
BRICS
Basic Research in Computer Science

Preliminary Proceedings of the 7th International Workshop on

Verification of Infinite-State Systems

INFINITY ’05

San Francisco, USA, August 27, 2005

Scott A. Smolka
Jiř ı́ Srba
(editors)

BRICS Notes Series NS-05-4

ISSN 0909-3206 June 2005

B
R

IC
S

N
S

-05-4
S

m
olka

&
S

rba
(eds.):

IN
F

IN
IT

Y
’05

P
relim

inary
P

roceedings

Copyright c© 2005, Scott A. Smolka & Jǐr ı́ Srba
(editors).
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Notes Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectoryNS/05/4/

Preliminary proceedings of

INFINITY 2005

Scott A. Smolka and Jiřı́ Srba (Editors)

INFINITY 2005

7th International Workshop on Verification of Infinite-State Systems

A Satellite Workshop of CONCUR’05

San Francisco, California, USA, August 27, 2005

Preface

INFINITY 2005, the 7th International Workshop on Verification of Infinite-State Systems
was held as a satellite workshop of CONCUR 2005 (the 16th International Conference
on Concurrency Theory) in San Francisco, California, USA on August 27, 2005.

The aim of the workshop is to provide a forum for researchers interested in the de-
velopment of mathematical techniques for the analysis and verification of systems with
infinitely many states.

The topics of INFINITY 2005 included the following: techniques for modeling and
analysis of infinite-state systems; equivalence checking and model checking infinite-
state systems, parameterized systems, probabilistic and timed systems; calculi for mo-
bility and security; finite-state abstractions of infinite-state systems; and data structures
for infinite state spaces.

The volume consists of five contributed papers selected by the INFINITY 2005 pro-
gramme committee. The programme of INFINITY 2005 was further enriched by an
invited talk given by Antonı́n Kučera and by several short presentations.

We would like to thank the programme committee members for their support in
composing the INFINITY 2005 programme, the CONCUR’05 Organizing Committee
chaired by Luca de Alfaro for arranging all local affairs, and Uffe H. Engberg for his
help with the proceedings. We gratefully acknowledge a finantial support from BRICS,
Basic Research in Computer Science.

Final proceedings will appear in the ENTCS series published by Elsevier
(http://www.sciencedirect.com/science/journal/15710661). We thank Michael
Mislove, the managing editor of ENTCS, for providing this opportunity.

Aalborg and New York, June 2005 Jiřı́ Srba
Scott A. Smolka

iii

Programme Committee

Samik Basu Ames (USA)
Petr Jančar Ostrava (Czech Republic)
Richard Mayr Raleigh (USA)
Ken McMillan Berkeley (USA)
Faron Moller Swansea (UK)
Philippe Schnoebelen Cachan (France)
Scott Smolka (co-chair) New York (USA)
Jiřı́ Srba (co-chair) Aalborg (Denmark)
Willem Visser Moffett Field (USA)
Igor Walukiewicz Talence Cedex (France)

iv

Content

Invited Talk

Methods for Quantitative Analysis of Probabilistic Pushdown Automata 1
A. Kučera

Contributed Papers

Refining Undecidability Border of Weak Bisimilarity .3
M. Křetı́nský, V. Řehák, and J. Strejček

Abstract Regular Tree Model Checking . 15
A. Boujjani, P. Habermehl, A. Rogalewicz and T. Vojnar

Automatic Verification of Fault-Tolerant Register Emulations . 25
P.C. Attie and H. Chockler

Algorithmic Algebraic Model Checking III: Approximate Methods 37
V. Mysore and B. Mishra

Liveness Checking as Safety Checking for Infinite State Spaces . 53
V. Schuppan and A. Biere

v

vi

INFINITY 2005 Preliminary Version

Methods for Quantitative Analysis of
Probabilistic Pushdown Automata

Antońın Kučera 1,2

Faculty of Informatics, Masaryk University in Brno
Botanická 68a, 60200 Brno, Czech Republic

Abstract

We present several constructions and techniques which have recently been used to
tackle the problems of qualitative/quantitative analysis of probabilistic pushdown
automata.

Key words: Probabilistic systems. Probabilistic temporal logics.
Pushdown automata.

Probabilistic pushdown automata (pPDA) are a natural model for proba-
bilistic programs with recursive procedure calls. Recently, various decidabil-
ity/complexity questions about the problems of qualitative/quantitative anal-
ysis of pPDA were studied in [2,5,4,1,3]. Typical problems of interest include
the following:

• Reachability. Given two pPDA configurations s, t, what is the probability
of reaching t from s? In particular,
· is this probability equal to one? (the qualitative reachability problem);
· is this probability bounded by a given constant? (the quantitative reach-

ability problem).

• LTL model-checking. Given a pPDA configuration s and an LTL formula
ϕ, what is the probability that a run initiated in s satisfies ϕ?

Similarly as above, one can formulate the qualitative/quantitative variant
of the corresponding decision problem. Moreover, one can reformulate the
problem for general ω-regular properties.

• PCTL and PCTL∗ model-checking. Given a pPDA configuration s and a
formula ϕ of the probabilistic CTL or the probabilistic CTL∗, does s satisfy
ϕ?

1 Supported by the research centre Institute for Theoretical Computer Science (ITI),
project No. 1M0021620808.
2 Email: kucera@fi.muni.cz

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

1

Kučera

• Expectations and variances. Given a pPDA configuration s, what is the ex-
pected length of a terminating run initiated in s? What is the corresponding
variance?

• Long-run properties. A long-run property is a property defined for each run
w separately by considering longer and longer prefixes of w and taking the
limit of the corresponding sequence of approximations. A typical example
is the average service time—if a system repeatedly services certain requests,
then each run can be seen as an infinite sequence of finite services. The av-
erage service time (i.e., the average number of transitions needed to service
a request) for a given run w is then defined by taking the limit of averages
computed from longer and longer prefixes of w.

Thus, one can formulate questions like “what is the probability that the
average service time for a run initiated in a given configuration s does not
exceed twenty transitions?”

Interestingly, most of the above given problems turned out to be decidable
for pPDA, and the complexity bounds are relatively reasonable (some of these
problems are even solvable in polynomial time). In this paper we present se-
lected techniques and constructions which have been found useful when dealing
with these problems.

References

[1] T. Brázdil, A. Kučera, and O. Stražovský. On the decidability of temporal
properties of probabilistic pushdown automata. In Proceedings of STACS’2005,
vol. 3404 of Lecture Notes in Computer Science, pp. 145–157. Springer, 2005.

[2] J. Esparza, A. Kučera, and R. Mayr. Model-checking probabilistic pushdown
automata. In Proceedings of LICS 2004, pp. 12–21. IEEE Computer Society
Press, 2004.

[3] J. Esparza, A. Kučera, and R. Mayr. Quantitative analysis of probabilistic
pushdown automata: Expectations and variances. In Proceedings of LICS 2005.
IEEE Computer Society Press, 2005. To appear.

[4] K. Etessami and M. Yannakakis. Algorithmic verification of recursive
probabilistic systems. In Proceedings of TACAS 2005, vol. 3440 of Lecture Notes
in Computer Science, pp. 253–270. Springer, 2005.

[5] K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars,
and monotone systems of non-linear equations. In Proceedings of STACS’2005,
vol. 3404 of Lecture Notes in Computer Science, pp. 340–352. Springer, 2005.

2

2

Refining the Undecidability Border
of Weak Bisimilarity

Mojmı́r Křet́ınský 1 Vojtěch Řehák 2 Jan Strejček 3

Faculty of Informatics, Masaryk University
Brno, Czech Republic

{kretinsky,rehak,strejcek}@fi.muni.cz

Abstract

Weak bisimilarity is one of the most studied behavioural equivalences. This equiva-
lence is undecidable for pushdown processes (PDA), process algebras (PA), and
multiset automata (MSA, also known as parallel pushdown processes, PPDA). Its
decidability is an open question for basic process algebras (BPA) and basic paral-
lel processes (BPP). We move the undecidability border towards these classes by
showing that the equivalence remains undecidable for weakly extended versions of
BPA and BPP.

Key words: weak bisimulation, infinite-state systems, decidability

1 Introduction

Equivalence checking is one of the main streams in verification of concurrent
systems. It aims at demonstrating some semantic equivalence between two
systems, one of which is usually considered as representing the specification,
the other its implementation or refinement. The semantic equivalences are
designed to correspond to the system behaviours at the desired level of ab-
straction; the most prominent ones being strong and weak bisimulations.

Current software systems often exhibit an evolving structure and/or oper-
ate on unbounded data types. Hence automatic verification of such systems
usually requires modeling them as infinite-state ones. Various specification
formalisms have been developed with their respective advantages and limita-
tions. Petri nets (PN), pushdown processes (PDA), and process algebras like
BPA, BPP, or PA all serve to exemplify this. Here we employ the classes

1 Supported by the Grant Agency of the Czech Republic, grant No. 201/03/1161.
2 Supported by the research centre “Institute for Theoretical Computer Science (ITI)”,
project No. 1M0021620808.
3 Supported by the Academy of Sciences of the Czech Republic, grant No. 1ET408050503.

Submitted to INFINITY 2005.

3

Křet́ınský et al.

of infinite-state systems defined by term rewrite systems and called Process
Rewrite Systems (PRS) as introduced by Mayr [13]. PRS subsume a variety
of the formalisms studied in the context of formal verification (e.g. all the
models mentioned above). The relevance of various subclasses of PRS for
modelling and analysing programs is shown, for example, in [5]; for automatic
verification we refer to surveys [2,22].

The relative expressive power of various process classes has been studied,
especially with respect to strong bisimulation; see [3,17], also [13] showing
the hierarchy of PRS classes. Adding a finite-state control unit to the PRS
rewriting mechanism results in so-called state-extended PRS (sePRS) classes,
see for example [8]. We have extended the PRS hierarchy by sePRS classes
and refined this extended hierarchy by introducing restricted state extensions
of two types: PRS equipped with a weak finite-state unit (wPRS, inspired by
weak automata [18]) [11,10] and PRS with finite constraint unit (fcPRS) [23].

Research on the expressive power of process classes has been accompanied
by exploring algorithmic boundaries of various verification problems. In this
paper we focus on the equivalence checking problem taking weak bisimilarity
as the notion of behavioral equivalence.

The state of the art: Regarding sequential systems, i.e. those without
parallel composition, the weak bisimilarity problem is undecidable for PDA
even for the normed case [19]. However, it is conjectured [14] that weak
bisimilarity is decidable for BPA; the best known lower bound is EXPTIME -
hardness [14].

Considering parallel systems, even strong bisimilarity is undecidable for
MSA [17] using the technique as introduced in [6]. However, it is conjectured
[7] that the weak bisimilarity problem is decidable for BPP; the best known
lower bound is PSPACE -hardness [20].

For the simplest systems combining both parallel and sequential operators,
called PA processes [1], the weak bisimilarity problem is undecidable [21].
It is an open question for the normed PA; the best known lower bound is
EXPTIME -hardness [14].

Our contribution: We move the undecidability border of the weak bisim-
ilarity problem towards the classes of BPA and BPP, where the problem is
conjectured to be decidable. We show that the problem remains undecidable
for the weakly extended versions of both BPA (wPBA) and BPP (wBPP).
In fact, the result is not new for wBPA: Mayr [14] has shown that adding a
finite-state unit of the minimal non-trivial size 2 to the BPA process already
makes weak bisimilarity undecidable. By inspection of his proof, we note that
the result is valid for wBPA as well - see Sections 2 and 3 for the definition of
wBPA and more detailed discussion.

2

4

Křet́ınský et al.

2 Preliminaries

We recall the definitions of labelled transition system and weak bisimilarity.
Then we define the syntax of process rewrite systems and (weak) finite-state
unit extensions of PRS. Their semantics is given in terms of labelled transition
systems.

Let Act = {a, b, . . .} be a set of actions such that Act contains a distin-
guished silent action τ . A labelled transition system is a pair (S,−→), where
S is a set of states and −→⊆ S × Act × S is a transition relation. We write
s1

a−→ s2 instead of (s1, a, s2) ∈−→. The transition relation is extended to
finite words over Act in the standard way. Further, we extend the relation to

language L ⊆ Act∗ such that s1
L−→ s2 if s1

w−→ s2 for some w ∈ L. More-

over, we write s1 −→∗ s2 instead of s1
Act∗−→ s2. The weak transition relation

=⇒⊆ S × Act × S is defined as
τ

=⇒=
τ∗−→ and

a
=⇒=

τ∗aτ∗−→ for all a 6= τ .

A binary relation R on states of a labelled transition system is a weak
bisimulation iff whenever (s1, s2) ∈ R then for any a ∈ Act :

• if s1
a−→ s′1 then s2

a
=⇒ s′2 for some s′2 such that (s′1, s

′
2) ∈ R and

• if s2
a−→ s′2 then s1

a
=⇒ s′1 for some s′1 such that (s′1, s

′
2) ∈ R.

States s1 and s2 are weakly bisimilar, written s1 ≈ s2, iff (s1, s2) ∈ R for some
weak bisimulation R.

We use a characterization of weak bisimilarity in terms of a bisimulation
game. This is a two-player game between an attacker and a defender played
in rounds on pairs of states of a considered labelled transition system. In a
round starting at a pair of states (s1, s2), the attacker first chooses i ∈ {1, 2},
an action a ∈ Act , and a state s′i such that si

a−→ s′i. The defender then has
to choose a state s′3−i such that s3−i

a
=⇒ s′3−i. The states s′1, s

′
2 form a pair of

starting states for the next round. A play is a maximal sequence of pairs of
states chosen by players in the given way. The defender is the winner of every
infinite play. A finite game is lost by the player who cannot make any choice
satisfying the given conditions. It can be shown that two states s1, s2 of a
labelled transition system are not weakly bisimilar if and only if the attacker
has a winning strategy for the bisimulation game starting in these states.

Let Const = {X, . . .} be a set of process constants. The set of process terms
(ranged over by t, . . .) is defined by the abstract syntax t ::= ε | X | t.t | t‖t,
where ε is the empty term, X ∈ Const is a process constant; and ’.’ and ’‖’
mean sequential and parallel composition respectively. We always work with
equivalence classes of terms modulo commutativity and associativity of ’‖’,
associativity of ’.’, and neutrality of ε, i.e. ε.t = t = t.ε and t‖ε = t. We
distinguish four classes of process terms as:

1 – terms consisting of a single process constant only, in particular ε 6∈ 1,

S – sequential terms - terms without parallel composition, e.g. X.Y.Z,

3

5

Křet́ınský et al.

P – parallel terms - terms without sequential composition, e.g. X‖Y ‖Z,

G – general terms - terms with arbitrarily nested sequential and parallel com-
positions, e.g. (X.(Y ‖Z))‖W .

Let α, β be classes of process terms α, β ∈ {1, S, P,G} such that α ⊆ β.
An (α, β)-PRS (process rewrite system) ∆ is a finite set of rewrite rules of the
form t1

a−→ t2, where t1 ∈ αr {ε}, t2 ∈ β are process terms and a ∈ Act is an
action. Given a PRS ∆, let Const(∆) and Act(∆) be the respective (finite)
sets of all constants and all actions which occur in the rewrite rules of ∆.

An (α, β)-PRS ∆ determines a labelled transition system where states are
process terms t ∈ β over Const(∆). The transition relation −→ is the least
relation satisfying the following inference rules (recall that ‘‖’ is commutative):

(t1
a−→ t2) ∈ ∆

t1
a−→ t2

t1
a−→ t2

t1‖t′1 a−→ t2‖t′1
t1

a−→ t2

t1.t′1
a−→ t2.t′1

The formalism of process rewrite systems can be extended to include
a finite-state control unit in the following way. Let M = {m,n, . . .} be a set of
control states. Let α, β ∈ {1, S, P,G}, α ⊆ β be the classes of process terms.
An (α, β)-sePRS (state extended process rewrite system) ∆ is a finite set of
rewrite rules of the form (m, t1)

a−→ (n, t2), where t1 ∈ α r {ε}, t2 ∈ β,
m,n ∈ M , and a ∈ Act . M(∆) denotes the finite set of control states which
occur in ∆.

An (α, β)-sePRS ∆ determines a labelled transition system where states
are the pairs of the form (m, t) such that m ∈ M(∆) and t ∈ β is a process
term over Const(∆). The transition relation −→ is the least relation satisfying
the following inference rules:

((m, t1)
a−→ (n, t2)) ∈ ∆

(m, t1)
a−→ (n, t2)

(m, t1)
a−→ (n, t2)

(m, t1‖t′1)
a−→ (n, t2‖t′1)

(m, t1)
a−→ (n, t2)

(m, t1.t′1)
a−→ (n, t2.t′1)

To shorten our notation we write mt in lieu of (m, t).

An (α, β)-sePRS ∆ is called a process rewrite system with weak finite-
state control unit or just a weakly extended process rewrite system, written
(α, β)-wPRS, if there exists a partial order ≤ on M(∆) such that every rule
(m, t1)

a−→ (n, t2) of ∆ satisfies m ≤ n.

Some classes of (α, β)-PRS correspond to widely known models as finite-
state systems (FS), basic process algebras (BPA), basic parallel processes
(BPP), process algebras (PA), pushdown processes (PDA, see [4] for justi-
fication), and Petri nets (PN). The other (α, β)-PRS classes were introduced
and named as PAD, PAN, and PRS by Mayr [13]. The correspondence be-
tween (α, β)-PRS classes and the acronyms is given in Figure 1. Instead of
(α, β)-sePRS or (α, β)-wPRS we use the prefixes ‘se-’ and ‘w-’ in connection
with the acronym for the corresponding (α, β)-PRS class. For example, we
use wBPA and wBPP rather than (1, S)-wPRS and (1, P)-wPRS, respectively.

4

6

Křet́ınský et al.

sePRS

wPRS

ppppppppppppppppppp

MMMMMMMMMMMMMMMMM
PRS

(G,G)-PRS

ppppppppppppppppp

MMMMMMMMMMMMMMMM

sePAD sePAN

wPAD

NNNNNNNNNNNNNNNNNNN wPAN

qqqqqqqqqqqqqqqqq
PAD

(S,G)-PRS

NNNNNNNNNNNNNNNNNN
PAN

(P,G)-PRS

rrrrrrrrrrrrrrrr
sePA

jjjjjjjjjjjjjj

SSSSSSSSSSSSS

wPA

ppppppppppppppppppp

LLLLLLLLLLLLLLLLLL
{se,w}PDA=PDA=seBPA

(S, S)-PRS
PA

(1, G)-PRS

pppppppppppppppppp

LLLLLLLLLLLLLLLL
{se,w}PN=PN

(P, P)-PRS

seBPP=MSA
↑undecidable

\\\\\\\\\\

bbbbbbbbb
wBPA wBPP
BPA

(1, S)-PRS

RRRRRRRRRRRRRR
BPP

(1, P)-PRS

mmmmmmmmmmmmm

↓decidable
aaaaaaaa ____________________________

{se,w}FS=FS
(1, 1)-PRS

Fig. 1. The hierarchy with (un)decidability boundaries of ≈.

Finally, we note that seBPP are also known as multiset automata (MSA) or
parallel pushdown processes (PPDA).

Figure 1 depicts relations between the expressive power of the considered
classes. The expressive power of a class is measured by the set of labelled
transition systems that are definable (up to strong bisimulation equivalence)
by the class. A solid line between two classes means that the upper class is
strictly more expressive than the lower one. A dotted line means that the
upper class is at least as expressive as the lower class (and the strictness is
just our conjecture). Details can be found in [11,10].

3 Undecidability of weak bisimilarity

In this section we show that weak bisimilarity is undecidable for the classes
wBPA and wBPP. More precisely, we study the following two problems.

Problem: Weak bisimilarity problem for wBPA (or wBPP respectively)
Instance: A wBPA (or wBPP) system ∆ and two of its states mt,m′t′

Question: Are the two states weakly bisimilar?

3.1 wBPA

In [14] Mayr studied the question of how many control states are needed in
PDA to make weak bisimilarity undecidable.

5

7

Křet́ınský et al.

Theorem 3.1 ([14], Theorem 29) Weak bisimilarity is undecidable for push-
down automata with only 2 control states.

The proof is done by a reduction of Post’s correspondence problem to the
weak bisimilarity problem for PDA. The constructed PDA has only two control
states, p and q. Quick inspection of the construction shows that the resulting
pushdown automata are in fact wBPA systems as there is no transition rule
changing q to p and each rule has only one process constant on the left hand
side. Hence Mayr’s theorem can be reformulated as follows.

Theorem 3.2 Weak bisimilarity is undecidable for wBPA systems.

3.2 wBPP

We show that the non-halting problem for Minsky 2-counter machines can be
reduced to the weak bisimilarity problem for wBPP. First, let us recall the
notions of Minsky 2-counter machine and the non-halting problem.

A Minsky 2-counter machine, or a machine for short, is a finite sequence

N = l1 : i1, l2 : i2, . . . , ln−1 : in−1, ln : halt

where n ≥ 1, l1, l2, . . . , ln are labels, and each ij is an instruction for

• increment : ck:= ck+1; goto lr, or

• test-and-decrement : if ck>0 then ck:= ck-1; goto lr else goto ls

where k ∈ {1, 2} and 1 ≤ r, s ≤ n.

The semantics of a machine N is given by a labelled transition system the
states of which are configurations of the form (lj, v1, v2) where lj is a label of
an instruction to be executed and v1, v2 are nonnegative integers representing
current values of counters c1 and c2, respectively. The transition relation is
the smallest relation satisfying the following conditions: if ij is an instruction
of the form

• c1:= c1+1; goto lr, then (lj, v1, v2)
inc−→ (lr, v1 + 1, v2) for all v1, v2 ≥ 0;

• if c1>0 then c1:= c1-1; goto lr else goto ls, then (lj, v1 + 1, v2)
dec−→

(ls, v1, v2) and (lj, 0, v2)
zero−→ (lr, 0, v2) for all v1, v2 ≥ 0;

and the analogous condition for instructions manipulating c2. We say that
the (computation of) machine N halts if there are numbers v1, v2 ≥ 0 such
that (l1, 0, 0) −→∗ (ln, v1, v2). Let us note that the system is deterministic,
i.e. for every configuration there is at most one transition leading from the
configuration.

The non-halting problem is to decide whether a given machine N does not
halt. The problem is undecidable [16].

Let us fix a machine N = l1 : i1, l2 : i2, . . . , ln−1 : in−1, ln : halt. We
construct a wBPP system ∆ such that its states simL1 and simL′1 are weakly
bisimilar if and only if N does not halt. Roughly speaking, we create a set

6

8

Křet́ınský et al.

of wBPP rules allowing us to simulate the computation of N by two separate
sets of terms. If the instruction halt is reached in the computation of N ,
the corresponding term from one set can perform the action halt , while the
corresponding term from the other set can perform the action halt ′. Therefore,
the starting terms are weakly bisimilar if and only if the machine does not
halt.

The wBPP system ∆ we are going to construct uses five control states,
namely sim, check 1, check ′1, check 2, check ′2. We associate each label lj and
each counter ck with process constants Lj, L

′
j and Xk, Yk respectively. A

parallel composition of x copies of Xk and y copies of Yk, written Xx
k ‖Y y

k ,
represents the fact that the counter ck has the value x − y. Hence, terms
simLj‖Xx1

1 ‖Y y1

1 ‖Xx2
2 ‖Y y2

2 and simL′j‖Xx1
1 ‖Y y1

1 ‖Xx2
2 ‖Y y2

2 are associated with
a configuration (lj, x1 − y1, x2 − y2) of the machine N . Some rules contain
auxiliary process constants. In what follows, β stands for a term of the form
β = Xx1

1 ‖Y y1

1 ‖Xx2
2 ‖Y y2

2 . The control states checkk, check ′k for k ∈ {1, 2} are
intended for testing emptiness of the counter ck. The only rules applicable in
these control states are:

check 1X1
chk1−→ check 1ε check 2X2

chk2−→ check 2ε

check ′1Y1
chk1−→ check ′1ε check ′2Y2

chk2−→ check ′2ε

One can readily confirm that checkkβ ≈ check ′kβ if and only if the value of ck
represented by β equals zero.

In what follows we construct a set of wBPP rules for each instruction of the
machine N . At the same time we argue that the only chance for the attacker
to win is to simulate the machine without cheating as every cheating can be
punished by the defender’s victory. This attacker’s strategy is winning if and
only if the machine halts.

Halt: ln : halt

Halt instruction is translated into the following two rules:

simLn
halt−→ simε simL′n

halt ′−→ simε

Clearly, the states simLn‖β and simL′n‖β are not weakly bisimilar.

Increment: lj : ck:= ck+1; goto lr

For each such instruction of the machine N we add the following rules to ∆:

simLj
inc−→ simLr‖Xk simL′j

inc−→ simL′r‖Xk

Obviously, every round of the bisimulation game starting at states simLj‖β
and simL′j‖β ends up in states simLr‖Xk‖β and simL′r‖Xk‖β.

7

9

Křet́ınský et al.

Test-and-decrement: lj : if ck>0 then ck:= ck-1; goto lr else goto ls

For any such instruction of the machine N we add two sets of rules to ∆, one
for the ck > 0 case and the other for the ck = 0 case. The wBPP formalism
has no power to rewrite a process constant corresponding to a label lj and to
check whether ck > 0 at the same time. Therefore, in the bisimulation game it
is the attacker who has to decide whether ck > 0 holds or not, i.e. whether he
will play an action dec or an action zero. We show that whenever the attacker
tries to cheat, the defender can win the game.

At this point our construction of wBPP rules uses a variant of the technique
called defender’s choice [9]. In a round starting at the pair of states s1, s2,
the attacker is forced to choose one specific transition (indicated by a wavy
arrow henceforth). If he chooses a different transition, say sk

a−→ s where
k ∈ {1, 2}, then there exists a transition s3−k

a−→ s that enables the defender
to reach the same state and win the play. The name of this technique refers
to the fact that after the attacker chooses the specific transition, the defender
can choose an arbitrary transition with the same label. These transitions are
indicated by solid arrows. The dotted arrows stands for auxiliary transitions
which compel the attacker to play the specific transition.

First, we discuss the following rules designed for the ck > 0 case:

simLj
dec−→ simAk,r simAk,r

dec−→ checkkε simBk,r
dec−→ simLr‖Yk

simLj
dec−→ simBk,r simAk,r

dec−→ simL′r‖Yk simBk,r
dec−→ simL′r‖Yk

simL′j
dec−→ simAk,r simAk,r

dec−→ check ′kε simBk,r
dec−→ check ′kε

simL′j
dec−→ simBk,r simCk,r

dec−→ simL′r‖Yk
simL′j

dec−→ simCk,r simCk,r
dec−→ check ′kε

The situation can be depicted as follows.

simLj‖β
dec

�������������
dec

��===========
simL′j‖β

dec

uu

dec

��

dec

���^
�^

�^
�^

�^
�^

�^

simAk,r‖β
dec

�� �C
�C
�C
�C
�C
�C

dec

))

dec

++

simBk,r‖β
dec

�� �@
�@

�@
�@

�@
�@

�@
dec

��

dec

))

simCk,r‖β
dec

�������������
dec

��7777777777

checkkβ simLr‖Yk‖β simL′r‖Yk‖β check′kβ

Let us assume that in a round starting at states simLj‖β, simL′j‖β the attacker
decides to perform the action dec. Due to the principle of defender’s choice

employed here, the attacker has to play the transition simL′j‖β dec−→ simCk,r‖β,
while the defender can choose between the transitions leading from simLj‖β
either to simAk,r‖β or to simBk,r‖β. Thus, the round will finish either in states

8

10

Křet́ınský et al.

simAk,r‖β, simCk,r‖β or in states simBk,r‖β, simCk,r‖β. Using the defender’s
choice again, one can easily see that the next round ends up in checkkβ or
simLr‖Yk‖β, and simL′r‖Yk‖β or check ′kβ. The exact combination is chosen
by the defender. The defender will not choose any pair of states where one
control state is sim and the other is not as such states are clearly not weakly
bisimilar. Hence, the two considered rounds of the bisimulation game end up
in a pair of states either simLr‖Yk‖β, simL′r‖Yk‖β or checkkβ, check ′kβ. The
latter pair is weakly bisimilar iff the value of ck represented by β is zero, i.e. iff
the attacker cheats when he decides to play an action dec. This means that
if the attacker cheats, the defender wins. If the attacker plays the action dec
correctly, the only chance for either player to force a win is to finish these
two rounds in states simLr‖Yk‖β, simL′r‖Yk‖β corresponding to the correct
simulation of an test-and-decrement instruction with a label lj.

Now, we focus on the following rules designed for the ck = 0 case:

simLj
zero−→ simDk,s simDk,s

zero−→ checkkε simEk,s
zero−→ simLs

simLj
zero−→ simEk,s simDk,s

zero−→ simL′s simEk,s
zero−→ simL′s

simL′j
zero−→ simDk,s simDk,s

zero−→ simGk simEk,s
zero−→ simGk

simL′j
zero−→ simEk,s simFk,s

zero−→ simL′s simGk
τ−→ simGk‖Yk

simL′j
zero−→ simFk,s simFk,s

zero−→ simGk simGk
τ−→ check ′kYk

The situation can be depicted as follows.

simLj‖β
zero

������������
zero

��9999999999
simL′j‖β

zero

vv

zero

��

zero

���\
�\

�\
�\

�\
�\

simDk,s‖β
zero

�� �B
�B
�B
�B
�B
�B

zero

))

zero

++

simEk,s‖β
zero

�� �B
�B
�B
�B
�B
�B

zero

��

zero

))

simFk,s‖β
zero

������������
zero

��???????????

checkkβ simLs‖β simL′s‖β simGk‖β

τm

��
check′kY

m
k ‖β

Let us assume that the attacker decides to play the action zero. The defender’s
choice technique allows the defender to control the two rounds of the bisimula-
tion game starting at states simLj‖β and simL′j‖β. The two rounds end up in
a pair of states simLs‖β, simL′s‖β or in a pair of the form checkkβ, check ′kY

m
k ‖β

where m ≥ 1; all the other choices of the defender lead to his loss. As in the
previous case, the latter possibility is designed to punish any possible at-

9

11

Křet́ınský et al.

tacker’s cheating. The attacker is cheating if he plays the action zero and the
value of ck represented by β, say vk, is positive.4 In such a case, the defender
can control the two rounds to end up in states checkkβ, check ′kY

vk
k ‖β which

are weakly bisimilar. If the attacker plays correctly, i.e. the value of ck repre-
sented by β is zero, then the defender has to control the two discussed rounds
to end up in states simLs‖β, simL′s‖β as the states checkkβ, check ′kY

m
k ‖β are

not weakly bisimilar for any m ≥ 1. To sum up, the attacker’s cheating can
be punished by defender’s victory. If the attacker plays correctly, the only
chance for both players to win is to end up after the two rounds in states
simLs‖β, simL′s‖β corresponding to the correct simulation of the considered
instruction.

It has been argued that if each of the two players wants to win, then
both players will correctly simulate the computation of the machine N . The
computation is finite if and only if the machine halts. The states simL1 and
simL′1 are not weakly bisimilar in this case. If the machine does not halt,
the play is infinite and the defender wins. Hence, the two states are weakly
bisimilar in this case. In other words, the states simL1 and simL′1 of the
constructed wBPP ∆ are weakly bisimilar if and only if the Minsky 2-counter
machine N does not halt.

Theorem 3.3 Weak bisimilarity is undecidable for wBPP systems.

4 Conclusion

We have shown that the weak bisimilarity problem remains undecidable for
weakly extended versions of BPP (wBPP) and BPA (wBPA) process classes.

We note that the result for wBPA is just our interpretation (in terms
of weakly extended systems) of Mayr’s proof showing that the problem is
undecidable for PDA with two control states ([14], Theorem 29).

In terms of parallel systems, our technique used for wBPP is new. To
mimic the computation of a Minsky 2-counter machine, one has to be able
to maintain its state information – the label of a current instruction and the
values of the counters c1 and c2. As the finite-state unit of wBPP is weak,
it cannot be used to store even a part of such often changing information.
Hence, contrary to the constructions in more expressive systems (PN [6] and
MSA [17]) we have made the term part to manage it as follows. In a test-
and-decrement instruction the process constant Lj has to be changed and
moreover one of the counters has to be decreased at the same time. As two
process constants cannot be rewritten by one wBPP rewrite rule, we introduce
new process constants Y1 and Y2 to represent inverse elements to X1 and X2

respectively and we make a term Xx
k ‖Y y

k to represent the counter ck the value

4 We do not have to consider the case when β represents a negative value of ck as such a
state is reachable in the game starting in states simL1, simL′1 only by unpunished cheating.

10

12

Křet́ınský et al.

of which is x− y. We note that the weak state unit allows for controlling the
correct order of the successive stages in the progress of a bisimulation game.

In fact, our results hold for even a bit more restricted classes fcBPA and
fcBPP (see [23] for the definitions of fcBPA and fcBPP) and remain valid
for the normed subclasses of fcBPP and fcBPA [12]. Hence, they hold for
normed wBPP and normed wBPA as well. Due to the technical nature of
the presentation we have demonstrated the results for (unnormed) wBPP and
(unnormed) wBPA only.

We recall that the decidability of weak bisimilarity is an open question for
BPA and BPP. We note that these problems are conjectured to be decidable
(see [14] and [7] respectively) in which case our results would establish a fine
undecidability border of weak bisimilarity.

Acknowledgements. We would like to thank Jǐŕı Srba for valuable sugges-
tions and comments.

References

[1] Baeten, J. and W. Weijland, “Process Algebra,” Number 18 in Cambridge
Tracts in Theoretical Computer Science, Cambridge University Press, 1990.

[2] Burkart, O., D. Caucal, F. Moller and B. Steffen, Verification on infinite
structures, in: Handbook of Process Algebra (2001), pp. 545–623.

[3] Burkart, O., D. Caucal and B. Steffen, Bisimulation collapse and the process
taxonomy, in: Proc. of CONCUR’96, LNCS 1119 (1996), pp. 247–262.

[4] Caucal, D., On the regular structure of prefix rewriting, Theoretical Computer
Science 106 (1992), pp. 61–86.

[5] Esparza, J., Grammars as processes, in: Formal and Natural Computing, LNCS
2300 (2002).

[6] Jančar, P., Undecidability of bisimilarity for Petri nets and some related
problems, Theoretical Computer Science 148 (1995), pp. 281–301.

[7] Jančar, P., Strong bisimilarity on basic parallel processes is PSPACE-complete,
in: Proc. of 18th IEEE Symposium on Logic in Computer Science (LICS’03)
(2003), pp. 218–227.

[8] Jančar, P., A. Kučera and R. Mayr, Deciding bisimulation-like equivalences with
finite-state processes, Theoretical Computer Science 258 (2001), pp. 409–433.

[9] Jančar, P. and J. Srba, Highly undecidable questions for process algebras, in:
Proceedings of the 3rd IFIP International Conference on Theoretical Computer
Science (TCS’04), Exploring New Frontiers of Theoretical Informatics (2004),
pp. 507–520.

11

13

Křet́ınský et al.

[10] Křet́ınský, M., V. Řehák and J. Strejček, Extended process rewrite systems:
Expressiveness and reachability, in: P. Gardner and N. Yoshida, editors,
CONCUR 2004 - Concurrency Theory, LNCS 3170 (2004), pp. 355–370.

[11] Křet́ınský, M., V. Řehák and J. Strejček, On extensions of process rewrite
systems: Rewrite systems with weak finite-state unit, in: P. Schnoebelen, editor,
INFINITY 2003: 5th International Workshop on Verification of Infinite-State
Systems, Electronic Notes in Theoret. Computer Science 98 (2004), pp. 75–88.

[12] Křet́ınský, M., V. Řehák and J. Strejček, Refining the undecidability border of
weak bisimilarity, Technical Report FIMU-RS-2005-06, Faculty of Informatics,
Masaryk University (2005), a full version of this paper.

[13] Mayr, R., Process rewrite systems, Information and Computation 156 (2000),
pp. 264–286.

[14] Mayr, R., Weak bisimilarity and regularity of context-free processes is
EXPTIME-hard, Theoretical Computer Science 330 (2005), pp. 553–575.

[15] Milner, R., “Communication and Concurrency,” Prentice-Hall, 1989.

[16] Minsky, M. L., “Computation: Finite and Infinite Machines,” Prentice-Hall,
1967.

[17] Moller, F., Infinite results, in: Proc. of CONCUR’96, LNCS 1119 (1996), pp.
195–216.

[18] Muller, D., A. Saoudi and P. Schupp, Alternating automata, the weak monadic
theory of trees and its complexity, Theoret. Computer Science 97 (1992),
pp. 233–244.

[19] Srba, J., Undecidability of weak bisimilarity for pushdown processes,
in: Proceedings of 13th International Conference on Concurrency Theory
(CONCUR’02), LNCS 2421 (2002), pp. 579–593.

[20] Srba, J., Complexity of weak bisimilarity and regularity for BPA and BPP,
Mathematical Structures in Computer Science 13 (2003), pp. 567–587.

[21] Srba, J., Undecidability of weak bisimilarity for PA-processes, in: Proceedings
of the 6th International Conference on Developments in Laguage Theory
(DLT’02), LNCS 2450 (2003), pp. 197–208.

[22] Srba, J., Roadmap of infinite results, in: Current Trends In Theoretical
Computer Science, The Challenge of the New Century, Vol 2: Formal Models
and Semantics (2004), pp. 337–350, http://www.brics.dk/~srba/roadmap/.

[23] Strejček, J., Rewrite systems with constraints, EXPRESS’01, Electronic Notes
in Theoretical Computer Science 52 (2002).

12

14

INFINITY 2005 Preliminary Version

Abstract Regular Tree Model Checking

Ahmed Bouajjani, Peter Habermehl1,2

LIAFA, University Paris 7, Case 7014, 2, place Jussieu, F-75251 Paris Cedex 05, France

Adam Rogalewicz, Toḿǎs Vojnar3,4

FIT, Brno University of Technology, Božeťechova 2, CZ-61266, Brno, Czech Republic

Abstract

Regular (tree) model checking (RMC) is a promising generic method for formal verifi-
cation of infinite-state systems. It encodes configurationsof systems as words or trees
over a suitable alphabet, possibly infinite sets of configurations as finite word or tree au-
tomata, and operations of the systems being examined as finite word or tree transducers.
The reachability set is then computed by a repeated application of the transducers on the
automata representing the currently known set of reachableconfigurations. In order to fa-
cilitate termination of RMC, various acceleration schemashave been proposed. One of
them is a combination of RMC with the abstract-check-refine paradigm yielding the so-
called abstract regular model checking (ARMC). ARMC has originally been proposed for
word automata and transducers only and thus for dealing withsystems with linear (or easily
linearisable) structure. In this paper, we propose a generalisation of ARMC to the case of
dealing with trees which arise naturally in a lot of modelling and verification contexts. In
particular, we first propose abstractions of tree automata based on collapsing their states
having an equal language of trees up to some bounded height. Then, we propose an ab-
straction based on collapsing states having a non-empty intersection (and thus “satisfying”)
the same bottom-up tree “predicate” languages. Finally, weshow on several examples that
the methods we propose give us very encouraging verificationresults.

1 Introduction
Regular model checking[14,4,5] is a general method for formal verification of
infinite-state systems. Configurations of systems are encoded as finite words over
a finite alphabetΣ and transitions are encoded as relations over words. Then, word
automata overΣ can naturally be used to represent and manipulate (infinite)sets
of configurations and transducers over(Σ ∪ {ε}) × (Σ ∪ {ε}) are used to repre-
sent the transition relation. To verify safety properties,a reachability analysis is
performed by calculating transitive closures of transducers or images of automata
by iteration of transducers. Termination is usually not guaranteed and therefore
various acceleration methods have been proposed.

1 Supported by the French ministry of research (ACI project Securité Informatique).
2 Email: abou@liafa.jussieu.fr,Peter.Habermehl@liafa.jussieu.fr
3 Supported by the Czech Grant Agency projects 102/05/H050, 102/03/D211, and 102/04/0780.
4 Email: rogalew@fit.vutbr.cz,vojnar@fit.vutbr.cz

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

15

Bouajjani, Habermehl, Rogalewicz, Vojnar

As one of the most successful acceleration methods and also as a way to cope
with the problem of state space explosion in automata representing configurations,
abstract regular model checking(ARMC) [8] has been introduced recently. This
generic method uses the well knownabstract-check-refineparadigm within regular
model checking. Abstractions are defined on word automata representing configu-
rations. Then, an abstract reachability analysis which is guaranteed to terminate is
performed. Suitable refinements of abstractions are definedfor the case a spurious
counter-example is encountered. In this way, an abstraction detailed just enough to
answer a particular verification question is computed. ARMChas been successfully
applied to a lot of different systems, like counter automata, parameterised networks
of processes, and programs with lists [7].

To handle other structures than linear (or easily linearisable) ones, regulartree
model checking [14,6,1,19,2] has been proposed. Instead of words, configurations
are finite trees and instead of word automata, tree automata are used to represent
sets of configurations. Then, tree transducers model transitions. Like in the word
case, several acceleration approaches for reachability analysis exist.

Tree like structures are very common and appear naturally inmany modelling
and verification contexts. For example, in the case of parameterized tree networks,
labelled trees of arbitrary height represent a configuration of the network: each
process is a node of the tree and the label its control state. Trees also arise natu-
rally, e.g., as a representation of configurations of multithreaded recursive programs
[12,17], as a representation structure of heaps [15], or when representing structured
data such as XML documents [9].

In this paper, we extend the framework of ARMC from words to trees. We use
bottom-up tree automata and transducers. Like in ARMC, we use abstract fixpoint
computations in somefinite domain of automata. The abstract fixpoint computa-
tions always terminate and provide overapproximations of the reachability sets. To
achieve this, we define techniques that systematically map any tree automatonM
to a tree automatonM ′ from some finite domain such thatM ′ recognises a super-
set of the language ofM . For the case that the computed overapproximation is
too coarse and a spurious counter-example is detected, we give effective principles
allowing the abstraction to be refined such that the new abstract computation does
not encounter the same counter-example.

We, in particular, propose two abstractions for tree automata. Similarly to
ARMC, both of them are based on collapsing automata states according to a suit-
able equivalence relation. The first is based on consideringtwo tree automata states
equivalent if theirlanguages of trees up to a certain fixed heightare equal. The sec-
ond abstraction is defined by a set of regularpredicate languagesLP . We consider
a stateq of a tree automatonM to “satisfy” a predicate languageLP if the intersec-
tion of LP with the tree languageL(M, q) accepted from the stateq is not empty.
Then, two states are equivalent if they satisfy the same predicates.

We have implemented the above abstractions in a prototype tool using the Tim-
buk [13] tree automata library. We have experimented with the tool on various
parameterized tree network protocols. The results are veryencouraging and com-

2

16

Bouajjani, Habermehl, Rogalewicz, Vojnar

pare very well with other tools, which gives us a very good basis and motivation
for a further development of the method.

2 Regular Tree Languages and Transducers

This section is a brief introduction to regular tree languages and transducers. A
more detailed description can be found, e.g., in [10,11].

An alphabetΣ is a finite set of symbols.Σ is calledrankedif there exists arank
functionρ : Σ → N. For eachk ∈ N, Σk ⊆ Σ is the set of all symbols with rankk.
Symbols ofΣ0 are calledconstants. Let χ be a denumerable set of symbols called
variables. TΣ[χ] denotes the set oftermsoverΣ andχ. The setTΣ[∅] is denoted
by TΣ, and its elements are calledground terms. A term t from TΣ[χ] is called
linear if each variable occurs at most once int. Terms inTΣ[χ] can be viewed as
trees—leaves are labelled by constants and variables, and each node withk sons is
labelled by a symbol fromΣk.

A bottom-up tree automatonover a ranked alphabetΣ is a tupleA = (Q, Σ, F, δ)
whereQ is a finite set of states,F ⊆ Q is a set of final states, andδ is a set of tran-
sitions of the following types: (i)f(q1, . . . , qn) →δ q, (ii) a →δ q, and (iii) q →δ q′

wherea ∈ Σ0, f ∈ Σn, andq, q′, q1, . . . , qn ∈ Q.

Note: Below, we call a bottom-up tree automaton simply a tree automaton.

Let t be a ground term. A run of a tree automatonA on t is defined as follows.
First, leaves are labelled with states. If a leave is a symbola ∈ Σ0 and there is a
rulea →δ q ∈ δ, the leave is labelled byq. An internal nodef ∈ Σk is labelled byq
if there exists a rulef(q1, q2, . . . , qk) →δ q ∈ δ and the first son of the node has the
state labelq1, the second oneq2, ..., and the last oneqk. Rules of the typeq →δ q′

are calledε-stepsand allow us to change a state label fromq to q′. If the top symbol
is labelled with a state from the set of final statesF , the termt is accepted by the
automatonA.

A set of ground terms accepted by a tree automatonA is called aregular tree
languageand is denoted byL(A). Let A = (Q, Σ, F, δ) be a tree automaton and
q ∈ Q a state, then we define thelanguage of the state q—L(A, q)—as the set of
ground terms accepted by the tree automatonAq = (Q, Σ, {q}, δ). The language
L≤n(A, q) is defined to be the set{t ∈ L(A, q) | height(t) ≤ n}.

A bottom-up tree transduceris a tupleτ = (Q, Σ, Σ′, F, δ) whereQ is a finite
set of states,F ⊆ Q is a set of final states,Σ is an input ranked alphabet,Σ′ is an
output ranked alphabet, andδ is a set of transition rules of the following types: (i)
f(q1(x1), . . . , qn(xn)) →δ q(u), u ∈ TΣ′ [{x1, . . . , xn}], (ii) q(x) →δ q′(u), u ∈
TΣ′[{x}], and (iii) a →δ q(u), u ∈ TΣ′ wherea ∈ Σ0, f ∈ Σn, x, x1, . . . , xn ∈ χ,
andq, q′, q1, . . . , qn ∈ Q.

Note: In the following, we call a bottom-up tree transducer simplya tree transducer.
We always use tree transducers withΣ = Σ′.

A run of a tree transducerτ on a ground termt is similar to a run of a tree
automaton on this term. First, rules of type(iii) are used. If a leaf is labelled by
a symbola and there is a rulea →δ q(u) ∈ δ, the leaf is replaced by the term

3

17

Bouajjani, Habermehl, Rogalewicz, Vojnar

u and labelled by the stateq. If a node is labelled by a symbolf , there is a rule
f(q1(x1), q2(x2), . . . , qn(xn)) →δ q(u) ∈ δ, the first subtree of the node has the
state labelq1, the second oneq2, . . ., and the last oneqn, then the symbolf and
all subtrees of the given node are replaced according to the right-hand side of the
rule with the variablesx1, . . . , xn substituted by the corresponding left-hand-side
subtrees. The state labelq is assigned to the new tree. Rules of type(ii) are called
ε-steps. They allow us to replace aq-state-labelled tree by the right hand side of
the rule and assign the state labelq′ to this new tree with the variablex in the rule
substituted by the original tree. A run of a transducer is successful if the root of a
tree is processed and is labelled by a state fromF .

A tree transducer islinear if all right-hand sides of its rules are linear (no vari-
able occurs more than once). The class of linear bottom-up tree transducers is
closed under composition. A tree transducer is calledstructure-preserving(or a
relabelling) if it does not modify the structure of input trees and just changes the
labels of their nodes. By abuse of notation, we identify a transducerτ with the
relation{(t, t′) ∈ TΣ × TΣ | t →∗

δ q(t′) for someq ∈ F}. For a setL ⊆ TΣ and a
relationR ⊆ TΣ × TΣ, we denoteR(L) the set{w ∈ TΣ | ∃w′ ∈ L : (w′, w) ∈ R}
andR−1(L) the set{w ∈ TΣ | ∃w′ ∈ L : (w, w′) ∈ R}. If τ is a linear tree trans-
ducer andL is a regular tree language, then the setsτ(L) andτ−1(L) are regular
and effectively constructible [11,10].

Let id ⊆ TΣ × TΣ be the identity relation and◦ the composition of relations.
We define recursively the relationsτ 0 = id, τ i+1 = τ ◦ τ i andτ ∗ = ∪∞

i=0τ
i. Below,

we supposeid ⊆ τ meaning thatτ i ⊆ τ i+1 for all i ≥ 0.

3 Abstract Regular Tree Model Checking

In this section, we first recall the notion of regular tree model checking. Then, we
introduce abstract regular tree model checking by defining several abstractions on
tree automata.

3.1 Regular Tree Model Checking

Regular tree model checking [1,6,14] is a generalisation of regular model checking
[5] to trees. A configuration of a system is encoded as a term (tree) over a ranked
alphabet and a set of such terms as a regular tree automaton. The transition relation
of a system is encoded as a linear tree transducerτ . We are given a tree automaton
Init encoding the set of initial states. For safety properties, aset of bad states (rep-
resented by a tree automatonBad) is given. Then, the basic verification problem
consists in deciding whether

τ ∗(L(Init)) ∩ L(Bad) = ∅ (1)

This problem is in general undecidable (an iterative computation ofτ ∗(L(Init))
does not terminate). Several methods [1,2,6] have been proposed to calculate in
some casesτ ∗ or τ ∗(L(Init)). These techniques all compute exact sets or relations.
We tackle the model-checking problem by generalising the abstract regular model

4

18

Bouajjani, Habermehl, Rogalewicz, Vojnar

checking method [8] to tree automata. This method computes an overapproxima-
tion of τ ∗(L(Init)) with a precision just sufficient to safely solve the verification
problem (1).

3.2 Abstract Regular Tree Model Checking

Abstract regular tree model checking (ARTMC) combines regular tree model check-
ing with automatic abstraction. The main idea of ARTMC is a generalisation of ab-
stract regular model checking [8] to regular tree languages. For this, the abstraction
techniques designed for word automata have to be adapted to tree automata.

We start by recalling the basic framework of abstract regular model checking
(here phrased directly for trees).

Let Σ be a ranked alphabet andMΣ the set of all tree automata overΣ. We
define an abstraction function as a mappingα : MΣ → AΣ whereAΣ ⊆ MΣ and
∀M ∈ MΣ : L(M) ⊆ L(α(M)). An abstractionα′ is called arefinementof the
abstractionα if ∀M ∈ MΣ : L(α′(M)) ⊆ L(α(M)). Given a tree transducerτ
and abstractionα, we define a mappingτα : MΣ → MΣ as∀M ∈ MΣ : τα(M) =
τ̂(α(M)) whereτ̂(M) is a minimal automaton describing the languageτ(L(M)).
An abstractionα is finite rangeif the setAΣ is finite.

Let Init be a tree automaton representing the set of initial configurations and
Bad be a tree automaton representing the set of bad configurations. Now, we may
iteratively compute the sequence(τ i

α(Init))i≥0. Since we supposeid ⊆ τ , it is
clear that ifα is finitary, there existsk ≥ 0 such thatτk+1

α (Init) = τk
α(Init).

The definition ofα implies L(τk
α(Init)) ⊇ τ ∗(L(Init)). This means that in a

finite number of steps, we can compute an overapproximation of the reachability
setτ ∗(L(Init)).

If L(τk
α(Init)) ∩ L(Bad) = ∅, then the verification problem (1) has a pos-

itive answer. Otherwise, the answer to the problem (1) is not necessarily neg-
ative since during the computation ofτ ∗

α(L(Init)), the abstractionα may intro-
duce extra behaviours leading toL(Bad). Let us examine this case. Assume that
τ ∗
α(Init) ∩ L(Bad) 6= ∅, which means that there is a symbolic path:

Init, τα(Init), τ 2

α(Init), · · · τn−1

α (Init), τn
α (Init) (2)

such thatL(τn
α (Init)) ∩ L(Bad) 6= ∅. We analyse this path by computing the sets

Xn = L(τn
α (Init))∩L(Bad), and for everyk ≥ 0, Xk = L(τk

α(Init))∩τ−1(Xk+1).
Two cases may occur: (i) eitherX0 = L(Init)∩(τ−1)n(Xn) 6= ∅, which means that
the problem (1) has anegative answer, or (ii) there is ak ≥ 0 such thatXk = ∅, and
this means that the symbolic path (2) is actually aspurious counter-exampledue to
the fact thatα is too coarse. In this last situation, we need to refineα and iterate
the procedure. Therefore, our approach is based on the definition of abstraction
schemas allowing to compute families of (automatically) refinable abstractions.

3.3 Abstraction Based on Automata State Equivalence

Below, we discuss two possible tree automata abstraction schemas which are based
on tree automata state equivalence. First, tree automata states are split into sev-

5

19

Bouajjani, Habermehl, Rogalewicz, Vojnar

eral equivalence classes by an equivalence relation. Then,the abstraction function
collapses states from each equivalence class into one state. Formally, a tree au-
tomata state equivalence schemaE is defined as follows: To each tree automaton
M = (Q, Σ, F, δ) ∈ MΣ, an equivalence relation∼E

M⊆ Q×Q is assigned. Then the
automata abstraction functionαE corresponding to the abstraction schemaE is de-
fined as∀M ∈ MΣ : αE(M) = M/ ∼E

M . We callE finitary if αE is finitary (i.e.
there is a finite number of equivalence classes). We refineE by making∼E

M finer.

3.4 Abstraction Based on Languages of Finite Height

We now present the possibility of defining automata state equivalence schemas
based on comparing automata states wrt. a certain bounded part of their languages.
The abstraction schemaHn is a generalisation of a similar schema proposed for
word automata in [8]. This schema defines two states of a tree automatonM as
equivalent if their languages up to the given heightn are identical.

Formally, for a tree automatonM = (Q, Σ, F, δ), Hn defines the state equiva-
lence as the equivalence∼n

M such that∀q1, q2 ∈ Q : q1 ∼n
M q2 ⇔ L≤n(M, q1) =

L≤n(M, q2).
There is a finite number of languages of trees with a maximal height n, and so

this abstraction is finite range. Refining of the abstractioncan be done by increasing
the value ofn.

The abstraction schemaHn can be implemented in a similar way as minimisa-
tion of tree automata. Just the main loop of the minimisationprocedure is stopped
aftern iterations.

3.5 Abstraction Based on Predicate Languages

We next introduce a predicate-based abstraction schemaPP , which was inspired by
the predicate based abstraction on words [8].

Let P = {P1, P2, . . . , Pn} be a set ofpredicates. Each predicateP ∈ P is a
tree language represented by a tree automaton. LetM = (Q, Σ, F, δ) be a tree au-
tomaton, then two statesq1, q2 ∈ Q are equivalent if their languagesL(M, q1) and
L(M, q2) have a nonempty intersection with exactly the same subset ofpredicates
from the setP.

Formally, for an automatonM = (Q, Σ, F, δ), PP defines the state equivalence
as the equivalence∼P

M such that∀q1, q2 ∈ Q : q1 ∼P
M q2 ⇔ (∀P ∈ P : L(P) ∩

L(M, q1) 6= ∅ ⇔ L(P) ∩ L(M, q2) 6= ∅).
Clearly, sinceP is finite and there is only a finite number of subsets ofP rep-

resenting the predicates with which a given state has a nonempty intersection,PP

is finitary. This schema can be refined by adding new predicates into the set P.
The following theorem shows that we may eliminate a spuriouscounter-example
by extending the predicate setP by the languages of all states of the tree automa-
ton representingXk+1 in the analysis of the spurious counter-example (recall that
Xk = ∅) as presented in Section3.2.

6

20

Bouajjani, Habermehl, Rogalewicz, Vojnar

Theorem 3.1 Let us have any two tree automataM = (QM , Σ, FM , δM) andX =
(QX , Σ, FX , δX) and a finite set of predicate automataP s.t. ∀qX ∈ QX : ∃P ∈
P : L(X, qX) = L(P). Then, ifL(M) ∩ L(X) = ∅, L(αPP

(M)) ∩ L(X) = ∅ too.

Proof. The proof is a generalisation of the proof [8] for word automata. We
prove the theorem by contradiction. SupposeL(αPP

(M)) ∩ L(X) 6= ∅. Let
t ∈ L(αPP

(M)) ∩ L(X). As t is accepted byαPP
(M), M must accept it when we

allow it to perform a certain number of “jumps” between states equal wrt.∼P
M—

after accepting a subtree oft and getting to someq ∈ QM , M is allowed to jump
to anyq′ ∈ QM such thatq ∼P

M q′ and go on accepting from there (with or without
further jumps).

Let i > 0 be the minimum number of jumps needed for accepting a tree from
L(αPP

(M))∩L(X) in M and lett′ be such a tree. When looking at the acceptance
of t′ in M (with some jumps allowed), we can identify maximum subtreesof t′ that
may be accepted without jumps—in the worst case, they are just the leaves. Let us
take any of such subtrees. Such a subtreet1 is accepted in someq1, from whichM
jumps to someq2 and goes on accepting the rest of the input. Suppose thatt1 is
accepted in someqX ∈ QX in X. As t1 ∈ L(M, q1), L(M, q1) ∩ L(P) 6= ∅ for the
predicateP ∈ P for whichL(P) = L(X, qX). Moreover, asq1 ∼

P
M q2, L(M, q2)∩

L(P) 6= ∅ too. This implies there existst2 ∈ L(P) such thatt2 ∈ L(M, q2) and
t2 ∈ L(X, qX). However, this means that the treet′′ that we obtain fromt′ by
replacing its subtreet1 with t2 and that clearly belongs toL(αPP

(M)) ∩ L(X) can
be accepted inM with i− 1 jumps, which is a contradiction to the assumption ofi
being the minimum number of jumps needed. 2

The abstraction of an automatonM wrt. the state equivalence based on pred-
icate languagesPP can be implemented as labelling each state ofM by the pred-
icates with which its language has a non-empty intersection, and then collapsing
states with an equal labelling. Here, let us stress that whenrefining PP , it is not
necessary to store each of the newly introduced predicates corresponding to the
states ofXk+1 independently and then perform the labelling independently for each
of them. We may keep justXk+1 and then perform labelling not by justXk+1 but
by each of its states. Moreover, this labelling may be implemented by one simul-
taneous run throughM andXk+1, which corresponds to an efficient simultaneous
labelling by all the predicates contained inXk+1.

4 Experiments with ARTMC

In order to be able to practically evaluate the proposed methods of ARTMC, we
have implemented them in a prototype tool. We have based our prototype tool
on theTimbuk library [13] written in Ocaml. Timbuk provided us with the ba-
sic operations over tree automata needed in ARTMC (such as union, intersection,
complementation, etc.). However, we had to extend Timbuk with a support for tree
transducers. We added two implementations of tree transducers—a simpler and
more efficient for structure-preserving transducers and a more complex for general
transducers. The latter implementation exploits a decomposition of a tree trans-

7

21

Bouajjani, Habermehl, Rogalewicz, Vojnar

ducer into three less complicated ones as described in [11]. This decomposition
can be performed automatically for any tree transducer.

We have tested our verification methods on several examples of protocols using
a parameterised tree-shaped network cited in the literature [14,3,1,2] where the
necessity to cover all possible values of the parameters leads to dealing with infinite
state spaces:

• Simple Token Protocol. A token is being passed in a tree-shaped network from a
leave to the root. We check that the token does not disappear nor replicate.

• Two-Way Token Protocol. An analogy to the previous example, but we allow the
token to be passed upwards as well as downwards.

• Percolate Protocol. A tree-shaped network of processors computes the logical
disjunction of the boolean values that appear in the leave nodes. We check that
the computed value is always correct.

• Tree Arbiter Protocol. A tree-shaped network is used to implement mutual exclu-
sion among the leave processors. A request to enter the critical section is prop-
agated upwards till a node is found which has a token allowingone to enter the
critical section or which knows where the token is (because it granted the token
to one of its children). A node with the token can always send the token upwards
or grant it to any of its children. We check the mutual exclusion property.

• Leader Election Protocol. One of a set of processors is to be elected a leader and
a tree-shaped network is used for this purpose. The leaves are divided into can-
didates and non-candidates. The information about the existence of candidates
is propagated upwards. In the subsequent downward phase, a path leading from
the root to one of the candidate nodes is non-deterministically selected and thus
a leader is established. We check that exactly one leader is chosen.

All the above examples work with a tree-shaped network of a fixed structure.
In order to test the ability of our method to work with non-structure-preserving
systems, we have considered asimple broadcast protocol. In the protocol, the root
sends a message to all leave nodes. They answer and the answers are combined
when travelling upwards. An intermediate node may decide toresend the message
downwards and wait for new data. New nodes may dynamically join the network
at leaves and also leave the network in a suitable moment. We check that there is at
most one active message on each path from the root to the leaves.

The results of our experiments are summarised in Table1. We performed ex-
periments with both the finite-height abstraction as well aswith the predicate-based
abstraction. We considered both forward as well as backwardverification—i.e.
starting with the set of initial states and checking that thebad states cannot be
reached or vice versa. In the table, we always present the better result of these two
approaches. For the finite-height abstraction, we considered the initial height one
(and increased it by one if necessary—in the cases presentedin Table1, this was
not necessary). For the predicate-based abstraction, we considered the automaton
describing the set of bad states as the only initial predicate (or—more precisely—
all the automata that can be obtained from it by considering each of its states as the
only accepting one; in the cases presented in Table1, no refinement was necessary

8

22

Bouajjani, Habermehl, Rogalewicz, Vojnar

when using these initial predicates). We experimented withthe empty initial set of
predicates too—this turned out to be the fastest option for the Percolate protocol
(one refinement was necessary in this case).

Table 1
Some results of experimenting with ARTMC

Protocol Hn PP

Token passing backwards: 0.08s forwards: 0.06s

Two-way token passing backwards: 1.0s forwards: 0.09s

Percolate backwards: 20.8s forwards: 2.4s

Tree arbiter backwards: 0.31s backwards: 0.34s

Leader election backwards: 2.0s forwards: 1.74s

Broadcasting backwards: 9.1s forwards: 1.0s

Notice that the predicate-based abstraction is almost always better than the
finite-height abstraction. This is different from the word case where the results
differ. An explanation of this phenomenon is a part of our future work. The ver-
ification times presented in Table1 were obtained on an Intel Centrino 1.6GHz
machine with 768MB of memory. We consider these results veryencouraging and
we are now working on a new version of our tool that will be based on the Mona
library [16]. This gives us hope of even better results and an expectation of a suc-
cessful applicability of the tool on real-life case studies(including, e.g., verification
of programs with dynamic linked data structures).

5 Conclusions

We have proposed abstract regular tree model checking as a generalisation of the
successful approach of abstract regular model checking. Inparticular, we have
proposed two kinds of abstractions over tree automata basedon collapsing in some
sense equivalent states of these automata. One of the abstractions decides which
states are equivalent by comparing their languages of treesof a bounded height
while the second one compares the states wrt. whether their languages satisfy (i.e.
are not disjoint with) a set of predicates having the form of regular tree languages.
Both of these abstractions are automatically refinable whena spurious counter-
example is found and allow one to deal with an overapproximation of the state
space precise just enough to verify a given property of interest. In this way, the
state explosion in automata representing the reachabilityset is fought. The above
abstractions were inspired by some of the schemas used in theoriginal ARMC.

We have implemented the proposed methods in a prototype tooland evaluated
them on multiple verification examples with very encouraging results. Currently,
we are building a new and much more elaborate version of our tool based on the tree
libraries of Mona [16]. This tool promises even better results and a high potential
for a successful application on real-life verification problems.

Apart from finishing the new version of our tool, our future work includes a
research on the various application domains of ARTMC. They include, e.g. ver-

9

23

Bouajjani, Habermehl, Rogalewicz, Vojnar

ification of programs with dynamic linked data structures. ARMC has already
been shown useful for verification of programs with 1-selector linked dynamic data
structures [7]. The use of ARTMC could allow us to handle much more general
structures. To encode data structures with a graph shape, weplan to use trees with
some special symbols placed in their nodes to describe additional edges over the
tree. Another promising application area is the domain of XML manipulations. In-
deed, XML documents have a tree structure and most of XML parsers are based
on the tree automata theory—in particular, on hedge automata [9]. Furthermore,
we intend to use our approach for programs with abstract datastructures and cryp-
tographic protocols along the lines of [18]. For all these applications we plan to
study the encoding in tree automata and transducers and the possibility of defining
application dependent abstractions.

References
[1] P.A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. Regular Tree Model Checking. InProc.

of CAV’02, LNCS2404. Springer, 2002.
[2] P.A. Abdulla, A. Legay, J. d’Orso, and A. Rezine.Simulation-Based Iteration of Tree

Transducers.In Proc. of TACAS’05, LNCS3440. Springer, 2005.
[3] R. Alur, R. Brayton, T. Henzinger, S. Qadeer, S. Rajamani. Partial-Order Reduction in

Symbolic State Space Exploration. InProc. of CAV’97, LNCS1254. Springer, 1997.
[4] B. Boigelot and P. Wolper. Verifying systems with infinite but regular state spaces. InProc. of

CAV’98, LNCS1427. Springer, 1998.
[5] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular Model Checking. InProc. of

CAV’00, LNCS1855. Springer, 2000.
[6] A. Bouajjani and T. Touili. Extrapolating Tree Transformations. InProc. of CAV’02, LNCS

2404. Springer, 2002.
[7] A. Bouajjani, P. Habermehl, P. Moro, T. Vojnar.Verifying Programs with Dynamic 1-Selector-

Linked Structures in Regular Model Checking. In TACAS’05, LNCS3440. Springer, 2005.
[8] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract Regular Model Checking, InProc.

CAV’04, LNCS3114. Springer, 2004.
[9] A. Bruggemann-Klein, M. Murata, and D. Wood.Regular tree and regular hedge languages

over unranked alphabets: Version 1. Technical Report HKUST-TCSC-2001-0, The Hongkong
University of Science and Technology, 2001.

[10] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.
Tree Automata Techniques and Applications, 2005.
http://www.grappa.univ-lille3.fr/tata

[11] J. Engelfriet. Bottom-up and Top-down Tree Transformations—A Comparison,Mathematical
System Theory, 9:198–231, 1975.

[12] J. Esparza. Grammars as Processes. InFormal and Natural Computing, LNCS2300, 2002.
[13] T. Genet. Timbuk, a tree automata library, 2005.

http://www.irisa.fr/lande/genet/timbuk
[14] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar.Symbolic Model Checking with

Rich Assertional Languages. InProc. CAV’97, LNCS1254. Springer, 1997.
[15] N. Klarlund and M.I. Schwartzbach. Graph Types. InProc. of POPL’93, ACM, 1993.
[16] N. Klarlund and A. Møller. MONA Version 1.4 User Manual. BRICS, Department of

Computer Science, University of Aarhus, Denmark, 2001.
[17] M. Křetı́nský, V.Řehák, and J. Strejček. Extended Process Rewrite Systems: Expressiveness

and Reachability. InProc. of Concur’04, LNCS3170. Springer, 2004.
[18] D. Monniaux. Abstracting cryptographic protocols with tree automata. InScience of

Computer Programming, Volume 47, Issue 2-3 (May 2003).
[19] A. Pnueli and E. Shahar.Acceleration in Verification of Parameterized Tree Networks.

Technical report MCS02-12, Weizmann Institute of Science,Israel, 2004.

10

24

INFINITY 2005 Preliminary Version

Automatic Verification of Fault-Tolerant
Register Emulations

Paul C. Attie 1

College of Computer Science, Northeastern University,
360 Huntington Avenue, Boston, Massachusetts 02115.

and
MIT CSAIL, 32 Vassar street,
Cambridge, MA, 02139, USA.

Hana Chockler 2

MIT CSAIL, 32 Vassar street,
Cambridge, MA, 02139, USA.

and
Department of Computer Science, WPI,

100 Institute Road, Worcester, MA 01609, USA.

Abstract

The design and verification of fault-tolerant distributed algorithms is a complicated
task. Usually, the proof of correctness is done manually, and thus depends on the
skill of the prover. Using automated verification methods, such as model checking,
can greatly simplify the verification. However, model checking of distributed algo-
rithms is often intractable because of the state-explosion problem. In this paper
we present a novel approach to verification of quorum-based distributed register
emulation algorithms with undetectable crash failures of processes. Our approach
is based on projection and abstraction and allows us to reduce the task of model-
checking the whole system to fair model-checking of subsystems consisting of a
constant number of processes. Our method is highly scalable and can be applied to
a large class of algorithms. Aside from efficient verification, it can also be used for
finding redundancies in existing algorithms.

Key words: Distributed algorithms, parametrized systems,
fault-tolerance, crash failures, register emulation, automatic
verification, model checking

1 Email: attie@ccs.neu.edu
2 Email: hanac@theory.lcs.mit.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

25

Attie and Chockler

1 Introduction

Formal verification is widely recognized as a key means for assuring the correct
behavior of large and complex software systems. Such systems are usually dis-
tributed, and contain a large number of components, or processes, which are
subject to a variety of failures. Thus, distributed algorithms for such system
must be fault-tolerant. The design of such algorithms is a complex task, and
manual proofs of correctness of such algorithms are usually very complicated.
Automatic verification of such systems is limited by the state-explosion prob-
lem, which becomes acute even for medium-size systems. Resent research in
the area of parametrized systems, that is, systems that consist of potentially
numerous instantiations of (usually) small and simple modules, uses tech-
niques such as abstraction and deductive verification (see [9] for a survey).
None of these techniques deal with fault-tolerance.

In this paper, we consider asynchronous distributed systems with unde-
tectable crash failures of processes. We assume that there is a large number of
processes, which can be placed into a small number of “equivalence classes,”
e.g., readers, writers, and servers (that store the value of a shared data ob-
ject), so these systems can be regarded as parametrized systems. In a system
with undetectable crash failures, a failed process stops communicating with
the other processes, but the failure cannot be detected by the others. That is,
a failed process is not distinguishable from one that is “very slow” [5]. We do
not consider Byzantine failures, where a failed process can behave arbitrarily,
and in particular, can deviate from its algorithm.

The distributed algorithms that we consider emulate shared registers and
are based on quorum systems. In quorum systems, every broadcast operation
awaits acknowledgments from only a quorum of processes, rather than from
all processes. There exist different types of quorum systems. The common
feature of all quorum systems is that an intersection of every two quorums
is nonempty. Taking this feature as an axiom, we abstract away a particu-
lar quorum system. We propose a method for modeling and verification of
quorum-based concurrent algorithms with crash failures by means of fully au-
tomatic model-checking procedures. Informally, our method is as follows. We
express correctness (safety and liveness) properties of systems by quantified
LTL formulae. We then show that the quantification over processes can be
replaced by quantification over subsystems, each of which contains a constant
number of processes and executes a constant number of requests, while main-
taining semantic equivalence of the formulae. Model checking these small
subsystems then suffices to conclude the correctness of the whole system. In
general systems, we have to verify all possible subsystems, and since the num-
ber of subsystems is exponential in the number of processes, the verification
cannot be done automatically for an arbitrary number of processes. The key
idea, which allows us to check only a small number of subsystems, is that the
systems we consider consist of a small number of “equivalence classes” of sim-
ilar processes. Two processes are placed in the same equivalence class if they

1

26

Attie and Chockler

run the same algorithm and are in the same state at the present time in the
execution. Since server processes store the value of the register, the current
value stored in a server is also taken into account when checking equivalence
(in fact, we avoid considering the data values separately by storing them in
states of a server).

Algorithms that we study in this paper use unbounded time-stamps. Thus,
the straightforward implementation of each process yields a structure with an
infinite number of states. However, since we only deal with subsystems with
a constant number of processes, and quorum-based decisions are based solely
on comparison between time-stamps (and not on their absolute values), we
are able to abstract the absolute values of time-stamps away and to use only
their relative values. Since the number of requests in subsystems is constant,
the number of time-stamps is also constant, and thus we are able to express
their comparative values by a constant number of boolean variables.

When we construct subsystems, we project the processes onto the subsys-
tem, abstracting away all states that are unreachable and all variables that
are unaccessible in this subsystem. The main problem in projecting the pro-
cesses is that in a large system, processes perform transitions depending on the
quorum-based decisions. Since in a constant-size subsystem a quorum of pro-
cesses is inaccessible, we replace quorum-based decisions by non-deterministic
decisions. This replacement creates illegal executions which do not exist in the
original system. The first type of illegal executions is executions in which the
client process non-deterministically moves to a state where the output is cho-
sen before receiving the most updated reply. We filter such executions away by
always including a process in the intersection of the current quorum with all
other quorums in the small subsystem that we model-check. The second type
is executions in which processes are stuck in the “waiting-for-replies” state and
never terminate. We filter such executions away by replacing regular model-
checking with fair model-checking, where the fairness constraint effectively
expresses the condition “there is always a live quorum of processes”.

An additional advantage of model-checking small subsystems is didactic.
That is, the necessity of a part of the algorithm can be easily verified by
removing this part from the model and model-checking the altered subsystem.
If the altered subsystem still satisfies the desired property (non-vacuously), it
means that the removed part was not necessary for the correctness of the
algorithm.

2 Preliminaries

2.1 Temporal logic and Kripke structures

In model checking, we check whether a system given as a Kripke structure
(labeled state-transition graph) satisfies a specification given as a temporal
logic formula (or a finite automaton). In this paper we assume that the spec-
ifications are given in the linear temporal logic LTL [8,4]. The semantics of

2

27

Attie and Chockler

temporal logic is defined with respect to Kripke structures. We use Büchi fair-
ness constraints, where an execution is fair if it visits a fair state an infinite
number of times.

2.2 Registers

A read/write register (or simply, register) type supports an arbitrary set V als
of values with an arbitrary initial state vo ∈ V als. Its invocations are read
and write(v), for some v ∈ V als. Its responses are v and ack. Its sequential
specification f requires that every write operation overwrites the last value
written and returns ack (that is, f(write(v), w) = (ack, v)); and every read
operation returns the last value written (that is, f(read, v) = (v, v)). In a
system consisting of processes P1, P2, . . ., a process Pi interacts with a shared
register by means of input actions of the form readi and writei(v) and output
actions of the form vi and ack. A read/write register is called k-reader/m-
writer if only k processes are allowed to read, and m processes are allowed
to write the register. We use the term multi-reader (multi-writer) when the
number of readers (writers) is unrestricted. We now define several register
properties. In our definitions, we talk about read and write operations. As
opposed to I/O actions (which are atomic by definition), operations start when
the request is placed in the system and terminate when the result is returned:
the result of a read operation is a value and the result of a write operation is
an indication that a write has terminated successfully.

When expressing the register properties in quantified LTL, we denote by ri

the i-th read operation, by wi the i-th write operation, and by si the i-th server.
In order to express the order between processes, we introduce new boolean
variables for beginning and end of each operation: opi.b (opi.e) changes from
false to true when the first (last) action of opi is executed. We use Lamport’s
notation of arrows to express order between processes [7], where op1 → op2

(op1 strictly precedes op2) is a shortcut for G(op2.b ⇒ op1.e), and op1 ↔ op2

(op1 is concurrent with op2) is a shortcut for ¬(op1 → op2) ∧ ¬(op2 → op1),
where ⇒ denotes boolean implication. We also use variables wi.val for a value
written by wi, ri.val for a value read by ri, and si.val for a value that si holds.
The values are pairs of the data value and a time-stamp, that is, opi.val =
〈v, ts〉. When comparing between values, we say that opi.val = op′j.val iff
opi.val.v = op′j.val.v and opi.val.ts = op′j.val.ts. Let x be a register, and let
σ be a sequence of invocations and responses of x. The following definitions
of registers in a single-writer multi-reader system are taken from [7].

• Safe register: σ is safe [7] if every complete read operation that does not
overlap any write operation returns the latest written value or the initial
value if no value has been written yet. A register x is safe iff all its traces
σ are safe. Formally,

∀wi, r : G[(wi → r) ∧ (¬∃wj : wi → wj → r) ∧ (¬∃wk : wk ↔ r) ⇒
3

28

Attie and Chockler

F(r.val = wi.val)]. (1)

We note that we only express the condition of correct value returned when
there are previous writes. When there are no previous writes, the require-
ment is expressed trivially.

• Regular register: σ is regular [7] if it is safe and in addition every read
operation that overlaps some write operations returns either one of the
values written by overlapping writes or the latest non-overlapping value. A
register x is regular iff all its traces σ are regular. Formally, this additional
requirement is expressed as

∀wi, r : G[(wi → r) ∧ (¬∃wj : wi → wj → r) ⇒

F(r.val = wi.val) ∨ ∃wk : (wk ↔ r ∧ F(r.val = wk.val))]. (2)

• Atomic register: σ is atomic [7] if it is regular and in addition all invo-
cations of σ are linearizable (see [6] for a definition) to a sequential register
(that is, a register in which there are no overlapping operations). A register
x is atomic iff all its traces σ are atomic. Formally, a register is atomic if it
satisfies Equation 2 and in addition

∀w1, w2, r1, r2 : G[((r1 → r2) ∧ F(w2.val = r1.val) ∧ F(w1.val = r2.val)) ⇒
¬F(w1 → w2)]. (3)

For the purposes of this work, we consider an operation to be live if the
terminating state is eventually reached (that is, Fop.e holds).

2.3 Characterization of algorithms

We start by characterizing the class of algorithms R to which our method
applies. The characterization of R is as follows.

(i) Algorithms in R emulate a shared register by numerous instances of
server processes.

(ii) There is a single writer process 3 .

(iii) Servers can crash and stop responding to requests. However, there is
always a live quorum of servers.

(iv) Clients (writers and readers) are non-faulty.

(v) Each server can hold exactly one value at each point.

(vi) All values are accompanied by (unique) time-stamps.

(vii) Upon receiving different replies from servers, the output answer is chosen
based on the time-stamps of the replies.

3 Our work can be extended to the multi-writer case. For multiple writer processes, addi-
tional work should be performed in order to prove uniqueness of the time-stamp. Here we
assume a single writer, because we rely on the time-stamp as the unique identification of
register values.

4

29

Attie and Chockler

We do not restrict the number of rounds each client performs in order to
read/write a value. We do assume, however, that this number is constant.

Each invocation of the algorithm (whether a read or a write) can be ver-
ified in isolation from the previous invocations. This observation allows us
to model invocations by micro-processes [2]. A micro-process implements a
single operation (e.g., a single read or write), after which it is destroyed. It
has a very few states, and thus systems consisting of micro-processes can be
easily model checked. The only problem with micro-processes is that a writer
should store the current time-stamp. We circumvent it by assuming that the
time-stamp is given to the writer micro-process as an input together with
the input value. In single-writer algorithms, we can safely assume that this
input time-stamp is unique and increases with each subsequent request. In
multi-writer algorithms, more subtle reasoning is needed.

3 Automatic Verification of Quorum-Based Register Em-
ulations

In this section, we present our main result, namely, that the desired safety
and liveness properties can be automatically verified in small subsystems and
the correctness of the whole system deduced from the correctness of these
subsystems. This result follows from Lemmas 3.1 and 3.2.

Lemma 3.1 Safety properties of algorithms from R can be verified by model
checking of a finite number of subsystems which contain a constant number of
readers and writers.

Essentially, we prove that the temporal formulas that express the cor-
rectness properties of the register can be rewritten in the prenex way with
universal quantifiers only. The pure LTL part of the formula involves at most
4 clients. The resulting pure LTL formulas are

ϕsafe = G[(wi → r)∧¬(wi → wj → r)∧¬(wk ↔ r) ⇒ F(r.val = wi.val)] (4)

for safe register,

ϕregular = G[(wi → r) ∧ ¬(wi → wj → r) ⇒

F(r.val = wi.val) ∨ (wk ↔ r ∧ F(r.val = wk.val))] (5)

for regular register, and

ϕat = G[((r1 → r2)∧F(w2.val = r1.val)∧F(w1.val = r2.val)) ⇒ ¬F(w1 → w2)]
(6)

for atomic register. Since we model clients by micro-processes, each of which
executes exactly one request, the number of requests in a subsystem is equal
to the number of clients in this subsystem. We are not done yet, since it
remains to prove that we are able to consider a constant number of servers as
well.

5

30

Attie and Chockler

Lemma 3.2 The subsystems in Lemma 3.1 can be constructed with a constant
number of servers. The number of servers participating in a single subsystem
is bounded by 2m, where m is the number of communication rounds between a
client (reader or writer) and servers in this subsystem.

The proof is based on the observation that at any given time during the
execution there is a constant number of equivalence classes of servers. Since
the decision is made based on the time-stamp and not the number of replies
with the same value, we need only one representative from each equivalence
class to be included in a subsystem. Since each communication round divides
the set of servers by 2 (into servers that responded and servers that did not
respond in this round), m rounds divide the set of servers by 2m.

We note that Lemma 3.2 assumes that the current value is stored in a state
of a server. This results in an unbounded number of states in the large system.
In the constant-size subsystems that we consider, however, the number of
values is is constant, and thus only a finite number of states of each server
is reachable. We abstract away unreachable states. The number of rounds
depends on the algorithms for readers and writers. For example, a reader
micro-process can perform two communication rounds with the servers, where
in the first one it reads the value and in the second one it writes it to the
servers. We further note that the set of servers that did not reply to any of
the clients can be ignored, as it does not play any role in the correctness of
the system.

Combining Lemma 3.1 and Lemma 3.2 we are able to verify safety and
liveness properties of algorithms we consider by model-checking a constant
number of subsystems with a constant number of (small) processes. It re-
mains to show how quorum-based decisions are projected onto small subsys-
tems. We do so by replacing quorum-based transitions by non-deterministic
transitions. Clearly, such abstraction creates executions that are illegal in the
global system. First, a process can now loop indefinitely in the state where
it awaits replies from a quorum, thus creating a non-terminating execution.
Second, it is now allowed to move to the state where it chooses the output
value regardless of the number of replies it received.

We deal with the first problem by replacing the standard model checking
procedure with fair model checking, where the fairness constraint allows only
executions in which the state where a process awaits replies from a quorum
occurs only a finite number of times. This is equivalent to the assumption that
there is always a live quorum of servers. We deal with the second problem by
a careful construction of the product Kripke structure. In our product Kripke
structure, we want to eliminate all executions which are not consistent with
receiving a quorum of replies. We rely on the following feature of quorums:
every two quorums intersect. Thus, we construct the small subsystems so
that for every pair of communication rounds in the subsystem, we include a
single server process that lies in the intersection of the quorums of these two
rounds. This ensures that the correct safety properties for this pair of rounds

6

31

Attie and Chockler

are verified, since they are enforced by this server.
Time-stamps Algorithms for register emulation usually use unbounded

time-stamps. Fortunately, since our subsystems consists of a constant number
of processes and a constant number of communication rounds is used, we are
able to abstract away unbounded time-stamps. For correctness properties of
safe, regular, and atomic registers in the single-writer systems it suffices to
use 2 boolean variables for encoding the time-stamps. Indeed, the number
of values written in the small subsystems does not exceed 4 for any of these
properties.

Fine tuning Our previous reasoning allows us to reduce verification of a
parametrized system to model-checking subsystems with a constant number
of processes. We showed that it suffices to consider a subsystem with m
communication rounds and 2m servers. In fact, we can reduce the number
of servers in the subsystem to m(m − 1)/2 (the number of pairs of rounds).
Indeed, the only servers that are essential for the proof of correctness of the
algorithms in R are the ones in the intersections of quorums of a read and a
write communication round.

4 Examples

In this section we illustrate our method on examples of algorithms that emulate
a shared read/write register. We start with a simple example of a safe register
in a single-writer multi-reader system. Then we extend it to the algorithm
presented by Attiya et al. in [3].

The following codes of the client and server processes implement the safe
register under the single writer assumption in a system in which there always
exists a majority of live processes [7].

writer(〈M〉):
increase TimeStamp;
count := 0;
send 〈M,TimeStamp〉 to all;
upon receiving a reply ack do

count := count + 1;
until count > n/2,

where n is the number of processes;
return;

server(〈M〉):
upon receiving 〈M〉 do:
case 〈M〉:
〈M〉 = ReadRequest:
send 〈M,TimeStamp〉;
〈M〉 = 〈m,T imeStamp〉:
if TimeStamp > LocalT imeStamp,
then update M ;

send ack;

reader():
count := 0;
send 〈ReadRequest〉 to all;
upon receiving a reply
〈M,TimeStamp〉 do
count := count + 1;
save 〈M,TimeStamp〉;

until count > n/2,
where n is the number of processes;

choose the message M
with the maximal
time-stamp MaxTimeStamp;
return 〈M,MaxTimeStamp〉;

7

32

Attie and Chockler

Recall that safe registers satisfy Equation 4, which is checked in subsystems
of three writer processes and one reader process. Since each writer process
invokes one write request and the reader process invokes one read request,
there are 3 pairwise intersections of quorums of a write and a read requests,
and thus 3 server processes in the subsystem. Moreover, there are three values
written in this subsystem. Thus, the order between the three time-stamps
can be expressed by three boolean predicates: p1 ≡ (wi.val.ts > wj.val.ts)
and p2 ≡ (wi.val.ts > wk.val.ts), and p3 ≡ (wj.val.ts > wk.val.ts). Since
the system has one (global) writer process, in the product subsystem the
three write requests should strictly precede each other. Also, we do not have
to consider the order in which wi → wj → r. The projection of a single
write request (that is, a micro-process) and the projection of a single read
request onto a subsystem with a constant number of processes are presented
in the figures below. We assume that the correct time-stamp is given to the
writer micro-process together with the input value (that is, val is a tuple
〈v, ts〉). The projection is obtained by abstracting away all variables that
are unaccessible in the subsystem and computing the quotient abstraction
of the resulting structure. The transitions w1 → w2 and r1 → r2 are non-
deterministic. Recall, that we ensure liveness of the subsystem by replacing
regular model-checking with fair model-checking and safety by including the
server that lies in the intersection of quorums in the subsystem. The server
process stores the current value and its time-stamp in its state. Since in our
subsystem there are three write requests, the projection of a server process
onto a subsystem has a finite number of states. The projection of a server
process on the subsystem with three write operations is presented in Figure 1.

s0

s∅
s.b = 1 read()

s2

write(val1)

write(val3)write(val2)

s′2

s1

s′1

s3

s′3

Projection of a server on the subsystem

write(val2),¬p1

write(val1), p1

send(init − val)

read()

send(val1)

w1

w2

ack()w0

Projection of write(val) on the subsystem

input(val)

w.b := 1

send(val)

return

ack
(maj reached)w.b := 0

w.e := 1

Projection of read() on the subsystem

readreq

r.b := 1
r0

send(req)
r1

ack(val)

r2

return(o)

ack(val)
(maj reached)

o := maxval

r.e := 1
r.b := 0

(maxval is the value with the maximal time-stamp)

Fig. 1. Projection of processes in the safe register emulation

To avoid cluttering the figure, we omitted transitions similar to the ones
between s1 and s2 and between s1 and s′1. All projections end in the idle state

8

33

Attie and Chockler

(omitted from the figure), in which they loop forever. The resulting subsystem
is a product of 7 processes and has 3 write requests. The largest process is,
thus, a server, whose size depends on the number of write requests. In this
case, it has 8 states (2 states for each value, an initial state, and a state in
which the initial value is returned). Thus, the straightforward implementation
results in a subsystem that can be encoded with 21 variables. Filtering away
interleavings that result in a vacuous satisfaction of the property and noting
that replies from servers are assumed to be received in a known order results
in a subsystem, which is the cross-product of a sequential composition of 3
clients and 2 servers (which has in total 25 states), one client (the writer wk)
and one server (which lies in the intersection of the quorums of wk and r).
Together with time-stamps, this subsystem can be encoded using 12 boolean
variables, which is well within the reach of modern model-checkers.

The algorithm of Attiya et al. [3] for emulating a regular register in single-
writer multi-reader asynchronous message-passing systems with crash failures
differs from the example we studied above in the code of the reader process.
In this algorithm, the reader process performs two rounds: one read request
and then one write request with the value received from the read request. The
projection of the reader micro-process onto a subsystem is presented in the
figure below. This difference leads to the atomicity of the register. Recall,
that atomicity is expressed by Equations 5 and 6.

Equation 5 is checked in a subsystem
of three writer micro-processes and one
reader micro-process. Note that the reader
issues one read request and one write re-
quest, therefore the subsystem contains 4
server processes. The largest process in
the subsystem is a server, which has 10
states, and thus the resulting subsystem
can be encoded using at most 30 boolean
variables.

readreq

r.b := 1
r0

send(req)
r1

r2

r3

send(o)

ack(val)

ack(o)
r4

ack(val)

(maj reached)

return(o)
r.e := 1

r.b := 0

Projection of read() on the subsystem

(maxval is the value with the maximal time-stamp)

o := maxval

Equation 6 is checked in a subsystem of two writer and two reader micro-
processes. The subsystem contains 8 servers, thus the resulting subsystem can
be encoded using at most 44 boolean variables. For both properties, applying
the reasoning above further reduces the size of the subsystem.

Remark 4.1 [The neccessity of the second round of read] By abstracting
away the second round of read and model-checking the resulting subsystem,
we can show that in order to ensure the property of always returning the last
preceding write value or a concurrent write value we only need one round
of read. On the other hand, two rounds of read are essential for proving
atomicity. Indeed, we can construct a subsystem with two writes combined
sequentially and a read concurrent with the last write, in which Equation 5
holds, with automatically generated interesting witnesses to exhibit both types

9

34

Attie and Chockler

of satisfaction: there is an execution in which the read returns the value
written by the first write, and another execution in which the read returns the
value written by the second write. Since this is true for both reads regardless
of their order, there exists an execution in which the first read returns the
value of the second write and the second read returns the value of the first
write.

5 Conclusions and Future Work

We proposed a method for modeling and verification of distributed algorithms
for register emulation that allow crash failures of less than a quorum of servers.
We argued that correctness (safety and liveness) properties of the whole system
can be automatically model-checked in subsystems of constant size and then
extrapolated to the whole system. We avoided examining quorums of processes
by replacing quorum-based transitions with non-deterministic transitions, and
we showed how to filter away illegal executions that are created by using non-
determinism. Modeling and automatically verifying distributed algorithms by
means of small abstracted systems may help to determine what parts of the
algorithm are really essential for its correctness by abstracting away a part
in question and model-checking the resulting system. While the examples
we considered in this paper are fairly simple, we believe that applying these
methods to more complex algorithms may lead to interesting insights and even
improvements of existing algorithms.

It remains to prove formally that correctness of small subsystems that we
constructed implies the correctness of the whole system. The formal frame-
work for these proofs is provided by the pairwise representation of concurrent
systems [1]. The method of [1] can be generalized from analyzing products of
pairs of processes to analyzing products of small numbers of processes.

References

[1] P. C. Attie and E. A. Emerson. Synthesis of concurrent systems with many
similar processes. ACM Trans. Program. Lang. Syst., 20(1):51–115, 1998.

[2] P.C. Attie. Synthesis of large dynamic concurrent programs from dynamic
specifications. Technical report, Northeastern University, 2003.

[3] H. Attiya, Bar-Noy A., and D. Dolev. Sharing memory robustly in message-
passing systems. J. ACM, 42(1):124–142, Jan. 1995.

[4] E.A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, B:16, pp. 997–1072. MIT press, 1990.

[5] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

10

35

Attie and Chockler

[6] M. Herlihy and J.M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[7] L. Lamport. On interprocess communication – part II: Algorithms. Distributed
Computing, 1(2):86–101, 1986.

[8] Z. Manna and A. Pnueli. Verification of concurrent programs: The temporal
framework. In The Correctness Problem in Computer Science, pp. 215–273.
ILSCS, 1981.

[9] L. Zuck and A. Pnueli. Model checking and abstraction to the aid of
parameterized systems. Computer Languages - special issue (to appear).

11

36

INFINITY 2005 Preliminary Version

Algorithmic Algebraic Model Checking III:
Approximate Methods

Venkatesh Mysore 1,2

Computer Science Department, Courant Institute
New York University, New York, USA

Bud Mishra 3

Departments of Computer Science and Mathematics, Courant Institute
Department of Cell Biology, School of Medicine

New York University, New York, USA

Abstract

We present computationally efficient techniques for approximate model-checking
using bisimulation-partitioning, polyhedra, grids and time discretization for semi-
algebraic hybrid systems, and demonstrate how they relate to and extend other
existing techniques.

Key words: Semi-algebraic hybrid systems | Model checking.

1 Introduction

A semi-algebraic hybrid automaton [9,8] is a hybrid automaton, whose expres-
sions corresponding to the initial values, state invariants, continuous flows,
and the guards and resets of the discrete transitions are all semi-algebraic,
i.e., Boolean combinations of polynomial equations and inequalities. They are
often used to approximate more general systems, whose flow equations are not
polynomial, since truncated Taylor series, polynomial splines and other sym-
bolic integration schemes provide good semi-algebraic local approximations
for flows, etc. A location of a semi-algebraic hybrid automaton H is a pair
〈v, X〉, where v ∈ V is a state and X ∈ Rk is an assignment of values to the k

system variables. The transition relation 〈u, X〉 h−→
T
〈v, X ′〉 of H connects all

1 The work reported in this paper was supported by grants from NSF’s ITR program and
DARPA’s BioCOMP program.
2 Email: mysore@cs.nyu.edu
3 Email: mishra@nyu.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

37

Mysore and Mishra

possible values of the system variables before and after one step; namely, it is

either a discrete step 〈u, X〉 0−→
D
〈v, X ′〉 for a time h = 0 or a continuous evolu-

tion 〈u, X〉 h−→
C
〈v(= u), X ′〉 for a time period h > 0. (For detailed definitions

and summary of results, please refer to the Appendix .)

Earlier, in the first paper in this series [9], we introduced this class and
demonstrated the use of real algebraic methods for solving the bounded reach-
ability problem. In the second paper [8], we examined the single-step until
operator p.q of the dense-time logic Timed Computation Tree Logic (TCTL),
which is defined as p ∨ q holding all along “one step” of the hybrid system
and q being true at the end of the transition. Since quantifier elimination
over semi-algebraic sets is decidable [10], p . q was shown [8] to be decidable
for semi-algebraic hybrid systems if p and q were also semi-algebraic. It was
further proved [8] that the “existential” segment of TCTL (including reach-
ability) and the negation of the “universal” segment are semi-decidable over
semi-algebraic hybrid automata. Further, all subscripted TCTL operators
become decidable in the absence of zeno-paths.

Effectively, the symbolic algebraic model checking problem was reduced to
a series of quantifier elimination problems which could be solved by a software
tool such as Qepcad [5]. The only source of error (if any) arose in approximat-
ing non-polynomial systems. However, the computational complexity (double
exponential) of the cylindrical algebraic decomposition severely limited the
applicability of the method. In this paper, we discuss the applicability of the
different approximation approaches involving space- and time- discretization
to semi-algebraic hybrid automata. Approximate methods have been very
successful in timed automata and linear hybrid systems, yielding efficient de-
cidable algorithms in many cases [3,4,2,1]. However, these methods rely on
computational techniques that exploit the low dimensionality and other re-
strictions, of the dynamics of these subclasses of hybrid systems. In other
words, the techniques are seldom applicable to more complex systems. Our
first goal in this paper is to show that many existing ideas can be made ap-
plicable to semi-algebraic hybrid systems, by using quantifier elimination in
place of the original efficient-but-restrictive computational method. The sec-
ond goal is to develop these ideas to obtain new optimizations and techniques.
Further, we seek to identify well-behaved sublcasses that are more general
than timed or linear automata.

By suitably relaxing accuracy requirements, we aim to model-check the
vast semi-algebraic class, without being severely computationally hindered.
Quantifier elimination will still remain our engine of computation, though
it will be used differently; namely, it will be invoked to solve many simple
problems instead of a few complex problems. In this paper, we will present
the modified versions of existing techniques and understand their behavior over
the semi-algebraic class. Clearly, different techniques will prove to be effective
in different scenarios. In this paper, we do not delve into this aspect, but

2

38

Mysore and Mishra

instead focus on generalizing and optimizing existing techniques. In this sense,
it is the first effort to catalogue the algorithms for approximate verification
(reachability) for the vast semi-algebraic class.

2 Approximate Methods

In this section, we develop new approximation methods applicable to the semi-
algebraic class, based on the existing literature for much simpler subclasses of
hybrid automata. For brevity, all proofs are provided in the Appendix.

2.1 Bisimulation Partitioning

The bisimulation idea is to convert the given hybrid automaton into a simpler
one, which only preserves the properties of interest to us (in the query). The
conventional bisimulation partitioning algorithm [4] involves splitting the dis-
crete states based on the out-going discrete transitions. The source state of
a transition is split so that, each new state (its partitions) has the minimal
number of out-going transitions (ideally, each new partition will have only one
possible successor discrete state). The rationale is that one expects only some
of the guards (of the different out-going transitions) to be satisfiable, from dif-
ferent parts of the continuous space representing the discrete state (its state
invariant).

We first prove that these partitions are computable for semi-algebraic hy-
brid systems by expressing the task as a quantifier elimination problem.

Theorem 2.1 The standard bisimulation partitions are computable for semi-
algebraic hybrid automata. 2

Having proved that the existing idea becomes applicable via quantifier
elimination, we now suggest an improvement of the technique. This approach
is founded on the observation that only a portion of the destination state may
ever be accessed, after a specific discrete transition. Thus, by splitting the
destination state as well, based on what fraction of it is accessible from the
source state, we can refine the partitions. This simple extension was not nec-
essary in linear systems, as the destination state space was typically entirely
reachable from the resetted region (after a discrete transition). Since semi-
algebraic sets have innate complexity, it is very unlikely that continuous evolu-
tion from different resetted regions will all envelope the entire state invariant.
Clearly, since we chop off the region of the state invariant that is not reachable,
the state invariants represent smaller sets. Hence, the extended-bisimulation-
partitioning is likely to be a sharper one than the standard approach. The
second advantage to this extended algorithm is that well-behaved subclasses
can be characterized (see Convergent Deterministic Automata below). We
now enumerate the complete series of computations:

Algorithm 1 [Extended Partitioning For Semi-Algebraic Automata]

3

39

Mysore and Mishra

(i) Pick a state s (source) with a discrete transition to state d (destination);

(ii) Split s into two states sd and sd̄ thus: Inv sd
(X) ≡ ∃h,X ′ 〈s, X〉 h−→

C

〈s, X ′〉 ∧Guard s,d(X
′) and Inv sd̄

(X) ≡ Inv s(X) ∧ ¬Inv sd
(X);

(iii) Split d is into ds and ds̄ thus: Invds(X) ≡ ∃X ′′, X ′ Inv s(X
′′)∧〈s, X ′′〉 0−→

D

〈d,X ′〉 ∧ {∃h 〈d,X ′〉 h−→
C
〈d,X〉} and Invds̄(X) ≡ Invd(X)∧¬Invds(X);

(iv) The states sd, sd̄, ds, ds̄ replace s and d. The transition from s to d is
replaced by the one from sd to ds. All other transitions to (or from) s (d)
are each replaced by two transitions to (or from) sd and sd̄ (ds and ds̄);

(v) Repeat steps (i)− (iv) until no transition from any state s to any state d
can be found which splits s or d. 2

It is to be recalled that convergence of the partitioning does not imply de-
cidability of reachability for general hybrid automata. As in the standard
bisimulation case, the over-approximated set of points reachable from 〈s0, X0〉
in the original hybrid system is given by the union of the invariants of all
the states along all the trajectories starting at the state d0 of the partitioned
system corresponding to the partition of s0 containing X0. Even in the non-
convergent case, this procedure yields an estimate of the reachable set if we
roll-out H for a reasonable number of steps. Similarly, we can check if a spe-
cific Xf is reachable from a specific X0. We iteratively partition until the
partition containing Xf is not in any trajectory starting from the partition
containing X0. We can then conclude guaranteed unreachability, or approxi-
mate reachability otherwise (counterexample-guided abstraction refinement).

Having generalized and extended an existing technique, we now charac-
terize the broadest subclasses of hybrid systems where this new technique is
well-behaved.

Convergent Deterministic Automata

In deterministic hybrid automata, a discrete transition is taken the moment
its guard is satisfied (with no two guards ever holding simultaneously). Hence
there is a unique future trajectory for every initial system state. If the ex-
tended partitioning procedure converges for a deterministic hybrid automaton,
the original automaton will now correspond to a set of disconnected trajecto-
ries. Each of these will be a cycle of discrete states, with each state possibly
preceded by a linear path of unique discrete states (all other topologies get
excluded because there is no “future-branching” in deterministic automata).
The extended partitioning unlike the standard bisimulation partitioning, pro-
duces exactly onto maps between successive states when convergent. We now
show how many of their mathematical properties can be fruitfully exploited
to address the reachability problem, for broad subclasses of convergent deter-
ministic semi-algebraic hybrid automata.

In linear convergent deterministic semi-algebraic automata, all flows and

4

40

Mysore and Mishra

reset maps are linear. Thus, infinite cycles are ruled out, since there are only a
finite number of exactly onto maps possible (except when the sets have infinite
axes of symmetry as does a circle). Thus:

Theorem 2.2 There are only a finite number of 1-to-1 linear maps f(X) =
ΣAX + B, Ai, Bi ∈ Rd possible, between two d-dimensional sets with finite
axes of symmetry. 2

Corollary 2.3 Given a cycle S1, · · · , Sn, S1 of n d-dimensional sets with sl

axes of linear symmetry and sr axes of rotational symmetry each, where each
set maps exactly onto its successor (Si+1 = f(Si)), the number of unique
successors of any point is at most nsr2

sl. 2

Theorem 2.4 Reachability over a deterministic semi-algebraic hybrid system
with linear resets Resetu,v(X, X ′) ≡ (X ′ = ΣAX + B), Ai, Bi ∈ Rd and
linear flows Flowu(X, X ′) ≡ (X ′ = ΣAX + B), Ai, Bi ∈ Rd is decidable, if
the extended partitioning algorithm converges into states with finite axes of
symmetry. 2

The more general notion of monotonicity has recently been identified as
a useful restriction in characterizing hybrid systems [6]. A function is said
to be monotonic (with respect to its arguments), if it is always increasing
or always decreasing or constant in the specified interval. For monotonic
convergent deterministic semi-algebraic automata, monotonic flow and reset
maps guarantee that the system has to eventually converge to a fixed point
or a limit cycle (chaotic behavior can be ruled out). We now show that,
unlike linearity which ensures decidability of reachability, monotonicity only
guarantees that approximate reachability can be decided upto any specified
accuracy. Thus:

Theorem 2.5 If there exist 1-to-1 monotonic maps between two sets, all
points converge to one of a finite number of fixed points or limit cycles. 2

Theorem 2.6 Reachability over a deterministic semi-algebraic hybrid system
with resets and flows monotonic (with respect to all system variables), that
converges upon extended partitioning, is decidable up to an arbitrary degree of
accuracy. 2

2.2 Approximating as a Polytope

The bisimulation approach produced a new hybrid system more amenable to
approximate temporal analysis. A completely different approach, very popu-
lar for the reachability problem, is to approximate from the first step. This
involves assuming a mathematically convenient geometrical shape for the ini-
tial set—the simplest being a polytope (bounded polyhedron), which can be
written as a boolean combination of linear inequalities [3]. At each iteration,
we compute the successor polyhedron by expanding it using the (one-step)
transition relation of the hybrid system. Also, we need to ensure that the

5

41

Mysore and Mishra

successor is also a polyhedron. At each iteration, the mathematics involves
keeping track of the movement of the vertices and computing their new convex
hull, or keeping track of the faces and moving them based on their maximum
outward growth along the normal.

Clearly, a polyhedron can serve as a complexity restricting approxima-
tion of a semi-algebraic set as well. However, the conventional computational
techniques are not applicable for two reasons. First, the convex hull of the suc-
cessors of vertices of a polyhedron cannot be guaranteed to over-approximate
the successor of the polyhedron. This is because, unlike linear systems, the
flows cannot be assumed to be convexity preserving in semi-algebraic systems.
Secondly, the face-lifting approach is not applicable in its basic from. This
difficulty arises because, there is no straightforward way of calculating the
maximum outward component of the flow along the normal to each face, of a
polyhedron evolving with arbitrary polynomial dynamics.

In this section, we develop two new approaches that circumvent this prob-
lem. Instead of directly computing the approximated successor, we calculate
the accurate complex successor (of the polyderon), and then approximate it
with a new polyhedron. Though the accurate successor computation slows us
down, it is still better than the entirely exact computation. This is because
the quantified semi-algebraic expression for the successor is relatively sim-
ple (polyhedron). We first describe a very coarse over-approximation which
merely keeps track of the extremities along each dimension. This simple over-
approximation can be obtained by calculating the maximum and minimum
value along each dimension and bounding by one hyper rectangle. (We de-
note the value of the i-th dimension of X by Xi.)

Algorithm 2 [Over-Approximating as One Hyper-Rectangle]

(i) Initialize the current over-approximation of the reachable set R with the
starting hyper-rectangle

∧
i(imin ≤ Xi ≤ imax);

(ii) Calculate the exact successor of R thus:

RE(〈s, X〉) ≡ ∃s′, X ′, h R(〈s, X ′〉) ∧ 〈s′, X ′〉 h−→
T
〈s, X〉;

(iii) Calculate the maximum value of each dimension Xi in RE thus:
{∃s, X (Xi = i′max) ∧RE(〈s, X〉)}

∧
{∀s, X RE(〈s, X〉) ⇒ Xi ≤ i′max};

(iv) Calculate the minimum value of each dimension Xi in RE thus:
{∃s, X (Xi = i′min) ∧RE(〈s, X〉)}

∧
{∀s, X RE(〈s, X〉) ⇒ Xi ≥ i′min};

(v) For each dimension, i′min ≡ min(imin, i
′
min), i′max ≡ max(imax, i

′
max);

(vi) If j′max 6= jmax or j′min 6= jmin for some dimension Xj, repeat the steps
(ii) − (v) with R ≡

∧
i(i

′
min ≤ Xi ≤ i′max); else, the procedure has

converged. 2

While the utility of such a gross over-approximation is questionable, it is
nevertheless a technique one can resort to when the complexity of the problem
is very high. If we want to approximate with a general polyhedron (more

6

42

Mysore and Mishra

than just a hyper-rectangle), we have to resort to the convex-hull or face-
lifting approaches. As arbitrary face-lifting is not known to be amenable to
computational analysis, we suggest a convex-hull-based approach. Since the
new positions of the vertices cannot capture the new convex-hull, we move
them by the maximum possible increments and decrements in one step of the
hybrid system. In other words, we compute the maximum (and minimum)
displacement (along each dimension) of any point in the polyhedron; and then
assume that all the vertices could have moved by these amounts. The convex
hull of the vertices, moved by these maximal amounts, is clearly guaranteed
to be an over-approximation of the original polyhedron.

Algorithm 3 [Over-Approximating as One Hyper-Polygon]

(i) Initialize the current over-approximation of the reachable set R with the
starting hyper-polygon, composed of the initial set of n vertices v1, · · · , vn;

(ii) Calculate the exact successor of R thus:

RE(〈s, X〉) ≡ ∃s′, X ′, h R(〈s′, X ′〉) ∧ 〈s′, x′〉 h−→
T
〈s, X〉;

(iii) Calculate the maximum increment δinc in each dimension Xi thus:
{∃s, X, s′, X ′ R(〈s, X〉) ∧RE(〈s′, X ′〉) ∧ (X ′

i −Xi = δinc)}
∧

{∀s, X, s′, X ′ (R(〈s, X〉) ∧RE(〈s′, X ′〉)) ⇒ (X ′
i −Xi ≤ δinc)};

(iv) Calculate the maximum decrement δdec in each dimension Xi thus:
{∃s, X, s′, X ′ R(〈s, X〉) ∧RE(〈s′, X ′〉) ∧ (Xi −X ′

i = δdec)}
∧

{∀s, X, s′, X ′ (R(〈s, X〉) ∧RE(〈s′, X ′〉)) ⇒ (Xi −X ′
i ≤ δdec)};

(v) Each vertex contributes 2d new points, with each dimension being in-
creased or decreased by the maximum amounts. R is assigned the convex
hull of these n2d points;

(vi) Iterate (ii)− (vii) until δinc = δdec = 0. 2

2.3 Rectangular Grid Abstraction

Instead of using one large polytope, the grid abstraction approach relies on
keeping track of a number of small simple hyper-rectangles. Rectangular grids
admit canonical representations and the number of faces grows linearly with
the dimension, as opposed to convex polyhedra which become intractable in
higher dimensions [2]. Two common simplifying strategies are restricting the
vertices to be integers (“griddy”) and the edges to be axis-parallel (“isothetic”)
[1].

We first show that the extension to semi-algebraic hybrid automata of the
standard procedure is possible, because quantifier elimination can be used
to compute the transitions between hyper-rectangles. One can partition the
entire space into Nd hyper-rectangles, where N is the number of the A-sized
partitions 4 of each of the d dimensions. We use B(X) to denote the k-

4 A should be fixed in relation to the error in the h−→
C

.

7

43

Mysore and Mishra

dimensional grid unit
∧

i(Bi ≤ Xi < (Bi + A)) of size Ad. States will be
connected to some of their 3d−1 immediate neighbors, which differ by +A,−A
or 0 units in each dimension (with the identity-case alone excluded), and
to some farther ones resulting from discrete resets. We now list the series
of computations necessary to calculate the reachable region starting from a
specific grid unit:

Algorithm 4 [Reachability Over Numerical Grids]

(i) Given one hyper-rectangle F (X) corresponding to the source;

(ii) Initialize “frontier” set F with {F (X)}, and “reachable set” R with null;

(iii) For each new hyper-rectangle P (X) ∈ F
(a) Compile the set of neighbors:

N ≡ {Q(X)|(|Qi − Pi| = A ∨ 0) ∧
∨

i(|Qi − Pi| 6= 0)};
(b) For each neighbor Q(X) of P (X) not already in the reachable set,

test if it is reachable i.e. ∃X, P (X)∧
∨
∀v{∃Y

∨
∀u〈v, X〉 0−→

D
〈u, Y 〉∧

Q(Y)}
∨
{∃Y, h (0 < h ≤ A) ∧ 〈v, X〉 h−→

C
〈v, Y 〉 ∧Q(Y);

(c) All candidate non-adjoint cells Q(X) that can be reached by discrete
state transitions can be tested thus:
∃X, P (X) ∧

∨
∀v{∃Y

∨
∀u〈v, X〉 0−→

D
〈u, Y 〉 ∧Q(Y)}.

(d) Add all reachable cells to both the reachable set R and the frontier set
F and remove P (X) from F ;

(iv) Iterate until there are no more new-hyper-rectangles. 2

Having shown that the standard procedure is applicable, we now develop
a new approach for computing a sharper over-approximation (successor set of
small hyper-rectangles) of the given hyper-rectangle. The idea is to compute
the exact successor of a hyper-rectangle, and then over-approximate the region
outside the initial hyper-rectangle (the “spill”) by hyper-rectangles. In the
previous case, we considered each of the 3d − 1 non-overlapping neighboring
zones, and tested the transition to each. To simplify the expressions further,
we suggest considering fewer overlapping neighbors; in particular, the zones
with exactly one of the d dimensions increased or decreased i.e., 2d in all.
To summarize, the standard method (previous case) accumulates the hyper-
rectangles reachable from the given hyper-rectangle by testing transition to
each of the 3d−1 non-overlapping neighbors. The size of each neighbor is fixed
(“griddy”) forcing the approximation error to be at least that big. In the new
technique, the hyper-rectangles continue to be axis-parallel (“isothetic”), but
their vertices are not fixed. As a result, the approximation is guaranteed to
be much better than the “griddy” case. The additional trick of considering
fewer overlapping rectangles cannot be applied to the standard method, as
the approximation will become too coarse.

We now present the details of the method. We estimate the spill in each
neighboring zone by calculating the extremities in that zone, along the lines of

8

44

Mysore and Mishra

the scheme for over-approximating the entire set as a single-hyper-rectangle.
We use B(X) to denote the k-dimensional grid unit

∧
i(B

l
i ≤ Xi < Br

i) (side
of the hyper-rectangles are no longer fixed at A). Further, B¬j,k(X) denotes∧

i6=j∨k(B
l
i ≤ Xi < Br

i).

Algorithm 5 [Approximating with Many Hyper-Rectangles]

(i) As before, maintain the set of reachable hyper-rectangles R and the set of
new hyper-rectangles F just added to the reachable set, representing the
expanding frontier;

(ii) For each P (X) ∈ F , compute the exact successor set of R thus:

RE ≡
∨
∀v{∃Y

∨
∀u〈v, X〉 0−→

D
〈u, Y 〉 ∧ P (Y)

∨
{∃Y, h (0 < h ≤ A) ∧

〈v, X〉 h−→
C
〈v, Y 〉 ∧ P (Y);

(iii) For each dimension Xi:
(a) For the neighbor Q(X) where Ql

i = N r
i , calculate Qr

i : {∃X (P¬i(X)∧
Xi = Qr

i) ∧ RE(X)}
∧
{∀X (P¬i(X) ∧ Xi > Qr

i) ⇒ ¬RE(X)}. If
Qr

i < P r
i , skip the next two steps;

(b) We now need to calculate the extremities li+j , ri+
j in each of the other

dimensions Xj where j 6= i: {∃X (P¬i,j(X) ∧Xi > P r
i ∧Xi < Qr

i ∧
Xj = li+j) ∧ RE(X)}

∧
{∀X (P¬i,j(X) ∧ Xi > P r

i ∧ Xi < Qr
i ∧ Xj <

li+j) ⇒ ¬RE(x)} and {∃X (P¬i,j(X) ∧ Xi > P r
i ∧ Xi < Qr

i ∧ Xj =

ri+
j) ∧RE(X)}

∧
∀X (P¬i,j(X) ∧Xi > P r

i ∧Xi < Qr
i ∧Xj > ri+

j) ⇒
¬RE(X).

(c) The hyper-rectangle defined by Ql
i < Xi < Qr

i

∧
j 6=i l

i+
j < Xj < ri+

j is
added to the list of new hypercubes and also to the reachable set R;

(d) Repeat the above three steps for the neighbor where Qr
i = P l

i and
Ql

i, l
i−
j (< Xj), (Xj <)ri−

j need to be calculated;

(iv) Repeat (ii)− (iii) until the procedure converges. 2

In the “griddy” case, we inspect every possible neighbor and test transition.
Alternately, we could have computed the exact successor of the entire set, and
then extracted the component hyper-rectangles. Such an approach would
require a procedure for converting a semi-algebraic set (the exact successor)
into an over- (or under-) approximating union of hyper-rectangles of fixed
dimension.

In the “isothetic” case, we over-approximated the “spill” outside the hyper-
rectangle with a hyper-rectangle in each neighboring zone (with substantial
overlap). Alternatively, we could compute the best non-overlapping but non-
griddy hyper-rectangles that cover the newly reachable points, without hav-
ing to compute the maximum and minimum values of each dimension in each
neighboring zone. This approach again requires a general procedure for con-
verting the exact successor into a union of hyper-rectangles of arbitrary di-
mension.

We solve this problem by actually testing if potential vertices (from a

9

45

Mysore and Mishra

griddy or isothetic grid) are included in the exact reachable set. We then
use the resulting set of present and absent points to pick candidate hyper-
rectangles. Quantifier elimination is still necessary, since we may wish to
guarantee that the hyper-rectangles we have picked are wholely inside (under-
approximation) or that the hyper-rectangles we have omitted are wholely out-
side (over-approximation). Hence the approach we have suggested addresses
the problem of minimizing the number of quantifier-elimination queries. We
now provide the details of this new technique, which can be used in conjunc-
tion with both the algorithms presented before.

Algorithm 6 [Over-Approximating using Hyper-Rectangles]

(i) Calculate imax and imin, the maximum and minimum values of Xi in the
given set R: {∃X (Xi = imax) ∧R(X)}

∧
{∀X R(X) ⇒ Xi ≤ imax} and

{∃X (Xi = imin) ∧R(X)}
∧
{∀X R(X) ⇒ Xi ≥ imin};

(ii) Split each dimension into equidistant points of the desired resolution;

(iii) Evaluate membership in R for each grid point g by substitution: R(g);

(iv) The small hyper-rectangles created by the grid points which contain at
least one vertex in R are immediately included in the over-approximation;

(v) Hyper-rectangles where none of the vertices are in R are included only if
∃x ∈ G R(x) returns true. 2

In the under-approximation case, hyper-rectangles with at least one vertex not
in R can be safely omitted. The hyper-rectangles with all vertices in R are the
contenders for quantifier elimination. In both cases, one could use a “proof-
by-example” approach, where one verifies the feasibility at some randomly
selected points (center being the first choice) to see if quantifier elimination
can be avoided. By randomizing or biasing the grid points, one can obtain
non-griddy vertices. If, in addition, high-dimensional convex hull algorithms
are used, one could build upon this method to derive general polyhedral rep-
resentations as well.

2.4 Time Discretization

For the sake of completeness, we also note that time discretization can be
employed (in conjunction with most techniques) to approximate the hybrid
system dynamics. Conventionally, the most restricted transition relation en-
forces continuous evolution for a fixed time-step ∆ followed by one optional
discrete transition. The typical “improvement” over the previous case could
be allowing the discrete jump anywhere during the continuous evolution, as
opposed to only at the end of it. This model could be made even more realistic
by allowing N jumps anywhere during the continuous evolution. Clearly, the
only paths that get excluded here are those that involve more than N jumps
in ∆ time. All the restrictions described above are “fixed step” i.e. the system
progresses in timesteps of ∆. Each of them could be relaxed by allowing the
time-step to be in the range [0, ∆] to capture many other behaviors. Such re-

10

46

Mysore and Mishra

strictive transition relations greatly simplify fixpoint evaluations of temporal
logic operators.

A completely different time-discretization-based under-approximating ap-
proach would be to ignore the behavior of the system during the continuous
evolution. We simply use the end-points to verify the temporal query. For
example, the TCTL one-step until operator for semi-algebraic hybrid sys-
tems [8] can be simplified as: p . q = q

∨
∀v{∃s

∨
∀u〈v, r〉 →0

D 〈u, s〉 ∧
q(s)}

∨
{∃s, h (0 < h ≤ ∆)∧ 〈v, r〉 →h

C 〈v, s〉 ∧ q(s) ∧ p(r)}. Another simpli-
fying over-approximation would be to assume that the state invariant needs
to be true only at the beginning of (and not all along) the ∆ time units of con-
tinuous evolution. This heuristic could prove particularly useful if we combine
time discretization with the partitioning algorithm discussed earlier (which
will accumulate complex state-invariants).

3 Discussion

In this paper, we have extended the theory of approximate verification of hy-
brid systems from the linear to the more expansive semi-algebraic domain.
The algebraic model checking method presented in [8] was made more compu-
tationally practicable by extended bisimulation partitioning, approximation
with general polyhedra and unions of simple polyhedra, and time discretiza-
tion. For the extended bisimulation procedure suggested, we identified well-
behaved subclasses based on some novel critical observations about the be-
havior of exactly onto linear and monotonic maps between arbitrary sets. For
polyhedral approximations, we used the maximum and minimum values of
the system variables and their possible growth in one step to expand the con-
vex hull. We demonstrated how these same metrices (maximal growth along
each dimension in one step) could be used to obtain a hyper-rectangular ap-
proximation of semi-algebraic sets. We also introduced a practical strategy to
identify candidate hyper-rectangles, for which the quantifier elimination needs
to be invoked. Time discretization was seen to simplify the problem by allow-
ing fewer discrete jumps, excluding zeno paths, and by verifying the temporal
property at certain sampling times rather than everywhere.

All these methods need to be refined to better handle discrete resets and
symbolic approximations. More crucial is their actual implementation and
performance analysis. On the purely algebraic side, approximate quantifier
elimination and direct maximum-minimum estimation of a semi-algebraic set
are those mathematical techniques, that need to be developed to further ac-
celerate these methods. There are several approximating methods that are
yet to be extended to semi-algebraic systems. These include: (1) piece-wise
approximations of continuous dynamics; (2) problem domain transformation:
optimal control using Pontryagin Maximum Principle, level sets of solutions to
Hamilton-Jacobi-Bellman equations, sum of squares decomposition (semidefi-
nite programming) and geometric programming; (3) predicate abstraction and

11

47

Mysore and Mishra

qualitative simulation; (4) other geometric approximations: oriented rectan-
gular hulls, zonotopes and ellipsoids. Next, we wish to determine practical
applicability of these methods, trade-offs among them and suitable combina-
tions of these approximations that work best with the available tools.

References

[1] E. Asarin, T. Dang, O. Maler, and O. Bournez. Approximate Reachability
Analysis of Piecewise-Linear Dynamical Systems. In B. Krogh and N. Lynch,
editors, Hybrid Systems: Computation and Control (HSCC’00), volume 1790 of
LNCS, pages 20–31. Springer-Verlag, 2000.

[2] O. Bournez, O. Maler, and A. Pnueli. Orthogonal Polyhedra: Representation
and Computation. In F. Vaadrager and J. van Schuppen, editors, Hybrid
Systems: Computation and Control (HSCC 1999), volume 1596 of LNCS, pages
19–30. Springer-Verlag, 1999.

[3] A. Chutinan and B. Krogh. Verification of Polyhedral-Invariant Hybrid
Automata Using Polygonal Flow Pipe Approximations. In F. W. Vaandrager
and J. H. van Schuppen, editors, Hybrid Systems: Computation and Control
(HSCC’99), volume 1569 of LNCS, pages 76–90. Springer-Verlag, 1999.

[4] Ronojoy Ghosh and Claire Tomlin. Symbolic reachable set computation of
piecewise affine hybrid automata and its application to biological modelling:
Delta-notch protein signalling. Systems Biology, 1(1):170–183, June 2004.

[5] H. Hong. Quantifier elimination in elementary algebra and geometry
by partial cylindrical algebraic decomposition, version 13. WWW site
www.eecis.udel.edu/∼saclib, 1995.

[6] R. Lanotte and A. Maggiolo-Schettini. Monotonic hybrid systems. Journal of
Computer and System Sciences, 2004.

[7] B. Mishra. Computational Real Algebraic Geometry. CRC Press, Boca Raton,
FL, 2004.

[8] V. Mysore, C. Piazza, and B. Mishra. Algorithmic Algebraic Model Checking II:
Decidability of Semi-Algebraic Model Checking and its Applications to Systems
Biology. In Automated Technology for Verification and Analysis (ATVA)
(submitted), 2005.

[9] C. Piazza, M. Antoniotti, V. Mysore, A. Policriti, F. Winkler, and B. Mishra.
Algorithmic Algebraic Model Checking I: The Case of Biochemical Systems and
their Reachability Analysis. In Computer Aided Verification (CAV), 2005.

[10] A. Tarski. A Decision Method for Elementary Algebra and Geometry.
University of California Press, second edition, 1948.

12

48

Mysore and Mishra

4 Appendix

4.1 Semi-Algebraic Hybrid Automata: Definitions and Decidability

Definition 4.1 Semi-Algebraic Set[7] Every quantifier-free boolean for-
mula composed of polynomial equations and inequalities defines a semialge-
braic set (i.e., unquantified first-order formulæ over the reals —(R, +,×, =, <
)). 2

Definition 4.2 Semi-Algebraic Hybrid Automata [9] A k-dimensional
hybrid automaton is a 7-tuple, H = (Z, V , E, Init , Inv , Flow , Jump), con-
sisting of the following components:

• Z = {Z1, . . . , Zk} and Z ′ = {Z ′
1, . . . , Z ′

k} are two finite sets of variables
ranging over the reals R

• (V, E) is a directed graph of discrete states and transitions

• Each vertex v ∈ V is labeled by “Init”(initial), “Inv”(invariant) and “Flow”
labels of the form Initv[Z], Inv v[Z], and Flow v[Z,Z ′, t, h]

• Each edge e ∈ E is labeled by a “Jump” condition of the form Jumpe[Z,Z ′] ≡
Guard e(Z) ∧ Resete(Z,Z ′)

• Init , Inv , Flow , and Jump are semi-algebraic. 2

Definition 4.3 Semantics of Hybrid Automata[8] Let H = (Z, V ,
E, Init , Inv , Flow , Jump) be a hybrid automaton of dimension k.

• A location ` of H is a pair 〈v, R〉, where v ∈ V is a state and R ∈ Rk is an
assignment of values to the variables of Z. A location 〈v, R〉 is said to be
admissible, if Inv v(R) is satisfied.

• The continuous reachability transition relation
h−→
C

forces the state invariant

to hold at every point except the end-point along the evolution curve deter-
mined by the flow equations during the h(> 0) time units from the current
time t0:

〈v, R〉 h−→
C
〈v, S〉 iff(

Flow v(R,S, t0, h) ∧ ∀Z ′, h′ ∈ [0, h) Flow v(R,Z ′, t0, h
′) ⇒ Inv v(Z

′)

)
,

where Flow v(Z,Z ′, T, h) is the flow label of v.

• The discrete reachability transition relation
0−→
D

ensures that both parts of

the zero-time jump – the guard condition which needs to be satisfied just
before the transition is taken, and the reset condition which determines the
values after the transition, are satisfied.

〈v, R〉 0−→
D
〈u, S〉 iff 〈v, u〉 ∈ E ∧ Jumpv,u(R,S).

• The transition relation T of H connects the possible values of the system

13

49

Mysore and Mishra

variables before and after one step—a discrete step for a time h = 0 or a
continuous evolution for any time period h > 0:

T (`
h−→ `′) = {h = 0 ∧ `

0−→
D

`′} ∨ {h > 0 ∧ `
h−→
C

`′}.

• A trace of H is a sequence `0,`1, . . ., `n, . . . of admissible locations such that

∀i ≥ 0, ∃hi ≥ 0, T (`i
hi−→ `i+1). 2

Remark 4.4 When a semi-algebraic relation Flow v(R,S, t, h) is used between
the continuous states R at time t and S at time t + h in a discrete state v,
it may have been “derived” in two ways: (1) Solution Is A Polynomial : The
equation describing the continuous evolution of the variables in a discrete state
is a polynomial, say Y (t), and Flow v(Z,Z ′, t, h) ≡ { Z = Y (t) ∧ Z ′ = Y (t +
h) }. Or, (2) Differential Equation Is A Polynomial : Differential equations
describing the continuous evolution are approximated in Flow v using one of
the symbolic integration schemes (e.g., the Taylor series in [9] or based on a
direct integration scheme such as the linear Euler or the higher degree Runge-
Kutta). The error is controlled by an upper bound (say ∆) on the time spent
in one continuous step as we aim for over- or under-approximating the flow
equations. The Lagrange Remainder Theorem can be used to estimate errors.

Definition 4.5 . for Semi-Algebraic Hybrid Systems. The expression
p . q is True at the current continuous state R if q is true now, OR

• For one of the possible current discrete states v, there exists at least one
state u to which a transition can be taken such that q holds at the end, OR

• For one of the possible current discrete states v, there exists a continuous
transition (of at most ∆ time units when we need to upper-bound the flow-
approximation error) all along which p ∨ q holds, with q being true at the
end.

p . q = q(R)
∨
∀v(

{∃S
∨
∀u〈v, R〉 0−→

D
〈u, S〉 ∧ q(S)}

∨
{∃S, h (0 < h ≤ ∆) ∧ 〈v, R〉 h−→

C
〈v, S〉 ∧ q(S) ∧

∀S ′, h′ ((0 ≤ h′ < h)∧〈v, R〉 h′
−→
C
〈u, S ′〉) ⇒ (p(S ′)∨q(S ′))}

)
2

Remark 4.6 The last term in the formula, p(S ′) ∨ q(S ′), can be replaced
with just p(S ′) for evaluating ∃U over semi-algebraic hybrid systems. Also,
the upperbound ∆ on h should be omitted if there is no error in the Flow v

expression.

Theorem 4.7 [8] The one-step-until operator p . q is decidable for semi-
algebraic hybrid systems if p and q are also semi-algebraic.

Corollary 4.8 For semi-algebraic hybrid systems:

14

50

Mysore and Mishra

(i) ∃U , ∃F , ∃G and their subscripted versions ∃U≤z, ∃F≤z and ∃G≤z are
semi-decidable.

(ii) The negations of ∀U , ∀F , ∀G and their subscripted versions ∀U≤z, ∀F≤z

and ∀G≤z are semi-decidable.

(iii) All subscripted operators become decidable in the absence of zeno paths.

4.2 Details of Proofs

Proof Of Theorem 2.1 Each state s (source) needs to be split into two
states sd and sd̄ depending on whether or not the guard of the transition
to each d (destination) can ever be satisfied. Since real quantifier elimina-
tion is decidable [10,5], these partitions can be computed thus: Inv sd

(X) ≡
∃h,X ′ 〈s, X〉 h−→

C
〈s, X ′〉∧Guard s,d(X

′) and Inv sd̄
(X) ≡ Inv s(X)∧¬Inv sd

(X).2

Proof Of Theorem 2.2 Consider two sets S1 and S2 between which onto
linear maps exist. Maps of the form x′ = Σaixi + a0 correspond to a rotation,
stretch and shift of the coordinate axes. In other words, S2 has to be a
stretched, rotated and shifted image of S1 for such an onto map to exist.
There are 2sl maps possible because of the sl axes of linear symmetry, on each
of the sr axes of rotational symmetry. Hence the total number of coupled
linear onto maps is sr2

sl . 2

Proof of Corollary 2.3 Let m(= sr2
sl) be the number of possible onto

maps between S1 and S2. Let x1 ∈ S1 map to one of y1, · · · , ym ∈ S2. Let
y1 map to one of x1, · · · , xm ∈ S1 (x1 has to appear because the inverse of a
linear map is linear). Suppose x2 maps to ym+1. Since linear maps are closed
under composition and retain their ontoness property, by following the linear
maps from x1 → y1≤i≤m → x1≤i≤m → ym+1, we get a new linear map that
takes x1 to ym+1. However, we know from symmetry arguments that only m
linear maps can exist. This contradiction proves that no matter how many
times we compose the two given onto linear maps, we remain within the set
of 2n points (for example, rectangles have 8 possible linear onto maps while
cubes have 24). Extending this argument to a cycle of n states, each point
can have only one of m different successors in each of the n states. Hence, the
length of the biggest cycle is nm. 2

Proof of Theorem 2.4 The continuous evolution can be treated as a
linear map from the initial value to the final value that first satisfies the guard.
Further, time does not appear in the equation as in deterministic systems, an
initial value corresponds to a unique final value. No restriction on the guard is
necessary as we assume there is only 1 successor to each discrete state. Thus
a cycle of n states corresponds to a cycle of 2n linear 1-to-1 maps with only
the values before and after a reset sufficing to capture the dynamics. If m
is the maximum number of possible onto maps between any two consecutive
sets, the number of unique successors is ≤ 2nm. Since x0 has a finite number

15

51

Mysore and Mishra

of successors, if the target xf is not reached before the system begins to cycle,
we conclude exact unreachability. If xf is eventually reached, then it is indeed
exactly reachable. 2

Proof of Theorem 2.5 Let the sequence be X0, X1 = f(X0), X ′
0 =

g(X1) = g(f(X0)), · · · . Since f and g are monotonic, X will continue to move
in the same direction. The process can continue ad infinitum if X approaches
a fixed point (g(f(X)) = X). The other mathematical alternative is that
it approaches a limit cycle (f(g(f(g(..(X)..)))) = X). Monotonicty ensures
progress while ontoness ensures finiteness of the number of iterations required
to reach the neighborhood of a fixed point or a limit cycle. 2

Proof of Theorem 2.6 Just as in the linear case, the continuous flow can
also be thought of as a monotonic function from the initial value (from a reset
that brought the system to this state) to the final value (when a guard is first
satisfied). Thus any cycle of n discrete states corresponds to a cycle of 2n
monotonic maps (n flow-maps and n reset maps). Further, from the previous
theorem, we know that iterative evolution along such a cycle of exactly onto
maps has to approach a fixed point or a limit cycle. We can stop iterating
when

∧
(|Xi − X ′

i| < εi, where X is the d-dimensional value of the system
variables, εi is the desired accuracy in the i-th dimension and X ′ is the value
after one cycle (reached the neighborhood of a fixed point) or after 2, 3, · · · , d
cycles (reached the neighborhood of a limit cycle) . The monotonic resets
guarantee that this will happen in a finite number of steps and that once this
happens, the system cannot escape out of it. 2

16

52

INFINITY 2005 Preliminary Version

Liveness Checking as Safety Checking for
Infinite State Spaces

Viktor Schuppan 1

ETH Zürich, Computer Systems Institute, CH-8092 Zürich, Switzerland

Armin Biere 2

Johannes Kepler University, Institute for Formal Models and Verification
Altenbergerstrasse 69, A-4040 Linz, Austria

Abstract

In previous work we have developed a syntactic reduction of repeated reachability
to reachability for finite state systems. This may lead to simpler and more uniform
proofs for model checking of liveness properties, help to find shortest counterexam-
ples, and overcome limitations of closed-source model-checking tools. In this paper
we show that a similar reduction can be applied to a number of infinite state systems,
namely, (ω−)regular model checking, push-down systems, and timed automata.

Key words: liveness, safety, linear temporal logic, model
checking, infinite state space

1 Introduction

While model checking of safety properties can be reduced to computing the
set of reachable states of a system [16], verification of general LTL properties
is typically performed by searching for infinite paths in the product of the
system and an automaton representing the property [22].

In [19] we have developed a syntactic reduction from computing repeated
reachability to computing reachability for finite state systems. This reduction
has been used to develop a BDD-based method to find shortest counterexam-
ples [20]. On selected examples a significant speed up compared to traditional
liveness checking can be observed [19,21]. It can also help to simplify proofs
if a proof for safety properties is easier than the corresponding proof for gen-
eral LTL properties. It may finally discourage tool vendors from charging

1 Email: Viktor.Schuppan@inf.ethz.ch
2 Email: biere@jku.at

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

53

mailto:Viktor.Schuppan@inf.ethz.ch
mailto:biere@jku.at

Schuppan, Biere

separately for liveness-enabled versions of their verification tools. For further
motivation and related work on finite state systems see [19].

In this paper we develop similar reductions for a number of infinite state
systems. Classes of infinite state systems, which have received considerable at-
tention in the past and for which verification tools are available (e.g., [1,12,17]),
are (ω−)regular model checking [15,23,7,5], pushdown systems [6,13,11], and
timed automata [3].

Early work on liveness for regular model checking includes [7,18]. Pnueli
and Shahar [18] also use a copy of a current state to detect bad cycles in param-
eterized systems. However, this is not performed as syntactic transformation
of a model but as part of a dedicated liveness checking algorithm. A variant of
LTL geared towards parameterized systems is proposed in [2]. [8] gives details
on how to encode a broader set of properties than [2] for (ω−)regular model
checking, which can be used in conjunction with our reduction. Algorithms
to compute repeated reachability, on which we also base our reductions, can
be found for pushdown systems, e.g., in [6], and for timed automata in [3].

After some notation common to all classes of systems in Sect. 2, Sect. 3
presents the basic idea of our reduction using finite state systems as an exam-
ple. It is extended to (ω−)regular model checking in Sect. 4 and to pushdown
systems in Sect. 5. Due to space constraints the construction for timed au-
tomata can only be sketched in Sect. 6. The last section concludes.

2 Common Notation

The set of Booleans is denoted by IB = {0, 1}; IN and IR are naturals and
reals, respectively. Elements of a tuple are separated by commas. Elements of
a sequence typically have no operator between them, ◦ is used only if ambiguity
might arise. For a sequence ρ, ρ(i) denotes the i-th element of the sequence
(starting with ρ(0)). The length of a sequence, |ρ|, is defined as the number
of its elements. If S is a set, S∗ and Sω are the sets of finite and infinite
sequences of elements of S.

We introduce an operator µ, which forms a sequence of tuples from a
tuple of sequences. Given two words v, w ∈ Σ∗ with |v| ≤ |w| we define
µ(v, w) = (v(0), w(0)) . . . (v(|v| − 1), w(|v| − 1)) ∈ (Σ× Σ)∗.

3 Liveness Checking as Safety Checking – Finite Case

In this section we briefly restate the main result from [19] to explain the basic
idea and notation of our reduction.

3.1 Preliminaries

Let AP be a finite set of atomic propositions. A Kripke structure, see, e.g.,
[9], is a four tuple M = (S, S0, R, L) where S is a finite set of states, S0 ⊆ S

2

54

Schuppan, Biere

Definition 3.1 Let M = (S, S0, R, L) be a Kripke structure. Then MS =
(SS, S0

S, RS, LS) is defined as:

SS = S × S × IB× IB

S0
S = {(s0, ŝ0, 0, 0) | s0 ∈ S0} ∪ {(s0, s0, 1, 0) | s0 ∈ S0}

RS = {((s, ŝ, lb, lc), (s′, ŝ′, lb′, lc′)) | (s, s′) ∈ R ∧
((¬lb ∧ ¬lb′ ∧ ¬lc ∧ ¬lc′ ∧ ŝ = ŝ′) ∨ (1)

(¬lb ∧ lb′ ∧ ¬lc ∧ ¬lc′ ∧ s′ = ŝ′) ∨ (2)

(lb ∧ lb′ ∧ ¬lc ∧ ¬lc′ ∧ ŝ = ŝ′) ∨ (3)

(lb ∧ lb′ ∧ ¬lc ∧ lc′ ∧ ŝ = s′ = ŝ′) ∨ (4)

(lb ∧ lb′ ∧ lc ∧ lc′ ∧ ŝ = ŝ′))} (5)

LS((s, ŝ, lb, lc)) = L(s)

is the set of initial states, R ⊆ S×S is a transition relation, and L : S 7→ 2AP

is a labeling of the states.

A run is a (finite or infinite) sequence of states ρ = ρ(0)ρ(1) . . . where
∀0 ≤ i < |ρ| . (ρ(i), ρ(i + 1)) ∈ R. ρ is initialized if ρ(0) ∈ S0, Runs(M)
denotes the set of runs of M .

3.2 Reduction

A liveness property Fp, where p is propositional, is violated in a finite state
system iff there exists a lasso-shaped path where p never holds on that path.
Finding such loop is a key ingredient of many model checking algorithms for
LTL, e.g., [22,4]. Our reduction integrates the detection of a loop into the
model to be verified by nondeterministically saving the current state (i.e.,
guessing a potential loop start) and then watching for a second occurrence of
that state (i.e., detecting closure of the loop). For this purpose, the reduction
extends a state s in the original model with a component to store a previously
seen state, ŝ, and two flags lb (loop body) and lc (loop closed). lb is set to
true when a state is saved and prevents future overwriting of the stored state.
lc indicates that a second occurrence of ŝ has been found.

Definition 3.1 shows the construction. The transitions of RS are partitioned
into subsets. Subset (1) covers the case when no state has been saved so far.
Saving happens either at the initial state or via a transition from set (2).
Transitions from the third set (3) are taken as long as no second occurrence
of the stored state has been seen. A second occurrence is finally detected by
a transition in (4). After that only transitions from the last set (5) are taken.

Theorem 3.2 Let M = (S, S0, R, L) be a Kripke structure, let MS be defined

3

55

Schuppan, Biere

as above. Assume k > l ≥ 0.

(s0 . . . sl−1)(sl . . . sk−1)
ω ∈ Runs(M)

⇔

(s0, ŝ0, 0, 0) . . . (sl−1, ŝ0, 0, 0)(sl, sl, 1, 0) . . . (sk−1, sl, 1, 0)(sk, sl, 1, 1)

∈ Runs(MS)

Proof. “⇒”: Let ρ = (s0 . . . sl−1)(sl . . . sk−1)
ω be a run in M . We construct

ρS as follows. If l > 0 choose ρS(0) = (s0, ŝ0, 0, 0) with arbitrary ŝ0. Construct
(s0, ŝ0, 0, 0) . . . (sl−1, ŝ0, 0, 0) by taking transitions from subset (1). Proceed to
(sl, sl, 1, 0) via a transition from (2). Continue to (sk−1, sl, 1, 0) with k − l −
1 transitions from (3). Finally, as k > l, there exists sk = sl, so take a
transition from (4) to (sk, sl, 1, 1). Otherwise, if l = 0, start with (s0, s0, 1, 0)
and continue with k − 1 transitions from (3) and one from (4) as before.

“⇐”: Let ρS = (s0, ŝ0, 0, 0) . . . (sl−1, ŝ0, 0, 0)(sl, sl, 1, 0) . . . (sk−1, sl, 1, 0) ◦
(sk, sl, 1, 1) be a run in MS such that k > l. From the construction of MS,
ρ′ = s0 . . . sl−1sl . . . sk−1sk is a finite run in M with sk = sl. Hence, ρ =
(s0 . . . sl−1)(sl . . . sk−1)

ω is a run in M as desired. 2

Remark 3.3 Checking properties given as Büchi automata requires finding
fair loops. This can be achieved by adding a flag for each fairness constraint,
for details see [19]. The infinite cases can be handled similarly.

3.3 Complexity

Intuitively, MS consists of |S| parallel copies of M . Hence, we immediately
have the following result.

Proposition 3.4 Let M = (S, S0, R, L) be a Kripke structure. MS has
O(|S|2) states and O(|S||R|) transitions.

Proof. Each state in SS stores, in addition to the original state s, another
state ŝ and flags lb, lc. RS contains O(|S|) transitions tS per transition t ∈ R
in subsets (1), (3), and (5), and O(1) tS per t ∈ R in subsets (2) and (4). 2

As reachability in a Kripke structure can be determined in O(|S| + |R|)
time and O(|S|) space, SS can be checked in O(|S|2+|S||R|) time and O(|S|2)
space. For results on other parameters that are important when using BDD-
based symbolic model checking, e.g., radius, diameter, or BDD size, see [19].

4 Regular Model Checking

4.1 Preliminaries

The notation in this section is mostly borrowed from [7]. Let Σ be a finite
alphabet. Regular sets (respectively relations) can be represented as finite-
state automata (resp. transducers). These are given as four tuple (Q, q0, δ, F)

4

56

Schuppan, Biere

Definition 4.1 Let P = (Σ,ΦI , R) be a program. Then PS = (ΣS,ΦI
S, RS) is

defined as

ΣS = IB ∪ (Σ× Σ)

ΦI
S = {0} ◦ {0} ◦ {µ(w, ŵ) ∈ (Σ× Σ)∗ | |w| = |ŵ| ∧ w ∈ ΦI} ∪

{1} ◦ {0} ◦ {µ(w,w) ∈ (Σ× Σ)∗ | w ∈ ΦI}

RS = {((lb lc µ(w, ŵ)), (lb′ lc′ µ(w′, ŵ′))) ⊆ (IB ◦ IB ◦ (Σ× Σ)∗)2 |
|w| = |ŵ| = |w′| = |ŵ′| ∧ (w,w′) ∈ R ∧
((¬lb ∧ ¬lb′ ∧ ¬lc ∧ ¬lc′ ∧ ŵ = ŵ′) ∨ (1)

(¬lb ∧ lb′ ∧ ¬lc ∧ ¬lc′ ∧ w′ = ŵ′) ∨ (2)

(lb ∧ lb′ ∧ ¬lc ∧ ¬lc′ ∧ ŵ = ŵ′) ∨ (3)

(lb ∧ lb′ ∧ ¬lc ∧ lc′ ∧ ŵ = w′ = ŵ′) ∨ (4)

(lb ∧ lb′ ∧ lc ∧ lc′ ∧ ŵ = ŵ′))} (5)

where Q is a finite set of states, q0 is the initial state, δ : (Q × Σ) 7→ 2Q

(resp. δ : (Q × (Σ × Σ)) 7→ 2Q) is the transition function, and F ⊆ Q is the
set of accepting states.

A relation R ⊆ Σ∗ × Σ∗ is length-preserving iff ∀(w, w′) ∈ R . |w| = |w′|.
A program is a triple P = (Σ, ΦI , R) where ΦI ⊆ Σ∗ is a regular set of initial
configurations and R ⊆ Σ∗ × Σ∗ is a regular, length-preserving transition
relation.

A configuration of a program P is a word w over Σ. Runs are finite or
infinite sequences of configurations ρ = ρ(0)ρ(1) . . ., such that ∀0 ≤ i < |ρ| .
(ρ(i), ρ(i + 1)) ∈ R. A run is initialized if ρ(0) ∈ ΦI . Runs(P) is the set of
runs of P .

4.2 Reduction

In the finite case the state to be saved was simply added as a separate com-
ponent to the state of the transformed system. A finite automaton can only
remember a finite amount of information. Hence, in order to apply the reduc-
tion to regular model checking it is not possible to construct an automaton
that first reads a state of the original program and compares that with a saved
copy. Instead, we extend the alphabet of the program to tuples of letters to
store and compare states position by position of a word. Other than that the
construction in Def. 4.1 is exactly the same as in the finite case.

Lemma 4.2 If P = (Σ, ΦI , R) is a program, so is PS = (ΣS, ΦI
S, RS).

Proof. Assume that ΦI is given by (QI , q0I , δI , FI). To represent an automa-
ton (not) saving the initial state we use separate copies of (QI , q0I , δI , FI),
(Q6=

I , q0
6=
I , δ 6=I , F 6=

I) and (Q=
I , q0

=
I , δ=

I , f=
I). Then (QI

S, q0I
S, δI

S, FI
S) with

5

57

Schuppan, Biere

QI
S = Q6=

I ∪Q=
I ∪ {qlb , q

6=
lc , q

=
lc},

q0I
S = qlb ,

δI
S = {(qlb , 0, q

6=
lc), (q

6=
lc , 0, q0

6=
I)} ∪ {(q 6=, (a, â), q 6=′) | (q 6=, a, q 6=′) ∈ δ 6=I } ∪

{(qlb , 1, q
=
lc), (q

=
lc , 0, q0

=
I)} ∪ {(q=, (a, a), q=′) | (q=, a, q=′) ∈ δ=

I }, and

FI
S = F 6=

I ∪ F=
I ,

is a finite automaton accepting ΦI
S.

Similarly, if R is given by (QR, q0R, δR, FR), we construct a finite transducer
(QR

S, q0R
S, δR

S, FR
S) to accept RS. We use separate copies of (QR, q0R, δR, FR)

to leave the saved word unchanged (superscript 135, corresponding to disjuncts
1, 3, and 5 in Def. 4.1), save a word (sup. 2, corr. to subset (2)), and compare
current and stored word (sup. 4, corr. to subset (4)).

QR
S = Q135

R ∪Q2
R ∪Q4

R ∪ {qlb , q
1
lc, q

2
lc, q

345
lc },

q0R
S = qlb ,

δR
S = {(qlb , (0, 0), q1

lc), (qlb , (0, 1), q2
lc), (qlb , (1, 1), q345

lc)} ∪
{(q1

lc, (0, 0), q135
0), (q2

lc, (0, 0), q2
0), (q

345
lc , (0, 0), q135

0),

(q345
lc , (0, 1), q4

0), (q
345
lc , (1, 1), q135

0)} ∪
{(q135, ((a, â), (a′, â)), q135′) | (q135, (a, a′), q135′) ∈ δ135

R } ∪
{(q2, ((a, â), (a′, a′)), q2′) | (q2, (a, a′), q2′) ∈ δ2

R} ∪
{(q4, ((a, a′), (a′, a′)), q4′) | (q4, (a, a′), q4′) ∈ δ4

R}, and

FR
S = F 135

R ∪ F 2
R ∪ F 4

R
2

Theorem 4.3 Let P = (Σ, ΦI , R) be a program, PS be defined as above, and
ŵI ∈ Σ∗ with |ŵI | = |w0|. Assume k > l ≥ 0.

(w0 . . . wl−1)(wl . . . wk−1)
ω ∈ Runs(P)

⇔

(0 0 µ(w0, ŵI)) . . . (0 0 µ(wl−1, ŵI))(1 0 µ(wl, wl)) . . .

. . . (1 0 µ(wk−1, wl))(1 1 µ(wk, wl)) ∈ Runs(PS)

Proof. Analogous to the proof of Thm. 3.2. 2

Remark 4.4 Bouajjani et al. developed a technique to compute the transitive
closure of a regular relation R [7,14]. A sufficient criterion for termination
of that computation is bounded local depth [7,14] of R. Our construction
preserves that property. Intuitively, a relation has local depth k if for any
(w, w′) ∈ R+ each position in w needs to be rewritten no more than k times.
Note that in any run ρS of PS the projection of ρS onto (lb, lc) will be a prefix
of (0, 0)∗ (1, 0)+ (1, 1)+. Furthermore, ŵ changes its value in ρS at most once

6

58

Schuppan, Biere

at the transition of (lb, lc) from (0, 0) to (1, 0). Hence, with similar reasoning
as for radius and diameter in [19] we can infer that, if R has local depth k,
RS has local depth ≤ 3k + 2.

Remark 4.5 The ideas of regular model checking have been extended to infi-
nite words [5] by regarding the finite automata used to represent sets of states
and the transition relation as Büchi automata on infinite words. The tech-
niques of [5] require the Büchi automata to be weakly deterministic. A Büchi
automaton is weak (1) if each of its strongly connected components contains
either only accepting or only non-accepting states and (2) if the set of states
can be partitioned into an ordered set of subsets such that each path in the
automaton progresses in descending order through these subsets. From the
proof of Lemma 4.2 it’s easy to see that, if B is a weakly deterministic Büchi
automaton (for the set of initial configurations) or transducer (for the transi-
tion relation), so is BS. Clearly, repeated reachability may not be sufficient
to verify general LTL properties for ω−regular programs.

5 Pushdown Systems

5.1 Preliminaries

Notation in this section is along the lines of [11]. A pushdown system M is a
four tuple M = (P, Γ, ∆, CI) where P is a finite set of control locations, Γ is a
finite stack alphabet, ∆ ⊆ (P ×Γ)× (P ×Γ∗) is a finite set of transition rules,
and CI ⊆ P × Γ is a finite set of initial configurations.

A configuration is a pair 〈p, w〉 with p ∈ P and w ∈ Γ∗. A run is a (finite
or infinite) sequence of configurations ρ = ρ(0)ρ(1) . . ., where ρ(i) = 〈pi, wi〉,
such that ∀i < |ρ| − 1 . ∃γi ∈ Γ,∃ui, vi ∈ Γ∗ . wi = γivi ∧ wi+1 = uivi ∧
((pi, γi), (pi+1, ui)) ∈ ∆. A run is initialized if ρ(0) ∈ CI . Runs(M) is the set
of runs of M .

A head is a pair 〈p, γ〉 with p ∈ P and γ ∈ Γ. If c = 〈p, γw〉 is a con-
figuration, head(c) = 〈p, γ〉. A head 〈p, γ〉 is repeating if there exist a run ρ
in M and w ∈ Γ∗ such that |ρ| > 1, ρ(0) = 〈p, γ〉, and ρ(|ρ| − 1) = 〈p, γw〉.
heads(ρ) denotes the sequence of heads derived from a run ρ.

Bouajjani et al. proved [6] that (1) every run that ends in a configuration
with a repeating head can be extended to an infinite run, and (2) from every
infinite run ρ a run στ can be derived such that |σ| < ∞ and heads(τ) =
(〈p0, γ0〉 . . . 〈pl−1, γl−1〉)ω. I.e., if there exists an infinite run in M , then there
also exists one whose sequence of heads forms a lasso.

5.2 Reduction

Based on the results of [6] it is sufficient to find repeating heads when checking
LTL formulae on pushdown systems. Hence, a reduction of repeated reacha-
bility to reachability need only store and watch out for a second occurrence

7

59

Schuppan, Biere

of a repeating head 〈p, γ〉 rather than an entire configuration. However, to
infer from the second occurrence of a head that this head is indeed repeating,
one has to ensure that the stack height between the first and the second oc-
currence never fell below the stack height at the first occurrence. To this end
the stack alphabet is extended such that each stack symbol has an additional
flag bs (bottom of stack) to remember a given stack height. When saving a
head this flag is set for the bottom element pushed on the stack in the post-
configuration. Whenever an element with bs = 1 is removed from the stack
without being replaced in the same transition a loop error flag le is set.

In the previous examples, lc signals a second occurrence of a state imme-
diately at that occurrence. However, the definition of the transition rules for
pushdown systems may not give access to the topmost element of the stack
in the post-configuration. If no new element is pushed on the stack a com-
parison with a stored stack element cannot be performed. For this reason we
introduce a one-state delay in the case of pushdown systems for lb, lc, and
the stored head. Hence, there is no need for an initial configuration with that
configuration already saved.

Definition 5.1 shows the entire reduction. The transition relation is parti-
tioned into 5 sets again. While no state has been saved (subset (1)), flags lb, lc,
and le remain false, the initial values for p̂ and γ̂ are just copied, and no stack
height need be remembered (bs0 is false). Saving a state (subset (2)) can only
occur if a non-empty word is pushed back on the stack — otherwise, the next
transition would immediately violate the above-mentioned condition for the
stack height of a repeating head. Taking a transition from subset (2) saves the
head (p, γ) (in the pre-configuration) in p̂ and γ̂ (in the post-configuration),
sets lb to true, and marks the current stack height by setting bs to true for the
bottom element pushed on the stack. Transitions from subset (3) are taken
while a second occurrence of the stored head has not been seen, hence, the
flags lb, lc, as well as p̂ and γ̂ keep their values. In addition, the condition
not to fall below the stack height at the time of saving is checked. When this
is the case, i.e., when an element with bs true is popped from the stack and
only an empty word is pushed back, the loop error flag le is set to true. This
prevents signalling a repeating head when a second occurrence of the stored
head could be detected in the future by restricting subsequent transitions to
subset (3). When the stack height remains above the required level, le keeps
its value and the flag bs is set in the bottom element of the word pushed onto
the stack iff it was set in the symbol popped from the stack. A second occur-
rence of (p, γ) is signalled by setting lc to true when taking a transition from
subset (4). lb, le, p̂, and γ̂ keep their values. Any remembered stack height
is discarded. Transitions of the last subset (5) keep all additional location
components constant.

In the following we prove correctness of the reduction.

Theorem 5.2 Let M = (P, Γ, ∆, cI) be a pushdown system and MS be de-
fined as above. There exists an initialized run ρ to a repeating head 〈p0, γ〉

8

60

Schuppan, Biere

Definition 5.1 Let M = (P,Γ,∆, CI) be a pushdown system, let (p̂I , γ̂I) ∈ P × Γ
be arbitrary but fixed. Then, MS = (PS,ΓS,∆S, CI

S) is defined as
PS = P × P × Γ× IB3

ΓS = Γ× IB

∆S = {(((p, p̂, γ̂, lb, lc, le), (γ, bs)), ((p′, p̂′, γ̂′, lb′, lc′, le′), µ(w′, bs′
h . . . bs′

0))) |

(((p, γ), (p′, w′)) ∈ ∆) ∧ (|w′| > 1 → ¬bs′
h ∧ . . . ∧ ¬bs′

1) ∧

((¬lb ∧ ¬lb′ ∧ ¬lc ∧ ¬lc′ ∧ ¬le ∧ ¬le′ ∧ p̂ = p̂′ ∧ γ̂ = γ̂′ ∧ (|w′| > 0 → ¬bs′
0)) ∨ (1)

(¬lb ∧ lb′ ∧ ¬lc ∧ ¬lc′ ∧ ¬le ∧ ¬le′ ∧ p = p̂′ ∧ γ = γ̂′ ∧ (|w′| > 0) ∧ bs′
0) ∨ (2)

(lb ∧ lb′ ∧ ¬lc ∧ ¬lc′ ∧ ((|w′| = 0 ∧ bs ∨ le) ↔ le′) ∧
p̂ = p̂′ ∧ γ̂ = γ̂′ ∧ (|w′| > 0 → (bs ↔ bs′

0))) ∨ (3)

(lb ∧ lb′ ∧ ¬lc ∧ lc′ ∧ ¬le ∧ ¬le′ ∧ p = p̂ = p̂′ ∧ γ = γ̂ = γ̂′ ∧ (|w′| > 0 → ¬bs′
0)) ∨ (4)

(lb ∧ lb′ ∧ lc ∧ lc′ ∧ ¬le ∧ ¬le′ ∧ p̂ = p̂′ ∧ γ̂ = γ̂′ ∧ (|w′| > 0 → ¬bs′
0)))} (5)

CI
S = {〈(pI , p̂I , γ̂I , 0, 0, 0), (γI , 0)〉 | 〈pI , γI〉 ∈ CI}

in M if and only if there exists an initialized run ρS in MS with ρS(|ρS| −
2) = 〈(p0, p0, γ, 1, 0, 0), w|ρS|−2〉, where w|ρS|−2(0) = γ, and ρS(|ρS| − 1) =
〈(p, p0, γ, 1, 1, 0), w|ρS|−1〉.

Proof. “⇒”: Assume a run ρ to a repeatable head 〈p0, γ〉. Hence, there exist
l ≥ 0, q0, . . . , ql−1 ∈ P , w0, . . . , wl−1 ∈ Γ∗, v ∈ Γ∗ where ∀i < l . ρ(i) = 〈qi, wi〉
and ρ(l) = 〈p0, γv〉.

By the definition of a repeating head there are k > l, p1, . . . , pk−l−1 ∈ P ,
u0, . . . , uk−l ∈ Γ+, where u0 = uk−l(0) = γ, such that ρ can be extended to an
infinite run ρ∞ ∈ Runs(M):

∀i < l . ρ∞(i) = ρ(i)

∀i ≥ l . ρ∞(i) = 〈p(i−l) mod (k−l),

u(i−l) mod (k−l)(uk−l(1) . . . uk−l(|uk−l| − 1))(i−l) div (k−l)v〉

From that we construct a finite run ρS as follows:

∀i < l . ρS(i) = 〈(qi, p̂I , γ̂I , 0, 0, 0), µ(wi, 0|wi|)〉

ρS(l) = 〈(p0, p̂I , γ̂I , 0, 0, 0), (γ, 0) µ(v, 0|v|)〉

ρS(l + 1) = 〈(p1, p0, γ, 1, 0, 0), µ(u1, 0|u1|−11) µ(v, 0|v|)〉

∀l + 1 < i < l + k . ρS(i) = 〈(pi−l, p0, γ, 1, 0, 0), µ(ui−l, 0|ui−l|−11) µ(v, 0|v|)〉

if |uk−l| > 1

ρS(k) = 〈(p0, p0, γ, 1, 0, 0), (γ, 0) µ(uk−l(1) . . . uk−l(|uk−l| − 1), 0|uk−l|−2 1) µ(v, 0|v|)〉

ρS(k + 1) = 〈(p1, p0, γ, 1, 1, 0),

µ(u1, 0|u1|) µ(uk−l(1) . . . uk−l(|uk−l| − 1), 0|uk−l|−2 1) µ(v, 0|v|)〉

otherwise

ρS(k) = 〈(p0, p0, γ, 1, 0, 0), (γ, 1)µ(v, 0|v|)〉

ρS(k + 1) = 〈(p1, p0, γ, 1, 1, 0), µ(u1, 0|u1|) µ(v, 0|v|)〉

9

61

Schuppan, Biere

“⇐”: Assume an initialized run ρS to ρS(|ρS|−2) = 〈(p0, p0, γ, 1, 0, 0), w|ρS|−2〉,
where w|ρS|−2(0) = γ, and ρS(|ρS| − 1) = 〈(p1, p0, γ, 1, 1, 0), w|ρS|−1〉. By

Def. 5.1, ∃0 < l < |ρS| − 2 such that ρS(l) = 〈(p0, p̂I , γ̂I , 0, 0, 0), µ(wl, 0
|wl|)〉

and wl(0) = γ. Clearly, the projection of ρS(0 . . . l) on the first components of
its state and stack is a run in M to a repeatable head. 2

5.3 Complexity

Proposition 5.3 Let M = (P, Γ, ∆, CI) be a pushdown system. MS has
O(|P ||Γ||P |) locations and O(|P ||Γ||∆|) transition rules.

Proof. The locations of M are extended in MS to store another location, a
stack symbol, and three flags. For ∆S, there are O(|∆|) transition rules in
subsets (1), (2), and (4), and O(|P ||Γ||∆|) in (3) and (5). 2

Algorithm 3 in [11] can be used to check reachability for a pushdown system
M = (P, Γ, ∆, CI) where (p, γ, p′, w′) ∈ ∆ ⇒ |w′| ≤ 2. It computes the set of
reachable configurations in O(|P ||∆|2 + |δ|) time and space.

Proposition 5.4 Let M = (P, Γ, ∆, CI) be a pushdown system such that
(p, γ, p′, w′) ∈ ∆ ⇒ |w′| ≤ 2. Algorithm 3 in [11] runs on MS, with AMS

accepting CI
S, in time and space

O(|P ||Γ|(|P ||∆|2) + |δ|)

Proof. See the full version of this paper. 2

6 Timed Automata

In this section we briefly give the idea of how to apply our reduction to timed
automata [3]. Details can be found in the full version of this paper. In addition
to a finite set of control locations, timed automata have a finite set of real-
valued clocks. Transitions are labeled with integer clock constraints of the
form c ∼ n where c is a clock variable, ∼∈ {<,≤, =,≥, >}, and n ∈ IN.

Alur and Dill showed [3] that for model checking of LTL the precise value
of the clocks is not relevant. Rather, clock valuations fall into a finite number
of equivalence classes called regions. Model checking is then performed on the
abstract region automaton.

We use this fact in our reduction as follows. We do not store the precise
valuation of the clocks but the clock region. This requires a variable in the
range {0, . . . , cx} and a flag for each clock x, where cx is the maximal integer
x is compared with in a clock constraint. Furthermore, we store the order of
the fractional parts of the clocks. This requires k variables of range 0 . . . k− 1
if there are k clocks and k − 1 flags to indicate equality between each pair of
successors in the order.

10

62

Schuppan, Biere

7 Conclusion

We have extended our reduction of repeated reachability to reachability to
some popular classes of infinite state systems. For these classes the reductions
“pull the original algorithm into the model”. To explore the limits of our
method we are looking for systems where liveness can still be reduced to
repeated reachability, but where our method might not seem applicable. It
is clear that the construction for the finite case can not always be lifted to
infinite state systems. In general, counterexamples to liveness properties in
infinite state systems can not necessarily be restricted to have lasso shape. In
some cases, abstractions [18] or simulations [8] might help. Maybe our method
can also provide additional insight why liveness is undecidable for some classes
of systems. Finally, experiments need to prove the viability of our approach.

References

[1] Abdulla, P., B. Jonsson, M. Nilsson and J. d’Orso, Algorithmic improvements
in regular model checking, in: W. Hunt and F. Somenzi, editors, CAV’03, LNCS
2725 (2003), pp. 236–248.

[2] Abdulla, P., B. Jonsson, M. Nilsson, J. d’Orso and M. Saksena, Regular model
checking for LTL(MSO), in: R. Alur and D. Peled, editors, CAV’04, LNCS 3114
(2004), pp. 348–360.

[3] Alur, R. and D. Dill, A theory of timed automata, Theor. Comput. Sci. 126
(1994), pp. 183–235.

[4] Biere, A., A. Cimatti, E. Clarke and Y. Zhu, Symbolic model checking without
BDDs, in: R. Cleaveland, editor, TACAS’99, LNCS 1579 (1999), pp. 193–207.

[5] Boigelot, B., A. Legay and P. Wolper, Omega-regular model checking, in:
K. Jensen and A. Podelski, editors, TACAS’04, LNCS 2988 (2004), pp. 561–
575.

[6] Bouajjani, A., J. Esparza and O. Maler, Reachability analysis of pushdown
automata: Application to model-checking, in: A. W. Mazurkiewicz and
J. Winkowski, editors, CONCUR’97, LNCS 1243 (1997), pp. 135–150.

[7] Bouajjani, A., B. Jonsson, M. Nilsson and T. Touili, Regular model checking,
in: Emerson and Sistla [10], pp. 403–418.

[8] Bouajjani, A., A. Legay and P. Wolper, Handling liveness properties in
(ω−)regular model checking, in: INFINITY’04, 2004.

[9] Clarke, E., O. Grumberg and D. Peled, “Model Checking,” MIT Press, 1999.

[10] Emerson, E. and A. Sistla, editors, “Computer Aided Verification, 12th
International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000,
Proceedings,” LNCS 1855, Springer, 2000.

11

63

Schuppan, Biere

[11] Esparza, J., D. Hansel, P. Rossmanith and S. Schwoon, Efficient algorithms for
model checking pushdown systems, in: Emerson and Sistla [10], pp. 232–247.

[12] Esparza, J. and S. Schwoon, A BDD-based model checker for recursive programs,
in: G. Berry, H. Comon and A. Finkel, editors, CAV’01, LNCS 2102 (2001),
pp. 324–336.

[13] Finkel, A., B. Willems and P. Wolper, A direct symbolic approach to
model checking pushdown systems (extended abstract), in: F. Moller, editor,
INFINITY’97, ENTCS 9 (1997).

[14] Jonsson, B. and M. Nilsson, Transitive closures of regular relations for verifying
infinite-state systems, in: S. Graf and M. Schwartzbach, editors, TACAS’00,
LNCS 1785 (2000), pp. 220–234.

[15] Kesten, Y., O. Maler, M. Marcus, A. Pnueli and E. Shahar, Symbolic model
checking with rich assertional languages., Theor. Comput. Sci. 256 (2001),
pp. 93–112.

[16] Kupferman, O. and M. Vardi, Model checking of safety properties, in:
N. Halbwachs and D. Peled, editors, CAV’99, LNCS 1633 (1999), pp. 172–183.

[17] Larsen, K., P. Pettersson and W. Yi, Uppaal in a Nutshell, International
Journal on Software Tools for Technology Transfer (STTT) 1 (1997), pp. 134–
152.

[18] Pnueli, A. and E. Shahar, Liveness and acceleration in parameterized
verification, in: Emerson and Sistla [10], pp. 328–343.

[19] Schuppan, V. and A. Biere, Efficient reduction of finite state model checking
to reachability analysis, International Journal on Software Tools for Technology
Transfer (STTT) 5 (2004), pp. 185–204.

[20] Schuppan, V. and A. Biere, Shortest counterexamples for symbolic model
checking of LTL with past, in: N. Halbwachs and L. Zuck, editors, TACAS’05,
LNCS 3440 (2005), pp. 493–509.

[21] Sebastiani, R., S. Tonetta and M. Vardi, Symbolic systems, explicit properties:
on hybrid approaches for LTL symbolic model checking, in: CAV’05, 2005, to
appear.

[22] Vardi, M. and P. Wolper, An automata-theoretic approach to automatic program
verification, in: LICS’86 (1986), pp. 332–344.

[23] Wolper, P. and B. Boigelot, Verifying systems with infinite but regular state
spaces, in: A. Hu and M. Vardi, editors, CAV’98, LNCS 1427 (1998), pp. 88–
97.

12

64

Recent BRICS Notes Series Publications

NS-05-4 Scott A. Smolka and Jǐr ı́ Srba, editors. Preliminary Pro-
ceedings of the 7th International Workshop on Verification of
Infinite-State Systems, INFINITY ’05,(San Francisco, USA,
August 27, 2005), June 2005. vi+64 pp.

NS-05-3 Luca Aceto and Andrew D. Gordon, editors.Short Contribu-
tions from the Workshop on Algebraic Process Calculi: The First
Twenty Five Years and Beyond, PA ’05,(Bertinoro, Forl ı̀, Italy,
August 1–5, 2005), June 2005. vi+235 pp.

NS-05-2 Luca Aceto and Willem Jan Fokkink.The Quest for Equational
Axiomatizations of Parallel Composition: Status and Open Prob-
lems. May 2005. 7 pp. To appear in a volume of the BRICS
Notes Series devoted to the workshop “Algebraic Process Cal-
culi: The First Twenty Five Years and Beyond”, August 1–
5, 2005, University of Bologna Residential Center Bertinoro
(Forl ı̀), Italy.

NS-05-1 Luca Aceto, Magnus Mar Halldorsson, and Anna Inǵolfsdóttir.
What is Theoretical Computer Science?April 2005. 13 pp.

NS-04-2 Patrick Cousot, Lisbeth Fajstrup, Eric Goubault, Maurice
Herlihy, Martin Raußen, and Vladimiro Sassone, editors.Pre-
liminary Proceedings of the Workshop on Geometry and Topol-
ogy in Concurrency and Distributed Computing, GETCO ’04,
(Amsterdam, The Netherlands, October 4, 2004), September
2004. vi+80.

NS-04-1 Luca Aceto, Willem Jan Fokkink, and Irek Ulidowski, editors.
Preliminary Proceedings of the Workshop on Structural Opera-
tional Semantics, SOS ’04,(London, United Kingdom, August
30, 2004), August 2004. vi+56.

NS-03-4 Michael I. Schwartzbach, editor.PLAN-X 2004 Informal Pro-
ceedings,(Venice, Italy, 13 January, 2004), December 2003.
ii+95.

NS-03-3 Luca Aceto, Zolt́an Ésik, Willem Jan Fokkink, and Anna
Ingólfsdóttir, editors. Slide Reprints from the Workshop on Pro-
cess Algebra: Open Problems and Future Directions, PA ’03,
(Bologna, Italy, 21–25 July, 2003), November 2003. vi+138.

NS-03-2 Luca Aceto. Some of My Favourite Results in Classic Process
Algebra. September 2003. 21 pp. Appears in theBulletin of the
EATCS, volume 81, pp. 89–108, October 2003.

	Preface
	Programme Committee
	Content
	Invited Talk
	A. Kucera. Methods for Quantitative Analysis of Probabilistic Pushdown Automata
	References

	Contributed Papers
	Kretínsky, Rehák, Strejcek. Refining the Undecidability Border of Weak Bisimilarity
	Bouajjani, Habermehl, Rogalewicz, Vojnar. Abstract Regular Tree Model Checking
	Introduction
	Regular Tree Languages and Transducers
	Abstract Regular Tree Model Checking
	Regular Tree Model Checking
	Abstract Regular Tree Model Checking
	Abstraction Based on Automata State Equivalence
	Abstraction Based on Languages of Finite Height
	Abstraction Based on Predicate Languages

	Experiments with ARTMC
	Conclusions
	References

	Attie, Chockler. Automatic Verification of Fault-Tolerant Register Emulations
	Introduction
	Preliminaries
	Temporal logic and Kripke structures
	Registers
	Characterization of algorithms

	Automatic Verification of Quorum-Based Register Emulations
	Examples
	Conclusions and Future Work
	References

	Mysore, Mishra. Algorithmic Algebraic Model Checking III: Approximate Methods
	Introduction
	Approximate Methods
	Bisimulation Partitioning
	Approximating as a Polytope
	Rectangular Grid Abstraction
	Time Discretization

	Discussion
	References
	Appendix
	Semi-Algebraic Hybrid Automata: Definitions and Decidability
	Details of Proofs

	Schuppan, Biere. Liveness Checking as Safety Checking for Infinite State Spaces
	Introduction
	Common Notation
	Liveness Checking as Safety Checking -- Finite Case
	Preliminaries
	Reduction
	Complexity

	Regular Model Checking
	Preliminaries
	Reduction

	Pushdown Systems
	Preliminaries
	Reduction
	Complexity

	Timed Automata
	Conclusion
	References

