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Foreword

The main mathematical disciplines that have been used in theoretical computer
science are discrete mathematics (especially, graph theory and ordered struc-
tures), logics (mostly proof theory for all kinds of logics, classical, intuitionistic,
modal etc.) and category theory (cartesian closed categories, topoi etc.). Gen-
eral Topology has also been used for instance in denotational semantics, with
relations to ordered structures in particular.

Recently, ideas and notions from mainstream “geometric” topology and al-
gebraic topology have entered the scene in Concurrency Theory and Distributed
Systems Theory (some of them based on older ideas). They have been applied
in particular to problems dealing with coordination of multi-processor and dis-
tributed systems. Among those are techniques borrowed from algebraic and
geometric topology: Simplicial techniques have led to new theoretical bounds
for coordination problems. Higher dimensional automata have been modelled
as cubical complexes with a partial order reflecting the time flows, and their
homotopy properties allow to reason about a system’s global behaviour.

This workshop aims at bringing together researchers from both the math-
ematical (geometry, topology, algebraic topology etc.) and computer scientific
side (concurrency theorists, semanticians, researchers in distributed systems
etc.) with an active interest in these or related developments.

The workshop is held jointly with CMCIM 2003.
The first workshop on the subject “Geometric and Topological Methods in

Concurrency Theory” was held in Aalborg, Denmark, in June 1999. GETCO
2000 was at Penn State University as a satellite to CONCUR 2000. GETCO
2001 was at Aalborg University as a satellite to CONCUR 2001. GETCO 2002
was at ENSEEIHT in Toulouse, France, as a satellite to DISC 2002.

The Workshop has been financially supported by CONCUR and by the Basic
Research Institute in Computer Science (Aarhus, Denmark). I thank them for
this, and more specifically Uffe Engberg from BRICS who has been in charge
of printing the preproceedings.

I also wish to thank the referees, the authors and the programme committee
members for their very precise and timely job. Many thanks are also due to
Michael Mislove who kindly supported the workshop by letting us submit the
papers through the Electronic Notes in Theoretical Computer Science. Last
but not least, I wish to thank the CONCUR organizers Peter Niebert, Roberto
Amadio, Emmanuel Godard, Denis Lugiez, Rémi Morin, Vincent Vanackere,
Sarah Zennou and in particular the workshop coordinator, Silvano Dal Zilio, for
making this possible.

Eric Goubault, August 2003.
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Topological (Bi-)Simulation

P.J.L. Cuijpers 1,2 M.A. Reniers 3

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven (TU/e)

Eindhoven, The Netherlands

Abstract

In this paper, we reason that simulation and bisimulation are not adequate in the
context of hybrid systems as they are only capable of comparing states that are
reachable in a finite number of transitions. To solve this problem we extend labelled
transition systems with a topology on the state space. We define topological versions
of simulation and bisimulation that are also capable of comparing accumulation
states of infinite sequences of transitions. We show that for transition systems
with an indiscrete topology, topological (bi-)simulation and standard (bi-)simulation
coincide. A similar result is obtained for finite transition systems with a discrete
topology.

Key words: Labelled transition system, (bi-)simulation, topology,
accumulation, topological (bi-)simulation.

1 Introduction

The semantics of many of the techniques used in computer science rely on
labelled transition systems, structures containing a set of objects representing
the physical state of a system (hence the objects are called states), and labelled
transitions, representing the behavior that brings a system from one state into
another.

Since the work of van Glabbeek [11] there is a general agreement within
computer science that bisimulation [18,16] is the strongest notion of equiv-
alence of interest on labelled transition systems. However, for example in
the field of hybrid systems the need is felt for a stronger kind of equivalence
than bisimulation. There, the problem of Zeno-behavior (an infinite number

1 We would like to express our gratitude to Progress/STW (Grant EES5173), Philips-CFT
and Assembleon, for their financial and material support of this project.
2 Email: P.J.L.Cuijpers@tue.nl
3 Email: M.A.Reniers@tue.nl

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs
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Fig. 1. Water tank system.

of events occurring in a finite time interval [20,6,3,13], also called supertask
in philosophy [19,22]), gives rise to labelled transition systems that are con-
sidered different, but cannot be distinguished using bisimulation.

Although there is philosophical debate about the existence of Zeno-behavior
in reality, there are some reasons why such a phenomenon arises in the mod-
elling of hybrid systems. Next, we explain two such reasons by means of small
examples taken, in both cases, from [13].

Zeno-behavior typically arises from modelling abstractions employed for
the purpose of simplification of modelling hybrid systems. A simple example
is the bouncing ball. A ball bounces on a surface elastically, with each bounce
losing a fraction of its energy. In a simple model of such a bouncing ball,
one might wish to abstract from the dynamics in case of a bounce of the ball
on the surface and simply model it as a discrete event. As it turns out, in a
finite amount of time, an infinite amount of bounces occur. Hence, the simple
bouncing ball model employs Zeno-behavior.

Zeno-behavior also arises in models of hybrid systems as a result of apply-
ing certain control policies. This phenomenon is often referred to as infinitely
fast switching between control modes. In [13] the example of the water tank
system is given. The water tank system consists of two water tanks (see Fig-
ure 1). Water flows out each of these tanks with some constant rate (v1 and
v2 respectively). At each moment, water flows into one (and precisely one)
of the tanks with rate w. The objective is to keep the water volumes (x1

and x2 respectively) of the water tanks above some specified levels (r1 and
r2 respectively). This is achieved by switching the inflow between the tanks
at appropriate times: whenever x1 ≤ r1 the inflow is switched to tank 1 and
whenever x2 ≤ r2 the inflow is switched to tank 2. If the inflow is bigger than
each of the outflows (w > v1 and w > v2) and smaller than the sum of the
outflows (w < v1 + v2), the system shows infinitely fast switching. This form
of Zeno-behavior occurs frequently in models of hybrid systems due to the ap-
plication of control policies such as chattering and relaxed control. Again, the
Zeno-behavior is the consequence of a well-considered simplification of reality.

2
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Fig. 2. Bisimilar labelled transition systems.

In many formalisms (such as hybrid automata [12]), the Zeno-behaviors
that result from such modelling simplifications are neglected. It is not al-
ways clear what the implications are with respect to analysis and verification
steps performed on such models especially in cases where properties are ana-
lyzed/verified that depend on the notion of reachability of states.

Bisimulation only regards a single transition at a time and is not capable of
distinguishing between infinitely long sequences. For example, the sequences
shown in Figure 2 are considered bisimilar. To be able to handle Zeno- and
other kinds of infinite behavior, we need to define to which (set of) states an
infinitely long sequence of states leads. This is possible in a natural way if
a topological structure on the state space of the labelled transition system
is given. Topology is a field of mathematics in which general definitions of
accumulation of sequences have been developed (see e.g. [9,10]).

In this paper, we consider labelled transition systems where the state space
is structured using a topology. Then, we define topological simulation and
topological bisimulation. These notions extend the traditional ones by con-
sidering not only single steps but arbitrary long (accumulating) sequences of
steps in the transfer (zig-zag) conditions. We prove that these notions are a
pre-order and an equivalence respectively and that they are stronger than the
non-topological notions. We also prove that they are invariant under isomor-
phism.

We study two specific topologies in more detail, viz. the indiscrete topology
and the discrete topology. It turns out that for labelled transition systems
with the indiscrete topology, (bi-)simulation and topological (bi-)simulation
coincide under certain conditions. Also, for the discrete topology, the notions
coincide provided that the state spaces are finite. The proofs that are omitted
can be found in [5].

2 Preliminaries

In this section, we introduce some basic definitions and facts with respect to
topology. Furthermore, we present the definition of the well-known notion
of (bi-)simulation on labelled transition systems, but, for ease of comparison
with the topological notions defined in the following section, already equipped
with a topology (that is however not used yet).

3
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2.1 Topology

Given a set X, a topology T ⊆ 2X is a way of adding structure to this
set. Roughly speaking, a topology defines which points U ⊆ X are in the
neighborhood of a point x ∈ U . In literature from the field of computer
science, structure on sets is usually added by giving a metric. In [6,14,13],
this metric is defined on the state space, while [2,4] use a metric to define
structure on the labels. This was, to our knowledge, never used with respect
to bisimulation equivalence. Note that giving a metric on a set is only one way
of inducing a topology. Alternatively, for example, a complete partial order
gives rise to a topology as well [10,17]. The following definitions are taken
from [9].

Definition 2.1 Let X be a set, then T ⊆ 2X is a topology on X if and only
if ∅ ∈ T , X ∈ T , every finite intersection of elements of T is again an element
of T , and every arbitrary union of elements of T is again an element of T .

The elements of T are called open sets. An open set U ∈ T containing
x ∈ U is called a neighborhood of x. The pair (X, T ) is called a topological
space. Two special topologies are the indiscrete topology TI(X) = {∅, X}
and the discrete topology TD(X) = 2X . They prove useful later on. As an
example, the usual topology on the real numbers R is the arbitrary union of
all the sets {x ∈ R | x− < x < x+ with x−, x+ ∈ R} (i.e. the arbitrary union
of open intervals (x−, x+)).

Definition 2.2 Let (X,T ) be a topological structure. A set B ⊆ T is a basis
for T if and only if each non-empty element of T is the union of elements of
B.

In Section 3, we use the concept of accumulation to expand the notion of
bisimulation with.

Definition 2.3 Let (X,T ) be a topological space, and ~x : N → X a sequence
over X. This sequence ~x accumulates at y ∈ X according to the topology T ,

denoted ~x
T
( y, if and only if for all neighborhoods U of y (y ∈ U ∈ T ) and

all l ∈ dom(~x) there exists m ∈ dom(~x) such that l ≤ m and ~x(m) ∈ U .

Note that a sequence may accumulate in multiple accumulation points.
Furthermore, a finite sequence accumulates at least at its endpoint.

Definition 2.4 Let (X,T ) and (X ′, T ′) be topological spaces. A mapping
f : X → X ′ is continuous if and only if f−1(U ′) ∈ T for each U ′ ∈ T ′. The
inverse image f−1 : 2X′ → 2X of f is for all V ′ ∈ 2X′

defined as f−1(V ′) =
{v ∈ X | f(v) ∈ V ′}.

In this paper, for functions f : Y → Z and g : X → Y , the function
composition f ◦ g : X → Z is defined as (f ◦ g)(x) = f(g(x)) for all x ∈ X.

4
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Lemma 2.5 Let (X,T ) and (X ′, T ′) be arbitrary topological spaces and let
f : X → X ′ be an arbitrary continuous mapping. For any sequence ~x over X,

and any xω ∈ X: if ~x
T
( xω, then f ◦ ~x

T ′
( f(xω).

Proof. Suppose that ~x
T
( xω. We have to prove that f ◦ ~x

T ′
( f(xω). Let

U ′ ∈ T ′ be an arbitrary neighborhood of f(xω) and let l ∈ dom(f ◦~x). Since f
is a continuous mapping between the topological spaces, we have the existence
of a neighborhood f−1(U ′) ∈ T of xω. Furthermore, by definition, we have

that dom(~x) = dom(f ◦ ~x). From ~x
T
( xω we then have that there exists

m ∈ dom(~x) such that l ≤ m and ~x(m) ∈ f−1(U ′). Then, there also exists
m ∈ dom(f ◦ ~x) such that l ≤ m and (f ◦ ~x)(m) ∈ f(f−1(U ′)). 2

2.2 Labelled Transition Systems and (Bi-)Simulation

Definition 2.6 A labelled transition system is a tuple 〈(X,T ), Σ, → 〉, where
(X,T ) is a topological state space, Σ is the set of labels describing behaviors,
and → ⊆ X ×Σ×X is the transition relation. As an abbreviation we write
x

σ→ y for (x, σ, y) ∈ → .

In the remainder, we assume that M , M1, and M2 are the labelled tran-
sition systems 〈(X,T ), Σ, → 〉, 〈(X1, T1), Σ, →1 〉 and 〈(X2, T2), Σ, →2 〉, re-
spectively.

Traditionally, states from labelled transition systems may be compared
using simulation and bisimulation. A state x from some labelled transition
system is said to be simulated by a state y from another labelled transition
system, if the branching structure and the behavior of x can be mimicked by
y. The inductive structure of the definition makes sure that all finite runs are
considered, although only single steps are compared.

Definition 2.7 A binary relation R ⊆ X1 ×X2 is a simulation if and only if
for all x1 ∈ X1 and x2 ∈ X2 such that x1Rx2

• if x1
σ→1 x′

1 for some σ ∈ Σ and x′
1 ∈ X1, then there exists x′

2 ∈ X2 such
that x2

σ→2 x′
2 and x′

1Rx′
2.

A state x1 ∈ X1 of M1 is simulated by a state x2 ∈ X2 of M2, denoted
M1, x1 4 M2, x2, if and only if there exists a simulation R ⊆ X1 × X2 such
that x1Rx2.

Two states x1 ∈ X1 of M1 and x2 ∈ X2 of M2 are bisimilar, denoted
M1, x1 ↔ M2, x2, if and only if there exists a binary relation R ⊆ X1 × X2

such that x1Rx2 and both R and R−1 are simulations.

Simulation is a pre-order and bisimulation is an equivalence on the states
of a system (see [11]). These notions can be lifted from states to systems as
follows.

5
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Definition 2.8 The labelled transition system M1 is simulated by the labelled
transition system M2 if and only if for any state x1 ∈ X1 there is a state
x2 ∈ X2 such that M1, x1 4 M2, x2. The labelled transition system M1 is
bisimilar to the labelled transition system M2 if and only if for any state
x1 ∈ X1 there is a state x2 ∈ X2 such that M1, x1 ↔ M2, x2, and vice versa,
for any state x2 ∈ X2 there is a state x1 ∈ X1 such that M1, x1 ↔ M2, x2.

Often, when comparing different systems, also sets of initial states I1 and
I2 are given. In such a case, we say that M1 is simulated by M2 if and only if
every initial state in I1 is simulated by an initial state in I2. In the remainder
of this article, we do not consider initial states.

3 Topological Bisimulation

Recall that bisimulation is a way of comparing states of labelled transition
systems by looking at the branching structure and the possible behavioral
sequences. The formal definition of bisimulation regards two subsequent states
and the label describing the behavior that accomplishes a transition from
the first state into the second. Because this definition only compares single
transitions at a time, finite sequences of labels and states are compared as
well, but infinite sequences are not. The transitions in a labelled transition
system give rise to sequences of states and labels, called runs.

Definition 3.1 A run of M is a pair (~x, ~σ) of sequences ~x : N → X and
~σ : N → Σ such that

• either dom(~x) = dom(~σ) = N (for infinite runs), or dom(~x) = [0, N + 1)
and dom(~σ) = [0, N) for some N ∈ N (for finite runs), and

• for all n ∈ dom(~σ): ~x(n)
~σ(n)→ ~x(n + 1).

The length of a run (~x, ~σ) is the cardinality of the domain of ~σ.

Topology was introduced as a structuring mechanism on the state space in
order to define the states where an infinite run accumulates. Next, we present
topological versions of simulation and bisimulation that require that also the
infinite behavior of the transition systems is taken into account by comparing
the accumulation points of infinite runs.

Definition 3.2 A binary relation R ⊆ X1 × X2 is a topological simulation if
and only if for all x1 ∈ X1 and x2 ∈ X2 such that x1Rx2

• for all runs (~r1, ~σ) of M1 and for all y1 ∈ X1 such that ~r1(0) = x1: if

~r1

T1( y1, then there exists a run (~r2, ~σ) of M2 and there exists y2 ∈ X2 such

that ~r2(0) = x2, ~r2

T2( y2, y1Ry2, and ~r1(n)R~r2(n) for all n ∈ dom(~r1).

A state x1 ∈ X1 of M1 is topologically simulated by a state x2 ∈ X2 of M2,
denoted M1, x1 4top M2, x2, if and only if there exists a topological simulation
R ⊆ X1 × X2 such that x1Rx2.

6
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~r1(0) ~r1(1) ~r1(2) ~r1(n) y1

~r2(0) ~r2(1) ~r2(2) ~r2(n) y2

~σ(0) ~σ(1)

~σ(0) ~σ(1)

~σ(2) · · · ~σ(n) · · ·

~σ(2) · · · ~σ(n) · · ·

R R R R R

Fig. 3. Visualization of topological (bi-)simulation.
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Fig. 4. Labelled transition systems for bouncing balls.

Two states x1 ∈ X1 of M1 and x2 ∈ X2 of M2 are topologically bisimilar ,
denoted M1, x1 ↔top M2, x2, if and only if there exists a binary relation R ⊆
X1 × X2 such that x1Rx2 and both R and R−1 are topological simulations.

Observe that besides the accumulation point of the infinite runs also all
intermediate states need to be related (see Figure 3). Since runs of length
1 are considered in the definition of topological (bi-)simulation, topological
(bi-)simulation is a stronger notion than (bi-)simulation, which is proven in
the next section.

To illustrate the usefulness of topological bisimulation we now consider
again the example of the bouncing ball. The labelled transition systems in
Figure 4, represent two versions of the bouncing ball. In these transition
systems the state space consists of the non-negative reals (representing for
example the energy of the ball) with the normal topology on those. The label
b represents a bounce of the ball on the ground and the label k represents the
ball being kicked up again. In the upper labelled transition system, once the
ball comes to a rest, it is kicked up so that it starts bouncing again. In the
lower labelled transition system, the ball is not kicked. The result is that no
more actions occur. With respect to bisimulation, these transition systems are
equivalent as the state where the difference occurs, is not reachable in a finite
number of transitions. Our intuition about such a bouncing ball however
is that we actually observe a difference between these two models. Using
our notion of topological bisimulation, the difference between these labelled
transition systems becomes manifest.

7
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4 Properties

In this section, we give a number of properties of topological simulation and
topological bisimulation. We start with proving that these notions are a pre-
order and an equivalence respectively. Then, we discuss the relation between
the non-topological and topological notions. We show that the topological
notions are stronger than the non-topological ones. Finally, we show that the
notions are indeed topological [9], i.e., invariant under isomorphism.

Theorem 4.1 Topological simulation (4top) is a pre-order. Topological bisim-
ulation (↔top) is an equivalence.

Next, we study the relations between the standard notions of simulation
and bisimulation and their topological counterparts. As it turns out, the
topological versions are stronger than the standard ones.

Theorem 4.2 4top⊆4 and ↔top⊆↔.

On topological spaces the notion of isomorphism is defined in order to cap-
ture that the spaces have a corresponding structure. We show that topological
simulation and topological bisimulation are topologically invariant.

Definition 4.3 A mapping f : X1 → X2 is a transition morphism if and only
if for all x1, x

′
1 ∈ X1 and σ ∈ Σ: if x1

σ→1 x′
1, then f(x1)

σ→2 f(x′
1).

Definition 4.4 [Isomorphism] The labelled transition systems M1 and M2

are isomorphic if and only if there exists a bijective mapping f : X1 → X2

such that both f and f−1 are continuous transition morphisms. Sometimes,
we call such labelled transition systems f -isomorphic.

Lemma 4.5 Let f : X1 → X2 be a transition morphism. For any run (~r, ~σ)
of M1, (f ◦ ~r, ~σ) is a run of M2.

Theorem 4.6 Let f : X1 → X2 be a continuous transition morphism. Then,
M1, x1 4top M2, f(x1) for all x1 ∈ X1.

Proof. Define R = {(x1, f(x1)) | x1 ∈ X1}. We prove that R is a topological
simulation. Thereto, consider an arbitrary pair (x1, f(x1)) ∈ R. Let (~r, ~σ) be

an arbitrary run of M1 such that ~r(0) = x1. Let y ∈ X1 such that ~r
T1( y.

From the fact that (~r, ~σ) is a run of M1 and the fact that f is a transition
morphism, we obtain, by Lemma 4.5, that (f ◦ ~r, ~σ) is a run of M2. Moreover

(f ◦ ~r)(0) = f(~r(0)) = f(x1). From the fact that ~r
T1( y and the fact that

f is continuous, we obtain, by Lemma 2.5, that f ◦ ~r
T2( f(y). Note that by

definition yRf(y) and ~r(n)Rf(~r(n)) for all n ∈ dom(~r). This proves that R
is a topological simulation. 2

Theorem 4.7 For any two f -isomorphic M1 and M2 and any state x1 ∈ X1

we have M1, x1 ↔top M2, f(x1).

8
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Proof. As f : X1 → X2 is a continuous transition morphism, we have that
R = {(x1, f(x1)) | x1 ∈ X1} is a topological simulation as is proven in the
proof of the previous theorem. Similarly, as f−1 : X2 → X1 is a continu-
ous transition morphism, we have that S = {(x2, f

−1(x2)) | x2 ∈ X2} is a
topological simulation. As S = R−1, R is a topological bisimulation. 2

5 Extreme Topologies

In the previous section, we have seen that the topological notions of simu-
lation and bisimulation are stronger than their non-topological counterparts.
An interesting question is whether there are topologies for which the notions
coincide. We investigate this question for both the indiscrete and the discrete
topology.

5.1 Indiscrete Topology

We show that for labelled transition systems with indiscrete topologies, called
indiscrete labelled transition systems, the topological and non-topological no-
tions of (bi-)simulation coincide provided that, non-topologically speaking,
each state has a (bi-)similar state in the other labelled transition system. The
reason for these provisions is that by moving from normal (bi-)simulation
to topological bisimulation, some states become relevant (the accumulation
points) that might not have been relevant in the non-topological setting. We
require that for such states at least there is a related state in the other la-
belled transition system. This is captured by the notions of simulation and
bisimulation on labelled transition systems as given in Definition 2.8.

Theorem 5.1 For indiscrete M1 and M2 such that M1 is simulated by M2, we
have that for any x1 ∈ X1 and x2 ∈ X2: if M1, x1 4 M2, x2, then M1, x1 4top

M2, x2.

Proof. We prove that R′ = {(y1, y2) ∈ X1 × X2 |M1, y1 4 M2, y2} is a topo-
logical simulation with x1R′x2. Note that R′ is a simulation. Now, consider
arbitrary y1 ∈ X1 and y2 ∈ X2 such that y1R′y2. Let (~r1, ~σ) be a run of M1

and z1 ∈ X1 such that ~r1(0) = y1. Suppose that ~r1

T1( z1. Now, we have to
prove the existence of a run (~r2, ~σ) of M2 and z2 ∈ X2 such that ~r2(0) = y2,

~r2

T2( z2, z1R′z2, and ~r1(n)R′~r2(n) for all n ∈ dom(~r1). From y1R′y2 and the
fact that R′ is a simulation, we obtain the existence of a run (~r2, ~σ) such that
~r2(0) = y2 and ~r1(n)R′~r2(n) for all n ∈ dom(~r1). Furthermore, a special prop-
erty of T1 is that every sequence accumulates to every point in X1. Because
M1 is simulated by M2 we have the existence of a z2 ∈ X2 such that z1R′z2.

The indiscrete topology on X2 then guarantees that ~r2

T2( z2. This concludes
the proof. 2

9
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Fig. 5. A labelled transition system.

Theorem 5.2 For indiscrete M1 and M2 such that M1 is bisimilar to M2, and
for any x1 ∈ X1 and x2 ∈ X2: if M1, x1 ↔ M2, x2, then M1, x1 ↔top M2, x2.

As a direct consequence of the previous two theorems and Theorem 4.2, we
have that for indiscrete labelled transition systems, the non-topological and
topological notions coincide (of course with the same provisions).

5.2 Discrete Topology

In this section, we consider labelled transition systems where the state space is
structured by a discrete topology, hence the name discrete labelled transition
systems. For discrete labelled transition systems, we do not have that the non-
topological and topological notions coincide! Consider the labelled transition
system and the relation R on the states of the labelled transition system given
in Figure 5.

The relation R = {(1, n), (n, 1) | n ∈ N∧n > 1}, as depicted (suggestively)
in the figure, is a witness for the following non-topological facts:

• state 1 is simulated by state 2, i.e., 1 4 2;

• state 2 is simulated by state 1, i.e., 2 4 1;

• the states 1 and 2 are bisimilar, i.e., 1 ↔ 2.

Note that the bisimilarity of states 1 and 2 does not follow immediately from
the simulations 1 4 2 and 2 4 1 because for bisimilarity the relation witnessing
the simulations have to be each others inverse. The weaker equivalence 4
∩ 4−1 is called similarity in the literature [11] and it does not have this
requirement.

Observe that we are now comparing states from the same labelled tran-
sition system. Hence, there can be no misunderstanding about the labelled
transition system from which the states originate. Hence, we omit the labelled
transition system from the notations.

Now, consider the topological notions under the assumption that the state
space X of this labelled transition system is structured by means of the discrete
topology TD(X) = 2X . State 2 is still simulated by state 1: 2 4top 1. This is
due to the following observations. State 2 has no infinite runs that accumulate.
Hence, the infinite run does not have to be mimicked by such a run from state
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1

5

2 3 4

6

b
a a

c

Fig. 6. Labelled transition system with a finite state space.

1. In this setting, however, state 1 is not simulated by state 2: 1 64top 2.
State 1 has an infinite run that accumulates in state 1. Hence, state 2 should
also have such a run and moreover it should accumulate in a state related
to state 1. However, the run from state 2 does not accumulate at all. The
same observations lead to the conclusion that state 1 and state 2 are not
topologically bisimilar: 1 =top 2.

Traditionally, in computer science, systems are assumed to be discrete and
finite. Above we have shown that the assumption that the state spaces are
structured by means of the discrete topology is not sufficient for concluding
that the topological and non-topological notions coincide. Based on this, the
reader might be tempted to believe that for labelled transition systems with
a finite state space and an arbitrary topology, the non-topological and topo-
logical notions coincide. Again, this is not the case. Consider the labelled
transition system depicted in Figure 6. The state space of this labelled tran-
sition system is finite: X = {1, 2, 3, 4, 5, 6}. Considering the non-topological
notions, we observe that the states 2 and 3 simulate each other and are bisim-
ilar.

Assume that the topology on this state space is given by the basis

B = {{1, 2}, {3, 4}, {5}, {6}}.
The open sets from this basis with more than one element are clustered in
the figure. Now, due to the topological structure imposed on the state space,
there is an infinite run (~x, ~σ) with, for n ∈ N, ~x(n) = 2 and ~σ(n) = a that
accumulates in state 1. In order for state 2 to be topologically simulated by
state 3, this must mean that there is also an infinite run (~y, ~σ) with ~y(0) = 3
that accumulates in a state that is related to state 1. The only candidates
for this accumulation are the states 3 and 4. But, neither of these can be
related to state 1, as state 1 can execute the action b and states 3 and 4
cannot. A similar reasoning shows that state 3 cannot be simulated by state
2. Therefore, we have 2 64top 3 and 3 64top 2. As a consequence, the states are
also not topologically bisimilar.

If the state space of a discrete labelled transition system is finite, however,
the notions of (bi-)simulation and topological (bi-)simulation coincide.

Theorem 5.3 For discrete M1 and finite M2, we have that for all x1 ∈ X1

and x2 ∈ X2: M1, x1 4top M2, x2 if and only if M1, x1 4 M2, x2.

11
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Proof. The proof that the topological simulation implies the ordinary simu-
lation follows from Theorem 4.2. It suffices to prove that ordinary simulation
implies topological simulation. Suppose that M1, x1 4 M2, x2 is witnessed by
the simulation R. We prove that R is also a topological simulation. Thereto,

let (~r, ~σ) be a run of M1 with ~r(0) = x1 and let y ∈ X. Suppose that ~r
T1( y.

Let, for all n ∈ dom(~σ), ~σn : N → Σ be defined by ~σn(k) = ~σ(k) for all k < n,
and undefined otherwise. Hence, dom( ~σn) = [0, n).

First, we show, by induction on the natural number n, that there exists
a run (~rn, ~σn) of M2 of length n with ~rn(0) = x2 such that for all k ≤ n we
have ~r(n)R~rn(n). For n = 0, we need to prove ~r(0)R~r0(0). Using ~r(0) = x1,
~r0(0) = x2, and x1Rx2, this follows immediately. Now, suppose there exists a
run (~rn, σn) such that ~rn(0) = x2 and ~r(k)R~rn(k) for all k ≤ n (the induction

hypothesis). As ~r(n)R~rn(n), ~r(n)
~σ(n)→ ~r(n + 1) and R is a simulation relation

we have the existence of z ∈ X2 such that ~rn(n)
~σ(n)→ z and ~r(n+1)Rz. Define

~rn+1 by ~rn+1(i) = ~rn(i) for all i ≤ n, ~rn+1(n+1) = z, and undefined otherwise.
Then we have the existence of a run ( ~rn+1, ~σn+1) of M2 such that ~r(k)R ~rn+1(k)
for all k ≤ n + 1.

All that remains to be proven is the existence of an accumulation point

z ∈ X2 such that ~y
T2( z and yRz. Obviously, under the discrete topology,

if ~y is finite, the last element is the accumulation point. On the other hand,

if ~y is infinite, then, using the facts that ~r
T1( y and that T1 is the discrete

topology, we find that y itself occurs infinitely often in ~r. Furthermore, each
of those occurrences is bisimilar to the corresponding position in the sequence
~y. As there are only finitely many different states, at least one of the states
bisimilar to y occurs infinitely often. Hence, it is an accumulation point, say
z, which obviously satisfies yRz. 2

Theorem 5.4 For discrete and finite M1 and M2, we have that for all x1 ∈ X1

and x2 ∈ X2: M1, x1 ↔top M2, x2 if and only if M1, x1 ↔ M2, x2.

Proof. The theorem follows immediately from the previous theorem. 2

6 Conclusive remarks

We may conclude that the general agreement, that bisimulation is the strongest
notion of equivalence of interest on labelled transition systems, common since
the work of van Glabbeek [11], holds, as long as there is no topological struc-
ture on the state space. When phenomena like Zeno-behavior in hybrid sys-
tems are a reason to introduce and study accumulation points of sequences,
a topological structure on the state space is a prerequisite. Choosing such a
topology is a creative process, although it is often guided by knowledge of the
application domain. In this paper, we have given definitions of topological
simulation and bisimulation to answer this need. Amongst others, we have
shown that a discrete topology results in the normal bisimulation for finite
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state spaces, while other topologies make it possible to differentiate between
infinite behaviors, like Zeno-behavior.

The notion of topological bisimulation considered in this paper is only
capable of discriminating labelled transition systems based on first-order ac-
cumulation points. In [7], a reformulation of topological (bi-)simulation is
presented that also deals with higher-order accumulation points. A crucial
difference between that research and the research presented in this paper is
that in [7] the concept of a run (over natural numbers) is replaced by the
concept of a hybrid run (over ordinal numbers).

The type of labelled transition systems considered in this paper is rather
limited. In the literature, labelled transition systems not only have a transition
relation but also one or more predicates are defined on the state space to indi-
cate, for example, initial and final states. Future research may be concerned
with how to deal with predicates on labelled transition systems in general.

Büchi automata and other types of automata on infinite words [15] are
usually equipped with one or more acceptance sets and a more sophisticated
notion of acceptance of infinite words. We conjecture that, neglecting the fact
that Büchi automata only consider infinite words, a topology can be used to
encode the acceptance set in Büchi automata. The Büchi acceptance set then
forms the basis of the topology. Topological bisimulation in itself captures
the infinite aspects of Büchi automata. It is a stronger notion than language
equivalence for infinite words. Further research is needed to substantiate those
claims.

Related Work

In the literature from the field of computer science, structure on sets is
usually added by giving a metric. In [6,14,13], this metric is defined on the
state space, while [2,4] use a metric to define structure on the labels. Fur-
thermore, this was, to our knowledge, never used with respect to bisimulation
equivalence.

In [4], both the state space and the label space are endowed with metrics.
The purpose is in proving operational models defined in terms of labelled
transition systems equal to denotational semantics.

In [8], bisimulation is characterized using a specific (Alexandroff) topology
as continuity of the transition relation. In other words, the author shows that
the Alexandroff topology as a structure fits normal bisimulation. We, on the
other hand, adapt the notion of bisimulation to take the topological structure
of the state space into account.

In [1], the state space of a Kripke model for propositional modal logic
is extended with a topology. This topology defines the accessibility relation
between points in the model and hence defines the meaning of the modal
operators. Consequently, bisimulation is also defined in terms of the open
sets of this topology. These open sets play the role of our transition relations,
rather than being an additional structure on the state space. The relation
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between their notion of bisimulation and our notion of topological bisimulation
is not clear yet.

In [21], also, a relation between transition systems and topology is studied.
Amongst others, a definition is given for the limit of a sequence of transition
systems. The strength of this work is that it allows for reasoning about ap-
proximate equality between systems. Still, this is a different approach to limits
than the one we have chosen in this paper.
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Abstract

We introduce a new notion of directed homology for cubical sets with connections
and transpositions. We show that it respects directed homotopy and is functorial,
and that it reduces to the usual homology in case of reversible cubical sets. However
it has an undesired cancellation property, which we propose to remedy by refining
the dihomology relation.

1 Introduction

It appears to be more and more recognized that using geometric reasoning,
one can gain valuable insights in concurrency theory. However as there is an
implicit notion of time in concurrency theory, the good geometric models to
use are not usual topological spaces, but directed spaces, e.g. the lpo-spaces of
Fajstrup, Goubault, and Raussen [3], the di-spaces of Grandis [4], and others.

In recent years we have seen several notions of directed homotopy emerge.
It has been shown that these can be used in analyzing concurrent systems,
and active research is being done in refining them and making them useful
tools in concurrency theory.

In ordinary algebraic topology however, homotopy is only a useful tool in
conjunction with homology ; hence in directed topology, one should put efforts
in developing a notion of directed homology. This article is a report on some
progresses recently made with this issue.

In his recent papers [5,6], Marco Grandis has also introduced a notion of
directed homology. What we define in this paper differs from his notion, and
the relationship between the two is yet to be explored.

Exposition

We start out with a definition of cubical sets, which are the combinatorial
counterparts of directed topological spaces. We work with “full-featured”
cubical sets, including connections and transpositions. Following that, we
introduce the notion of formal sums of cubes and their boundary operators.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs
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Using the latter, we can define a notion of directed homology for cubical sets
in all odd dimensions.

We show that our notion of dihomology respects directed homotopy, and
that it is functorial. Also, in case the cubical set in question stems from
a non-directed topological space, dihomology reduces to the usual homology
notion.

We give a detailed example of some dihomology calculations, and we show
that our dihomology notion has a certain cancellation property which makes it
rather unsuited for applications. We proceed by refining it, arriving at a notion
of restricted dihomology, which however currently only is defined in dimension
1. We show that restricted dihomology enjoys all the good properties of the
original dihomology notion, without fulfilling the cancellation property from
above.

2 Cubical Sets and Their Morphisms

We work in the extended cubical site K of [7]; to settle notation, we give a
definition here. Notice that the set N of natural numbers includes 0; if we
want to exclude 0 we write N+.

A cubical set is a graded set X = {Xn}n∈N together with mappings δα
i :

Xn → Xn−1 (i = 1, . . . , n, α = 0, 1; face maps), εi : Xn → Xn+1 (i = 1, . . . , n+
1; degeneracies), γα

i : Xn → Xn+1 (i = 1, . . . , n, α = 0, 1; connections), and
σi : Xn → Xn (i = 1, . . . , n − 1, n ≥ 1; transpositions). These are subject to
the following constraints:

δα
i δβ

j = δβ
j−1δ

α
i (i < j)

εiεj = εj+1εi (i ≤ j)

δα
i εj =


εj−1δ

α
i (i < j)

εjδ
α
i−1 (i > j)

id (i = j)

γα
i γβ

j = γβ
j+1γ

α
i (i < j)

γα
i γα

i = γα
i+1γ

α
i

γα
i εj =


εj+1γ

α
i (i < j)

εjγ
α
i−1 (i > j)

εiεi (i = j)

δα
i γβ

j =


γβ

j−1δ
α
i (i < j)

γβ
j δα

i−1 (i > j + 1)

id (i = j, j + 1; α = β)

εjδ
α
j (i = j, j + 1; α 6= β)

2
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σiσi = id

(σiσi+1)
3 = id

σiσj = σjσi (i 6= j − 1, j, j + 1)

δα
i σj =


δα
i (i 6= j, j + 1)

δα
i+1 (i = j)

δα
i−1 (i = j + 1)

σiεj =


εi+1 (j = i)

εi (j = i + 1)

εjσi (j 6= i, i + 1)

σiγ
α
i = γα

i

σiγ
α
j = γα

j σi (i 6= j − 1, j, j + 1)

The mappings δα
i and εi are part of what seems to be the standard definition of

“cubical complex,” cf. [2,3], the connection and transposition maps are what
makes our “cubical site” extended in the sense of [7]. Note that the σi are
required to fulfill the Coxeter axioms for generators of the symmetric group.

A semicubical set is a graded set X with only the δα
i mappings defined

(which then are required to fulfill the first of the equalities from above).

The standard example of a cubical set is the singular cubical complex of a
topological space: If X is a topological space, let SnX = Top(In, X), the set
of all continuous maps In → X, where I is the unit interval. If the maps δα

i ,
εi, γα

i , and σi are given by

δα
i f(t1, . . . , tn−1) = f(t1, . . . , ti−1, α, ti, . . . , tn−1)

εif(t1, . . . , tn) = f(t1, . . . , t̂i, . . . , tn)

γ0
i f(t1, . . . , tn) = f(t1, . . . , ti−1, max(ti, ti+1), ti+2, . . . , tn)

γ1
i f(t1, . . . , tn) = f(t1, . . . , ti−1, min(ti, ti+1), ti+2, . . . , tn)

σif(t1, . . . , tn) = f(t1, . . . , ti−1, ti+1, ti, ti+2, . . . , tn),

then SX = {SnX} is a cubical set.

However the reversion of the topological unit interval, ρ : t 7→ 1 − t, also
induces other mappings ρi : SnX → SnX, i = 1, . . . , n, called reflections in
[7] and reversions in [2] and given by

ρif(t1, . . . , tn) = f(t1, . . . , ti−1, 1− ti, ti+1, . . . , tn),

and we do not consider these. Cubical sets with reflections are well-suited
models for topological spaces [2]; cubical sets without reflections are well-
suited models for directed topological spaces, [3,4].

3
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3 Directed Homology of Cubical Sets

In [2], the authors define partial composition operations on n-cubes, amount-
ing to the “gluing” of two n-cubes along a common face. For our purposes, we
are interested in a more general composition, allowing for arbitrary (formal)
sums of n-cubes.

Given a cubical set X = {Xn}, let N ·X = {N ·Xn}, the graded set of free
abelian monoids on the Xn, together with mappings δ0

i , δ
1
i : N ·Xn ⇒ N ·Xn−1

(i = 1, . . . , n),∑
j

xj 7→
∑

j

(δ1
i xj − δ0

i xj) '

(
δ0
i (

∑
j

xj), δ
1
i (

∑
j

xj)
)
, (1)

where the mapping ' is induced by the function Z → N× N,

x 7→

{
(−x, 0) if x ≤ 0,

(0, x) if x ≥ 0.

We “normalize” the set N · X by dividing out degenerate elements; let
CX = {CnX} be the graded set given by C0X = N ·X0, CnX = N ·Xn/(N ·⋃n

i=1 εiXn−1), the quotient monoid. As δα
i εj = 0 in N · X, the mappings δα

i

pass on to CX.

Lemma 3.1 CX, with the mappings δα
i as defined above, is a semicubical set.

Proof. Let δi denote the first mapping in the composition of (1), that is,
δi

( ∑
k xk

)
=

∑
k

(
δ1
i xk − δ0

i xk

)
, and extend the δi to be defined on Z ·X, by

δi(−x) = −δix. Then it is easy to show, using only the semicubical axiom on
the δα

i , that δiδj = δj−1δi for all i < j:

Let x =
∑r

k=1 xk ∈ Xn, then

δj−1δix = δj−1

( r∑
k=1

(δ1
i xk − δ0

i xk)
)

(2)

=
r∑

k=1

(
δ1
j−1δ

1
i xk − δ1

j−1δ
0
i xk − δ0

j−1δ
1
i xk + δ0

j−1δ
0
i xk

)
and, on the other hand,

δiδjx = δi

( r∑
k=1

(δ1
j xk − δ0

j xk)
)

=
r∑

k=1

(
δ1
i δ

1
j xk − δ0

i δ
1
j xk − δ1

i δ
0
j xk + δ0

i δ
0
j xk

)
We show that δ1

i δ
1
j x = δ1

j−1δ
1
i x, the other three cases are similar. First,

if we are to compute δj−1δ
1
i x, only the δ1

i xk parts in equation (2) above are

4
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relevant, but some of these can have been canceled by some δ0
i xk. That is,

there is an index set K ⊆ {1, . . . , r} such that

δj−1δ
1
i x = δj−1

( ∑
k∈K

δ1
i xk

)
=

∑
k∈K

(
δ1
j−1δ

1
i xk − δ0

j−1δ
1
i xk

)
Going one step further, we see that there is an index set K ′ ⊆ K such that

δ1
j−1δ

1
i x =

∑
k∈K′

δ1
j−1δ

1
i xk

As for δ1
i δ

1
j x, there are index sets L′ ⊆ L ⊆ {1, . . . , r} such that

δiδ
1
j x = δi

( ∑
k∈L

δ1
j xk

)
and δ1

i δ
1
j x =

∑
k∈L′

δ1
i δ

1
j xk

We claim that K ′ = L′ = K ∩ L, which will finish the proof.

Let k ∈ {1, . . . , r} be an index such that δ1
i xk is canceled out, i.e. there

exists ` ∈ {1, . . . , r} such that δ1
i xk = δ0

i x`. Then

δ1
i δ

1
j xk = δ1

j−1δ
1
i xk = δ0

i δ
1
j x`

and hence δ1
j xk is also canceled out. Similar applies if we assume that δ1

j xk is
canceled out, hence K ′ = L′ = K ∩ L. 2

We call CX the semicubical monoid on X. The maps δα
i determine other

maps, giving CX the structure of a globular set : For any n ∈ N+, define
∂−, ∂+ : CnX ⇒ Cn−1X by

∂− =
n∑

k=1

δ
(k+1) mod 2
k ∂+ =

n∑
k=1

δk mod 2
k

For convenience we also define ∂−, ∂+ : C0X → ∗, the one-point set. This
gives the set CX a structure

· · ·
∂+

⇒
∂−

CnX
∂+

⇒
∂−
· · ·C2X

∂+

⇒
∂−

C1X
∂+

⇒
∂−

C0X
∂+

⇒
∂−
∗

which by the following is a globular set.

Corollary 3.2 ∂α∂− = ∂α∂+

Now for any n ∈ N, define a relation �∼n⊆ CnX×CnX, by declaring x �∼n y
if and only if there exists A ∈ Cn+1X such that ∂−A = x, ∂+A = y.

Lemma 3.3 The relations �∼n are reflexive and transitive, and symmetric if
n is odd.

5
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Proof. Reflexivity by connection: If A = γ1
1x, then ∂−A = ∂+A = x.

Symmetry by transposition: Let x, y ∈ Cn such that x �∼ y, hence x =
∂−A, y = ∂+A for some A ∈ Cn+1. Let σ = σ1σ3 · · ·σn, then

∂−σA =
n+1∑
k=1

δ
(k+1) mod 2
k σA =

n+1∑
k=1

δk mod 2
k A = ∂+A

and vice versa, hence y �∼ x.

Transitivity by addition: We carry out this proof only for n = 1; the
proof for general n poses some notational difficulties but is otherwise similar.

Let x, y, z ∈ C1 such that x �∼ y �∼ z, i.e. x = ∂−A, y = ∂+A = ∂−B,
z = ∂+B for some A, B ∈ C2. We shall construct an element G ∈ C2, which is
a sum of connection cubes, such that ∂−(A+B +G) = x, ∂+(A+B +G) = z.

Write x = x1 + x2, y = y1 + y2 = ỹ1 + ỹ2, z = z1 + z2, such that x1 = δ0
1A,

x2 = δ1
2A, y1 = δ1

1A, y2 = δ0
2A, ỹ1 = δ0

1B, ỹ2 = δ1
2B, z1 = δ1

1B, z2 = δ0
2B. Let

A = A1 + · · · + Ak, B = B1 + · · · + B`, where all Aj, Bj ∈ X2, and split up
x, y, and z further, writing xi = x1

i + · · · + xk
i , such that xj

1 = δ0
1A

j or = 0,
depending on whether δ0

1A
j has been canceled out in the sum. x2, yi, ỹi, and

zi are split up similarly. We can assume that k = ` in the above, adding some
Aj = 0 or Bj = 0 if necessary.

Then (again using δi for the first mapping in the composition of (1))

δ1(A + B) =
k∑

j=1

(
δ1
1A

j − δ0
1A

j
)

+
k∑

j=1

(
δ1
1B

j − δ0
1B

j
)

=
k∑

j=1

(
yj

1 − xj
1 + zj

1 − ỹj
1

)
(3)

and similarly

δ2(A + B) =
k∑

j=1

(
xj

2 − yj
2 + ỹj

2 − zj
2

)
.

In these sums we can have introduced some extra cancellation, as it might be
the case that yj

i − ỹj′

i = 0 for some j, j′, or zj
i −xj′

i = 0. We will construct some

connection cubes which will cancel out the remaining yj
i , ỹj′

i and reintroduce
the canceled-out zj

i ; hence if G denotes the sum of these connection cubes, we
will have δ1(A + B + G) =

∑k
j=1(z

j
1 − xj

1), and similarly for δ2(A + B + G).

We need to identify which cancellations have actually occurred in (3).
Organize the yj

1 et.al. into disjoint canceling pairs, i.e. let

I = {(j, j′) | 0 6= yj
1 = ỹj′

1 , j1 = j2 ⇐⇒ j′1 = j′2},
J = {(j, j′) | 0 6= xj

1 = zj′

1 , j1 = j2 ⇐⇒ j′1 = j′2},

6
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and let

g0 =
∑

{ỹj′

1 | @j : (j, j′) ∈ I}

g1 =
∑

{yj
1 | @j′ : (j, j′) ∈ I}

h =
∑

{xj
1 | ∃j′ : (j, j′) ∈ J}

(4)

i.e. the gi are sums of all the yj
1 resp. ỹj′

1 which we still need to cancel out, and

h is the sum of all the xj
i resp. zj′

i which have been canceled. Let

A′ = A + B + γ1
1g0 + γ0

1g1 + γ0
1h,

then our claim is that ∂−A′ = x and ∂+A′ = z.

For δ1A
′, we have

δ1A
′ =

k∑
j=1

(
yj

1 − ỹj
1 + zj

1 − xj
1

)
+ g0 − g1 − h,

where the last three terms take care of canceling all the yj
1 and ỹj

1 which have
not been canceled before, and of re-subtracting all the xj

1 which have been
canceled by some zj

1. Hence we end up with

δ1A
′ = −x1 + (z1 − h),

and there is no more cancellation possible, whence δ0
1A

′ = x1, δ1
1A

′ = z1 − h.

For δ2A
′,

δ2A
′ =

k∑
j=1

(
xj

2 − yj
2 + ỹj

2 − zj
2

)
+ g0 − g1 − h

=
(
x−

k∑
j=1

xj
1

)
−

(
y −

k∑
j=1

yj
1

)
+

(
y −

k∑
j=1

ỹj
1

)
−

(
z −

k∑
j=1

zj
1

)
+ g0 − g1 − h

= x− z +
k∑

j=1

(
yj

1 − ỹj
1 + zj

1 − xj
1

)
+ g0 − g1 − h

= x− z − x1 + z1 − h = x2 − (z2 + h),

again with no cancellation possible. Thus δ0
2A

′ = z2 + h, δ1
2A

′ = x2, implying
∂−A′ = x, ∂+A′ = z. 2

We can now define the directed homology of X in all odd dimensions, by
declaring that

Hn(X) = CnX/�∼n for n odd.

7
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We would like to take the symmetric closure of �∼n for n even, arriving at an
equivalence relation for n even also, but for the so-defined relation the next
lemma is not true. So we are still in search for a good directed homology
relation in even dimensions.

Lemma 3.4 If x1
�∼n y1 and x2

�∼n y2, and n is odd, then x1 + x2
�∼n y1 + y2.

Proof. The proof is very similar to the proof of transitivity above, only that
now any cancellation introduced in the sum A + B has to be undone. That
is, instead of introducing the gi as in (4) above, we define a g similar to the
definition of h, and letting C = A + B + γ0

1g + γ0
1h, it can be shown that

∂−C = x1 + x2, ∂+C = y1 + y2. 2

By the above lemma, the monoidal structure of the CnX is passed to the
Hn(X). Also, by lemma 3.2, x �∼n y implies ∂αx = ∂αy, hence the ∂α maps
are preserved by the �∼n, and the Hn(X) fit into a sequence

· · ·
∂+

⇒
∂−

CnX →
π

Hn(X)
∂+

⇒
∂−

Cn−1X
∂+

⇒
∂−

Cn−2X →
π

Hn−2(X)
∂+

⇒
∂−
· · ·

· · · →
π

H1(X)
∂+

⇒
∂−

C0X
∂+

⇒
∂−
∗.

4 Properties

4.1 Dihomology and Dihomotopy

We show here that our dihomology notion respects dihomotopy of dipaths as
defined in [3]:

A dipath in a cubical set X = {Xn} is an element x = x1 + · · ·+xk ∈ C1X
such that for all i = 1, . . . , k − 1, δ1

1xi = δ0
1xi+1. It follows that δ0

1x = δ0
1x1,

δ1
1x = δ1

1xk; the initial resp. final point of x. Now if x = x1 + · · · + xk,
y = y1 + · · · + yk are two dipaths in X such that δα

1 x = δα
1 y, then x and

y are said to be elementarily dihomotopic if there exist j ∈ {1, . . . , k − 1}
and A ∈ X2 such that xi = yi for all i 6= j, j + 1, ∂−A = xj + xj+1, and
∂+A = yj + yj+1. The relation of elementary dihomotopy is symmetric (by
transposition), and the relation of combinatorial dihomotopy is defined to be
its reflexive, transitive closure.

Proposition 4.1 Given two dipaths x, y in a cubical set X; if x and y are
combinatorially dihomotopic, then x �∼1 y.

Proof. As the dihomology relation �∼1 is transitive, it will be enough to show
that elementary dihomotopy implies dihomology. Assume x = x1 + · · · + xk

and y = y1 + · · ·+ yk are elementarily dihomotopic, and let j ∈ N, A ∈ X2 be
as in the definition of elementary dihomotopy. Let

A′ = A +
∑

i6=j,j+1

γ1
1xi,

8
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then (again using the notation from the proof of Lemma 3.3)

δ1A
′ =

∑
i6=j

yi − xj δ2A
′ =

∑
i6=j

xi − yj

and hence ∂−A′ = x, ∂+A′ = y. 2

4.2 Induced Maps; Functoriality

A morphism of cubical sets is exactly what one would expect: Given cubical
sets (X, δ, ε, γ, σ), (Y, δ̃, ε̃, γ̃, σ̃) and a mapping f = (fn) : X → Y , then f is
a morphism if fnδ = δ̃fn+1, fnε = ε̃fn−1, fnγ = γ̃fn−1, fnσ = σ̃fn. We will
omit the tildes from here on.

Now let there be given such a morphism f : X → Y ; this induces a
homomorphism f� : CnX → CnY in the natural way:

f�

( ∑
i

nixi

)
=
def

∑
i

nif(xi) (5)

Lemma 4.2 δα
i f� = f�δα

i , and hence ∂αf� = f�∂α.

That is, f� is a morphism of globular sets.

Proof. To show that δα
i f� = f�δα

i is an easy calculation, in which the condi-
tion fnδ = δfn+1 ensures that cancellation occurs simultaneously. 2

Corollary 4.3 Given x, y ∈ CnX, n odd; if x �∼n y, then f�(x) �∼n f�(y).

Hence the morphism f : X → Y induces maps f∗ = H∗f : H∗X → H∗Y
in dihomology, given by f∗JxK = Jf�(x)K.

Proposition 4.4 H∗ is functorial: If X
f−→ Y

g−→ Z, then (g ◦f)∗ = g∗ ◦f∗,
and id∗ = id.

Proof. Let x ∈ CnX and write x =
∑

i nixi, then

(g ◦ f)∗JxK = J(g ◦ f)�xK

=
r ∑

i

nig(f(xi))
z

=
r
g�

( ∑
i

nif(xi)
)z

= Jg�f�(x)K = g∗Jf�(x)K = g∗(f∗JxK).

Also, id∗JxK = Jid� xK = JxK. 2

This also shows that the mapping X 7→ CX, f 7→ f� is functorial.

9
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4.3 Dihomology and (Ordinary) Homology

Let X be a cubical set with reflections ρi : Xn → Xn, and notice that the reflec-
tions induce a notion of “inverse” of a cube: If x ∈ Xn, define −x = ρ1 · · · ρnx.
Hence the free monoids N ·Xn are actually groups; they are isomorphic to the
free abelian groups Z · Xn. The CnX in turn are then isomorphic to the
groups in the normalized chain complex of X; indeed, if we define mappings
d : CnX → Cn−1X by d = ∂+ − ∂−, CX with these mappings is isomorphic
to the normalized chain complex.

It is also easy to see that the two equivalence relations �∼n (dihomology)
and ∼n (homology) are the same, however it is not true in general that our
dihomology monoids (which in this case are groups, the inverses being −JxK =
J−xK) are isomorphic to the usual homology groups, as these are defined by
taking the quotient under ∼ of the group of loops ∂−1(0) ⊆ CnX, whereas our
Hn(X) are the quotients under �∼ = ∼ of the full chain group CnX.

Our dihomology groups hence take chains which are not loops into account,
and their relation to the homology groups seems to be similar to the one of
the fundamental groupoid [1] to the fundamental group.

5 Cancellation; Dihomology Fails a Test Case

Figure 1 shows a simple example of a cubical set, consisting of five 2-cubes
glued together to form a hollow 3-cube without bottom face.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

f1

f3

f4 f2

f5

e1

e3

e2e4

e7e8

e9

e11

e12 e10

v3

v7v8

v4

v5 v6

v2v1

e5

e6

Fig. 1. The hollow 3-cube without bottom face.

For clarification we list the face maps from X2 to X1, the others should be
obvious from the figure:

δ0
1f1 = e1 δ1

1f1 = e9 δ0
2f1 = e5 δ1

2f1 = e6

δ0
1f2 = e2 δ1

1f2 = e10 δ0
2f2 = e6 δ1

2f2 = e7

δ0
1f3 = e3 δ1

1f3 = e11 δ0
2f3 = e8 δ1

2f3 = e7

δ0
1f4 = e4 δ1

1f4 = e12 δ0
2f4 = e5 δ1

2f4 = e8

δ0
1f5 = e9 δ1

1f5 = e11 δ0
2f5 = e12 δ1

2f5 = e10
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In this example, the dipath e1+e2+e7 can be “wrapped around” the cube’s
faces, showing that there is a combinatorial dihomotopy between e1 + e2 + e7

and e3 + e4 + e7:

e1 + e2 + e7 ∼ e1 + e6 + e10 by ∂−f2 = e2 + e7, ∂+f2 = e6 + e10

∼ e5 + e9 + e10 by ∂−f1 = e1 + e6, ∂+f1 = e5 + e9

∼ e5 + e12 + e11 by ∂−f5 = e9 + e10, ∂+f5 = e12 + e11 (6)

∼ e4 + e8 + e11 by ∂−f4 = e4 + e8, ∂+f4 = e5 + e12

∼ e4 + e3 + e7 by ∂−f3 = e3 + e7, ∂+f3 = e8 + e11

However for this “wrapping around” to work, the edge e7 is essential, so the
dipaths e1 + e2 and e3 + e4 are not dihomotopic.

By proposition 4.1, there exists a dihomology from e1+e2+e7 to e3+e4+e7,
and we will make one such explicit below. We would also like dihomology to
“keep apart” e1 +e2 from e3 +e4, however the next proposition shows that our
notion of dihomology has a cancellation property (for n = 1) which implies
that e1 + e2

�∼1 e4 + e3:

Proposition 5.1 Given x, y, z ∈ C1X; if x + z �∼1 y + z, then x �∼1 y.

Proof. By an inductive argument we can assume that z ∈ X1, i.e. z is a single
1-cube. Let A =

∑
j Aj ∈ C2X such that ∂−A = x + z, ∂+A = y + z, and

write x = x1 + x2, y = y1 + y2, z = z1 + z2 = z′1 + z′2, such that δ0
1A = x1 + z1,

δ1
2A = x2 + z2, δ1

1A = y1 + z′1, δ0
2A = y2 + z′2. As z ∈ X1, either z1 = z and

z2 = 0, or z1 = 0 and z2 = z, similarly for the z′i.

Now assume that z1 = z′1, then also z2 = z′2. Hence δ1A =
∑

j(δ
1
1Aj −

δ0
1Aj) = y1 +z′1−x1−z1 = y1−x1, similarly δ2A = x2−y2 and thus ∂−A = x,

a contradiction. Consequently, z1 6= z′1 and z2 6= z′2, which leaves us with the
two cases that either z1 = z′2 = z, z′1 = z2 = 0, or z1 = z′2 = 0, z′1 = z2 = z.

In the first case, let A′ = A + γ1
1z, then δ1A

′ = y1 − x1 − z + z = y1 − x1

and δ2A
′ = x2 − y2 − z + z = x2 − y2, hence ∂−A′ = x, ∂+A′ = y. In the

second case, let A′ = A + γ0
1z and repeat the calculations above. 2

Continuing our example, figure 2 shows an element A ∈ C2X such that
∂−A = e1 + e2 + e7, ∂+A = e3 + e4 + e7.

Figure 3 shows how the cancellation property works.

6 Restricted Dihomology

To remedy the cancellation property from above, we define here another di-
homology relation, which is a subset of the relation �∼1 introduced in section
3 and keeps apart e1 + e2 and e3 + e4. We restrict ourselves to dimension 1.

For x ∈ X2, define ζ−x, ζ+x (“lower and upper corner”) by ζ−x = δ0
1δ

0
1x,

ζ+x = δ1
1δ

1
1x. For formal sums of cubes, the corners are defined similarly to

11
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e6

v5 v6

e11

ε1v7

ε1v7

e9 e10e5

e8

e7

e5ε1v1

e4

e3 e11

e12 e10

ε1v7

e7

ε1v7

ε1v1 v1 e1 v2 e2v1

v1

v3

v4

v3

v8

v7 v7

v7 v7

v7

σ1f3 γ0
1e11

σ1f4 f5 γ0
1e10

f2f1γ1
1e5

Fig. 2. A = σ1f3 + γ0
1e11 + σ1f4 + f5 + γ0

1e10 + γ1
1e5 + f1 + f2: ∂−A = e1 + e2 + e7,

∂+A = e3 + e4 + e7.

e6

v5 v6

e11

ε1v7

ε1v7

e9 e10e5

e8

e7

e5ε1v1

e4

e3 e11

e12 e10

ε1v7

e7

ε1v7

ε1v1 v1 e1 v2 e2v1

v1

v3

v4

v3

v8

v7 v7

v7 v7

σ1f3 γ0
1e11

σ1f4 f5 γ0
1e10

f2f1γ1
1e5

e7

γ0
1e7 ε1v7

ε1v7v7 v7

v7

Fig. 3. A′ = A + γ0
1e7: ∂−A′ = e1 + e2, ∂+A′ = e3 + e4.

what we did in (1):∑
j

xj 7→
∑

j

(ζ+xj − ζ−xj) '

(
ζ−(

∑
j

xj), ζ
+(

∑
j

xj)
)
, (7)

Now given x, y ∈ C2X, say that x ·�∼· y if there is an A ∈ C2X such
that ∂−A = x, ∂+A = y, and there exists k ∈ N such that ζ−A = k∂−x,
ζ+A = k∂+x.

A trivial but critical property of the ζα is that they act on connection
cubes in a sensible way:

ζαγβ
1 = ∂α

With this in mind, it is not difficult to see that most of the properties of the
original dihomology relation carry over to the restricted one:

We can indeed form the quotient C1X/·�∼·:

Proposition 6.1 The relation ·�∼· is an equivalence on C1X.

Sketch of proof. We can copy the proof of lemma 3.3, adjusting it in a few
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places. For reflexivity, if A = γ1
1x, then ∂−A = ∂+A = x and ζαA = ∂αx. For

symmetry we note that ζασ1A = ζαA. For transitivity, the basic idea is that
if ζαA = k∂αx and ζαB = `∂αx, then ζα(A + B + G) = (k + `± i)∂αx, where
i depends on what cancellations are involved. 2

The monoidal structure of C1X carries over to the quotient:

Proposition 6.2 If x1 ·�∼· y1 and x2 ·�∼· y2, then x1 + x2 ·�∼· y1 + y2.

Sketch of proof. This is like the proof of lemma 3.4, but again there are
some cancellation issues which need to be resolved. 2

Restricted dihomology respects dihomotopy of dipaths:

Proposition 6.3 If two dipaths x, y are combinatorially dihomotopic, then
x ·�∼· y.

Proof. Again it suffices to show the proposition for elementary dihomotopy.
And indeed, if A′ is defined as in the proof of proposition 4.1, then ζαA′ =
∂αx. 2

As for functoriality of restricted dihomology, section 4.2 can be taken over
unchanged:

Proposition 6.4 With induced maps defined as in (5), restricted dihomology
is functorial.

Finally, continuing the example from section 5, the cancellation property
of proposition 5.1 does not hold for the restricted version of dihomology:

First we note that the sum of 2-cubes A ∈ C2 of figure 2 does not fulfill
ζ−A = kv1, ζ+A = kv7 and hence cannot be used to show that e1 +e2 +e7 ·�∼·
e3 + e4 + e7. Adding two connection cubes remedies this situation, see figure
4. Note also figure 5; how the sum A′′ can be split up into five parts, each
consisting of a “real” cube and a connection cube, and each starting in v1

and ending in v7. These five components correspond to the five steps in the
“wrapping around” of (6).

To see that restricted dihomology does not identify e1 + e2 with e3 + e4,
assume that there exists B ∈ C2X, k ∈ N, such that ∂−B = e1 + e2, ∂+B =
e3 + e4, ζ−B = kv1, ζ+B = kv3. If the sum B involves one of f2, f3, or f5,
or one of their transpositions, ζ+B contains a component v7, as there is no
element of X2 whose lower corner is v7. Similarly, if B has a component f1

resp. f4, ζ+B involves v6 resp. v8. Hence B = 0, a contradiction.

7 Future Work

We believe that the notion of restricted dihomology is the “good” directed
homology notion to go after. It should not be too difficult to extend it to all
odd dimensions, however we still miss the even dimensions.
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e6

v5 v6

e11

ε1v7

ε1v7

e9 e10e5

e8

e7

e5

e11

e12 e10

ε1v7

e7

ε1v7

e1 e2v1 v3

v3

v8

v7 v7

v7 v7

v7

σ1f3 γ0
1e11

σ1f4 f5 γ0
1e10

f2f1γ1
1e5

e4

e3

e4v1

v1

γ1
1e4

v4

v1

ε1v1

ε1v1

ε1v1

v1 v1

v1 v2

e1γ1
1e1

ε1v1

ε1v1

ε1v1

Fig. 4. A′′ = A+γ1
1e4+γ1

1e1: ∂−A′′ = e1+e2+e7, ∂+A′′ = e3+e4+e7, ζ−A′′ = 5v1,
ζ+A′′ = 5v7.

γ0
1e11

σ1f4

σ1f3

γ1
1e4

f2

γ1
1e1

γ0
1e10

f1

f5

γ1
1e5

Fig. 5. A′′ split up into five components.

Once we have a notion of restricted dihomology in all dimensions, we should
also think about relative dihomology. To be able to actually do calculations,
we need a notion of dihomology of a pair and some exact sequences.

On another issue, we need to explore the relation of our (restricted) diho-
mology relation to the one of Marco Grandis [5].
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THE HOMOTOPY BRANCHING SPACE OF A FLOW

PHILIPPE GAUCHER

Abstract. In this talk, I will explain the importance of the homotopy branching space
functor (and of the homotopy merging space functor) in dihomotopy theory.

Contents

1. Introduction 1
2. Model category 1
3. Reminder about the category of flows 3
4. The homotopy branching space functor 4
5. The homotopy merging space functor 5
6. First application: studying weak dihomotopy 6
7. Second application: a long exact sequence for the branching homology 9
References 11

1. Introduction

In [10], the reader will be able to find a survey of the different geometric approaches of
concurrency. The model category of flows was introduced in [3] to model higher dimensional
automata (HDA). It allows the study of HDA up to homotopy (cf. also [7, 8]). A good
notion of homotopy of flows must preserve the computer scientific properties of the HDA
to be modeled like the initial and final states, the deadlocks and the unreachable states.
In particular, it must preserve the direction of time, hence the terminology dihomotopy for
a contraction of directed homotopy. This way, instead of working in the category of flows
itself, one can work in the localization of the category of flows with respect to dihomotopy
equivalences.

I will explain in this talk the powerfulness of the homotopy branching space functor in
dihomotopy theory. The corresponding papers are “Homotopy branching space and weak
dihomotopy” [5] and “A long exact sequence for the branching homology” [4].

2. Model category

If C is a category, one denotes by Map(C) the category whose objects are the morphisms
of C and whose morphisms are the commutative squares of C.

In a category C, an object x is a retract of an object y if there exists f : x −→ y and
g : y −→ x of C such that g ◦ f = Idx. A functorial factorization (α, β) of C is a pair of
functors from Map(C) to Map(C) such that for any f object of Map(C), f = β(f) ◦ α(f).

1991 Mathematics Subject Classification. 55P99, 68Q85.
Key words and phrases. concurrency, homotopy, homotopy colimit, model category, simplicial model

category, exact sequence, cone, homology, localization.
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2 P. GAUCHER

Definition 2.1. [12, 11] Let i : A −→ B and p : X −→ Y be maps in a category C. Then
i has the left lifting property (LLP) with respect to p (or p has the right lifting property
(RLP) with respect to i) if for any commutative square

A

i
��

α // X

p

��
B

g
>>}

}
}

} β // Y

there exists g making both triangles commutative.

There are several versions of the notion of model category. The following definitions give
the one we are going to use.

Definition 2.2. [12, 11] A model structure on a category C is three subcategories of Map(C)
called weak equivalences, cofibrations, and fibrations, and two functorial factorizations (α, β)
and (γ, δ) satisfying the following properties :

(1) (2-out-of-3) If f and g are morphisms of C such that g ◦ f is defined and two of f ,
g and g ◦ f are weak equivalences, then so is the third.

(2) (Retracts) If f and g are morphisms of C such that f is a retract of g and g is a
weak equivalence, cofibration, or fibration, then so is f .

(3) (Lifting) Define a map to be a trivial cofibration if it is both a cofibration and a weak
equivalence. Similarly, define a map to be a trivial fibration if it is both a fibration
and a weak equivalence. Then trivial cofibrations have the LLP with respect to
fibrations, and cofibrations have the LLP with respect to trivial fibrations.

(4) (Factorization) For any morphism f , α(f) is a cofibration, β(f) a trivial fibration,
γ(f) is a trivial cofibration , and δ(f) is a fibration.

Definition 2.3. [12, 11] A model category is a complete and cocomplete category C together
with a model structure on C.

Proposition et Definition 2.4. [12, 11] A Quillen adjunction is a pair of adjoint functors
F : C � D : G between the model categories C and D such that one of the following
equivalent properties holds :

(1) if f is a cofibration (resp. a trivial cofibration), then so does F (f)
(2) if g is a fibration (resp. a trivial fibration), then so does G(g).

One says that F is a left Quillen functor. One says that G is a right Quillen functor.

Definition 2.5. [12, 11] An object X of a model category C is cofibrant (resp. fibrant)
if and only if the canonical morphism ∅ −→ X from the initial object of C to X (resp.
the canonical morphism X −→ 1 from X to the final object 1) is a cofibration (resp. a
fibration).

For any object X of a model category, the canonical morphism ∅X : ∅ −→ X from the
initial object to X can be factored as a composite

∅
α(∅X) // Q(X)

β(∅X) // X

where, by definition, Q(X) is a cofibrant object which is weakly equivalent to X. The
functor Q : C −→ C is called the cofibrant replacement functor.
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HOMOTOPY BRANCHING SPACE OF FLOW 3

3. Reminder about the category of flows

In the sequel, any topological space will be supposed to be compactly generated (more
details for this kind of topological spaces in [1, 14], the appendix of [13] and also the
preliminaries of [3]).

Let n > 1. Let Dn be the closed n-dimensional disk. Let Sn−1 = ∂Dn be the boundary
of Dn for n > 1. Notice that S0 is the discrete two-point topological space {−1,+1}. Let
D0 be the one-point topological space. Let S−1 = ∅ be the empty set. The following
theorem is well-known.

Theorem 3.1. [11, 12] The category of compactly generated topological spaces Top can be
given a model structure such that:

(1) The weak equivalences are the weak homotopy equivalences.
(2) The fibrations (sometime called Serre fibrations) are the continuous maps satisfying

the RLP (right lifting property) with respect to the continuous maps Dn −→ [0, 1]×
Dn such that x 7→ (0, x) and for n > 0.

(3) The cofibrations are the continuous maps satisfying the LLP (left lifting property)
with respect to any maps satisfying the RLP with respect to the inclusion maps
Sn−1 −→ Dn.

(4) Any topological space is fibrant.
(5) The homotopy equivalences arising from this model structure coincide with the usual

one.

Definition 3.2. [3] A flow X consists of a topological space PX, a discrete space X0, two
continuous maps s and t from PX to X0 and a continuous and associative map ∗ : {(x, y) ∈
PX × PX; t(x) = s(y)} −→ PX such that s(x ∗ y) = s(x) and t(x ∗ y) = t(y). A morphism
of flows f : X −→ Y consists of a set map f0 : X0 −→ Y 0 together with a continuous map
Pf : PX −→ PY such that f(s(x)) = s(f(x)), f(t(x)) = t(f(x)) and f(x ∗ y) = f(x) ∗ f(y).
The corresponding category will be denoted by Flow.

The topological space X0 is called the 0-skeleton of X. The topological space PX is
called the path space and its elements the non constant execution paths of X. The initial
object ∅ of Flow is the empty set. The terminal object 1 is the flow defined by 10 = {0},
P1 = {u} and necessarily u ∗ u = u.

Definition 3.3. [3] Let Z be a topological space. Then the globe of Z is the flow Glob(Z)
defined as follows: Glob(Z)0 = {0, 1}, PGlob(Z) = Z, s = 0, t = 1 and the composition
law is trivial.

Theorem 3.4. [3] The category of flows can be given a model structure such that:
(1) The weak equivalences are the weak S-homotopy equivalences, that is a morphism

of flows f : X −→ Y such that f : X0 −→ Y 0 is an isomorphism of sets and
f : PX −→ PY a weak homotopy equivalence of topological spaces.

(2) The fibrations are the continuous maps satisfying the RLP with respect to the mor-
phisms Glob(Dn) −→ Glob([0, 1] ×Dn) for n > 0. The fibrations are exactly the
morphisms of flows f : X −→ Y such that Pf : PX −→ PY is a Serre fibration of
Top.

(3) The cofibrations are the morphisms satisfying the LLP with respect to any map
satisfying the RLP with respect to the morphisms Glob(Sn−1) −→ Glob(Dn) for
n > 0 and with respect to the morphisms ∅ −→ {0} and {0, 1} −→ {0}.

(4) Any flow is fibrant.
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4 P. GAUCHER

Let Igl be the set of morphisms of flows Glob(Sn−1) → Glob(Dn) for n > 0. Denote by
Igl
+ be the union of Igl with the two morphisms of flows R : {0, 1} → {0} and C : ∅ ⊂ {0}.

Definition 3.5. [5] An Igl
+ -cell complex is a flow X such that the canonical morphism of

flows ∅ −→ X from the initial object of Flow to X is a transfinite composition of pushouts
of elements of Igl

+ . The full and faithful subcategory of Flow whose objects are the Igl
+ -cell

complexes will be denoted by Igl
+ cell.

The category Igl
+ cell of Igl

+ -cell complexes is a subcategory of the category of flows which
is sufficient to model higher dimensional automata (HDA), at least those modeled by precu-
bical sets [9, 2]. This geometric model of HDA is designed to define and study equivalence
relations preserving the computer-scientific properties of the HDA to be modeled so that
it then suffices to work in convenient localizations of Igl

+ cell. The properties which are
preserved are for instance the initial or final states, the presence or not of deadlocks and of
unreachable states [3].

The cofibrant replacement functor is a functor Q : Flow −→ Igl
+ cell. The flows coming

from concrete HDAs are all cofibrant.

4. The homotopy branching space functor

The branching space of a flow is the space of germs of non-constant execution paths
beginning in the same way. The branching space functor P− from the category of flows
Flow to the category of compactly generated topological spaces Top was also introduced in
[3] to fit the definition of the branching semi-globular nerve of a strict globular ω-category
modeling an HDA introduced in [6].

Proposition 4.1. [3, 5] Let X be a flow. There exists a topological space P−X unique
up to homeomorphism and a continuous map h− : PX −→ P−X satisfying the following
universal property:

(1) For any x and y in PX such that t(x) = s(y), the equality h−(x) = h−(x ∗ y) holds.
(2) Let φ : PX −→ Y be a continuous map such that for any x and y of PX such

that t(x) = s(y), the equality φ(x) = φ(x ∗ y) holds. Then there exists a unique
continuous map φ : P−X −→ Y such that φ = φ ◦ h−.

Moreover, one has the homeomorphism

P−X ∼=
⊔

α∈X0

P−α X

where P−α X := h−
(⊔

β∈X0 Pα,βX
)
. The mapping X 7→ P−X yields a functor P− from

Flow to Top.

Definition 4.2. [3, 5] Let X be a flow. The topological space P−X is called the branching
space of the flow X.

Proposition 4.3. [5] There exists a weak S-homotopy equivalence of flows f : X −→ Y
such that the topological spaces P−X and P−Y are not weakly homotopy equivalent.

The idea for the proof of Proposition 4.3 is as follows. For a given flow X, by Proposi-
tion 4.1, the topological space P−X is the coequalizer of the continuous map PX×X0PX −→
PX induced by the composition law of X and of the projection map PX ×X0 PX −→ PX
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HOMOTOPY BRANCHING SPACE OF FLOW 5

on the first factor. And one cannot expect a coequalizer to transform a objectwise weak ho-
motopy equivalence into a weak homotopy equivalence. One must use a kind of homotopy
coequalizer instead.

If two flows are weakly S-homotopy equivalent, then they are supposed to satisfy the
same computer-scientific properties. With the example above, one obtains two such flows
but with very different branching spaces. But

Theorem 4.4. [5] If f : X −→ Y is a weak S-homotopy equivalence of flows between
cofibrant flows, then the topological spaces P−X and P−Y are homotopy equivalent.

This suggests that the definition of the branching space is the good one up to homotopy
for cofibrant flows. Indeed, we have the theorems:

Theorem 4.5. [5] There exists a functor C− : Top −→ Flow such that the pair of functors
P− : Flow � Top : C− is a Quillen adjunction. In particular, there is an homeomorphism
P−(lim−→Xi) ∼= lim−→P−Xi.

Definition 4.6. The homotopy branching space hoP− X of a flow X is by definition the
topological space P−Q(X).

Theorem 4.7. [5] The functor hoP− : Flow −→ Top −→ Ho(Top) satisfies the following
universal property: if F : Flow −→ Ho(Top) is another functor sending weak S-homotopy
equivalences to isomorphisms and if there exists a natural transformation F ⇒ P−, then
the latter natural transformation factors uniquely as a composite F ⇒ hoP− ⇒ P−.

Up to homotopy, the homotopy branching space hoP−(X) is well-defined and coincides
with P−X for any cofibrant flow, so in particular for any flow coming from a HDA. The
behavior of the branching space functor and the homotopy branching space functor are the
same up to homotopy for flows modeling HDAs and may differ for other flows.

5. The homotopy merging space functor

This is the dual version of the preceding functor. Some results are collected in this section
about it.

Proposition 5.1. [5] Let X be a flow. There exists a topological space P+X unique up to
homeomorphism and a continuous map h+ : PX −→ P+X satisfying the following universal
property :

(1) For any x and y in PX such that t(x) = s(y), the equality h+(y) = h+(x ∗ y) holds.
(2) Let φ : PX −→ Y be a continuous map such that for any x and y of PX such

that t(x) = s(y), the equality φ(y) = φ(x ∗ y) holds. Then there exists a unique
continuous map φ : P+X −→ Y such that φ = φ ◦ h+.

Moreover, one has the homeomorphism

P+X ∼=
⊔

α∈X0

P+
α X

where P+
α X := h+

(⊔
β∈X0 Pβ,αX

)
. The mapping X 7→ P+X yields a functor P+ :

Flow −→ Top.

Definition 5.2. [5] Let X be a flow. The topological space P+X is called the merging space
of the flow X.
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Theorem 5.3. [5] There exists a functor C+ : Top −→ Flow such that the pair of functors
P+ : Flow � Top : C+ is a Quillen adjunction. In particular, there is an homeomorphism
P+(lim−→Xi) ∼= lim−→P+Xi.

Definition 5.4. [5] The homotopy merging space hoP+ X of a flow X is by definition the
topological space P+Q(X).

Theorem 5.5. [5] The functor hoP+ : Flow −→ Top −→ Ho(Top) satisfies the following
universal property : if F : Flow −→ Ho(Top) is another functor sending weak S-homotopy
equivalences to isomorphisms and if there exists a natural transformation F ⇒ P+, then
the latter natural transformation factors uniquely as a composite F ⇒ hoP+ ⇒ P+.

6. First application: studying weak dihomotopy

The class S of weak S-homotopy equivalences is an example of class of morphisms of
flows which is supposed to preserve various computer-scientific properties. This class of
morphisms of flows satisfies the following properties:

(1) The two-out-of-three axiom, that is if two of the three morphisms f , g and g ◦ f
belong to S, then so does the third one: this condition means that the class S
defines an equivalence relation.

(2) The embedding functor I : Igl
+ cell −→ Flow induces a functor I : Igl

+ cell[S−1] −→
Flow[S−1] between the localization of respectively the category of Igl

+ -cell complexes
and the category of flows with respect to weak S-homotopy equivalences which is
an equivalence of categories. In particular, it reflects isomorphisms, that is X ∼= Y
if and only if I(X) ∼= I(Y ). In this case, one can use the whole category of flows
which is a richer mathematical framework.

The class of T-homotopy equivalences was introduced in [3] to identify Igl
+ -cell complexes

equivalent from a computer-scientific viewpoint and which are not identified in Igl
+ cell[S−1].

Indeed, if two objects X and Y of Igl
+ cell[S−1] are isomorphic, then the 0-skeletons X0 and

Y 0 are isomorphic. The merging of the notions of weak S-homotopy equivalence and T-
homotopy equivalence yields the class ST 0 of 0-dihomotopy equivalences.

Definition 6.1. [3] Let X be a flow. Let A and B be two subsets of X0. One says that A
is surrounded by B (in X) if for any α ∈ A, either α ∈ B or there exists execution paths
γ1 and γ2 of PX such that s(γ1) ∈ B, t(γ1) = s(γ2) = α and t(γ2) ∈ B. We denote this
situation by A ≪ B.

Definition 6.2. [3] Let X be a flow. Let A be a subset of X0. Then the restriction X �A

of X over A is the unique flow such that (X �A)0 = A and

P (X �A) =
⊔

(α,β)∈A×A

Pα,βX

equipped with the topology induced by the one of PX.

Definition 6.3. [3] A morphism of flows f : X −→ Y is a 0-dihomotopy equivalence if
and only if the following conditions are satisfied :

(1) The morphism of flows f : X −→ Y �f(X0) is a weak S-homotopy equivalence of
flows. In particular, the set map f0 : X0 −→ Y 0 is one-to-one.

(2) For α ∈ Y 0\f(X0), the topological spaces P−α Y and P+
α Y are singletons.

(3) Y 0 ≪ f(X0).
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The class of 0-dihomotopy equivalences is denoted by ST 0.

But it turns out that

Theorem 6.4. [5] The functor Igl
+ cell[ST −1

0 ] −→ Flow[ST −1
0 ] does not reflect isomor-

phisms. More precisely, there exists an Igl
+ -cell complex

−→
C 3 corresponding to the concur-

rent execution of three calculations which is not isomorphic in Igl
+ cell[ST −1

0 ] to the directed
segment

−→
I , although the same flow

−→
C 3 is isomorphic to

−→
I in Flow[ST −1

0 ].

The correct behavior is the one of ST 0 in Flow[ST −1
0 ]. Indeed, an HDA representing

the concurrent execution of n processes must be equivalent to the directed segment in a
good homotopical approach of concurrency. The interpretation of this fact is therefore that
the class ST 0 of 0-dihomotopy equivalences is not big enough.

Definition 6.5. [5] A morphism of flows f : X −→ Y is a 1-dihomotopy equivalence if
and only if the following conditions are satisfied :

(1) The morphism of flows f : X −→ Y �f(X0) is a weak S-homotopy equivalence of
flows. In particular, the set map f0 : X0 −→ Y 0 is one-to-one.

(2) For α ∈ Y 0\f(X0), the topological spaces P−α Y and P+
α Y are weakly contractible.

(3) Y 0 ≪ f(X0).
The class of 1-dihomotopy equivalences is denoted by ST 1.

Any 0-dihomotopy equivalence is of course a 1-dihomotopy equivalence. Moreover, the
composite of a weak S-homotopy equivalence with a T-homotopy equivalence can already
give an element of ST 1\ST 0 ! And

Theorem 6.6. [5] By slightly weakening the notion of T-homotopy as above, one obtains
a class of morphisms ST 1 with ST 0 ⊂ ST 1 and such that the flows

−→
C 3 and

−→
I become

isomorphic in the localization Igl
+ cell[ST −1

1 ].

There are actually two natural ways of weakening the definition of ST 0. One can replace
in the statement the word singleton either by the word weakly contractible, or by the word
contractible. This way, one obtains another class of morphisms ST ′

1 with ST ′
1 ⊂ ST 1 and

one has:

Theorem 6.7. [5] The localizations Igl
+ cell[ST ′−1

1 ] and Igl
+ cell[ST −1

1 ] are equivalent.

Unfortunately, one has

Proposition 6.8. [5] The composite of two morphisms of ST 1 does not necessarily belong
to ST 1.

Using the homotopy branching space functor, a new class ST 2 of morphisms of flows is
introduced.

Definition 6.9. [5] A morphism of flows f : X −→ Y is a 2-dihomotopy equivalence if
and only if the following conditions are satisfied :

(1) The morphism of flows f : X −→ Y �f(X0) is a weak S-homotopy equivalence of
flows. In particular, the set map f0 : X0 −→ Y 0 is one-to-one.

(2) For α ∈ Y 0\f(X0), the topological spaces hoP−α Y and hoP+
α Y are weakly con-

tractible.
(3) Y 0 ≪ f(X0).

The class of 2-dihomotopy equivalences is denoted by ST 2.
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And:

Theorem 6.10. [5] One has the equivalence of categories

Igl
+ cell[ST −1

1 ]
' // Igl

+ cell[ST −1
2 ]

where Igl
+ cell[ST −1

1 ] (resp. Igl
+ cell[ST −1

2 ]) is the localization of the category of Igl
+ -cell

complexes with respect to 1-dihomotopy equivalences (resp. 2-dihomotopy equivalences).
ST 2 is closed under composition. Moreover the embedding functor I : Igl

+ cell −→ Flow
induces an equivalence of categories

I : Igl
+ cell[ST −1

2 ]
' // Flow[ST −1

2 ] .

In particular, the functor Igl
+ cell[ST −1

2 ] −→ Flow[ST −1
2 ] reflects isomorphisms.

The property f ∈ ST 2 and g ◦ f ∈ ST 2 =⇒ g ∈ ST 2 has no reasons to be satisfied by
2-dihomotopy equivalences. Indeed, if both g ◦f and f are two one-to-one set maps, then g
has no reasons to be one-to-one as well. Therefore in order to understand the isomorphisms
of Flow[ST −1

2 ], we may introduce another construction.

Definition 6.11. [5] Let X be a flow. Then a subset A of X0 is essential if X0 ≪ A and
if for any α /∈ A, both topological spaces hoP−α X and hoP+

α X are weakly contractible.

Definition 6.12. [5] A morphism of flows f : X −→ Y is a 3-dihomotopy equivalence if
the following conditions are satisfied :

(1) A ⊂ X0 is essential if and only if f(A) ⊂ Y 0 is essential
(2) for any essential A ⊂ X0 there exists an essential subset B ⊂ A such that the

restriction f : X �B−→ Y �f(B) is a weak S-homotopy equivalence.
The class of 3-dihomotopy equivalences is denoted by ST 3.

Theorem 6.13. [5] The localizations Igl
+ cell[ST −1

2 ] and Igl
+ cell[ST −1

3 ] are equivalent and
the class of morphisms ST 3 satisfies the two-out-of-three axiom. Moreover the embedding
functor I : Igl

+ cell −→ Flow induces an equivalence of categories

I : Igl
+ cell[ST −1

3 ]
' // Flow[ST −1

3 ] .

In particular, the functor Igl
+ cell[ST −1

3 ] −→ Flow[ST −1
3 ] reflects isomorphisms.

The class ST 2 does not satisfy the two-out-of-three axiom but is invariant by retract. The
class ST 3 does satisfy the two-out-of-three axiom but is probably not invariant by retract.
So none of the definitions above allows to describe the isomorphisms of Igl

+ cell[ST −1
2 ]. The

situation can be summarized with the following diagram:

Igl
+ cell

vv wwnnnnnnnnnnnn

((��

Igl
+ cell[S−1]

'
��

6' // Igl
+ cell[ST −1

0 ]

6'
��

6' // Igl
+ cell[ST −1

1 ]

'??
��

' // Igl
+ cell[ST −1

2 ] ' Igl
+ cell[ST −1

3 ]

'
��

Flow[S−1]
6' // Flow[ST −1

0 ] '?? // Flow[ST −1
1 ] Flow[ST −1

2 ] ' Flow[ST −1
3 ]'??oo

Flow

ii hhQQQQQQQQQQQQQ

OO 55
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HOMOTOPY BRANCHING SPACE OF FLOW 9

The symbol '?? means that we do not know whether the functor is an equivalence of
categories or not. The symbol 6'means that the corresponding functor is not an equivalence.

7. Second application: a long exact sequence for the branching homology

The category of flows is a simplicial model category [4] in the following sense:

Definition 7.1. [15, 12, 11] x A simplicial model category is a model category C together
with a simplicial set Map(X, Y ) for any object X and Y of C satisfying the following axioms:

(1) the set Map(X, Y )0 is canonically isomorphic to C(X, Y )
(2) for any object X, Y and Z, there is a morphism of simplicial sets

Map(Y, Z)×Map(X, Y ) −→ Map(X, Z)

which is associative
(3) for any object X of C and any simplicial set K, there exists an object X ⊗K of C

such that there exists a natural isomorphism of simplicial sets

Map(X ⊗K, Y ) ∼= Map(K, Map(X, Y ))

(4) for any object X of C and any simplicial set K, there exists an object XK such that
there exists a natural isomorphism of simplicial sets

Map(X, Y K) ∼= Map(K, Map(X, Y ))

(5) for any cofibration i : A −→ B and any fibration p : X −→ Y of C, the morphism
of simplicial sets

Q(i, p) : Map(B,X) −→ Map(A,X)×Map(A,Y ) Map(B, Y )

is a fibration of simplicial sets. Moreover if either i or p is trivial, then the fibration
Q(i, p) is trivial as well.

Recall that there exists a pair of adjoint functors | − | : SSet � Top : S∗ where | − | is
the geometric realization functor and S∗ the singular nerve functor. The n-simplex of SSet
is denoted by ∆[n]. Its boundary is denoted by ∂∆[n − 1]. Let ∆n be the n-dimensional
simplex.

The category of compactly generated topological spaces Top is a simplicial model cat-
egory by setting Map(X, Y )n := Top(X × ∆n, Y ), X ⊗ K := X × |K| and XK :=
TOP(|K|, X). The category of simplicial sets SSet is a simplicial model category as well
by setting Map(X, Y )n := Top(X × ∆[n], Y ), X ⊗ K := X × K and XK := Map(K, X)
[15].

This means that the model category of flows can be enriched over the category of sim-
plicial sets and that the enrichment is compatible with the model structure in the sense
of Definition 7.1. The symbol ∆n is the simplicial set corresponding to the n-dimensional
simplex.

Because of the existence of this enrichment, there exist explicit formulae for homotopy
colimits [11]. In particular, the homotopy pushout of a diagram of flows looks as follows:

Definition 7.2. [11] The homotopy pushout of the diagram of flows

A //

��

B

C
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is the colimit of the diagram of flows

A⊗∆0

��

// B

A⊗∆0

��

// A⊗∆1

C

It is then very easy to prove the:

Theorem 7.3. [4] Let X be a diagram of flows. Then the topological spaces holim−−−→ hoP−(X)
and hoP−(holim−−−→X) are homotopy equivalent (they are both cofibrant indeed). So in partic-
ular, the homotopy branching space functor commutes with homotopy pushouts.

Definition 7.4. [4] Let f : X −→ Y be a morphism of flows. The cone Cf of f is the
homotopy pushout in the category of flows

X
f //

��

Y

��
1 // Cf

where 1 is the terminal flow.

From the theorem

Theorem 7.5. [4] The homotopy branching space of the terminal flow is contractible.

one can easily deduce a long exact sequence for the branching homology.

Definition 7.6. [4] Let X be a flow. Then the (n+1)st branching homology group H−
n+1(X)

is defined as the nst homology group of the augmented simplicial set N−
∗ (X) defined as

follows:
(1) N−

n (X) = Sn(hoP− X) for n > 0
(2) N−

−1(X) = X0

(3) the augmentation map ε : S0(hoP− X) −→ X0 is induced by the mapping γ 7→ s(γ)
from hoP− X = S0(hoP− X) to X0.

Theorem 7.7. [4] For any flow X, one has
(1) H−

0 (X) = ZX0/Im(s)
(2) the short exact sequence 0 → H−

1 (X) → H0(hoP− X) → Z hoP− X/Ker(s) → 0
(3) H−

n+1(X) = Hn(hoP− X) for n > 1.

Theorem 7.8. [4] For any morphism of flows f : X −→ Y , one has the long exact sequence

· · · → H−
n (X) → H−

n (Y ) → H−
n (Cf) → . . .

· · · → H−
3 (X) → H−

3 (Y ) → H−
3 (Cf) →

H−
2 (X) → H−

2 (Y ) → H−
2 (Cf) →

H0(hoP− X) → H0(hoP− Y ) → H0(hoP− Cf) → 0.

The functors X 7→ H−
n (X) for n > 0 are invariant up to 2-dihomotopy equivalence. The

functor X 7→ H0(hoP− X) is only invariant up to weak S-homotopy equivalence. So the
long exact sequence above is not satisfactory. It still remains to find an exact sequence
whose each term would be a functor invariant up to 2-dihomotopy equivalence.
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Abstract

We exhibit a model structure on 2-Cat, obtained by transfer from
SSet across the adjunction C2 ◦ Sd2 a Ex2 ◦ N2. A certain class of
homotopies in this model structure turns out to be in 1-to-1 corre-
spondence with strong simulations among labeled transitions systems,
formalising the geometric intuition of simulations as deformations. We
comment on potential applications of obstruction theory.

1 Introduction

This work is part of an investigation exploring the potential of algebraic-
topological techniques in classical concurrency theory, a particularly inter-
esting area of algebraic topology in this respect being certainly obstruction
theory. However, before being in position to apply (an appropriate version
of) the latter, a fundamental question to address is how to transfer basic
notions like homotopy to the realm of concurrency theory.

For concreteness, we focus here on labeled transition systems (cf. [7]).
The latter have been extensively studied from a categorical angle (cf. for
instance [6]), so which category and which model structure (cf. [8]) for ho-
motopies of labeled transition systems? The present account is based on our
recent discovery of a model structure on the category 2-Cat. The associated
notion of homotopy then agrees on relevant instances with a specific yet less
widespread characterisation of simulation (cf. [4]).

∗EPFL
†EPFL
‡London Metropolitan
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2 A Thomason Model Structure on 2-Cat

Definition 2.1. Let A and B be 2-categories s.t. A ⊆ B. A is a 2-sieve if
for any a ∈ A

(i) ∀f ∈ B1 cod (f) = a ⇒ f ∈ A1 ;

(ii) ∀α ∈ B2 ( cod ◦ dom) (α) = (cod ◦ cod) (α) = a ⇒ α ∈ A2.

2-cosieves are defined dually.

Definition 2.2. Let 2-Catlax,norm be the category of 2-categories and nor-
mal lax functors. Let A and B be 2-categories. An inclusion i : A ↪→ B is a
weak immersion if

(i) A is a 2-sieve;

(ii) there is a 2-cosieve W such that A ⊆ W ⊆ B;

(iii) i : A ↪→W admits a retraction r;

(iv) there is a normal lax functor ε : [1]×W →W such that

W
i0 //

idW ##HHHHHHHHH [1]×W
ε

��

W
i1oo

i◦r{{vvvvvvvvv

W

commutes in 2-Catlax,norm and further that ε|[1]×A is strict and that
ε (0 ≤ 1, ida) = ida for all a ∈ A.

Proposition 2.1. Let SSet
def
= Set∆op

be the category of simplicial sets.
The 2-nerve N2 : 2-Cat → SSet is given on a 2-category A in dimension
n by the the set of normal lax functors N2 (A)n

def
= Laxnorm ([n] ,A) and on

2-functors A → B by postcomposition. We have an adjunction C2 a N2.

Proposition 2.1 essentially stems from Ross Street’s work (cf. [9]).

Lemma 2.1. The image under N2 of a pushout square of a weak immersion
along an arbitrary 2-functor is a homotopy pushout square.

Definition 2.3. Let M be a model category and L a R : M → C be an
adjunction. R creates a model structure on C if there is a model structure
on C such that fibC = R−1 (fibM) and weqC = R−1 (weqM).

2
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Proposition 2.2. Let M be a cofibrantly generated model category with J the
set of generating acyclic cofibrations and L a R : M → C be an adjunction
with C a locally presentable category. Suppose further that

(i) R preserves filtered colimits;

(ii) for any f ∈ J and for any pushout g of L (f), R (g)is a weak equiva-
lence.

Then R creates a cofibrantly generated model structure on C.

Proposition 2.2 is due to Tibor Beke (cf. [1] where a more general version
is to be found).

Theorem 2.1. Ex2 ◦N2 creates a model structure on 2-Cat.

Proof. It is well-known that 2-Cat is finitely presentable and that Ex
preserves filtered colimits. It is easy to see that N2 preserves filtered colimits,
so it remains to establish condition (ii) of proposition 2.2.

Let ik,n : Λk [n] ↪→ ∆ [n] be a horn inclusion. It can be shown that
C2

(
Sd2 (ik,n)

)
is a weak immersion and that N2C2

(
Sd2 (ik,n)

)
is a weak

equivalence in SSet, so the assertion follows from lemma 2.1 by 2-of-3. �
Clearly, lemma 2.1 is the "working horse" here. It is easy to see that the

resulting structure is left-proper. We call it Thomason model structure since
it is conceptually similar to a model structure on Cat due to R.W.Thomason
(cf. [10]).

3 Strong Simulations as Homotopies

Observe that the traditional presentation of a labeled transition system1 S =
(→⊆ S × Σ× S) amounts to an indexed set of relations(→α⊆ S × S)α∈Σ so
by adjunction to a functor S : Σ∗ → Rel (S, S) which can also be seen as a
2-functor S : Σ∗ → Rel. Let S′ = (→⊆ S′ × Σ× S′) be a further transition
system. A simulation abusively written S 9 S′ is a relation σ : S 9 S′ s.t.

∀α ∈ Σ. xσx′ ∧ ∃y ∈ S.x →α y ⇒ ∃y′ ∈ S′.x′ →′α y′ ∧ yσy′

This condition is equivalent to

∀α ∈ Σ. →α ◦σop ⊆ σop◦ →′α (∗)
1The usual definition of a transition system also includes an initial state i.e. it is a

pointed version of the one below. We do not address this issue throughout this section in
order not to clutter the exposition, since everything (in this section) carries over to the
pointed case.

3
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Proposition 3.1. Let A be a 2-category. Let Cyl (A) be the bicategory
of cylinders (cf. [2]) over A and P : Cyl (A) → A × A the associated
homomorphism. Cyl (A) is a 2-category and P is a 2-functor. Moreover, if
A has a 2-terminal object, Cyl (A) is a path object in the Thomason model
structure.

Theorem 3.1. Let S and T be transition systems. Under the notation of
proposition 3.1, the following are equivalent

(i) there is a simulation S 9 T;

(ii) the 2-functor
〈
T,S

〉
factors through P ;

(iii) there is a lax transformation T ⇒ S ;

(iv) there is a homotopy T S in the Thomason model structure.

Proof. The equivalence (ii) ⇔ (iii) is inherent to Jean Bénabou’s work
(cf. [2]), (i) ⇔ (ii) was first noticed by Claudio Hermida and follows from
(∗) above (cf. [4]) while (ii) ⇔ (iv) follows from proposition 3.1. �

4 Obstructions

Given transition systems S and T, it is at any rate sensible to ask if there
is a simulation. A specific instance is of particular interest: as Hermida
recently put forward (cf. [5]), it is the case that given S and a relational
modal formula φ, the truth of S |= φ amounts to a simulation S 9 Φ where
Φ is a transition system built from φ. Hence, by theorem 3.1, it amounts
to a homotopy Φ  S, so looking for an obstruction can be assimilated to
model-checking.

It is easy to see that P above is not a fibration in the Thomason model
structure, so its fibrant replacement with a very good cylinder object is re-
quired in order to formulate the relevant lifting problem. What remains to do
is to develop an appropriate obstruction theory. There has been some work
in this direction by Dwyer et.al. (cf. [3]) but their notion of obstruction is
too coarse to be used in this context.

A good notion of obstruction is subject of an ongoing investigation. The
future will show if any of this turns out to be of relevance for program
verification, in particular the setup should then accommodate fixpoints i.e.
the modal logic should be able to handle the expressiveness of a modal µ-
calculus. Nevertheless, we believe that this line of research might very well
lead to new insights and techniques.

4
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Abstract

Higher dimensional automata (HDA) provide valuable models of concurrent processes.
Much current research related to HDA aims to further develop algebraic topological notions
required to analyse HDA in order to determine computer scientific properties including
deadlock, safety, unreachable states, etc. It is well-known that classical algebraic topology
will not suffice since the sequences of actions represented by (1-dimensional) paths need to
be monotone with respect to a multi-dimensional coordinate system (the coordinate system
might be thought of as time, or its coordinates can be thought of separately as progress with
respect to particular processes). The extent to which higher dimensional paths inherit an
orientation as a result of either the coordinate system, or the definition of homotopy, varies
according to the precise notions of directed algebraic topology that are utilised. This paper
considers an extreme position in which all higher dimensional paths, like 1-dimensional
paths, are oriented and can only be composed when orientations are compatible. This point
of view has arisen both from software engineering considerations and from considerations
of the history of classical combinatorial topology.

1 Introduction

When Vaughan Pratt first introduced higher dimensional automata (drafts of [19])
the higher dimensional cells were all oriented and although cells were cubical the
underlying graphical structures were general pasting schemes [17].

? Research partially supported by the Australian Research Council and an MURDG.
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More recently, following the seminal work of Goubault [10], HDA have been
studied extensively. Significant progress has been attained in further work by
Goubault and coauthors, for example [13] and [12], in a series of papers by Gaucher
[5], [6], [7], [8], [9] and in work by Fajstrup [4], Grandis [14], [15], [16] and
Raussen [21], [22] amongst others. The HDA have variously been based uponn-
categories [19], cubical complexes [20], and pasting schemes [6]. Nevertheless,
the bulk of the work explores homotopies between oriented paths in an ambient
unoriented space.

In this paper we discuss some advantages of using combinatorial topology with
orientedn-cells of arbitrary shape. The underlying graphical structure that we use
was introduced by Buckland-Johnson-Verity [3], and was designed to support ex-
plicit choice higher dimensional automata (ECHDA)1 which were first proposed
in [1] and were further developed in [2].

In the full paper we discuss

(i) The introduction of oriented higher dimensional cells in the foundation of
algebraic topology and the effect it had on clarifying the subject (leading to
the study of simplicial objects in general, and to the widespread use of the
singular homology for example)

(ii) How the analogous introduction of oriented higher dimensional cells in a ge-
ometric representation of concurrent processes can be interpreted

(iii) The software engineering advantages that might be expected from serious de-
velopment of the oriented higher dimensional approach to HDA

Most importantly, we trace through several detailed examples showing the in-
teraction of concurrency and choice in ECHDA. These illustrate the expected soft-
ware engineering examples, as well as clarifying the oriented higher dimensional
approach.

2 Structure

The full paper has, after the introduction, five sections which cover

(i) Historical remarks on oriented combinatorial topology

(ii) A proposal for the analogous treatment of HDA with remarks about the soft-
ware engineering advantages of taking this approach

(iii) A definition of ECHDA. ECHDA are one possible approach to oriented com-
binatorial HDA

(iv) Examples

(v) A discussion of free constructions.

1 ECHDA is a plural abbreviation. When we need to refer to an explicit choice higher dimensional
automatonwe will call it an ECHDon.

2
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Here we will make no further remarks about any except the last of these, but
free constructions do warrant some further explanation.

3 Free constructions

It might be argued that HDA are already “oriented”. Does not providing an order
on 1-dimensional paths correspond to an order on the vertices of a simplex?

This is certainly true, but it does not suffice for the analogy being explored
in this paper. The singular complex of a space is a canonical representation of its
structure because it is the free simplicial object on the space (calculated in the sense
of [18]). Similarly, the collection of paths (of arbitrary dimension) in an ECHDon
ought to carry the structure of the freeω-category on the ECHDon.

We explain this in further detail in the final section of the paper, and discuss its
software engineering implications: A path (of arbitrary dimension) in an ECHDon
represents a process obtained by partial evaluation within the process represented
by the ECHDon. The partial evaluation may be with respect to values of variables
or choices (as in common applications of partial evaluation in computer science),
or it may be with respect to concurrency or scheduling.
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