Basic code can
accept XLinq XML produced by external components.

Visual Basic’s XML literals also simplify handling of namespaces.
We support normal namespace declarations, default namespace
declarations, and no namespace declarations, as well as qualified
names for elements and attributes. The compiler generates the cor-
rect XLinq calls to ensure that prefixes are preserved when the XML
is serialized.

Whereas XML literals make constructing XML easy in Visual Ba-
sic, the concept of axis members makes accessing XML easy. The
essence of the idea is to delay the binding of identifiers to actual
XML attributes and elements until run time. When the compiler
cannot find a binding for a variable, it emits code to call a helper
function at run time. This tactic will be familiar to many under the
rubric “late binding”, and, indeed, it is a form of ordinary Visual Ba-
sic late binding. But it has the advantage that the names of element
tags and attributes can be used directly in Visual Basic code with-
out quoting. As such, it relieves the programmer of the significant
cognitive burden of switching between object space and XML-data
space. The programmer can treat the spaces the same: as hierar-
chies accessed through “.”.

More Information

More information on LINQ, XLinq and Visual Basic 9 can be found on
http://msdn.microsoft.com/netframework/future/linq/

86

XACT
XML Transformations in Java

Christian Kirkegaard and Anders Møller
BRICS

Department of Computer Science
University of Aarhus, Denmark
{ck,amoeller}@brics.dk

Introduction
XACT is a framework for programming XML transformations in
Java. Among the key features of this approach are

• a notion of immutable XML templates for manipulating XML
fragments, using XPath for navigation; and

• static guarantees of validity of the generated XML data based
on data-flow analysis of XACT programs using a lattice struc-
ture of summary graphs.

An early version of the language design and the program analy-
sis is described in [3]. In [1], we present an efficient runtime rep-
resentation. The paper [2] shows how the analysis technique can
be extended to support XML Schema as type formalism and per-
mit optional type annotations for improving modularity of the type
checking.

Demonstration
We demonstrate the capabilities of XACT by stepping through an
example, showing how the program analyzer works “under the
hood”. This involves

1. desugaring special syntactic constructs to Java code;

2. construction of summary graphs from XML templates and
schemas;

3. data-flow analysis (based on Soot), including transfer func-
tions for XML operations; and

4. validation of summary graphs.

Specifically, we focus on the novel features: the support for
XML Schema and optional type annotations.
Schemas are converted, without loss of precision (ignoring keys

and references), to a convenient subset of RELAX NG, and then
further to summary graphs, which are then used in the data-flow
analysis. When this analysis reaches a fixed point (which represents
a conservative approximation of the XML values that may appear
at runtime), the resulting summary graphs are validated relative to
the schema annotations.
By allowing type annotations, XACT permits a modular valid-

ity analysis where components can be analyzed individually. At
the same time, type annotations are optional – they can be omit-
ted for intermediate results that do not conform to named schema
constructs, thereby supporting a flexible style of programming.

Implementation
Our implementation of the XACT analyzer and runtime system is
available at

http://www.brics.dk/Xact/

References
[1] Christian Kirkegaard, Aske Simon Christensen, and Anders
Møller. A runtime system for XML transformations in Java.
In Proc. Second International XML Database Symposium,
XSym ’04, volume 3186 of LNCS. Springer-Verlag, August
2004.

[2] Christian Kirkegaard and Anders Møller. Type checking with
XML Schema in Xact. Technical Report RS-05-31, BRICS,
2005. Presented at Programming Language Technologies for
XML, PLAN-X ’06.

[3] Christian Kirkegaard, Anders Møller, and Michael I.
Schwartzbach. Static analysis of XML transformations in Java.
IEEE Transactions on Software Engineering, 30(3):181–192,
March 2004.

87

XTATIC

PLAN-X 2006 Demo

Vladimir Gapeyev Michael Levin∗ Benjamin Pierce Alan Schmitt†

University of Pennsylvania

XTATIC integrates with a mainstream object-oriented language, C�,
the key features of statically typed XML processing previously de-
veloped in XDUCE, a domain-specific XML processing language.
These features include XML trees as built-in values, a type system
based on regular types (closely related to schema languages such as
DTD and their successors) for static typechecking of computations
involving XML, and a powerful form of pattern matching called
regular patterns.

By being an extension of C�, XTATIC receives, for free, abstraction,
modularization, and control flow mechanisms of an established pro-
gramming language, as well as access to its extensive libraries. The
extension made by XTATIC to the core of C� is minimal: it consists
of enriching the universe of C� values and types by constructs for
trees and sequences that generalize those of XDUCE, and adding
the pattern matching primitive for their processing. The key obser-
vation for the integration is that the semantics of trees in XDUCE
easily generalizes to permit using, in place of XML tags, other kinds
of values and types as tree labels—for example, objects and classes
of C�. Then the integration of trees with the object-oriented data
model of C� is accomplished by grafting the subtyping relation of
the so generalized XDUCE regular types into the C� class hierar-
chy under a special class Xtatic.Seq, therefore making all regular
types be subtypes of seq. This allows trees and sequences to be
passed to generic library facilities such as collection classes, stored
in fields of objects, etc. Finally, this general extension encodes
XML by trees that use objects from a special class Xtatic.Tag
as tree labels. This approach is similar to the way arrays—which,
like trees, are a form of structural types—are integrated in C� as
subtypes of the special class System.Array.

Subtyping in XTATIC subsumes both the declarative object-oriented
subclass relation and the richer extensionally defined subtyping re-
lation of regular types: It turns out that the traditional definition
of subclassing can be reformulated—without changing the relation
itself—to mimic the XDUCE’s definition of subtyping as inclusion
between sets of values inhabiting the types. Likewise, XTATIC’s
pattern matching incorporates a natural form of type-based pattern
matching on objects. This provides a safe alternative to casts as a
mechanism for determination of an object’s run-time type.

XTATIC does not support any form of destructive update of the se-
quence and tree structure of existing values. Instead, the language
promotes a declarative style of processing, in which values and
subtrees are extracted from existing trees and used to construct en-
tirely new trees. This approach agrees with the treatment of trees in
XSLT and XQUERY, and has a precedent in C� provided by strings,

∗ Currently at Microsoft.
† Currently at INRIA Rhône-Alpes.

which are also decomposable, but immutable, values.

Due to the lightweight extension approach to the design of XTATIC,
the feel of XML programming in the resulting language fits be-
tween programming with XML APIs and programming in high-
level XML-specific languages. On one hand, XTATIC offers—as
the high-level languages do—native and concise XML processing
primitives and types instead of untyped low-level API manipula-
tions. On the other hand, these primitives are used within the
control flow and abstractions framework of an object-oriented lan-
guage, which is more familiar to the majority of programmers than
the more esoteric frameworks of XSLT and XQUERY. Psycho-
logical and educational considerations aside, this poses XTATIC as
an attractive alternative to API-based programming in applications
where efficiency is of immediate concern. Currently, such projects
tend to avoid using XSLT, XQUERY, or even XPATH, due to un-
certainty over presence of optimization for high-level control flows
in a given implementation of these languages, as well as lack of
control over decisions of the optimizer. This control (indeed, full
responsibility for implementing the high-level control flow) is in
the hands of an XTATIC programmer to the same degree as for an
API programmer.

These benefits are shared by XTATIC with other current propos-
als for integrating XML processing into object-oriented languages,
e.g., XOBE, XJ, XACT, and Cω. XTATIC differs from these in other
respects: more flexible integration of trees into the object-oriented
data model and use of regular patterns, rather than paths, as the
main XML inspection mechanism. Used in conjunction with reg-
ular types, patterns support the full spectrum of processing styles,
from dynamic investigation of documents of unknown or partially
known types to fully checked processing of documents for which
complete type information is known—all without changing the un-
derlying data representation.

XTATIC is implemented as a translator into pure C� code, which
can be compiled into .NET CLR and executed in conjunction with
a small library that implements tree sequences and elementary op-
erations on them.

88

OCamlDuce

Alain Frisch
INRIA Rocquencourt

Alain.Frisch@inria.fr

Context. Over the last few years, the programming language re-
search community has identified issues raised by the support of
XML documents in applications and has proposed new linguistic
features to deal with them. The work by Hosoya, Pierce and Vouil-
lon on the XDuce project has had a big influence. Amongst its main
contributions are the design of regular expression types (to express
structural constraints on documents) and regular expression pat-
terns (to express complex information extraction from documents)
which together contribute to a sound and expressive language for
developping XML-oriented applications such as transformations.

XDuce encouraged the vision of XML manipulation as a value-
based process in the spirit of functional languages. As a matter a
fact, XDuce has striking similarities with the family of ML lan-
guages. Since XDuce and ML languages are good for different but
related kind of problems and because of their apparent similarity, it
is natural to try to combine them.

However, despite the similarity, XDuce is missing important fea-
tures from ML languages such as first-class functions, polymor-
phism, automatic type reconstruction, and support for programming
in the large. There are two natural responses to address this lack of
features: either extend XDuce underlying theory to deal with them,
or integrate XDuce features in an existing full-blown ML language.
Examples of the former include existing extensions of XDuce with
first-class functions or with parametric polymorphism. However,
it is not clear how these extensions could be combined, and a lot
of work is still necessary to integrate other missing features. Also,
it seems pointless to design and implement a full-blown language
only to add support for XML. The idea of integrating XDuce fea-
tures into an existing full-blown general-purpose language has been
explored for instance in the Xtatic project, which adds XDuce types
and patterns into the C# programming language. The part of Xtatic
programs that deals with XML inherits the functional flavor from
XDuce. This might indicate that a functional language could be a
very good target for integrating XDuce.

OCamlDuce. OCamlDuce is an experimental merger between the
Objective Caml (OCaml) and CDuce languages. The language was
designed so as to make it easier to develop possibly large applica-
tions which need to deal with XML document without necessarily
being focused primarily on XML (unlike, say, pure XML-to-XML
transformation). Typical use cases would be to add support for cus-
tom XML configuration files, for XHTML report generators, or for
web-service interfaces, . . . to an existing OCaml application.

OCaml is a powerful general-purpose multi-paradigm/functional-
oriented programming language from the ML family with a robust,
efficient and popular implementation. CDuce is a small program-

ming language adapted to the development of safe and efficient
XML-oriented applications. CDuce supports XML literals, Uni-
code, XML Namespaces, XML types, XML pattern matching to-
gether with a precise type inference and an efficient automata-based
and type-driven compilation strategy, XML iterators. Part of the
theory behind CDuce relies on the one developped in the XDuce
project.

From the programmer point of view, OCamlDuce comes as drop-
in replacements for the OCaml tools: bytecode and native compil-
ers, toplevel. All OCaml features are available, and it is possible to
reuse standard and third-party OCaml libraries without even recom-
piling them. OCamlDuce also integrates all of the features from
CDuce except overloaded functions. It is thus mostly straightfor-
ward to translate CDuce programs to OCamlDuce.

Integrating OCaml and CDuce. OCamlDuce has been imple-
mented by merging together the OCaml and CDuce source trees
and adding a relatively small piece of glue code. The only tech-
nically challenging part of the OCaml / CDuce integration was the
combination of two radically different type systems: OCaml relies
on Hindley-Milner-like type inference, and CDuce relies on for-
ward propagation and on tree-automata techniques. The theoretical
foundation of the type system is described in a paper to be presented
in PLAN-X 2006. The key idea to obtain a clean and simple type
system was to keep the XML values and types self-contained: they
can appear within regular OCaml values and types, but the converse
is not possible. However, bridges between the worlds of XML and
ML values are provided in OCamlDuce. They rely on an automatic
structural translation of ML types into XML types, which allows to
move values between the two worlds.

Because of the way CDuce types and values are dealt with in
OCamlDuce, it is not possible e.g. to have first-class functions
or arbitrary OCaml values within XML values. We don’t see
it as a problem because CDuce values are intended to represent
XML fragments in OCamlDuce, not arbitrary data containers which
OCaml supports already pretty well. More problematic is the lack
of interaction between OCaml parametric polymorphism and XML
types (OCaml type variables cannot appear within CDuce types).
We leave this challenging point for future work.

The demonstration. The demonstration will illustrate how the fea-
tures added to OCaml can be used to write idiomatic, expressive
and safe code that manipulates complex XML structures. The ex-
amples will be taken from a medium-sized application developped
in OCamlDuce, which parses an XML-Schema definition into an
OCaml graph-like data structure, extracts some informations from
it, and produces an XHTML report.

89

LAUNCHPADS: A System for Processing Ad Hoc Data

Mark Daly
Princeton University

mdaly@Princeton.EDU

Mary Fernández
Kathleen Fisher

AT&T Labs Research
mff,kfisher@research.att.com

Yitzhak Mandelbaum
David Walker

Princeton University
yitzhakm,dpw@CS.Princeton.EDU

An Introduction to PADS. Ideally, any data we ever encounter
will be presented to us in standardized formats, such as XML.
Why? Because for formats like XML, there are a whole host
of software libraries, query engines, visualization tools and even
programming languages specially designed to help users process
their data. However, we do not live in an ideal world, and in
reality, vast amounts of data is produced and communicated in
ad hoc formats, those formats for which no data processing tools
are readily available. Figure 1 presents a small selection of ad hoc
data sources. As one can see, ad hoc data exists in a very wide
variety of fields and the users range from network administrators to
computational biologists and genomics researchers to physicists,
financial analysts and everyday programmers.

Programmers often deal with this data by whipping up one-time
Perl scripts or C programs to parse and analyze their data. Unfor-
tunately, this strategy is slow and tedious, and often produces code
that is difficult to understand, lacks adequate error checking, and
is brittle to format change over time. To expedite and improve this
process, we developed the PADS data description language and
system [2, 3]. Using the PADS language, one may write a declar-
ative description of the structure of almost any ad hoc data source.
The descriptions take the form of types, drawn from a dependent
type theory. For instance, PADS base types describe simple objects
including strings, integers, floating-point numbers, dates, times,
and ip addresses. Records and arrays specify sequences of elements
in a data source, and unions, switched unions and enums specify al-
ternatives. Any of these structured types may be parameterized and
users may write arbitrary semantic constraints over their data as
well.

Once a programmer has written a description in the PADS lan-
guage, the PADS compiler can generate a collection of format-
specific libraries in C, including a parser, printer, and verifier. In ad-
dition, the compiler can compose these libraries with generic tem-
plates to create value-added tools such as an ad hoc-to-XML for-
mat conversion tool, a histogram generator, and a statistical analy-
sis and error summary tool. Finally, PADS has been composed with
the GALAX query engine [6, 4, 5] for XQuery to create PADX [1],
a new system that allows users to query and transform any ad hoc
data source as if it was XML, without incurring the performance
penalty that usually results when one converts ad hoc data into a
much more verbose XML representation.

While the PADS language provides an extremely versatile
means of creating tools for processing ad hoc data, it is nevertheless
a new language and learning a new language is time-consuming for
anyone, especially for computational biologists or other scientists
for whom programming is not their primary area of expertise. To
ease the way for novice PADS users, we developed LAUNCH-
PADS, a new tool that provides access to the PADS system with-
out requiring foreknowledge of the PADS language itself. Hence,
LAUNCHPADS graphic interface will also help more experienced
PADS users to shorten their development cycle and provides a con-

Name : Use Representation
Web server logs (CLF): Fixed-column ASCII records
Measure web workloads
CoMon data: ASCII records
Monitor PlanetLab Machines
Call detail: Fraud detection Fixed-width binary records
AT&T billing data: Various Cobol data formats
Monitor billing process
Netflow: Data-dependent number of
Monitor network performance fixed-width binary records
Newick: Immune Fixed-width ASCII records
system response simulation in tree-shaped hierarchy
Gene Ontology: Variable-width ASCII records
Gene-gene correlations in DAG-shaped hierarchy
CPT codes: Floating point numbers
Medical diagnoses

Figure 1. Selected ad hoc data sources.

venient way for experts to quickly create any of the data processing
tools they need.

LaunchPads. LAUNCHPADS combines mechanisms for graph-
ically defining structure and semantic properties of ad hoc data,
for translation of this definition into PADS code, and for compi-
lation/execution of the generic tools that operate over ad hoc data.
More specifically, LAUNCHPADS breaks definition of an ad hoc
data format and generation of data processing tools into the follow-
ing steps. Figure 2 presents a screenshot of LAUNCHPADS being
used to construct a data description for a web-server log format.

1. Selection of sample data from which to build the descrip-
tion. Creation of a definition within LAUNCHPADS begins
when a user loads sample data into the graphical interface.
In Figure 2, web log data (beginning with the IP address
207.136.97.49 ...) appears in the top right hand cor-
ner of the picture. A user then selects a row of data to work on
in the LAUNCHPADS gridview immediately below.

2. Iterative refinement in the gridview. Once in the gridview,
users may specify descriptions for regions of text using a high-
lighting scheme. The color assigned to a region represents the
description class (base or composite) and region boundaries.
Structure within a definition is represented through a series
of refinement steps: composite regions are broken down and
level after level, thereby allowing for nested elements (Figure 2
shows four nesting levels). The refinement process bottoms out
when one reaches an atomic description such as a character
string, IP address or date. Once all regions have been given a
base type in the gridview, LAUNCHPADS will generate a tree-
view of the definition for further processing.

90

Figure 2. LaunchPads Interface.

3. Customization in the treeview. The treeview is a graphical
representation of the abstract syntax of a PADS description. In
this view, programmers can manipulate definitions with a high
degree of precision: definition elements may be created, de-
stroyed, and renamed; type associations for existing elements
may be changed (within limitations); element ordering may be
altered; user defined types may be added to the definition and
applied to elements; content-aware error constraints may be im-
posed. Indeed, from within the tree view it is possible to access
the “expert” functions of PADS directly if one so chooses, or
to completely avoid them in lieu of a simpler definition and/or
faster development time.

4. PADS code generation, tool compilation and use. When the
user is satisfied with their PADS definition in the treeview,
they may generate PADS code. Any such generated code is
guaranteed to be syntactically correct so the user need not worry
about fussing with concrete PADS syntax if they do not want to.
Figure 2 shows the generated code in the window at the bottom
of the interface. By using the pulldown menus at the top and a
set of “wizards,” the user may now issue commands to compile
the generated code and create data processing tools including
the XML converter and statistical analyzer. As development
of LAUNCHPADS continues, we will add further tools and
corresponding wizards to the interface.

.

Conclusions In summary, in this demonstration, we will explain
the many challenges that ad hoc data pose and how the PADS lan-

guage is structured to meet these challenges. In addition, we will
explain how LAUNCHPADS provides further support for process-
ing ad hoc data by demonstrating both features for helping users
construct data descriptions and features for creating and invoking
tools that operate over data. We believe that both expert program-
mers and novices alike can benefit from this simple system for ma-
nipulating ad hoc data.

References
[1] M. Fernández, K. Fisher, and Y. Mandelbaum. PADX: Querying

large-scale ad hoc data with XQuery. Submitted to PLAN-X 2006.
[2] K. Fisher and R. Gruber. PADS: A domain-specific language for

processing ad hoc data. In Proceedings of the ACM SIGPLAN 2005
conference on Programming language design and implementation,
June 2005.

[3] K. Fisher, Y. Mandelbaum, and D. Walker. The next 700 data
description languages. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Jan. 2006. To appear.

[4] Galax user manual. http://www.galaxquery.org/doc.
html#manual.

[5] C. Ré, J. Siméon, and M. Fernández. A complete and efficient algebraic
compiler for XQuery. In Proceedings of IEEE International Conference
on Data Engineering (ICDE), April 2006.

[6] J. Siméon and M. F. Fernández. Build your own XQuery pro-
cessor. EDBT Summer School, Tutorial on Galax architec-
ture, Sept 2004. http://www.galaxquery.org/slides/
edbt-summer-school2004.pdf.

91

XHaskell

Martin Sulzmann and Kenny Zhuo Ming Lu
School of Computing, National University of Singapore

S16 Level 5, 3 Science Drive 2, Singapore 117543
{sulzmann,luzm}@comp.nus.edu.sg

We demonstrate the current programming capabilities of
XHaskell – an extension of Haskell with XDuce style
regular expression types and regular expression pattern
matching. For example, the following classic XDuce
program to extract telephone entries out of an address
book

regtype P = P[N,T?,E*] -- Person
regtype N = N[String] -- Name
regtype T = T[String] -- Tel
regtype E = E[String] -- Email
regtype En = En[N,T] -- Phonebook Entry
addrbook :: P* -> En*
addrbook (P[n as N, t as T, E*], xs as P*)

= (En[n,t], (addrbook xs))
addrbook (P[N,E*], xs as P*) = addrbook xs
addrbook () = ()

can be rewritten in XHaskell as follows.

module Addrbook where
data P = P N (T?) ((E)*) -- Person
data N = N [Char] -- Name
data T = T [Char] -- Tel
data E = E [Char] -- Email
data En = En N T -- Entry
addrbook :: ((P)*) -> ((En)*)
addrbook (x :: ((P)*)) =

(map for_each_p) x -- (1)
for_each_p :: P -> (En?)
for_each_p (P (n :: N) (t :: (T?))

(es :: ((E)*)))
= for_each_p2 (n,(t,es))

for_each_p2 :: (N,((T?),((E)*))) -> (En?)
for_each_p2 ((n :: N),((t :: T),

(es :: ((E)*))))
= En n t

for_each_p2 ((n :: N),(es :: ((E)*)))
= ()

The interesting point to note is that in XHaskell
we can call Haskell Prelude functions such as
map::(a->b)->[a]->[b] (see location (1)). Thus, we
only need to define the transformation from Person to
Entry. Our current implementation does not support

regular hedges. Therefore, we need the auxiliary func-
tion for each p2.
XHaskell is compiled to Haskell. Hence, we can easily
take advantage of existing XML tools written in Haskell.
E.g., we can use the DtdtoHaskell command provided
by the HaXML tool to generate the AddrbookDTD mod-
ule which describes the DTD structure of the address
book example in terms of some Haskell data types. Cur-
rently, the XML document representation provided by
HaXML is slightly different from XHaskell. Hence,
the programmer must provide an extra interface mod-
ule HaXMLInterface for marshalling values between
the two representations. Though, this intermediate step
could be easily automated.
Here is the code integrating XHaskell with HaXML.

module App where
import Addrbook (addrbook)
import AddrbookDTD
import HaXMLInterface

(haxml2xhaskell, xhaskell2haxml)
main =

fix2Args >>= \(infile,outfile)->
do value <- fReadXml infile

let result = xhaskell2haxml
(addrbook (haxml2xhaskell value))

fWriteXml result outfile

The main function parses an XML document specified
by argument infile, and applies function addrbook
to the parsed value. Note that addrbook has type
[P]->[En] in the translation to Haskell. Finally it prints
the result into the output file specified by argument
outfile.
The implementation and further background material
can found here:
http://www.comp.nus.edu.sg/˜luzm/xhaskell/

92

Recent BRICS Notes Series Publications

NS-05-6 Giuseppe Castagna and Mukund Raghavachari, editors.
PLAN-X 2006 Informal Proceedings,(Charleston, South Car-
olina, January 14, 2006), December 2005. ii+92.

NS-05-5 Patrick Cousot, Lisbeth Fajstrup, Eric Goubault, Maurice
Herlihy, Kim G. Larsen, and Martin Raußen, editors. Prelim-
inary Proceedings of the Workshop on Geometry and Topology
in Concurrency, GETCO ’05,(San Francisco, California, USA,
August 21, 2005), August 2005. vi+44.

NS-05-4 Scott A. Smolka and Jǐr ı́ Srba, editors. Preliminary Pro-
ceedings of the 7th International Workshop on Verification of
Infinite-State Systems, INFINITY ’05,(San Francisco, USA,
August 27, 2005), June 2005. vi+64 pp.

NS-05-3 Luca Aceto and Andrew D. Gordon, editors.Short Contribu-
tions from the Workshop on Algebraic Process Calculi: The First
Twenty Five Years and Beyond, PA ’05,(Bertinoro, Forl ı̀, Italy,
August 1–5, 2005), June 2005. vi+239 pp.

NS-05-2 Luca Aceto and Willem Jan Fokkink.The Quest for Equational
Axiomatizations of Parallel Composition: Status and Open Prob-
lems. May 2005. 7 pp. To appear in a volume of the BRICS
Notes Series devoted to the workshop “Algebraic Process Cal-
culi: The First Twenty Five Years and Beyond”, August 1–
5, 2005, University of Bologna Residential Center Bertinoro
(Forl ı̀), Italy.

NS-05-1 Luca Aceto, Magnus Mar Halldorsson, and Anna Inǵolfsdóttir.
What is Theoretical Computer Science?April 2005. 13 pp.

NS-04-2 Patrick Cousot, Lisbeth Fajstrup, Eric Goubault, Maurice
Herlihy, Martin Raußen, and Vladimiro Sassone, editors.Pre-
liminary Proceedings of the Workshop on Geometry and Topol-
ogy in Concurrency and Distributed Computing, GETCO ’04,
(Amsterdam, The Netherlands, October 4, 2004), September
2004. vi+80.

NS-04-1 Luca Aceto, Willem Jan Fokkink, and Irek Ulidowski, editors.
Preliminary Proceedings of the Workshop on Structural Opera-
tional Semantics, SOS ’04,(London, United Kingdom, August
30, 2004), August 2004. vi+56.

