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Foreword

The main mathematical disciplines that have been used in theoretical com-

puter science are discrete mathematics (especially, graph theory and ordered

structures), logics (mostly proof theory for all kinds of logics, classical, intu-

itionistic, modal etc.) and category theory (cartesian closed categories, topoi

etc.). General Topology has also been used for instance in denotational seman-

tics, with relations to ordered structures in particular.

Recently, ideas and notions from mainstream \geometric" topology and al-

gebraic topology have entered the scene in Concurrency Theory and Distributed

Systems Theory (some of them based on older ideas). They have been applied

in particular to problems dealing with coordination of multi-processor and dis-

tributed systems. Among those are techniques borrowed from algebraic and

geometric topology: Simplicial techniques have led to new theoretical bounds

for coordination problems. Higher dimensional automata have been modelled

as cubical complexes with a partial order re
ecting the time 
ows, and their

homotopy properties allow to reason about a system's global behaviour.

This workshop aims at bringing together researchers from both the math-

ematical (geometry, topology, algebraic topology etc.) and computer scienti�c

side (concurrency theorists, semanticians, researchers in distributed systems

etc.) with an active interest in these or related developments.

It follows two workshops on the subject \Geometric and Topological Methods

in Concurrency Theory" which have been held in Aalborg, Denmark, in June

1999 and at Penn State University as a satellite to CONCUR 2000.

The Workshop has been �nancially supported by the Basic Research In-

stitute in Computer Science (Aarhus, Denmark), and I thank this institution

for this, and more speci�cally U�e Engberg. I also wish to thank the referees,

the authors and the programme committee members for their very precise and

timely job. Many thanks are also due to Michael Mislove who kindly supported

the workshop by letting us submit the papers through the Electronic Notes in

Theoretical Computer Science. Last but not least, I wish to thank the Concur

organizers, Anna Ingolfsdottir, Luca Aceto and Arne Skou, and the Workshop

coordinator, Hans H�uttel, for making this possible.

Eric Goubault, the 5'th of July 2001.
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(Di)topology with applications to concurrency. A
tutorial

Martin Raussen, Department of Mathematical Sciences

Aalborg University, Fredrik Bajersvej 7G

DK-9220 Aalborg �st, Denmark

e-mail:raussen@math.auc.dk

1 Introduction

1.1 Topology in concurrency?

From a general perspective, concurrency theory is using many mathematical tools. Pre-

dominant are the use of graph theory (often labeled directed graphs) and of logics. Topol-

ogy has also played a role. Many people talk about the topology of networks meaning

nothing else than the graph determined by the connections in the netwok. General (or

set-theoretic) topology has been applied in, e.g., �xed point theory, and systematically in

connection with lattice theory in domain theory (work of D. Scott and al.; see [7] for a

classical reference).

We shall proceed in a di�erent direction: We want to give evidence for that also classical

algebraic topology (with roots in mainly geometric problems) has a capacity of modelling

concurrent processes and interesting phenomena attached to them { after a \twist".

1.2 Example: Progress graphs

The �rst \algebraic topological" seems to be that of a progress graph and has appeared in

operating systems theory, in particular for describing the problem of \deadly embrace"1 in

\multiprogramming systems". Progress graphs are introduced in [1], but attributed there

to E. W. Dijkstra. In fact they also appeared slightly earlier (for editorial reasons it seems)

in [11].

The basic idea is to give a description of what can happen when several processes

are modifying shared ressources. Given a shared resource a, we see it as its associated

semaphore that rules its behaviour with respect to processes. For instance, if a is an

ordinary shared variable, it is customary to use its semaphore to ensure that only one

process at a time can write on it (this is mutual exclusion). Then, given n deterministic

1as E. W. Dijkstra originally put it in [2], now more usually called deadlock.

1
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sequential processes Q1 : : : ; Qn, abstracted as a sequence of locks and unlocks on shared

objects, Qi = R1a
1

i :R2a
2

i : : : R
i
na

ni

i (Rk being P or V )2, there is a natural way to understand

the possible behaviours of their concurrent execution, by associating to each process a

coordinate line in Rn. The state of the system corresponds to a point in Rn, whose ith

coordinate describes the state (or \local time") of the ith processor.

1.2.1 Example

Consider a system with �nitely many processes running altogether. We assume that each

process starts at (local time) 0 and �nishes at (local time) 1; the P and V actions correspond

to sequences of real numbers between 0 and 1, which re
ect the order of the P 's and V 's.

The initial state is (0; :::; 0) and the �nal state is (1; :::; 1). An example consisting of the

two processes T1 = Pa:Pb:Vb:Va and T2 = Pb:Pa:Va:Vb gives rise to the two dimensional

progress graph of Fig. 1.2.1.
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Figure 1: Example of a progress graph

The shaded area represents states which are not allowed in any execution path, since

they correspond to mutual exclusion. Such states constitute the forbidden region. An

execution path in an n-dimensional progress graph in the unit square in Rn is a path

from the initial state (0; :::; 0) to the �nal state (1; :::; 1) avoiding the forbidden region

and increasing in each coordinate { time cannot run backwards. We call these paths

directed paths or dipaths. This entails that paths reaching the states in the dashed square

underneath the forbidden region, marked \unsafe" are deemed to deadlock, i.e., they cannot

possibly reach the allowed terminal state which is (1; 1) in dimension 2. Similarly, by

reversing the direction of time, the states in the square above the forbidden region, marked

\unreachable", cannot be reached from the initial state, which is (0; 0) here. Also notice

2Using E.W. Dijkstra's notation P and V [2] for respectively acquiring and releasing a lock on a

semaphore.
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that all terminating paths above the forbidden region are \equivalent" in some sense, given

that they are all characterized by the fact that T2 gets a and b before T1 (as far as resources

are concerned, we call this a schedule). Similarly, all paths below the forbidden region are

characterized by the fact that T1 gets a and b before T2 does.

1.3 Directed homotopy

In this picture, one can already recognize many ingredients that are at the center of the

main problem of algebraic topology, namely the classi�cation of shapes modulo \elastic

deformation". As a matter of fact, the actual coordinates that are chosen for representing

the times at which Ps and Vs occur are unimportant, and these can be \stretched" (pre-

serving the order on the axes) in any manner, so the properties (deadlocks, schedules etc.)

are invariant under some notion of deformation. A deformation (e.g. of paths) is called

a homotopy in topology. Since directions (partial orders) are essential, we have to insist

on that those are preserved under deformations. We call such an order preserving defor-

mation of paths a directed homotopy or dihomotopy. Already for 2-dimensional progress

graphs, this yields a concept di�erent from the classical one: Consider for instance the

two homeomorphic shapes (deformable into each other by an elastic deformation) with

two holes in Fig. 2 and Fig. 3. In Fig. 2, there are four essentially di�erent dipaths up to

dihomotopy (i.e. four schedules corresponding to all possibilities of accesses of resources a

and b) whereas in Fig. 3, there are only three dipaths up to dihomotopy.

3
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Figure 2: Pa:Va:Pb:VbjPa:Va:Pb:Vb
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VbPb Pa Va

Pa

Va

Pb

Vb

Figure 3: Pb:Vb:Pa:VajPa:Va:Pb:Vb

2 A short Tutorial in Topology

In this chapter, we touch upon central notions, methods and results from algebraic topology

that have been applied or modi�ed with applications in concurrency in mind { or where

there should be a potential to do so in future work. Of course, these pages cannot replace

a book; proofs are mainly omitted. There are lots of books at all levels on Algebraic

Topology on the market; a nice one [9] is available on the internet.

2.1 Topological Spaces

Topological spaces are generalizations of metric spaces. They model \nearness" in more

abstract situations. An axiomatic formulation makes use of open subsets. In a metric space

X with distance function d, a subset U � X is open if, for every x 2 X there is a positive

real number " > 0, such that U"(x) = fy 2 Xj d(x; y) < "g � U .

De�nition 2.1 1. A topological space is a pair (X;U) with U � 2X a system of (open)

subsets such that

(a) X; ; 2 U ;

(b) Any union of open sets is open.

(c) Any �nite intersection of open sets is open.

2. A subset A � X is closed if and only if its complement X n A is open.

5
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3. Two points x; y 2 X can be separated if there are open sets Ux; Uy 2 U such that

x 2 Ux; y 2 Uy and Ux \ Uy = ;.

4. A topological space such that any pair of points x 6= y 2 X can be separated is called

Hausdor�.

Example 2.2 1. A metric space is Hausdor�.

2. A strange topology on X = R2 is given by: U � X is open if and only if for every

(x; y) 2 U there is an " > 0 such that ]x � "; x + "[�R � U . This is a topological

space in which two points on the same vertical line cannot be separated.

3. Many computer scientists are familiar with the Scott topology.

Maps between topological spaces that preserve nearness are called continuous. They are

generalizations of the continuous maps between metric spaces mapping points \suÆciently

close" to each other into points close to each other. A neat formulation is:

De�nition 2.3 A map f : X ! Y between two topological spaces X and Y is continuous

if and only if f�1(U) � X is open for every open set U � Y .

Example 2.4 Let X = R2 be endowed with the topology from Ex. 2.2 and Y = R2 endowed

with the (standard) topology inherited from the standard metric. The identity map id : X !

Y is not continuous, whereas the identity map id : Y ! X is continuous.

De�nition 2.5 1. A map f : X ! Y between two topological spaces X and Y is called

a homeomorphism if it is a bijection and if both f and its inverse f�1 : Y ! X are

continuous.

2. Two topological spaces are called homeomorphic if and only if there exists a homeo-

morphism f : X ! Y .

Example 2.6 1. The open interval ]0; 1[ is homeomorphic to the real half-line ]0;1[

(both with standard topology inherited from the standard metric). A homeomorphism

is given by the map f :]0; 1[!]0;1[; f(x) = x

1�x
with f�1(y) = y

1+y
. In particular, a

bounded and a non-bounded space can be homeomorphic.

2. A 2-dimensional sphere (boundary of a 3-dimensional ball) is homeomorphic to an

ellipsoid, but not to a torus (doughnut).

3. The two topologies on R2 from Ex. 2.2.2 give rise to non-homeomorphic spaces. It

is easy to see that a space homeomorphic to a Hausdor� space has to be Hausdor�

again.

Homeomorphy is an equivalence relation. From the topological point of view, one

should not discriminate between two homeomorphic topological spaces from each other.

6
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2.2 Paths

Let I = [0; 1] denote the unit interval with standard metric and topology, and let X denote

a topological space. Any continuous map � : I ! X is called a path in X.

How can one compose paths? In general this is not possible. But if the endpoint �1(1)

of �1 agrees with the start point �2(0) of �2, their concatenation �1 ��2 : I ! X is de�ned

by (�1 � �2)(s) =

�
�1(2s); t � 1

2

�2(2s� 1); t � 1

2
:

(Both paths are pursued with \double speed").

Concatenation de�nes a (non-commutative, non-associative) monoidal structure on the

path space P(X) of all paths on X. (OBS: Not all elements of P(X) can be composed

with each other).

De�nition 2.7 A topological space X is called path-connected if and only if, for every

pair of elements x0; x1 2 X, there exists a path � : I ! X with �(0) = x0 and �(1) = x1.

2.3 Homotopy

What is a path in the space of maps between two topological spaces X and Y ? Let again

I denote the unit interval.

De�nition 2.8 1. A homotopy is a family Ht : X ! Y; t 2 I of maps, such that the

associated map H : X � I ! Y is continuous.

2. Two continuous maps f; g : X ! Y are homotopic if and only if there is a homotopy

H : X � I ! Y such that H(x; 0) = f(x) and H(x; 1) = g(x) for all x 2 X.

Example 2.9 1. Let S1 = f(x; y)jx2 + y2 = 1g � R2 denote the unit circle. The map

H : S1� I ! R2; H((x; y); t) = (tx; ty) is a homotopy between the constant map and

the inclusion of the unit circle into R2.

2. There is no homotopy between the inclusion i : S1 ! R2 n f(0; 0)g in the pointed

plane and any constant map c : S1 ! R2 n f(0; 0)g.

Homeomorphy is still a quite �ne relation between topological spaces. It is in gen-

eral quite diÆcult to �nd algebraic counterparts to help with a classi�cation of certain

spaces up to homeomorphism. The following relation is coarser and often easier to handle

algebraically:

De�nition 2.10 1. A continuous map f : X ! Y is called a homotopy equivalence if

there are a continuous map g : Y ! X and two homotopies between g Æ f : X ! X

and idX , resp. f Æ g : Y ! Y and idY .

2. Two spaces X and Y are called homotopy equivalent if and only if there is a homotopy

equivalence f : X ! Y .

7
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Example 2.11 1. The spaces X = S1 and Y = R2 n f(0; 0)g are homotopy equivalent

(though of di�erent dimension) via the inclusion map i : X ! Y and the \con-

traction" c : Y ! X with c(x; y) = ( x

x2+y2
; y

x2+y2
). In fact, c Æ i = idX ; the map

H : Y � I ! Y; H((x; y); t) = (1 � t)(x; y) + t( x
x2+y2

; y

x2+y2
) de�nes a homotopy

between idY (t = 0) and i Æ c(t = 1).

2. The spaces Z = R2 and Y (from above) are not homotopy equivalent, as will be

shown in Sect. 2.5

2.4 The fundamental group

2.4.1 De�nitions

We shall now introduce the �rst algebraic construction associating to a topological space

X a group. We shall make use of (some of the) paths considered in Sect. 2.2 \up to" a

speci�c type of homotopy. More speci�cally: Let X denote a topological space, and let

x0 2 X denote an (arbitrarily chosen) basepoint.

De�nition 2.12 1. A path � : I ! X is called a loop with basepoint x0 if �(0) =

�(1) = x0. The set of loops with basepoint x0 is denoted P1(X; x0).

2. Concatenation de�nes a binary operation C : P1(X; x0)� P1(X; x0) ! P1(X; x0).

3. A homotopy of loops at x0 is a family of loops Ht : I ! X at x0 such that the

associated map H : I � I ! X; H(x; t) = Ht(x) is continuous.

4. Two loops � and � at x0 are homotopic if there exists a homotopy Ht of loops with

H0 = � and H1 = �. In that case, we write: � ' �.

It is essential that every path in the homotopy is a loop, i.e., that Ht(0) = Ht(1) for all

t 2 I. Moreover, loops with the same basepoint can always be concatenated.

Example 2.13 1. Let X = Rn and x0 2 Rn any base point. Any two loops �; � at x0
are homotopic via the linear homotopy Ht = (1� t)�+ t�. The same result holds for

a convex subset of Rn, and even for a subset X that is star-shaped with respect to

x0 2 X, i.e., containing the line segment between x0 and every y 2 X.

2. The same argument does not work for Yn = Rn n f0g. It turns out that two loops in

Yn are always homotopic for n > 2, but not always for n = 2.

3. A reparametrization of a path (loop) � in X is a composition � = � Æ ' where ' is

a continuous map with '(0) = 0 and '(1) = 1. Essentially, a reparametrization of �

is a loop with the same base point running along the same trace as �, but possibly at

another \speed".

A loop � in X and every reparametrization � = � Æ ' are homotopic; a homotopy is

given by Ht(s) = �((1� t)'(s) + ts).

8
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Proposition 2.14 1. The homotopy relation on paths with �xed basepoint de�nes an

equivalence relation. The set of equivalence classes is denoted �1(X; x0).

2. Concatenation factors over the homotopy relation and thus de�nes a binary operation.

C : �1(X; x0)� �1(X; x0) ! �1(X; x0). We write [�] � [�] for C([�]; [�]).

3. �1(X; x0) with the operation � is a group.

Proof. (Sketch)

1. Re
exivity : Homotopy constant in t. Symmetry : ~H(t) = H(1 � t). Transitiv-

ity : Concatenation of two homotopies H1 and H2 \in the parameter t": Ht =�
H1(2t) t � 1

2

H2(2t� 1) t � 1

2
:

2. Concatenation of two homotopies H1 and H2 \in the parameter s": Ht = H1

t �H
2

t .

3. Associativity: �1 � (�2 � �3) is a reparametrization of (�1 � �2) � �3. Use Ex. 2.13.3.

Concatenation of any loop � at x0 with the constant loop c (with c(s) = x0 for all

s 2 I) yields a reparametrization of �; hence [c] is a two-sided identity in �1(X; x0).

The inverse path to a path in X is de�ned by ��(s) = �(1�s). The path �t(s) = �(ts)

runs from �(0) to �(t). For every t 2 I, the concatenation �t � �t is a loop at x0.

Altogether, these maps de�ne a homotopy of loops between � � �� and c = �0 � �0.

Replacing � with �� yields a homotopy between �� � � and c, i.e., [��] is inverse to [�]

in �1(X; x0).
2

Example 2.15 1. �1(R
n; x0) is the (one-element) trivial group.

2. The fundamental group of a circle is isomorphic to the integers. (To a loop on the

circle, you may associate its winding number counting the total number of { directed

{ turns around the circle.)

The fundamental group of a higher-idmensional sphere is trivial.

3. The fundamental group of a space is in general not commutative. The simplest

example of a space with non-commutative fundamental group consisting of two circles

with one common point. It turns out that the fundamental group of this space (with

the common point as base point) is a free group on two generators, cf. Ex. 2.23.2.

The de�nition of the fundamental group depends on the base point. But it is easy

to see, that fundamental groups corresponding to two points x0; x1 in the space X are

isomorphic, if there exists a path � from x0 to x1. A concrete isomorphism is given by

[�] ! [� � � � ��1].

Remark 2.16 The geometric shapes under consideration are usually uncountable, and so

is the set of loops through a given point. The homotopy relation has two important e�ects:

it reduces the cardinality to something typically discrete (�nite or at most countable) and

it imposes an algebraic (group) structure.

9
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2.4.2 Induced homomorphisms

A continuous map f : X ! Y induces a map f# : �1(X; x0) ! �1(Y; f(x0)) between the

associated fundamental groups. The de�nition is easy: Associate to a loop � in X the

loop f Æ � in Y ; this map factors over the homotopy relation. Moreover, f# is a group

homomorphism.

Example 2.17 Let f : S1 ! S1 denote the circle self-map, that \doubles angles", i.e.,

f(exp(it)) = exp(2it). The winding number of the loop f Æ� is twice the winding number of

the loop � on S1. Hence, f# : Z �= �1(S
1; 1) ! �1(S

1; 1) �= Z corresponds to multiplication

with 2.

The following two properties of induced homomorphism are easy to derive, but essential:

1. Let f1; f2 : X ! Y denote homotopic3 maps from X to Y . Then, the induced maps

fj# : �1(X; x0) ! �1(Y ; f(x0)) coincide.

Corollary 2.18 Homotopy equivalent spaces have isomorphic fundamental groups.

2. Let g : Y ! Z denote another continuous map inducing the homomorphism g# :

�1(Y ; f(x0)) ! �1(Z; g(f(x0))). The composite map g Æ f : X ! Z induces the

homomorphism (g Æ f)# : �1(X; x0) ! �1(Z; g(f(x0))).

Lemma 2.19 The homomorphisms (gÆf)# = g# Æf# : �1(X; x0) ! �1(Z; g(f(x0)))

coincide.

Generally speaking, we have the �rst example of a functor (\translator") that allows to

associate to continuous geometric objects and their relations (topological spaces and con-

tinuous maps) discrete algebraic counterparts. The aim is to allow geometric conclusions

based on properties of these algebaic images.

2.5 Functoriality: an example

The following is to serve as an example how the translation mechanims from topology to

algebra can serve to yield non-trivial topological reuslts. Let Bn := fx 2 Rnjjjxjj � 1g

denote an n-dimensional ball, and Sn�1 = @Bn = fx 2 Rnj jjxjj = 1g denote an (n� 1)-

dimensional sphere.

Theorem 2.20 (Brouwer's �xed point theorem) Every continuous self-map f : Bn !

Bn has a �xed point x0 2 B
n (f(x0) = x0).

3The homotopy has to preserve base points.
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A proof for this theorem is elementary for n = 1. In that case, the continuous map

g : [0; 1] ! R; g(x) = f(x)� x has the number 0 amongst its values since g(�1) � 0 and

g(1) � 0. For n > 1, it is a consequence of the following

Lemma 2.21 There is no continuous map F : Bn ! Sn�1 extending the identity on Sn�1.

Proof. The proof given here applies only to n = 2. For a proof in higher dimensions,

one needs higher homotopy or homology groups cf. e.g. [9]):

Let i : Sn�1 ! Bn denote the continuous inclusion map. A map F as in the lemma

would satisfy: F Æ i = id, the identity map on Sn�1. On the fundamental groups level

(choose x0 2 S
n�1), this amounts to

id# : �1(S
n�1; x0) = F# Æ i# : �1(S

n�1; x0) ! �1(B
n; x0) ! �1(S

n�1; x0):

Since Bn is convex (homotopy equivalent to a one-point space), we have �1(B
n; x0) = 0,

and thus id# has to be the zero-map. On the other hand, id# is the identity map on

�1(S
n�1; x0). This yieldss a contradiction for n = 2, where �1(S

1; x0) �= Z: idZ 6= 0.
2

Proof. of Brouwer's �xed point theorem. Assume there is a continuous map f : Bn !

Bn without �xed point. Then, one can construct a continuous map F : Bn ! Sn�1 by

associating to x the intersection of the half-line starting at f(x) through x with Sn�1

(can be described by a formula using the solution of a quadratic equation and is thus

continuous). Obviously, F restricts to the identity map on On�1. The existence of F

contradicts Lemma 2.21.
2

The general idea is, that the (highly structured) discrete structure corresponding to a

continuous structue is often easier to overlook than the original. Most often, the methods

gives rise to impossibility results. In some cases, existence of objects or maps can be

unveiled algebraically; this requires a proof that the vanishing of an algebraic obstruction

is not only necessary, but indeed suÆcient for the construction.

2.6 Compositions: The van Kampen theorem

The calculation of fundamental groups and of induced homomorphisms is diÆcult in gen-

eral. One of the methods is a calculation \by recurrence", i.e., determining the fundamental

group of a space by considering fundamental groups of subspaces and of relations between

those. We look at the simplest case only:

Let A1; A2 � X denote subsets each containing the base point x0. Let ij : Aj ! X,

i12 : A1 \ A2 ! A1 and i21 : A1 \ A2 ! A2 denote the inclusion maps. They satisfy:

i1 Æ i12 = i2 Æ i21 : A1 \ A2 ! X, and the obvious relations can be seen from the diagrams

A1 \ A2
//

��

A1

��

�1(A1 \ A2; x0) //

��

�1(A1; x0)

��
A2

// X �1(A2; x0) // �1(X; x0)
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From the fundamental groups of the pieces Aj, one can construct the free group �1(A1; x0)�

�1(A2; x0) generated by the two fundamental groups. It consists of all words in the two \al-

phabets". It contains the normal subgroup N generated by all words of type i12(�)i21(�
�1)

with � 2 �1(A1 \ A2; x0).

Theorem 2.22 (van Kampen theorem) Let A1; A2 � X denote path-connected (cf. Def. 2.7)

open subsets with path-connected intersection A1 \A2. The fundamental group pi1(X; x0)

is then isomorphic to the quotient group of �1(A1; x0) � �1(A2; x0) by the normal group N

described above.

A more categorial way to phrase van Kampen's theorem is as follows: The push-out

diagram of spaces on the left-hand side of the diagram above is translated into a push-out

diagram of groups on the right-hand side of that diagram.

Remark 2.23 1. It is essential that the intersection is path-connected, as well. The

van Kampen theorem does thus not apply to the calculation of the fundamental group

of the circle from the (trivial) fundamental groups of two half-circles (well, a bit

more than a half to ensure openness of the pieces). The intersection consists of two

\intervals" that cannot be connected by a path.

On the other hand, the theorem shows that the fundamental group of an n-sphere Sn

is trivial for n > 1: An n-sphere can be described as the union of two half-spheres,

that are homeomorphic to n-dimensional balls with trivial fundamental groups. Their

intersection is homotopy equivalent to an (n� 1)-dimensional sphere, which is path-

connected for n > 1.

2. The fundamental group of the \one point union" of two subspaces (in which the base

point has a neighborhood that is contractable, i.e., homotopy equivalent to a 1-point

space) is the free product of the fundamental group of the subspaces.

2.7 Further topics

Higher homotopy groups De�nition. Abelian groups. DiÆcult to determine. Results

on spheres.

Particular topological spaces Simplicial complexes. CW-complexes. Approximation.

Simplicial homology De�nition. Induced maps.

Singular homology De�nition. Induced maps. Naturality. Homotopy invariance.

Mayer-Vietoris Homology of unions and intersections. Long exact sequence.

Functoriality Brouwer. Euclidean spaces up to homeomorphism.

12

12



3 A tutorial in ditopology

3.1 Introduction

Ditopology is not yet a well-established disciplin. It presents our attempt to apply method-

ology from classical topology to the study of concurrency. The main di�erence compared

to classical topology is, that we have to work with spaces and maps with an extra structure

given by a (local) partial order. In the applications, the partial order re
ects the time 
ow

for the processors involved in the concurrent system under consideration.

Hence, we have to rephrase parts of the classical curriculum in topology in a category of

partially ordered spaces and maps between them. The term ditopology (directed topology)

was coined for this situation. It turns out, that this rephrasing is not just a dull exercise,

and that the partial orders force you to invent notions that seem necessary for progress-

ing with the applications { sometimes with help from neighbouring disciplines like, e.g.,

relativity theory.

Algebraic topology has been highly successful in deriving results about geometric struc-

tures that are robust under deformations. The key ingredient is very often an algebraization

of the geometric structures to be considered and the use of functoriality, cf. Sect. 2.5. The

introduction to [12] is a very readable account of our dream how this methodology might

be applied in concurrency theory; moreover, it gives an elementary example (non-existence

of a simulation), in which this dream actually works out.

We have to admit from the very beginning, that ditopology is not at all as advanced as

classical topology is. The foundational de�nitions are still under debate, only few general

results or calculations are achieved so far. Nevertheless, the few tools and results have

shown to be useful in several applications; to mention

� An algorithm detecting deadlocks and associated safe/unsafe regions for concurrent

systems generalising the progress graphs studied in the introduction [3, 4, 6];

� A topological underpinning of the result \2-phase locking is safe" used as a data

engineering approach to ensure serialisability of procotcols for distributed databases

[8, 5].

3.2 (Local) po-spaces

We start with elementary de�nitions and properties of po-spaces, cf. e.g. [7]:

De�nition 3.1 1. A partial order � on a set U is a re
exive, transitive and antisym-

metric relation. We wite x < y for (x � y and x 6= y).

2. A partial order � on a topological space X is called closed if � is a closed subset

(cf. Def. 2.1.2) of X � X in the product topology. If � is closed, we call (X;�) a

po-space.

Remark 3.2 Let (X;�) denote a po-space.
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1. For every x 2 X, the sets #x = fy 2 Xjy � xg and "x = fy 2 Xjy � xg are closed.

2. For every pair of points y1; y2 2 X, the set [y1; y2] = fx 2 Xj y1 � x � y2g =#y2\ "

y1 is closed.

3. A po-space is Hausdor�[7].

Example 3.3 The progress graph � of a concurrent system modelling mutual exclusion

from Sect. 1.2 can be considered as a po-space as follows: Rn is equipped with the partial

order

(x1; : : : ; xn) � (y1; : : : ; yn) , 81 � i � n : xi � yi:

The progress graph � � Rn inherits the partial order as a subspace.

A loop cannot be given a consistent partial order: anti-symmetry will always be vio-

lated. But locally, \within the loop", there is still an order between the steps. We have

thus to generalise our framework to include situations where a partial order only can be

established locally :

De�nition 3.4 Let X be a topological space. A collection U(X) of pairs (U;�U) with

partially ordered open subsets U covering X is a local partial order on X if for every

x 2 X there is a nonempty open neighbourhood W (x) � X such that the restrictions of

�U to W (x) coincide for all U 2 U(X) with x 2 U , i.e.,

y �U1 z () y �U2 z for all U1; U2 2 U(X) such that x 2 Ui

and for all y; z 2 W (x) \ U1 \ U2

A neighbourhoodW (x) with a well-determined partial order as above is called a po-neighbourhood

of x.

Example 3.5 The circle S1 = fei� 2 Cg has a local partial order: the open subsets

U1 = fei� 2 S1j 0 < � <
3�

2
g and U2 = fei� 2 S1j � < � <

5�

2
g

are (partially) ordered by the order on the �'s. Notice that the relation on S1 generated

by these local partial orders by taking the transitive closure is of no use: it is the trivial

relation: x � y for any pair of elements x, y 2 S1.

Remark 3.6 1. In the applications, only processes without loops can be moddelled by

a partially ordered space. Processes allowing loops have to be modelled by locally

partially ordered spaces.

2. It is necessary to de�ne when two coverings by partially ordered subspaces de�ne the

same local partial order, cf. [5].
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3.3 Dimaps and Dipaths

Looking back at our example on progress graphs, we observe that executions correspond

to paths (de�ned on a closed interval I with the usual order) in the partially ordered space

preserving that partial order. A generalisation of this concept is as follows:

De�nition 3.7 Let (X;U) and (Y;V) be locally partially ordered spaces. A continuous map

f : X ! Y is called a dimap (directed map) if for any x 2 X there are po-neighborhoods

W (x) and W (f(x)) such that

x1 �W (x) x2 ) f(x1) �W (f(x)) f(x2) whenever x1; x2 2 f
�1(W (f(x))) \W (x)

It is not hard to see, that this de�nition does not depend on the choice of represen-

tative U of the equivalence class of local po-structures (cf. Rem. 3.6.2). In the case of

po-spaces (not just local ones), dimaps are the same as monotone continuous maps. It is

straightforward to see that local po-spaces and dimaps form a category.

A dipath is a dimap de�ned on either the unit interval I (relevant for paths in compact

po-spaces; this is the approach used e.g. in [5, 10]), or, the half-line R�0 := ft 2 Rjt �

0g (relevant for paths in local po- spaces) { both with the usual order as the partial

order relation � on the domain. An execution where one process loops in�nitely often

corresponds to the exponential map ' : R�0 ! S1; '(t) = exp(2�it) considered as a

dipath; two processors looping in�nitely many times can be modelled by a dipath into the

2-torus of type  : R�0 ! T = S1 � S1;  (t) = ('(mt); '(nt)); m; n > 0:

De�nition 3.8 Let X denote a local po-space.

1. A dipath in X is a dimap � : R�0 ! X.

2. We call � �nite it there is a real number T > 0 such that �s restriction to [T;1[ is

constant.

3. We call a dipath � in X an extension of a dipath � in X if there is a real number

T > 0 and a surjective dimap ' : [0; T [! R�0 such that the diagram

[0; T [
' //

�

��

R�0

�

��
R�0

� // X

commutes and such that �s restriction to [T;1[ is non-constant.

4. A dipath � : R�0 ! X is called inextendible if it does not admit any extension

� : R�0 ! X.

5. A new local partial order � on X is de�ned as follows: x � y , there is a �nite

dipath from x to y.
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6. For X0; X1 � X, we de�ne the dipath spaces

~P1(X;X0; X1) = f� : R�0 ! X �nite j �(0) 2 X0; �(T ) 2 X1 for large Tg and

~P1(X;X0;1) = f� : R�0 ! X inextendible j �(0) 2 X0g:

Example 3.9 1. In a �nite mutual exclusion model (with PV semantics) the state space

is X = In n int(F ), the complement of the interior of the forbidden region F in a

cube. X0 = f0g consists of the initial point; X1 will typically either contain only

the �nal point 1 or be a (�nite) set of (deadlock { cf. Def. 3.11) points. For such

a compact po-space, it is a bit arti�cial to consider dipaths de�ned on R�0; dipaths

de�ned on a closed interval I give rise to an equivalent notion.

2. Let X = S1 denote a circle, or more general, X = (S1)n denote an n-torus (with the

product local partial order) modelling concurrent loops. In that case, the interesting

dipaths are the non-�nite ones. If a forbidden region is removed from X, �nite dipaths

ending in a deadlock arise naturally, as well.

We would like to have a clean de�nition for dimaps that send inextendible dipaths to

inextendible dipaths in order to imitate the set-up of homotopy alluded to in Sect. 2. This

is work in progress.

3.4 Dihomotopy

State spaces for concurrent systems tend to have an enormous (but �nite) size. The main

idea with the ditopology approach is to replace the �nite state space by a continuous

higher-dimensional (in�nite) one, and then to impose relevant equivalent relations on the

associated space of dipaths (and, as a result, on the state space itself), yielding classi�cation

patterns that apply to the original state space. As an e�ect, the number of essentially

di�erent states can usually be reduced drastically.

The relevant equivalence relation is given by a special type of homotopy:

De�nition 3.10 Let X denote a local po-space with subspaces X0; X1 � X: A continuous

family Ht : R�0 ! X of dipaths (giving rise to a homotopy H : R�0 � I ! X) is called

1. a dihomotopy from X0 to X1, if every map Ht 2 ~P1(X;X0; X1) is a �nite dipath

from X0 to X1.

2. an inextendible dihomotopy from X0 if every map Ht 2 ~P1(X;X0;1) is an inex-

tendible dipath from X0. .

These notions give rise to equivalence relations on the path spaces. Their quotient sets are

denoted by ~�1(X;X0; X1), resp. ~�1(X;X0;1):
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Why is there any relation between dihomotopy and concurrency? In fact, dihomotopy

of dipaths corresponds to the commutativity of local actions. Consider the following basic

example: There are (essentially, i.e., up to reparametrization) two dipaths in the boundary

of a rectangle from the \bottom" edge to the \top" edge. As dipaths in the

boundary they are not dihomotopic (even not homotopic with end points �xed);

�lled-in rectangle they are dihomotopic (connect them linearly).

At least in dimension two, it is quite convincing, that execution paths in the mutual exclu-

sion models discussed in the introduction yield equivalent results if they are dihomotopic

(and that you can invent situations where they yield inequivalent results, if not). A theoret-

ical classi�cation of dipaths up to dihomotopy in 2-dimensionial mutual exclusion models

and an algorithm determining the (�nite) set ~P1(X; 0; 1) is described in [10].

The dihomotopy notion is certainly even more interesting and more promising { but also

more involved in higher dimensions. Let us again consider the basic example, dipaths from

the bottom to the top on the boundary of a 3-dimensional cube. This boundary models

a piece of shared memory, that two, but not three processes can access and manipulate

in a commutative way. In this simple case, it is elementary to see that any execution is

equivalent to a serial one, and that all serial ones are equivalent { corresponding to the

fact, that all dipaths in the model are dihomotopic to each other.

The following example of a space consisting of a cube from which 3 forbidden \bars"

are removed (cf. Fig. 4), is a bit more involved and probably already quite diÆcult to

analyse combinatorially: It describes 3 concurrent processes that access 3 shared objects,

Figure 4: Room with 3 barriers

two of which can only handle one of them at any given time while the \middle" one can

handle access of two of them in parallel. In this case, there exist �ve essentially di�erent

schedules corresponding to dihomotopy classes of dipaths. Two of those dipaths are in
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fact homotopic (with end points �xed), but not dihomotopic. An example in which the

schedules corresponding to those may lead to di�erent results of a concurrent calculation

is given in [5].

Which algebraic structures should one consider on top of the dihomotopy set ~�1? This

question is not quite settled yet. The most promising so far is that of a partial order in

non-published work of S. Soko lowski.

3.5 Deadlocks, unsafe and unreachable regions

We survey a fully-developped fast algorithm detecting deadlocks, unsafe and unreachable

regions for mutual exclusion models. Though it does not use the general framework for

local po-spaces nor the notion of dihomotopy, it was conceived in the same geometrical

spirit. Details can be found in [3, 4].

3.5.1 De�nitions

In the applications, a deadlock is a state in which the system under consideration is blocked,

i.e., there is no execution leaving that particular state. The associated unsafe region is the

set of states that are bound to be blocked in that deadlock somewhere in the future. If

executions are modelled by dipaths in (local) po-spaces, both notions (and their relatives)

have counterparts with nice and clear de�nitions:

De�nition 3.11 1. An element x 2 X with " x = fxg is called a deadlock. The set

of all deadlocks in X is denoted by D(X). (Sometimes, a particular �nal state is

exempted from D(X)).

2. The unsafe region Uns(X;X1) = U(X;X;X1) consists of all x 2 X that cannot be

connected to any point in X1 by a dipath, i.e.,

Uns(X;X1) = fx 2 Xj~P1(X; x;X1) = ;g = X n (#X1) = fx 2 Xj("x) \X1 = ;g:

3. The unreachable region Unr(X;X0) = U(X;X0; X) consists of all x 2 X that cannot

be reached from any point in X0 by a dipath, i.e.,

Unr(X;X0) = fx 2 Xj~P1(X;X0; x) = ;g = X n ("X0) = fx 2 Xj(#x) \X0 = ;g:

Remark 3.12 1. The symbols " and # above have to be interpreted with respect to the

partial order � from Def. 3.8.

2. Consider the po-space associated to a PV-program discussed in Sect. 1.2 with �nal

state 1. Then Uns(X; 1) corresponds exactly to the unsafe region of those states that

can only reach a deadlock (di�erent from 1).
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3.5.2 Detection of deadlocks and unsafe areas for mutual exclusion models

Unsafe and unreachable regions can be algorithmically determined in the PV model [3, 4]

and we recap here the basic idea of the algorithm.

Suppose the semantics of a PV program is given in terms of a forbidden region F � In

in a hypercube containing forbidden hyperrectangles Ri =
Qn

j=1[a
i
j; b

i
j] � In (with n � 2).

Each of those hyperrectangles models a region that only a limited number of processes can

enter simultaneously. We assume moreover that the coordinates aij are pairwise di�erent

for every 1 � j � n (geometrically, this is a genericity assumption). The relevant state

space is X = In n int(F ).

For any nonempty index set J = fi1; : : : ; ikg de�ne

RJ = Ri1 \ � � � \Rik = [aJ
1
; bJ

1
]� � � � � [aJn; b

J
n]

with aJj = maxfaijji 2 Jg and bJj = minfbijji 2 Jg. This set is again an n�rectangle unless

it is empty (if akj > blj for some 1 � j � n and k; l 2 J). Let aJ = [aJ
1
; : : : ; aJn] = minRJ

denote the minimal point in that hyperrectangle.

For every 1 � j � n, we choose faJj as the \second largest" of the ailj , i.e., faJj =

aisj with ailj � aisj < aJj for all ailj 6= aJj ; and consider the associated hyperrectangle UJ =

[faJ
1
; aJ

1
]�� � ��[faJn; aJn] \below\RJ ; the interior of which is unsafe with respect to aJ . Usually,

it models a large number of \states"; this is where we exploit higher-dimensionality.

Deadlock points in the interior of In are then exactly the minimal points minRJ of

intersections with index set J of cardinality n (the number of processes, i.e. the dimension

of the geometric shape we are studying) such that RJ 6= ; and with minRJ not contained

in any Ri with i 62 J . Deadlock points on the boundary @In can be found using the same

recipe after modi�cation of the hyperrectangles used in the description (cf. [3, 4]).

This description allows to �nd the set D of deadlocks in X and, for every deadlock

a 2 D corresponding to a set of indices Ja, the unsafe hyperrectangle UJa \just below".

To detect the entire unsafe region, let F1 = F [
S
a2D U

Ja . Find the set D1 of deadlocks

in X1 = X n int(F1) � X, and, for every deadlock a 2 D1, the unsafe corresponding

hyperrectangle UJa . Let F2 = F1 [
S
a2D1

UJa etc. (see Fig. 5 { 8 for an example).

The algorithm stops after a �nite number l of loops ending with a set U = Fl and such

that Xl = X n int(U) does no longer contain any deadlocks. The set U consists precisely

of the forbidden and of the unsafe points.

Literally the same algorithm will �nd the unreachable regions after a time reversal

(re
ection in the barycenter of In).

3.6 Further topics

Application 2-phase locked protocols

Related concepts Dicoverings. Po-structure. Homotopy history. Dicomponents.

Models: Cubical complexes with local partial order
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Figure 5: The

forbidden

region

Figure 6: First

step of the algo-

rithm

Figure 7: Sec-

ond step of the

algorithm

Figure 8: Last

step of the algo-

rithm

More structure higher dihomotopy, structure(s), dihomology, functoriality and applica-

tions, relations to classical paradigma in concurrency

References

[1] E.G. Co�man, M.J. Elphick, and A. Shoshani, System deadlocks, Comput. Surveys 3

(1971), no. 2, 67 { 78.

[2] E.W. Dijkstra, Co-operating sequential processes, Programming Languages

(F. Genuys, ed.), Academic Press, New York, 1968, pp. 43{110.

[3] L. Fajstrup, �E. Goubault, and M. Raussen, Detecting Deadlocks in Concurrent Sys-

tems, DTA/LETI/DEIN/SLA 98-61, LETI (CEA - Technologies Avanc�ees), Saclay,

France, August 1998, 25 pp.

[4] , Detecting Deadlocks in Concurrent Systems, CONCUR '98; Concurrency The-

ory (Nice, France) (D. Sangiorgi and R. de Simone, eds.), Lect. Notes Comp. Science,

vol. 1466, Springer-Verlag, September 1998, 9th Int. Conf., Proceedings, pp. 332 {

347.

[5] , Algebraic topology and concurrency, Tech. Report R-99-2008, Department of

Mathematical Sciences, Aalborg University, DK-9220 Aalborg �st, June 1999.

[6] Lisbeth Fajstrup, Loops, ditopology, and deadlocks, Math. Struct. in Comp. Science

10 (2000), 459{480.

[7] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott, A

Compendium of Continuous Lattices, Springer-Verlag, 1980.

[8] J. Gunawardena, Homotopy and concurrency, Bulletin of the EATCS 54 (1994), 184{

193.

[9] Alan Hatcher, Algebraic Topology, to appear at Cambridge University Press; available

at http://www.math.cornell.edu/ hatcher/# ATI, 2001.

20

20



[10] M. Raussen, On the classi�cation of dipaths in geometric models for concurrency,

Math. Struct. in Comp. Science 10 (2000), 427 {457.

[11] A. Shoshani and E.G. Co�man, Sequencing tasks in multiprocess systems to avoid

deadlocks, Eleventh Annual Symposium on Switching and Automata Theory (Santa

Monica, CA, USA), no. 225 - 235, IEEE, 1970.

[12] S. Soko lowski, Investigation of concurrent processes by means of homotopy functors,

Manuscript. Kansas State University. to appear in Math. Struct. Comp. Science, Au-

gust 1999.

21

21



22



Investigating The Algebraic Structure of Dihomotopy Types

Philippe Gaucher

Institut de Recherche Math�ematique Avanc�ee

ULP et CNRS

7 rue Ren�e Descartes

67084 Strasbourg

France

gaucher@math.u-strasbg.fr

July 2001

Abstract

This presentation is the sequel of a paper published in GETCO'00 proceedings
where a research program to construct an appropriate algebraic setting for the study
of deformations of higher dimensional automata was sketched. This paper focuses pre-
cisely on detailing some of its aspects. The main idea is that the category of homotopy
types can be embedded in a new category of dihomotopy types, the embedding being
realized by the Globe functor. In this latter category, isomorphism classes of objects
are exactly higher dimensional automata up to deformations leaving invariant their
computer scienti�c properties as presence or not of deadlocks (or everything similar or
related). Some hints to study the algebraic structure of dihomotopy types are given, in
particular a rule to decide whether a statement/notion concerning dihomotopy types
is or not the lifting of another statement/notion concerning homotopy types. This rule
does not enable to guess what is the lifting of a given notion/statement, it only enables
to make the veri�cation, once the lifting has been found.
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1 Introduction

This paper is an expository paper which is the sequel of [Gau01c]. We will come back

only very succinctly on the explanations given in this latter. A technical appendix explains

some of the notions used in the core of the paper and �xes some notations. A reader who

would need more information about algebraic topology or homological algebra could refer

to [May67, Wei94, Rot88, Hat]. A reader who would need more information about the

geometric point of view of concurrency theory could refer to [Gou95, FGR99b].

The purpose is indeed to explain with much more details 1 the speculations of the

last paragraph of [Gau01c]. More precisely, we are going to describe a research program

whose goal is to construct an appropriate algebraic theory of the deformations of higher

dimensional automata (HDA) leaving invariant their computer-scienti�c properties. Most of

the paper is as informal as the preceding one. The term dihomotopy (contraction of directed

homotopy) will be used as an analogue in our context of the usual notion of homotopy.

There are two known ways of modeling higher dimensional automata for us to be able to

study their deformations. 1) The !-categorical approach, where strict globular !-categories

1Even if the limited required number of pages for this paper too entails to make some shortcuts.
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are supposed to encode the algebraic structure of the possible compositions of execution

paths and homotopies between them, initiated by [Pra91] and continued in [Gau00] where

connections with homological ideas of [Gou95] were made. 2) The topological approach

which consists, loosely speaking, to locally endow a topological space with a closed partial

ordering which is supposed to represent the time : this is the notion of local po-space de-

veloped for example in [FGR99b]. The description of these models is sketched in Section 2.

Section 3 is an exposition of the homological constructions which will play a role in the

future algebraic investigations. Once again, the !-categorical case and the topological case

are described in parallel.

In Section 4, the notion of deformation of higher dimensional automata is succinctly

recalled. For further details, see [Gau01c].

Afterwards Section 5 exposes the main ideas about the relation between homotopy types

and dihomotopy types. And some hints to explore the algebraic structure of dihomotopy

types are explained (this question is widely open).

Everything is presented in parallel because, as in usual algebraic topology, the !-

categorical approach and the topological approach present a lot of similarities. In a �rst

version, the paper was organized with respect to the main result of [KV91], that is the

category equivalence between CW-complexes up to weak homotopy equivalence and weak

!-groupoids up to weak homotopy equivalence. By [Sim98], it seems that this latter result

cannot be true, at least with the functors used in Kapranov-Voevodsky's paper. Therefore

in this new version, the presentation of some ideas is slightly changed. I thank Sjoerd Crans

for letting me know this fact.

2 The formalization

2.1 The !-categorical approach

Several authors have noticed that a higher dimensional automaton can be encoded in a

structure of precubical set (De�nition C.1). This idea is implemented in [Cri96] where a

CaML program translating programs written in Concurrent Pascal into (huge !) text �les

is presented.

But such object does not contain any information about the way of composing n-

transitions, hence the idea of adding composition laws. In an !-category (De�nition C.2),

the 1-morphisms represent the execution paths, the 2-morphisms the concurrent execu-

tion of the 1-source and the 1-target of the 2-morphisms we are considering, etc... The

link between this way of modeling higher dimensional automata and the formalization by

precubical sets is the realization functor K 7! �(K) described in Appendix D.

There exist two equivalent notions of (strict) !-categories, the globular one and the

cubical one [AABS00] : the globular version will be used, although all notions could be

3
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adapted to the cubical version. In fact, for some technical reasons (Proposition 3.1), even

a more restrictive notion will be necessary :

De�nition 2.1. [Gau01a] An !-category C is non-contracting if s1x and t1x are 1-dimen-

sional as soon as x is not 0-dimensional. Let f be an !-functor from C to D. The morphism

f is non-contracting if for any 1-dimensional x 2 C, the morphism f(x) is a 1-dimensional

morphism of D. The category of non-contracting !-categories with the non-contracting

!-functors is denoted by !Cat1.

The following proposition ensures that this technical restriction is not too small and

that it does contain all precubical sets.

Proposition 2.1. [Gau01a] For any precubical set K, �(K) is a non-contracting !-

category. The functor � from the category of cubical sets Sets�
preop

to that of !-catego-

ries !Cat yields a functor from Sets�
preop

to the category of non-contracting !-categories

!Cat1.

2.2 The topological approach

Another way of modeling higher dimensional automata is to use the notion of local po-

space. A local po-space is a gluing of the following local situation : 1) a topological space,

2) a partial ordering, 3) as compatibility axiom between both structures, the graph of the

partial ordering is supposed to be closed [FGR99b] (cf. Appendix A).

However the category of local po-spaces is too wide, and as in usual algebraic topology,

a more restrictive notion is necessary to avoid too pathological situations (for instance think

of the Cantor set). A new notion which would play in this context the role played by the

CW-complexes in usual algebraic topology is necessary. This is precisely the subject of

[GG01] (joined work with Eric Goubault).

Let n � 1. Let Dn be the closed n-dimensional disk de�ned by the set of points

(x1; : : : ; xn) of R
n such that x21+ � � �+x

2
n � 1 endowed with the topology induced by that of

R
n . Let Sn�1 = @Dn be the boundary of Dn for n � 1, that is the set of (x1; : : : ; xn) 2 D

n

such that x21 + � � � + x2n = 1. Notice that S0 is the discrete two-point topological space

f�1;+1g. Let I = [0; 1]. Let D0 be the one-point topological space. And let en := Dn
�Sn.

Loosely speaking, globular CW-complexes are gluing of po-spaces
�!
Dn+1 := Glob(Dn) along

�!
S n := Glob(@Dn) = Glob(Sn�1) where Glob is the Globe functor (cf. Appendix A).

Notice that there is a canonical inclusion of po-spaces
�!
S n

�
�!
Dn+1 for n � 1. By

convention, let
�!
S 0 := f0; 1g with the trivial ordering (0 and 1 are not comparable). There

is a canonical inclusion
�!
S 0

�
�!
D1 which is a morphism of po-spaces.

Proposition and De�nition 2.2. [GG01] For any n � 1,
�!
Dn

�
�!
S n�1 with the induced

partial ordering is a po-space. It is called the n-dimensional globular cell. More generally,

4
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every local po-space isomorphic to
�!
Dn

�
�!
S n�1 for some n will be called a n-dimensional

globular cell.

Now we are going to describe the process of attaching globular cells.

1. Start with a discrete set of points X0.

2. Inductively, form the n-skeleton Xn from Xn�1 by attaching globular n-cells �!e n
�

via maps �� :
�!
S n�1

�! Xn�1 with ��(�); ��(�) 2 X0 such that2 : for every non-

decreasing map � from
�!
I to

�!
S n�1 such that �(0) = � and �(1) = �, there exists

0 = t0 < � � � < tk = 1 such that �� Æ �(ti) 2 X
0 for any 0 � i � k which must satisfy

(a) for any 0 � i � k� 1, there exists a globular cell of dimension di with di � n� 1

 i :
�!
Ddi ! Xn�1 such that for any t 2 [ti; ti+1], �� Æ �(t) 2  i(

�!
Ddi) ;

(b) for 0 � i � k � 1, the restriction of �� Æ � to [ti; ti+1] is non-decreasing ;

(c) the map �� Æ � is non-constant ;

Then Xn is the quotient space of the disjoint union Xn�1
F
�

�!
Dn

� of Xn�1 with a

collection of
�!
Dn

� under the identi�cation x � ��(x) for x 2
�!
S n�1
� � @

�!
Dn

�. Thus as

set, Xn = Xn�1
F
�
�!e n

� where each �!e n
� is a n-dimensional globular cell.

3. One can either stop this inductive process at a �nite stage, setting X = Xn, or one

can continue inde�nitely, setting X =
S
nX

n. In the latter case, X is given the weak

topology : A set A � X is open (or closed) if and only if A\Xn is open (or closed) in

Xn for some n (this topology is nothing else but the direct limit of the topology of the

Xn, n 2 N). Such a X is called a globular CW-complex and X0 and the collection of
�!e n

� and its attaching maps �� :
�!
S n�1

�! Xn�1 is called the cellular decomposition

of X.

As trivial examples of globular CW-complexes, there are
�!
Dn+1 and

�!
S n themselves

where the 0-skeleton is, by convention, f�; �g.

We will consider without further mentioning that the segment
�!
I is a globular CW-

complex, with f0; 1g as its 0-skeleton.

Proposition and De�nition 2.3. [GG01] Let X be a globular CW-complex with charac-

teristic maps (��). Let 
 be a continuous map from
�!
I to X. Then 
([0; 1]) \X0 is �nite.

Suppose that there exists 0 � t0 < � � � < tn � 1 with n � 1 such that t0 = 0, tn = 1, such

that for any 0 � i � n, 
(ti) 2 X
0, and at last such that for any 0 � i � n� 1, there exists

an �i (necessarily unique) such that for t 2 [ti; ti+1], 
(t) 2 ��i(
�!
Dn�). Then such a 
 is

called an execution path if the restriction 
 �[ti;ti+1] is non-decreasing.

2This condition will appear to be necessary in the sequel.
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X

TIME

Figure 1: Symbolic representation of Glob(X) for some topological space X

By constant execution paths, one means an execution paths 
 such that 
([0; 1]) =

f
(0)g. The points (i.e. elements of the 0-skeleton) of a given globular CW-complexes X

are also called states. Some of them are fairly special:

De�nition 2.2. Let X be a globular CW-complex. A point � of X0 is initial (resp. �nal)

if for any execution path � such that �(1) = � (resp. �(0) = �), then � is the constant path

�.

Let us now describe the category of globular CW-complexes.

De�nition 2.3. [GG01] The category glCW of globular CW-complexes is the category

having as objects the globular CW-complexes and as morphisms the continuous maps f :

X �! Y satisfying the two following properties :

� f(X0) � Y 0

� for every non-constant execution path � of X, f Æ � must not only be an execution

path (f must preserve partial order), but also f Æ� must be non-constant as well : we

say that f must be non-contracting.

The condition of non-contractibility is very analogous to the notion of non-contracting

!-functors appearing in [Gau00], and is necessary for similar reasons. In particular, if the

constant paths are not removed from P
�X (see Section 3.2 for the de�nition), then this

latter spaces are homotopy equivalent to the discrete set X0 (the 0-skeleton of X !). And

the removing of the constant paths from P
�X entails to remove also the constant paths

from PX in order to keep the existence of both natural transformations P! P
�. Then the

mappings P and P� can be made functorial only if we work with non-contracting maps as

above [GG01].

One can also notice that by construction, the attaching maps are morphisms of globular

CW-complexes. Of course one has

6
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PM
h�

{{vvv
vvv

vv
v

h+

##HHH
HH

HHH
H

P
�M P

+M

Figure 2: The fundamental diagram

Theorem 2.4. [GG01] Every globular CW-complex is a local po-space and this mapping

induces a functor from the category of globular CW-complexes to the category of local po-

spaces.

3 The homological constructions

The three principal constructions are all based upon the idea of capturing the algebraic

structure of the set of achronal cuts (cf. [Gau01c] for some explanations of this idea)

included in the higher dimensional automaton M we are considering in three simplicial sets

which seem to be the basement of an algebraic theory which remains to build. For that,

one has to construct in both cases (the categorical and the topological approaches), three

spaces :

1. the space of non-constant execution paths (this idea will become more precise below)

: let us call it the path space PM

2. the space of equivalence classes of non-constant execution paths beginning in the same

way : let us call it the negative semi-path space P�M

3. the space of equivalence classes of non-constant execution paths ending in the same

way : let us call it the positive semi-path space P+M .

and one will consider the simplicial nerve of each one.

[Gau01c] Figure 11 will become Figure 2 in both topological and !-categorical situations.

The construction of h� and h+ is straightforward in both situations.

3.1 The !-categorical approach

Proposition 3.1. [Gau01a] Let C be an !-category. Consider the set PC =
S
n�1 Cn.

Then the operators sn, tn and �n for n � 1 are internal to PC if and only if C is non-

contracting. In that case, PC can be endowed with a structure of !-category whose n-source

(resp. n-target, n-dimensional composition law) is the (n+1)-source (resp. (n+1)-target,

(n+1)-dimensional composition law) of C. The !-category PC is called the path !-category

of C, and the mapping C induces a well-de�ned functor from !Cat1 to !Cat.

7
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De�nition 3.1. Let C be a non-contracting !-category. Denote by R� (resp. R
+) the

re
exive symmetric and transitive closure of f(x; x �0 y); x; y; x �0 y 2 PCg (resp. f(y; x �0
y); x; y; x �0 y 2 PCg) in PC � PC.

Proposition 3.2. [Gau01d] Let � 2 f�;+g and let C be a non-contracting !-category.

Then the universal problem

\There exists a pair (D; �) such that D is an !-category and � an !-functor

from PC to D such that for any x; y 2 PC, xR�y implies �(x) = �(y)."

has a solution (P�C; (�)�). Moreover P�C is generated by the elements of the form (x)�

for x running over PC. The mappings P� and P
+ induce two well-de�ned functors from

!Cat1 to !Cat.

De�nition 3.2. The !-category P
�
C (resp. P

+
C) is called the negative (resp. positive)

semi-path !-category of C.

In the sequel, PC will be supposed to be a strict globular !-groupoid in the sense of

Brown-Higgins, which implies that P�C and P+C satisfy also the same property : this means

concretely that if there exists an homotopy from a given execution path 
 to another one


0, then there exists also an homotopy in the opposite direction [Gau01d].

De�nition 3.3. [Gau01a] The globular simplicial nerve N gl is the functor from !Cat1 to

Sets�
op

+ de�ned by

N
gl
n (C) := !Cat(�n;PC)

for n � 0 and with N
gl
�1(C) := C0 � C0, and endowed with the augmentation map @�1 from

N
gl
0 (C) = C1 to N

gl
�1(C) = C0 � C0 de�ned by @�1x := (s0x; t0x).

Geometrically, a simplex of this simplicial nerve looks as in Figure 3.

De�nition 3.4. Let C be a non-contracting !-category. Then set

N
gl�

n (C) := !Cat(�n;P�C)

and N
gl�

�1 (C) := C0 with @�1(x) := s0x. Then N
gl� induces a functor from !Cat1 to Sets

�op

+

which is called the negative semi-globular nerve or ( branching semi-globular homology) of

C .

The positive semi-globular nerve is de�ned in a similar way by replacing � by + every-

where in the above de�nition and by setting @�1(x) = t0x. Intuitively, the simplexes in the

semi-globular nerves look as in Figure 4 : they correspond to the left or right half part of

Figure 3.

8
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(02)
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(01)

(12)
U
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W

Figure 3: Globular 2-simplex

TIME

branching area
merging area

Figure 4: Negative and positive semi-globular 2-simplexes
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3.2 The topological approach

Let X be a globular CW-complex. Let �; � 2 X0. Denote by (X;�; �)? the topological

space of non-decreasing non-constant continuous maps 
 from [0; 1] endowed with the usual

order to X such that 
(0) = � and 
(1) = � and endowed with the compact-open topology.

Then

De�nition 3.5. Let X be a globular CW-complex. Then the path space of X is the disjoint

union

PX =
G

(�;�)2X0�X0

(X;�; �)?

endowed with the disjoint union topology.

Now denote by (X;�)?
�

(resp. (X;�)?
+

) the topological space of non-decreasing non-

constant continuous maps from [0; 1] with the usual order to X such that 
(0) = � (resp.


(1) = �), endowed with the compact-open topology. Then

De�nition 3.6. Let X be a globular CW-complex. Then the negative semi-path space P�X

(resp. positive semi-path space P+X) of X are de�ned by

P
�X =

G
�2X0

(X;�)?
�

P
+X =

G
�2X0

(X;�)?
+

endowed with the disjoint union topology.

The reader can notice that in the topological context, we do not need anymore to con-

sider something like the equivalence relations R� and R+. The reason is that, ideologically

(\moralement" in french !), a 1-morphism is of length 1. On contrary, a non-constant

execution path is homotopic to any shorter execution path 3

De�nition 3.7. [Gau01a] The globular simplicial nerve N gl is the functor from glCW to

Sets�
op

+ de�ned by

N
gl
n (X) := Sn(PX)

for n � 0 where S� is the singular simplicial nerve (cf. Appendix B) with N
gl
�1(X) :=

X0
�X0, and endowed with the augmentation map @�1 from N

gl
0 (X) = PX to N

gl
�1(X) =

X0
�X0 de�ned by @�1
 := (
(0); 
(1)).

3in a \natural way" by considering H(
(t); u) = 
(tu). It is the reason why P�X and P+X are homotopy
equivalent to X0 if one does not remove the constant paths from their de�nition.
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u // �
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u1 // �2

u2 // �

v
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(b) Subdivision of u in C

Figure 5: Example of T -deformation

De�nition 3.8. Let X be a globular CW-complex. Then set

N
gl�

n (X) := Sn(P
�X)

for n � 0 and N
gl�

�1 (X) := X0 with @�1(
) := 
(0). Then N
gl� induces a functor from

glCW to Sets�
op

+ which is called the branching semi-globular nerve of X .

The merging semi-globular nerve is de�ned in a similar way by replacing � by + every-

where in the above de�nition and by setting @�1(
) := 
(1).

4 Deforming higher dimensional automata

As already seen in [Gau01c] in the !-categorical context, there are two types of deformation

leaving invariant the computer scienti�c properties of higher dimensional automata : the

temporal deformations (or T-deformations) and the spatial deformations (S-deformations).

The �rst type (temporal) is closely related to the notion of homeomorphism because a non-

trivial execution path cannot be contracted in the same dihomotopy class 4, and the second

one (spatial) to the classical notion of homotopy equivalence.

The !-categorical case will be only brie
y recalled. A temporal deformation corresponds

informally to the re
exive symmetric and transitive closure of subdividing in an !-category

a 1-morphism in two parts as in Figure 5. A spatial deformation consists of deforming in

the considered !-category p-morphisms with p � 2, which is equivalent to deforming faces

in one the three nerves in the usual sense of homotopy equivalence.

The topological approach is completely similar. A temporal deformation of a globular

CW-complex X consists of dividing in two parts a globular 1-dimensional cell of the cellular

decomposition of X, as in Figure 5. A spatial deformation consists of crushing globular

cells of higher dimension.

4In fact, the T-dihomotopy equivalences in [GG01] are precisely the morphisms of globular CW-complexes
inducing an homeomorphim between both underlying topological spaces.
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Now what can we do with the previous homological constructions ? First of all consider

the corresponding simplicial homology theories of all these augmented simplicial sets, with

the following convention on indices : for n � �1 and u 2 fgl; gl�; gl+g, set Hu
n+1(M) =

Hn (N
u(M)) for M either an !-category or a globular CW-complex. We obtain this way

three homology theories called as the corresponding nerve. One knows that the globular

homology sees the globes included in the HDA [Gau00, Gau01a] and that the branching

(resp. merging) semi-globular homology sees the branching areas (resp. merging areas) in

the HDA [Gau00, Gau01b, Gau01d]. Since the three nerves are Kan 5, one can also consider

the homotopy groups of these nerves, with the same convention for indices : for n � 1 and

u 2 fgl; gl�; gl+g, set �un+1(X) = �n (N
u(X); �) for X either an !-category or a globular

CW-complex. In this latter case, the base-point � is in fact a 0-morphism of PC, that is a

1-morphism of C if u = gl, and an equivalence class of 1-morphism of C with respect to R�

(resp. R+) if u = gl� (resp. u = gl+). Intuitively, elements of �
gl
n+1 are (n+1)-dimensional

cylinders with achronal basis.

The four �rst lines of Table 6 are explained in [Gau01c]. The branching and merging

(semi-cubical) nerves N� de�ned in [Gau00, Gau01b] are almost never Kan : in fact as

soon as there exists in the !-category C we are considering two 1-morphisms x and y such

that x �0 y exists (see Proposition 5.6), both semi-cubical nerves are not Kan.

If the branching and merging (semi-cubical) nerves are replaced by the branching and

merging semi-globular nerve, then the \almost" (in fact a \no") becomes a \yes" here

because we are not disturbed anymore by the non-simplicial part of the elements of the

branching and merging nerves (which is removed by construction).

The lines concerning the (globular, negative and positive semi-globular) homotopy

groups need to be explained. The S-invariance of a given nerve implies of course the

S-invariance of the corresponding homotopy groups. As for the T-invariance, it is due to

the fact that in these homotopy groups, the \base-point" is an execution path (or eventu-

ally an equivalence class of). So these homotopy groups contain information only related to

achronal cuts crossing the \base-point". Dividing this base-point or any other 1-morphism

or 1-dimensional globular cell changes nothing.

The last lines are concerned with the bisimplicial set what we call biglobular nerve

(for the contraction of bisimplicial globular nerve) described in [Gau01c, Gau01a] (cf. Ap-

pendix F) and constructed by considering the structure of augmented simplicial object of

the category of small categories of the globular nerve. The biglobular nerve inherits the

S-invariance of the globular nerve. And its T-invariance is due to the T-invariance of the

simplicial nerve functor of small categories. The answer \yes ?" means that it is expected

to �nd \yes" in some sense... It is worth noticing that in a true higher dimensional automa-

ton, 1-morphisms are never invertible because the time is not reversible. So one cannot

5The !-categorical versions are Kan as soon as PC is an !-groupoid [Gau01d] and the singular simplicial

nerve is known to be Kan [May67].
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Functors S-invariant T-invariant Kan �1! +1

N
gl yes no yes yes

N
� almost no almost never yes

Hgl yes no no meaning yes

H� yes yes no meaning yes

N
gl� yes no yes yes

Hgl� yes yes no meaning yes

�gl yes yes no meaning no

�gl
�

yes yes no meaning no

N
bigl yes yes yes ? yes

Hbigl yes yes no meaning yes

(�bigl) (yes) (yes) (no meaning) (yes)

Figure 6: Behavior w.r.t the two types of deformations

expect to �nd a Kan bisimplicial set in the usual sense of the notion.

The last column is not directly concerned with the di�erent types of deformations of

HDA, but rather by the question of knowing if the functors contain information from

t = �1 to t = 1. The answer is yes everywhere except for the three homotopy groups

functors : the latter contain indeed information only related to achronal cuts crossing the

\base-point". One can by the way notice that, in the !-categorical case :

Proposition 4.1. Let � and  be two 1-morphisms of a non-contracting !-category C.

Suppose that � �0  exists. Then

1. If ��0 is 1-dimensional, then the mapping (x; y) 7! x�0y partially de�ned on Cn�Cn

induces a morphism of groups �
gl
n+1(C; �) � �

gl
n+1(C;  )! �

gl
n+1(C; � �0  ).

2. If ��0 is 0-dimensional, then the mapping (x; y) 7! x�0y partially de�ned on Cn�Cn
induces the constant map � �0  .

Proof. It is due to the fact that

�
gl
n+1(C; �) = fx 2 Cn+1; s1x = s2x = � � � = snx = t1x = t2x = � � � = tnx = �g

with �n for group law.

The above proposition is a hint to correct the drawbacks of the globular and semi-

globular homotopy groups.

The last line �bigl is explained with Philosophy 5.8.
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5 The category of dihomotopy types

5.1 Towards a construction

Here both approaches slightly diverge because of a lack of knowledge about the !-categorical

ways of constructing homotopy types. However one can certainly de�ne in both contexts a

notion of weak dihomotopy equivalence : see [GG01] for the topological context. Then let

� !Grp be the category of strict globular !-groupoids with the !-functors as morphisms,

and Ho(!Grp) its localization by the weak homotopy equivalences

� !CatKan
1 be the category of non-contracting !-categories C such that PC is an !-

groupoid with the non-contracting !-functors as morphisms, and Ho(!CatKan
1 ) its

localization by the weak dihomotopy equivalences

� CW the category of CW-complexes with the continuous maps as morphisms, and

Ho(CW) its localization by the weak homotopy equivalences

� glCW the category of globular CW-complexes with the morphisms of globular CW-

complexes as morphisms, and Ho(glCW) its localization by the weak dihomotopy

equivalences.

Philosophy 5.1. Both localizations Ho(!CatKan
1 ) and Ho(glCW) contain the precubical

sets modulo spatial and temporal deformations. However, due to the fact that strict globular

!-groupoids do not represent all homotopy types [BH81a], but only those having a trivial

Whitehead product, Ho(!CatKan
1 ) could be not big enough to construct an appropriate

algebraic setting.

After [Sim98], it is clear that the !-categorical realization functor described in Section D

loses some homotopical information and that keeping the complete information requires to

work with !-categories where the associativity of �n is weakened for any n � 1. However,

this lost homotopical information is only related to the geometric situation in achronal

cuts. In particular, this realization functor does not contract 1-morphisms. Therefore the

Ho(!CatKan
1 ) framework could be suÆcient to study questions concerning deadlocks or

other similar 1-dimensional phenomena.

De�nition 5.1. The category Ho(glCW) is called the category of dihomotopy types.

To describe the relation between the usual situation and the directed situation, we need

two last propositions and de�nitions :

Proposition 5.2. [GG01] Let X be a CW-complex. Let Glob(X)0 = f�; �g where � (resp.

�) is the equivalence class of (x; 0) (resp. (x; 1)). Then the cellular decomposition of X

yields a cellular decomposition of Glob(X) and this way, Glob(�) induces a functor from

CW to glCW.
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Proposition 5.3. Let G be an object of !Grp. Then there exists a unique object Glob(G)

of !CatKan
1 such that PGlob(G) = G, Glob(G)0 = f�; �g is a two-element set, and such

that s0(Glob(G)nf�g) = f�g and t0(Glob(G)nf�g) = f�g. Moreover the mapping Glob

induces a functor from !Grp to !CatKan
1 .

Both Glob functors (called Globe functors) yield two functors

Ho(CW)! Ho(glCW)

and

Ho(!Grp)! Ho(!CatKan
1 )

In the topological context, one has :

Proposition 5.4. [GG01] Let X and Y be two CW-complexes. Then X and Y are homo-

topy equivalent if and only if Glob(X) and Glob(Y ) are dihomotopy equivalent. Therefore

the functor Ho(CW)! Ho(glCW) is an embedding.

Question 5.5. Is it possible to �nd an !-categorical construction of Ho(glCW) ?

5.2 Investigating the algebraic structure of the category of dihomotopy

types

One can check that in both topological and !-categorical situations, the following fact holds

Proposition 5.6. (partially in [Gau01b]) Let � 2 f�;+g. The morphism h� induces

an isomorphism of simplicial sets (not of augmented simplicial sets for trivial reason !)

N
gl(Glob(M)) ' N

gl�(Glob(M)). Moreover in the !-categorical case, N gl(Glob(M)) '

N
�(Glob(M)) where N� are the branching or the merging nerves (depending on the value

of �) of an !-category as de�ned and studied in [Gau00, Gau01b]. Moreover, this common

simplicial set is homotopy equivalent to the simplicial nerve of M .

This important proposition together with Proposition 5.4 suggests us a way of investi-

gating the algebraic structure of the category of dihomotopy types.

Philosophy 5.7. Let Th be a theorem (or a notion) in usual algebraic topology, i.e. con-

cerning the category of homotopy types. Let Thdi be its lifting (i.e. its analogue) on the

category of dihomotopy types. Then the statement Thdi must specialize into Th on the

image of the Globe functor.

Following Baues's philosophy [Bau99], a �rst goal would be then to lift from the usual

situation to the directed situation the Whitehead theorem and the Hurewicz theorems.

15

37



Concerning the last one, it would be �rst necessary to understand what is the analogue 6

of the Hurewicz morphism for the category of dihomotopy types.

Philosophy 5.8. The target of the Hurewicz morphism in the directed situation is likely

to be the biglobular homology Hbigl. This new Hurewicz morphism must contain is some

way all usual Hurewicz morphisms of all achronal cuts. At last, the source (let us denote

it by �bigl) of the Hurewicz morphism must be S-invariant, T-invariant and must contain

information concerning the geometry of the HDA from t = �1 to t = +1.

Suppose n � 2. After Proposition 4.1, a possible idea in the !-categorical case would

be then to build a chain complex of abelian groups by considering elements

(x1; : : : ; xp) 2 �
gl
n+1(C; �1)� : : :� �

gl
n+1(C; �p)

for all p and all p-uples (�1; : : : ; �p) such that �1 �0 � � � �0 �p exists and by considering the

simplicial di�erential map induced by �0. Let us call the corresponding homology theory

the toroidal homology Htor
� (C). Of course this construction makes sense only for n � 2

because the �
gl
2 are not necessarily abelian. Then the classical Hurewicz morphism induces

a natural transformation from Htor
� to the E2

�;n+1-term of one of the canonical spectral

sequences converging to Hbigl.

As explained in the introduction, the goal would be to reach an homological under-

standing of the geometry of 
ows modulo deformations. In particular, we would like to �nd

exact sequences. It is then reasonable to think that

Philosophy 5.9. An exact sequence F1(M)! F2(M)! F3(M) telling us something about


ows M of execution paths modulo spatial and temporal deformations must use functors F1,

F2 and F3 invariant by spatial and temporal deformations.

The weakness of the internal structure of the globular nerve (it is a disjoint union of

simplicial sets), its non-invariance with respect to temporal deformations, and its natural

correction by considering the biglobular nerve suggests that the biglobular homology (the

total homology of this bisimplicial set) has more interesting homological properties than

the globular homology.

Concerning the biglobular nerve, it is worth noticing that this object contains the whole

information about the position of achronal simplexes and about the temporal structure of

6The solution given in [Gau00] is naturally wrong : the morphisms h� and h+ are not the analogues
of the Hurewicz morphism. When [Gau00] was being written, It was not known that the correct de�nition

of the globular homology would come from the simplicial homology of a simplicial nerve. Moreover the
role of achronal cuts was also not yet understood. The globular homology was introduced as an answer of
Goubault's suggestion of �nding the analogue of the Hurewicz morphism in \directed homotopy" theory.

Then starting from the principle that the branching and merging homology theories could be an analogue
of the singular homology, I wondered whether it was possible to construct a morphism abutting to both
corner homologies. The globular homology was then designed to be the source of this morphism.
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Figure 7: PV diagram

the underlying higher dimensional automaton. So in some sense, the biglobular nerve

contains everything related to the geometry of HDA. Since the biglobular nerve is expected

to be S-invariant and T-invariant, then it is natural to ask the following question :

Question 5.10. Is it possible to recover all other S-invariant and T-invariant functors

from the biglobular nerve ? For example, is it possible to recover the semi-globular homology

theories ?

Another natural question would be to relate a given dihomotopy type to the underlying

homotopy type (when the 
ow of execution paths is removed). If the biglobular nerve

really contains the complete information, then it should be possible to recover from it the

underlying homotopy type.

As last remark, let us have a look at PV diagrams as in Figure 7. They are always

constructed by considering a n-cube and by digging cubical holes inside. Such examples

produce examples of !-categories or globular CW-complexes whose all types of globular

homologies do not have any torsion. To classify this kind of examples, the study of rational

dihomotopy types could be suÆcient.

6 Conclusion

We have described in this paper a way of constructing the category of dihomotopy types

and we have given some hints to investigate its internal algebraic structure. Intuitively, the

isomorphism classes of objects in this category represent exactly the higher dimensional
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automata modulo the deformations which leave invariant their computer-scienti�c prop-

erties. So a good knowledge of the algebraic structure of this category will enable us to

classify higher dimensional automata up to dihomotopy and therefore, hopefully, to write

new algorithms manipulating directly the equivalence classes of HDA.
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Technical Appendix

A Local po-space : de�nition and examples

If X is a topological space, a binary relation R on X is closed if the graph of R is a closed

subset of the cartesian product X � X. If R is a closed partial order �, then (X;�) is

called a po-space (see for instance [Nac65], [Joh82] and [FGR99a]). Notice that a po-space

is necessarily Hausdor�. We say that (U;�) is a sub-po-space of (X;R) if and only if it is

a po-space such that U is a sub topological space of X and such that � is the restriction

of R to U .

A collection U(X) of po-spaces (U;�U ) covering X is called a local partial order if for

every x 2 X, there exists a po-space (W (x);�W (x)) such that:

� W (x) is an open neighborhood containing x,

� the restrictions of �U and �W (x) to W (x) \ U coincide for all U 2 U(X) such that

x 2 U . This can be stated as: y �U z i� y �W (x) z for all U 2 U(X) such that x 2 U

and for all y; z 2 W (x) \ U . Sometimes, W (x) will be denoted by WX(x) to avoid

ambiguities. Such a WX(x) is called a po-neighborhood.

Two local partial orders are equivalent if their union is a local partial order. This de�nes

an equivalence relation on the set of local partial orders of X. A topological space together

with an equivalence class of local partial order is called a local po-space.

A morphism f of local po-spaces (or dimap) from (X;U) to (Y;V) is a continuous map

from X to Y such that for every x 2 X,

� there is a po-neighborhood W (f(x)) of f(x) in Y ,

� there exists a po-neighborhood W (x) of x in X with W (x) � f�1(W (f(x)),

� for y; z 2W (x), y � z implies f(y) � f(z).

In particular, a dimap f from a po-space X to a po-space Y is a continuous map from

X to Y such that for any y; z 2 X, y � z implies f(y) � f(z). A morphism f of local

po-spaces from [0; 1] endowed with the usual ordering (denoted by
�!
I ) to a local po-space

X is called dipath or sometime execution path.

The category of Hausdor� topological spaces with the continuous maps as morphisms

will be denoted by Haus. The category of local po-spaces with the dimaps as morphisms

will be denoted by LPoHaus. The category of general topological spaces without further

assumption will be denoted by Top and the category of general topological spaces endowed

with a partial ordering not necessary closed will be denoted by PoTop.
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We end this section by an example of po-spaces which matters for this paper. Let us

construct the Globe Glob(X) associated to a topological space X. It is de�ned as follows.

As topological space, Glob(X) is the quotient of the product space X � I by the relations

(x; 0) = (x0; 0) and (x; 1) = (x0; 1) for any x; x0 2 X. It is equipped with the closed partial

order (x; t) � (x0; t0) if and only if x = x0 and t � t0. The equivalence class of (x; 0) (resp.

(x; 1)) in Glob(X) is denoted by � (resp. �).

B Simplicial set

For further details, cf. [May67, Wei94].

De�nition B.1. A simplicial set A� is a family (An)n�0 together with face maps @i : An !

An�1 and �i : An ! An+1 for i = 0; : : : ; n which satisfy the following identities :

@i@j = @j�1@i if i < j

�i�j = �j+1�i if i � j

@i�j =

8<
:

�j�1@i
Identity

�j@i�1

if i < j

if i = j or i = j + 1

if i > j + 1

A morphism of simplicial sets from A� to B� consists of a set map from An to Bn for each

n � 0 commuting with all operators de�ned on both sides. The category of simplicial sets

is denoted by Sets�
op

.

Consider the topological n-simplex �n de�ned by

�n = f(t0; : : : ; tn); t0 � 0; : : : ; tn � 0 and t0 + : : : tn = 1g

Here is now the most classical example of simplicial sets :

De�nition B.2. Let Y be a topological space. The singular simplicial nerve of Y is the

simplicial set S�(XY ) de�ned as follows : Sn(Y ) := Top(�n; Y ) with @i(f)(t0; : : : ; tn�1) =

f(t0; : : : ; ti�1; : : : ; tn�1) and �i(f)(t0; : : : ; tn+1) = f(t0; : : : ; ti�1; ti + ti+1; ti+2; : : : ; tn+1).

De�nition B.3. [Dus75] An augmented simplicial set is a simplicial set

((Xn)n�0; (@i : Xn+1 �! Xn)0�i�n+1; (�i : Xn �! Xn+1)0�i�n)

together with an additional set X�1 and an additional map @�1 from X0 to X�1 such

that @�1@0 = @�1@1. A morphism of augmented simplicial set is a map of N-graded sets

which commutes with all face and degeneracy maps. We denote by Sets�
op

+ the category of

augmented simplicial sets.
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If X� is an augmented simplicial set, one obtains a chain complex of abelian groups (ZS

being the free abelian group generated by the set S)

: : : // ZX2
@0�@1+@2 // ZX1

@0�@1 // ZX0
@�1 // ZX�1

// 0

We will denote Hn+1(X) for n � �1 the n-th simplicial homology group of X�. This means

for example that H1(X) will be the quotient of @�1 : N
gl
0 (C) ! N

gl
�1(C) by the image of

@0 � @1 : N
gl
1 (C)! N

gl
0 (C).

C Precubical set, globular !-category and globular set

De�nition C.1. [BH81b] [KP97] A precubical set consists of a family of sets (Kn)n>0 and

of a family of face maps Kn

@�
i //Kn�1 for � 2 f�;+g which satis�es the following axiom

(called sometime the cube axiom) :

@�i @
�
j = @

�
j�1@

�
i for all i < j 6 n and �; � 2 f�;+g.

If K is a precubical set, the elements of Kn are called the n-cubes. An element of Kn

is of dimension n. The elements of K0 (resp. K1) can be called the vertices (resp. the

arrows) of K.

De�nition C.2. [BH81a, Str87, Ste91] An !-category is a set A endowed with two families

of maps (sn = d�n )n>0 and (tn = d+n )n>0 from A to A and with a family of partially de�ned 2-

ary operations (�n)n>0 where for any n > 0, �n is a map from f(a; b) 2 A�A; tn(a) = sn(b)g

to A ((a; b) being carried over a �n b) which satis�es the following axioms for all � and �

in f�;+g :

1. d
�
md

�
nx =

(
d
�
mx if m < n

d�nx if m > n

2. snx �n x = x �n tnx = x

3. if x �n y is well-de�ned, then sn(x �n y) = snx, tn(x �n y) = tny and for m 6= n,

d�m(x �n y) = d�mx �n d
�
my

4. as soon as the two members of the following equality exist, then (x �n y) �n z =

x �n (y �n z)

5. if m 6= n and if the two members of the equality make sense, then (x�ny)�m (z�nw) =

(x �m z) �n (y �m w)
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Figure 8: Some !-categories (a k-fold arrow symbolizes a k-morphism)

6. for any x in A, there exists a natural number n such that snx = tnx = x (the smallest

of these numbers is called the dimension of x and is denoted by dim(x)).

A n-dimensional element of C is called a n-morphism. A 0-morphism is also called a

state of C, and a 1-morphism an arrow. If x is a morphism of an !-category C, we call

sn(x) the n-source of x and tn(x) the n-target of x. The category of all !-categories (with

the obvious morphisms) is denoted by !Cat. The corresponding morphisms are called

!-functors. The set of n-dimensional morphisms of C is denoted by Cn.

As fundamental examples of !-categories, there is the !-category �n freely generated

by the faces of the n-simplex [Str87]. To characterize this !-category, the �rst step consists

of labeling all faces of the n-simplex. Its faces are indeed in bijection with strictly increasing

sequences of elements of f0; 1; : : : ; ng. A sequence of length p+1 will be of dimension p. If

x is a face, let R(x) be the set of faces of x seen as a sub-simplex. If X is a set of faces, then

let R(X) =
S
x2X R(x). Notice that R(X [ Y ) = R(X) [ R(Y ) and that R(fxg) = R(x).

Then �n is the free !-categories generated by the R(x) with the rules
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1. For x p-dimensional with p � 1, sp�1(R(x)) = R(sx) and tp�1(R(x)) = R(tx) where

sx and tx are the sets of faces de�ned below.

2. If X and Y are two elements of �n such that tp(X) = sp(Y ) for some p, then X [ Y

belongs to �n and X [ Y = X �p Y .

Let us give the de�nition of sx and tx on some example :

s(04589) = f(4589); (0489); (0458)g

The elements in odd position are removed ;

t(04589) = f(0589); (0459)g

The elements in even position are removed.

Let � be the unique small category such that a pre-sheaf over � is exactly a simplicial

set [May67, Wei94]. The category � has for objects the �nite ordered sets [n] = f0 <

1 < � � � < ng for integers n � 0 and has for morphisms the non-decreasing monotone

functions. One is used to distinguishing in this category the morphisms �i : [n� 1] ! [n]

and �i : [n+ 1]! [n] de�ned as follows for each n and i = 0; : : : ; n :

�i(j) =

�
j if j < i

j + 1 if j � i

�
; �i(j) =

�
j if j � i

j � 1 if j > i

�

The mapping n 7! �n yields a functor from � to !Cat by setting �i 7! ��i and �i 7! ��i

where

� for any face (�0 < � � � < �s) of �
n�1, ��i(�0 < � � � < �s) is the only face of �

n having

�if�0; : : : ; �sg as set of vertices ;

� for any face (�0 < � � � < �r) of �
n+1, ��i(�0 < � � � < �r) is the only face of �

n having

�if�0; : : : ; �rg as set of vertices.

Therefore

De�nition C.3. Let C be an !-category. Then the graded set !Cat(��; C) is naturally

endowed with a structure of simplicial sets. It is called the simplicial nerve of C.

D !-categorical realization of a precubical set

Intuitively the !-categorical realization �(K) of a precubical set K (also called the free

!-category generated by K) as de�ned below contains as n-morphisms all composites (or

all concatenations) of cubes of K which are n-dimensional (this means that somewhere in
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the composite, a n-dimensional cube appears). In particular the 1-morphisms of �(K) will

be exactly all arrows of K and all possible compositions of these arrows.

The free !-category �(K) is constructed as follows. The main ingredient is the free !-

category In generated by the faces of the n-cube. Its characterization is very similar to that

of the !-category �n generated by the faces of the n-simplex. The faces of the n-cube are

labeled by the word of length n in the alphabet f�; 0;+g, the number of zero corresponding

to the dimension of the face. Everything is similar, except the de�nition of sx and tx. The

set sx is the set of sub-faces of the faces obtained by replacing the i-th zero of x by (�)i,

and the set tx is the set of sub-faces of the faces obtained by replacing the i-th zero of x

by (�)i+1. For example, s0+00 = f-+00; 0++0; 0+0-g and t0+00 = f++00; 0+-0; 0+0+g.

Figure 8(c) represents the free !-category generated by the 3-cube (cf. [Gau00] for some

examples of calculations). The �rst construction of In is due to Aitchison in [Ait86].

Then to each x 2 Kn, we associate a copy of I
n denoted by fxg�In whose corresponding

faces will be denoted by (x; k1 : : : kn). We then take the quotient of the direct sum of these

fxg � Idim(x) in !Cat (which corresponds for the underlying sets to the disjoint union) by

the relations

(@�i (x); k1 : : : kn�1) � (x; k1 : : : ki�1[�]iki : : : kn�1)

for any n � 1 and any x 2 Kn where the notation [�]i means that � is put in i-th position.

This expression means that in the copy of In�1 corresponding to @�i (x), the face k1 : : : kn�1
must be identi�ed to the face k1 : : : ki�1[�]iki : : : kn�1 in the copy of In corresponding to x.

And one has

Proposition D.1. One obtains a well-de�ned !-category �(K) and � induces a well-

de�ned functor from the category of precubical sets to that of !-categories.

The proof uses the coend construction (cf. [Mac71]).

E Localization of a category with respect to a collection of

morphisms

De�nition E.1. Let C be a category (not necessarily small). Let S be a collection of

morphisms of C. Consider the following universal problem :

\There exists a pair (D; �) such that � is a functor from C to D and such that

for any s 2 S, �(s) is an invertible morphism of D."

Then the solution (C[S�1]; Q), if there exists, is called the localization of C with respect to

S.
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F The biglobular nerve

Theorem F.1. [Gau01a] Let C be a non-contracting !-category.

1. Let x be an !-functor from �n to PC for some n � 0. Then the set maps (�0 : : : �r) 7!

s0x((�0 : : : �r)) and (�0 : : : �r) 7! t0x((�0 : : : �r)) from the underlying set of faces of

�n to C0 are constant. The unique value of s0 Æ x is denoted by S(x) and the unique

value of t0 Æ x is denoted by T (x).

2. For any pair (�; �) of 0-morphisms of C, for any n � 1, and for any 0 � i � n, then

@i

�
N

gl
n (C[�; �])

�
� N

gl
n�1(C[�; �]).

3. For any pair (�; �) of 0-morphisms of C, for any n � 0, and for any 0 � i � n, then

�i

�
N

gl
n (C[�; �])

�
� N

gl
n+1(C[�; �]).

4. By setting, G�;�
N

gl
n (C) := N

gl
n (C[�; �]) for n � 0 and G�;�

N
gl
�1(C) := f(�; �); (�; �)g,

one obtains a (C0 � C0)-graduation on the globular nerve ; in particular, one has the

direct sum of augmented simplicial sets

N
gl
� (C) =

G
(�;�)2C0�C0

G�;�
N

gl
� (C)

and G�;�
N

gl
� (C) = N

gl
� (C[�; �]).

Let C be a non-contracting !-category. Using Theorem F.1, recall that for some !-

functor x from �n to PC, one calls S(x) the unique element of the image of s0 Æx and T (x)

the unique element of the image of t0 Æ x. If (�; �) is a pair of N
gl
�1(C), set S(�; �) = � and

T (�; �) = �.

Proposition F.2. [Gau01a] Let C be a non-contracting !-category. Let x and y be two

!-functors from �n to PC with n � 0. Suppose that T (x) = S(y). Let x � y be the map

from the faces of �n to C de�ned by

(x � y)((�0 : : : �r)) := x((�0 : : : �r)) �0 y((�0 : : : �r)):

Then the following conditions are equivalent :

1. The image of x � y is a subset of PC.

2. The set map x � y yields an !-functor from �n to PC and @i(x � y) = @i(x) � @i(y) for

any 0 � i � n.

On contrary, if for some (�0 : : : �r) 2 �n, (x � y)((�0 : : : �r)) is 0-dimensional, then x � y

is the constant map S(x) = T (y).
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In the sequel, we set (�; �) � (�; 
) = (�; 
), S(�; �) = � and T (�; �) = �. If x is an

!-functor from �n to PC, and if y is the constant map T (x) (resp. S(x)) from �n to C0,

then set x � y := x (resp. y � x := x).

Theorem F.3. Suppose that C is an object of !Cat1. Then for n � 0, the operations

S, T and � allow to de�ne a small category N
gl
n (C) whose morphisms are the elements of

N
gl
n (C)[fconstant maps �n

! C0g and whose objects are the 0-morphisms of C. If N
gl
�1(C)

is the small category whose morphisms are the elements of C0�C0 and whose objects are the

elements of C0 with the operations S, T and � above de�ned, then one obtains (by de�ning

the face maps @i and degeneracy maps �i in an obvious way on fconstant maps �n
! C0g)

this way an augmented simplicial object N
gl
� in the category of small categories.

By composing by the classifying space functor of small categories (cf. for example

[Qui73] for further details), one obtains a bisimplicial set which is called the biglobular

nerve.
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Cyclic and Partial Order Models for Concurrency
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IRISA/INRIA, Campus de Beaulieu, 35042 Rennes, France

July 24, 2001

Abstract

Ternary cyclic order relations can serve as models for non-sequential periodic process-

es i� they are orientable. We use translational symmetries and windings to give a new,

twofold, characterization of orientable cyclic orders, connecting orientability to partial

orders and to separation properties. Applied to Petri nets, windings of causal nets yield

cyclic orders on synchronization graphs that describe the concurrent behavior of corre-

sponding live and safe markings. The article �nally outlines connections between cyclic

order theory and dihomotopy.

1 Introduction

Unlike acyclic (partial) orders, cyclic orders CyO's are not binary relations; rather, they are

modeled as sets of triples (x; y; z) that satisfy the system A of axioms

1. inversion asymmetry: � (x; y; z)) : � (y; x; z),

2. rotational symmetry: � (x; y; z))� (z; x; y),

3. ternary transitivity: [� (a; b; c) ^ � (a; c; d)])� (a; b; d).

If (X ;�) is a CyO, then � is simple: if � (x; y; z) then x 6= y, y 6= z, and z 6= x. Note that

ternary transitivity resembles binary transitivity (project onto the last two components);

however, binary transitive relations are not adequate to express cyclic ordering. One veri�es

easily that, in the examples given below, any transitive binary extension of the arc relation

yields the full relation X �X , which contains no information at all. { In the simplest case, a

cyclic order consists of just one cycle of elements; we will call this a total cyclic order. In the

general case, there exist pairs of incomparable elements, i.e. pairs not contained in a cyclically

ordered triple. There, the question arises whether it is possible to �nd a totalization, that is,

a total cyclic order consistent with all ternary cyclic arrangements; by Szpilrajn's Theorem

[Szp30], the analogous property always holds for acyclic partial orders.

For cyclic orders according to the above system A 1-3 of axioms, a total extension need

not exist; examples were given by Megiddo [Meg76] and others, see also below. We call these

CyO's non-orientable; Megiddo [Meg76] showed NP-hardness for the problem of orientability.

�E-mail: Stefan.Haar@irisa.fr. Supported by MAGDA-RNRT.
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Figure 1: Winding (down) and unwinding (up)

Combinatorial characterizations of orientable cyclic orders have been given by several authors,

[Gen71, ChN83, Qui89, Qui91, ANP91, Jak94, Ste98]. The approach by windings that we

here di�ers from the above and connects cyclic orders to posets.

Consider Figure 1. It shows how cyclic orders can be associated to Petri net systems:

below, one has a a cyclic synchronization graph, i.e. without branching of places, and above

a causal net (sometimes also called occurrence net), i.e., in addition to non-branching places,

the 
ow relation (indicated by arcs) is acyclic. Writing hx1; : : : ; xni to denote the cyclic

arrangement { the oriented simple cyclic path or opath { from x1 to x2 to ... xn to x1,

we have, for instance, h�; �; �i and all its rotations, h�; �; �i and h�; �; �i. These cycles are

re
ected by a line or directed path in the acyclic net sitting on top of Figure 1, namely

: : :! �0 ! �0 ! �0 ! �1 ! �1 ! �1 ! �2 ! �2 ! �2 ! : : :

2
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where we ignored the places without loss of information since every place in both nets is

uniquely speci�ed by its only pre- and only post-transition. We say (see below) that the

winding associates every cycle a periodic directed path that passes through the same sequence

of equivalence classes in every section of a partial order; the \periodicity" meaning invariance

under some automorphism of the partial order.

Some further remarks to �x the intuitions. All periodic lines will be wound to cycles,

more precisely, closed self-avoiding curves or, in graph theoretic terms, paths. Consider

: : :! �0 ! �0 ! �0 ! �0 ! �1 ! �1 ! "1 ! �1 ! �1 ! �2 ! : : : :

This line is also periodic, yet is invariant under fewer automorphism than the above; the

corresponding closed curve, call it j2, has an intuitive winding number of two, whereas the

\winding number" of j1 is 1. This is re
ected by the numbers of tokens, to which we direct

our attention now: the marking of the net in the lower part of Figure 1 is live and 1-bounded.

From classical results by Genrich and Lautenbach on synchronization graphs, we know that

these markings are exactly those under which (i) every cycle contains at least one token, and

(ii) every node lies on at least one cycle that contains exactly one token (see below). The

latter type of cycles { called elementary cycles { are thus of particular interest; note that all

their nodes are pairwise causally connected. In Figure 1, the two simplest elementary cycles

are highlighted by thick arrows; there are 15 more. In contrast, cycles with two or more

tokens { see the example { contain pairs of concurrent elements.

These observations show the connection between Petri net theory on the one hand and

cyclic orders in the other. The next section gives the main characterization result from

[Haa00]; Section 3 then takes a �rst look at the connection between cyclic orders and dipaths.

2 Orientable Cyclic Orders

Periodic concurrent processes generate CyO's; does, on the other hand, every Cyo also permit

a physical interpretation ? Is there a global sense of rotation in the CyO as there is in periodic

behavior ? In general, the answer is no; the question is in fact that of orientation as above.

The existence of a totalization for � is equivalent to � having a graphical representation by

clock cycles, i.e. as a collection of directed loops in the two-dimensional plane such that the

origin is avoided and such that all loops run clockwise around the origin1; totalizable CyO's

are therefore also called globally oriented. The central statement of this paper can be summed

up as follows:

A CyO is globally oriented

if and only if

it can be represented by

concurrent periodic deterministic processes.

2.1 Posets and Cyclic Orders

Some terminology: if � = (X ; <) is a partial order, let li :=< [ <�1 denote the relation of

causal connection, idX := f(x; x) j x 2 Xg that of identity, and co := X 2 � (idX [ li) that of

concurrency. A maximal clique of li { i.e. a maximal dipath { is called a line, and the set

1cf. the arc orders in Alles, Ne�set�ril, Poljak [ANP91].
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of lines in � is denoted by Lines(�); the elements of Cuts(�) are the maximal cliques of co,

called cuts, of �. Similarly, in a CyO, set li := f(x; y) j 9z : (� (x; y; z) _ � (x; z; y))g and

co := X 2 � (idX [ li), and denote the maximal cliques of li as lines and those of co as cuts.

Note that all lines have at least three elements.

So, in the above example, j1 { complete with the corresponding places { is a line, but j2
is not.

e

 h
 l

  i

j
f

g

bd
k

c

 a

Figure 2: A non-totalizable CyO

Now, we ask for minimal additional

properties that, together with the above ax-

ioms, ensure orientability. We will, in the

following, consider only li-oriented CyO's,

i.e. such that for any fa; b; cg 2 CLI(li), ei-

ther � (a; b; c) or � (b; a; c). CyO's that are

not li-oriented may be completed to a CyO

containing the corresponding � (a; b; c) or

� (b; a; c); of course, not all CyOs will al-

low this. It is obvious, however, that only

CyO's extensible to a li-oriented one can be

globally oriented, and that they are global-

ly oriented i� one of their li-oriented super-

CyO's is; so we may restrict our attention

to li-oriented CyO's or LOCyO's, and add

li-orientedness to our axioms.

Figure 2 shows a LOCyO that is

not globally oriented (the example is due

to Genrich [Gen71], with completion by

Stehr). Thus li-orientation is insu�cient for

global orientation.

The following subsections introduce the concepts used in the Characterization Theorem,

which will then be stated as Theorem 2.5 in Subsection 2.4.

2.2 COWs

We now come back to the idea of winding which we sketched above. Let � be an automorphism

of poset � = (X ; <). � is an order translation of � if either

1. x <� �(x) for all x 2 X (forward ), or

2. �(x) � x for all x 2 X (backward order translation).

If � can be replaced by < in the above, we call � a proper forward/backward order translation.

The set of order translations plus the identity mapping of � form a group (with concatenation);

f is a forward order translation i� its inverse is a backward order translation, and vice versa.

Let � be a proper forward order translation, and G be the group generated by � acting on 	;

G is isomorphic to (Z;+). Write x �� y i� there exists k 2 Z such that �k(x) = y; then �� is

an equivalence relation on X , and the G-orbit of x is [x]��
Let X := X =��

, and �� : X ! X ;

x 7! [x]��
the associated quotient map. The cyclic order winding (COW) of 	 is � = (X ;�),

4
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where � is given by:

� (x; y; z) :, 9 x 2 ��1� (x); y 2 ��1� (y); z 2 ��1� (z) :

x < y < z < �(x):

In the �rst �gure, � (�; c; 
) holds since �0 < c0 < 
0 < �1, etc. It is easy (yet tedious) to

verify that COWs are LOCyO's. Now, if � is a COW thus generated from a PO 	, we say

that 	 is wound to � and call �� the associated winding map.

Windings abstract a cyclic order from a partial order that has translation symmetries, i.e.

that is periodic. If a partial order admits one winding �� , it admits in�nitely many, namely at

least ��k for all k 2 N. On the other hand, the representation of a cyclic order by a winding

need not be unique (not even up to partial order isomorphisms).

Remark 2.1 In Alles, Ne�set�ril, Poljak [ANP91], a CyO is generated from a poset � by simply

taking the rotational (symmetric) closure; that is, set

�� := f(a; b; c) j a < b < cg ;

and let � be the smallest superset of �� that is rotationally symmetric, i.e., (x; y; z) 2�

implies (y; z; x) 2�. This is not at all equivalent to windings. There is an obvious di�erence

and a more subtle one: Obviously, no abstraction takes place in the rotational closure process,

so the cyclic order has as many elements as its generating poset, whereas a all pre-images

under windings are in�nite. But even the restriction to one section of the wound poset does not

yield an isomorphic cyclic order: in Figure 1, consider only the elements with index 0. Then

the cyclic order generated by rotational closure contains the triple (�0; 
0; �0), but (�; 
; �)

does not belong to the cyclic order winding since co(�0; �1). Concurrency is not respected by

the rotational closure but is essential for windings.

For a cyclic order, being representable as a COW is equivalent to orientability ([Haa01,

Haa00]), see below.

2.3 Density Properties

a d

b c

u w

x

v

Figure 3: On K-/Q-density

A cut c in a partial order can be viewed as a global state of

the set of local processes that are represented by lines. The

intersection of c with a line l then yields the local state of l

when the `snapshot' c is taken. From the semantic point of

view, one is therefore interested to know whether l and c do

intersect in the �rst place; more generally, density properties

provide deeper insight into the order structure.

De�nition 2.2 Let � = (X ; <) be a partial order. Then

we say that c 2 Cuts(�) is K-separating2 i� c \ l 6= ; for

all l 2 Lines(�). � is weakly K-dense i� it contains a K-

separating cut, and (strongly) K-dense i� every cut of � is

K-separating.

2called a true cut in[Ste98]
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The density terminology is due to Petri; separating has been introduced for the detailed study

of intersection properties in [Haa01, Haa00]. Density properties of causal nets have been

extensively studied, see for instance [BF88]. We note for our purposes that a causal net all

of whose cuts are �nite is K-dense; see, for instance, the one sitting on top in Figure 1.

Similarly, in a cyclic order, we say that c 2 Cuts(�) is K-separating i� c \ l 6= ; for all

l 2 Lines(�). � is weakly K-dense i� it contains a K-separating cut, and (strongly) K-dense

i� every cut of � is K-separating.

Note that, in the context of cyclic orders, the notions of cuts and lines carry over, yet we

need also to distinguish lines from circuits.

Intervals and edges can be de�ned in a similar fashion for posets and cyclic orders: Let

� = (X ; <) be a poset and � = (Y;�) a LOCyO.

1. For a; b 2 X such that a < b, de�ne the following intervals:

]a; b[:= fx 2 X : a < x < b)g;

and [a; b[ := ]a; b[ [ fag; ]a; b] := ]a; b[ [ fbg; [a; b] := ]a; b[ [ fa; bg:

2. For a; b 2 Y such that li(a; b), de�ne:

]a; b[:= fx 2 X : � (a; x; b)g;

and [a; b[ := ]a; b[ [ fag; ]a; b] := ]a; b[ [ fbg; [a; b] := ]a; b[ [ fa; bg:

In either case, an edge of � is a li-clique E such that there exist a; b 2 X satisfying li(a; b) and

E � [a; b], and for any u 2 [a; b] such that 8 v 2 E : li(v; u) one has u 2 E . Set start(E) := a

and end(E) := b.

In both cases, if E is an edge, start(E) 2 E and end(E) 2 E , and every edge E can be

represented as the intersection of an appropriate line lE with [start(E); end(E)].

Using edges, we can state the following de�nition that generalizes the graph theoretic

notion of a circuit:

De�nition 2.3 (Circuits of a LOCyO) Let � = (X ;�) be a LOCyO . C � X is a circuit

of � i� there exists n > 2 and edges E1; : : : ; En such that, for 1 6 i 6 n�1, start(E1) = end(En)

and start(Ei+1) = end(Ei), and C =
Sn�1

i=1 Ei . Circuit(�) denotes the set of circuits of �.

Every line in � is a circuit (note that no line contains fewer than three elements). In general,

however, not every circuit is a line of �, as Figure 1 shows. For an extreme example, take

j3 : h�; �; �; �; �; �; "; �; 
; �i;

this circuit is obviously not a line since, e.g., co(�; �); the places along j3 contain as many as

four tokens.

De�nition 2.4 Let � be a LOCyO . A cut c is called Q-separating i�, for all q 2 Circuit(�),

c \ q 6= ;; � is called weakly Q-dense3 i� there exists a Q-separating cut c 2 Cuts(�),

and strongly Q-dense i� all its cuts are Q-separating. If � has a weakly (strongly) Q-dense

elementary LOCyO extension, it is called (strongly) saturable.

3In the special case of nets, Q-density has been introduced as `F-density' in [KS97], [Ste98]
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Thus Q-separation implies K-separation etc., but the converse is not true: Figure 3 shows

a cyclic order with a cut fu; v; w; xg that is obviously K-separating but fails to intersect the

circuit ha; b; c; di. Note that the structure is nonetheless weakly Q-dense since fa; cg is a

Q-separating cut.

Since a total Cyo contains only one circuit, every singleton is a Q-separating cut; hence

every total Cyo is strongly Q-dense.

2.4 Characterization of Global Orientation

We are now ready to state the following characterization theorem:

Theorem 2.5 For a LOCyO � = (X ;�), the following are equivalent:

1. � is saturable;

2. � has a representation as a COW;

3. � has a totalization.

Proof: We only sketch the ideas for this lengthy proof; for the details, see ([Haa01, Haa00]).

The implication 3)!1) is shown by giving a Q-separating cut, �rst using the axiom of

choice to saturate every line of � and then showing Q-separation. From 1) to 2), one \cuts

� open" at the Q-separating cut; one then glues together in�nitely many copies of the

resulting acyclic structure to obtain a winding representation. Finally, using 2), one applies

Szpilrajn's Theorem to obtain linear extensions of the unwinding, from which to construct

a totalization of the winding and shows 3). 2

The non-totalizable LOCyO 's of Figure 2 is not saturable and, a fortiori, not weakly Q-dense

itself; this can be veri�ed by explicitly inspecting all circuits and cuts.

In the case of �nite X , we retrieve from Theorem 2.5 the classical result by Genrich and

Lautenbach [GL73]: A synchronization graph N is l.s. i�

1. all its circuits4 contain at least one token, and

2. the net is covered by circuits containing exactly one token each.

For this, one constructs an unwinding as in Figure 1; that has all reachable markings as P-cuts

(in Figure 1, a P-cuts corresponding to the initial marking below is indicated by the shaded

places in the causal net). For the dynamics, the LOCyO's structure ensures that every place

is contained in at least one line l, and since l can intersect any cut in at most one element,

there is never more than one token on l; weak Q-density, on the other hand, corresponds to

the absence of unmarked circuits (where we allow transitions to `contain one token' during

their �ring). So we ask whether, for weakly discrete LOCyO's on nets, saturability implies

weak Q-density of the original LOCyO. The a�rmative answer is given by Theorem 2.6 below;

thus Genrich and Lautenbach's result is in fact the Petri Net interpretation of the �nite case

of Theorem 2.5.

Theorem 2.6 Let � = (X ;�) be the net version of a weakly discrete LOCyO. If � is sat-

urable, then � is itself weakly Q-dense.

Proof: See ([Haa01, Haa00]). 2

4in the graph theoretic sense, this coincides here with the circuits of the CyO
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Figure 4: A concurrent system of two �nite processes

3 Cyclic Orders without Petri nets

We saw that the above characterization of oriented cyclic orders is a natural extension of

classical results from Petri Net theory; here, we outline how they can also be applied to

concurrent systems and their dipaths.

3.1 Products of Cyclic Orders

For �i = (Xi;�i), where i 2 I, de�ne the product

� :=
O

i2I

�i

as follows: � = (X ;�); where X is the Cartesian product of the Xi, and � given by: for all

x; y; z 2 X , with x = (xi)i2I , y = (yi)i2I , z = (zi)i2I

� (x; y; z) () 8 i 2 I : �i (xi; yi; zi) ;

Now, it is straightforward to check that � is a cyclic order; the product also respects and

preserves global orientation:

Theorem 3.1 In the above construction, � is globally oriented i� �i is globally oriented for

all i 2 I.

Proof: If: For every i 2 I, let ~�i = (Xi; ~�) be a totalization of �i. One veri�es that

~� :=
O

i2I

~�i
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Figure 5: On winding and dipaths

is a totalization of �. Similarly, for the Only if part, take a totalization ~� of � and its

projections ~�i to the components i 2 I. Then ~�i is a totalization of �. 2

In the rest of the paper, we will assume for simplicity that I is �nite. Then, using Theorem

2.5, unwindings can be produced for � from those for the i 2 I, by subsequently unwinding

in each component dimension: let 	i the partial order from which �i is wound by ��i for

some automorphism �i of 	i. Then for the product poset

	 :=
O

i2I

	i

and all i, �i induces an automorphism � i of 	. The concatenation of all � i yields a winding

of 	 to �, where the order of applying the � i is indi�erent.

3.2 Windings for Dihomotopy

The connection between cyclic order theory and dihomotopy has not yet been fully elaborated;

the following are some indications.

Recall that concurrent systems can be modeled as products of partial (in fact, typically

linear) orders, each of which representing the phases of one of the processes. The possible

evolutions of the system are then given by dipaths leading from the bottom to the top element.

Further, for instance, forbidden, unsafe, and inaccessible regions are obtained from the order

intervals: in Figure 4, we have two processes P1 and P2, with the (white) forbidden region
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given by

fP1 2 [a; d]; P2 2 [v; w]g [ fP1 2 [b; c]; P2 2 [u; x]g (1)

(similar descriptions can be given for the (dark) unsafe and the (checkered) inaccessible re-

gions), as well as two pairs of dihomotopic �nite dipaths.

Now, consider the axes of P1 and P2 extended both ways to in�nity by repetition, see

Figure 5. Some allowed dipaths are indicated in the �gure; consider their extensions to in�nite

dipaths invariant under (�1 � �2)
4. The winding ��1��2 creates a cyclic order � = (X ;�) on a

torus, with connected forbidden region given by (1), where the intervals have to be interpreted

in terms of � rather than a partial order <.

Under ��1��2 , the only dipath yielding a line of � is drawn in solid; the others belong to

two other homotopy classes. However, the thick dashed dipath is taken to a line by �(�1��2)2 ,

and the same holds for all four dipaths drawn in Figure 5 under �(�1��2)4 .

The approach to looped processes here is di�erent to that taken by Fajstrup [Faj00].

Again, there are inessential and essential di�erences:

� The systems considered here are necessarily built from cyclic, non-terminating processes,

whereas those of [Faj00] have distinguished start- and end- points and contain loops

only in the interior. This means no restriction for our approach since each terminating

process can be made into a looped one by adding a new least and maximal point, and

then identifying both.

� The computation of forbidden, unsafe, inaccessible regions etc. is possible directly on the

cyclic structure (once the cyclic order relation is known), without a need for unwinding;

that is, the cyclic order is a natural abstraction of the looped concurrent system.

We appeal to the reader's imagination (not disposing of a convincing �gure of the torus

associated to Figure 5) to see that this is true in the case of the \swiss cross" example; the

winding construction preserves the forbidden rectangles (some extra care must be taken when

the image of such a rectangles under the winding map does not have the form of a rectangle;

here, however, no such problem arises) and their unions, complements, etc.

4 Outlook

Several lines of research can only be mentioned here.

� We note �rst that the successful application of CyOs to both con
ict-free Petri Nets

and synchronized products would provide an important link. These two formalisms are

not extensionally equal, as Figure 4 shows: there is no persistent (i.e. con
ict free) Petri

net model generating it.

� There exist cyclic equivalents for lattices (as for other order theoretic objects); the

structure of the cuts is also transported from a partial order to a cyclic order. Their

study involves a closer look at the "tightness" of a winding. If the translation de�ning

the winding does not map its arguments su�ciently far away (with respect to the

ordering, not a metric !) from their position, then the winding may cease to be faithful

([Haa01, Haa00]) and destroy lattice and other properties. The Cycloids and Orthoids

of Petri [Pet96] provide abundant material to further investigation into symmetries and

cyclic orders for nets.
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� Finally, the above characterization of orientability uses a merely order-theoretic no-

tion of circuit, extending directly the graph theoretic one. A characterization in an

appropriate topological representation with closed curves should be tried.
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Abstract

Formal dialogue games studied by philosophers since the Middle Ages have
recently found application in Artificial Intelligence as the basis for protocols
for interactions between autonomous software agents. For instance, such
protocols have been proposed for dialogues involving persuasion, negotiation
and deliberation. We provide a geometric semantics for these protocols and
define a notion of equivalence between protocols. We then demonstrate an
algebraic property of equivalence, and use this to show non-equivalence of
two similar generic protocols. Our result has implication of the design and
evaluation of such dialogue-game protocols.

KEYWORDS: Agent Communication Languages, Argumentation, Autonomous
Agents, Computational Dialectics, Dialogue Games.

1 Introduction

Over the last decade, philosophical theories of argument and argumentation have
found increasingly-widespread application in Artificial Intelligence [2]. One im-
portant application has been for the design of protocols for interactions between
autonomous software agents in multi-agent systems, where agents may need to
convince others of some claim in order to achieve a desired objective [14]. Such
ideas have been operationalized by the use of formal dialogue games adopted from
philosophy; these are games between two or more players, where the “moves”
made by the players are locutions, i.e. spoken utterances, which adhere to speci-
fied rules. Dialogue game protocols have now been proposed for agent interactions
involving: persuasion [3, 10]; negotiation [1, 13, 15]; deliberation [5]; information-
seeking [6]; and chance discovery [11].1

1Note that these different types of dialogue have precise definitions according to a standard argu-
mentation theory classification of dialogues [16].
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However, most of these protocols have been defined in a stand-alone manner,
without comparison to other game protocols and with scant regard for their formal
properties. In an effort to remedy this, we have recently initiated discussion over
the criteria which may be appropriate for the design and evaluation of such pro-
tocols in multi-agent systems [12]. In undertaking this work, we have recognized
the need for a formal language in which to explore the properties of dialogue game
protocols, and, in particular, to compare one protocol with another. It is such a lan-
guage we propose in this paper. Our approach is to define the elements of a generic
dialogue game protocol in such a way that we can translate any protocol into a
geometric representation, specifically a subset of a real, multi-dimensioned space.
We are then able to use some simple ideas motivated by algebraic topology to con-
sider the equivalence of two protocols. For reasons of space, some definitions are
presented informally or semi-formally.

The paper is structured as follows: Section 2 reprises a formal model of dia-
logue games from our previous work, and Section 3 defines our geometric seman-
tics for dialogue games protocols and for dialogues conducted according to such
games. Section 4 defines a topological notion of equivalence of two protocols, and
deduces an algebraic property of this notion. We then demonstrate that two generic
protocols which are very similar are in fact not equivalent. Section 5 concludes the
paper.

2 A Generic Dialogue-Game

Formal dialogue games have been studied by philosophers since at least the Mid-
dle Ages, and were revived in modern times to better understand fallacious modes
of reasoning [4, 8] and as a game-theoretic semantics for intuitionistic logic [7].
In earlier work [9], we proposed a formal model for the elements of a dialogue-
game, which we reprise here. In this model, it is assumed that the topics of dis-
cussion between the participants are represented in some logical language, whose
well-formed formulae are denoted by the lower-case Greek letters,�, �, etc. The
dialogue game then consists of several types of rules:

Commencement Rules:Rules which define the circumstances under which the
dialogue begins.

Locutions: Rules which indicate what utterances are permitted. Typically, legal
locutions permit participants to assert propositions, permit others to question
or contest prior assertions, and permit those asserting propositions which are
subsequently questioned or contested to justify their assertions. Justifications
may involve the presentation of a proof of the proposition or an argument
for it, and such presentations may also be legal utterances. In some multi-
agent system applications of dialogue games, e.g. [1]), rationality conditions
are imposed on utterances, for example allowing agents to assert statements

2

64



only when they themselves have a prior argument or proof from their own
knowledge base.

Combination Rules: Rules which define the dialogical contexts under which par-
ticular locutions are permitted or not, or obligatory or not. For instance, it
may not be permitted for a participant to assert a proposition� and subse-
quently the proposition:� in the same dialogue, without in the interim hav-
ing retracted the former assertion. Similarly, assertion of a proposition by a
participant may oblige that participant to defend it in defined ways following
contestation by other participants.

Commitments: Rules which define the circumstances under which participants
express commitment to a proposition. Typically, assertion of a claim� in
the debate is defined as indicating to the other participants some degree of
willingness to defend it in the dialogue if questioned or contested by other
participants. Since Hamblin [4], it is common to track commitments in a set
of publicly-readable blackboards called Commitment Stores.

Termination Rules: Rules which define the circumstances under which the dia-
logue ends. These rules may be expressible in terms of the contents of the
Commitment Stores of one or more participants; for example, a persuasion
dialogue may terminate when all participants utter a locution accepting the
proposition at issue, a locution which inserts the proposition into the agent’s
Commitment Store.

In the dialogue game tradition in philosophy,commitmentis a dialogical concept: a
commitment expresses a willingness by an agent to defend in the dialogue a claim
which that agent has previously asserted, and does not necessarily have any con-
nection to any reality external to the dialogue. Thus, for example, acceptance in
a dialogue by a participant of some proposition does not necessarily entail belief
in that proposition by the participant. Dialogue locutions will only have such con-
nections with external reality if the participants in the dialogue together agree to
vest such meanings in the locutions. However, for dialogues of interest to agent de-
signers, particularly negotiations and deliberations, connections between locutions
and external reality is important. For example, parties to a negotiation dialogue
may agree that its successful conclusion will lead to the execution of a purchase
transaction following dialogue termination.

We therefore assume that participants to a dialogue may utter locutions which
all participants understand to imply a willingness to execute an action or actions,
external and subsequent to the dialogue. We further assume that these actions may
be expressed in the same logical language as are the topics of discussion.2 In the
next section, we present a geometric semantics for dialogue-games and dialogues.

2The problem of semantic verification of agent communications languages – how may we verify
that all participants have the same sincere understanding of an interaction protocol – is a thorny one,
which we do not discuss here [17].
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3 A Geometric Semantics

We now present a geometric semantics for dialogue games and dialogues. We
useR+ andZ+ to denote spaces consisting of all non-negative real numbers and
integers, respectively. We use the notationRn+ for the n-fold product ofR+,
i.e. the sub-space ofRn where all points have non-negative co-ordinates on each
dimension.

3.1 Dialectical systems

We assume a finite setA = fPiji = 1; : : : ; pg, of dialogue participants, or agents.
We denote dialogue games by possibly-subscripted upper case script Roman let-
ters,D; E , etc. Each dialogue game comprises a finite set of legal locution-types,
denotedL = fLj jj = 1; : : : ; lg, and a number of rules which we will consider
presently. Dialogues conducted according to the rules of a dialogue game are as-
sumed to concern a fixed, finite set� = f�iji = 1; : : : ; qg of well-formed formulae
in some propositional language, which we call the universe of discourse.3 Some or
all of these propositions may represent external actions which can be the subject of
commitments incurred by speakers in the dialogue uttering specific locutions, and
so we distinguish a specific subset�a � �, which we call the action set.

We further assume that all locution types can be categorized into one or more
of three types: (a)Commitment locutions:locutions which express some external
or dialogical commitment, e.g. a commitment to execute a purchase action upon
completion of the dialogue; these locutions are instantiated with one or more el-
ements from�a and possibly one or more elements of� n �a; (b) Information
locutions: locutions which transmit some information from speaker to audience,
e.g. a statement by a speaker of a preference-ordering over some set of objects;
these locutions are instantiated with one or more elements of� n �a; and (c)Pro-
cedural locutions: locutions which neither transmit information, nor commit to
actions; such locutions may, for instance, encode a theory of argumentation, e.g.
questions to or challenges of other speakers, responses to such challenges, etc;
these locutions are not directly instantiated with elements of�, although they may
be instantiated with other locutions in which elements of� appear.

We assume that utterances of dialogue locutions occur at discrete time-points,
calledrounds, represented by the non-negative integers. A locution is executed by
a speakerPi instantiating the appropriate locution type with: a positive integer rep-
resenting the time of utterance (a time-stamp); the identifierPi of the speaker of the
locution; and possibly a proposition�j from the set�.4 The actions referred to by
instantiated utterances of Commitment locutions and the information transmitted

3Of course, such a propositional language may have an infinite set of wffs. We leave discussion
of the infinite case to another occasion.

4Some dialogue-game protocols, e.g. [13], permit speakers to target utterances at particular audi-
ences, in which case the locution-type would also be instantiated with a subset ofA. For simplicity
in this paper, we assume all utterances are intended for and heard by all participants.
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by instantiated utterances of Information locutions are assumed to be expressible in
formulae contained in the set�. Because some locutions may require instantiation
with more than one proposition, e.g. a locution expressing a preference ordering
over two purchase options in a negotiation, we assume� is closed under the com-
binations of propositions required by the syntax of the locution-types. We denote
byL� the finite set of locution-typesL instantiated with possible speakers fromA
and discussion topics from�. In other words,L� is isomorphic to a subset of the
finite set of 3-tuples,f (L;A;�) g.

In the previous section we identified the different types of rules in our model
of a dialogue game. Because initiation of a dialogue of specific type on a specific
topic happens outside it, we do not assume commencement rules are part of the
definition of the dialogue game protocol. For all other rules, however, it is possible
to define each rule as a mapping from appropriate dialogue histories (the instan-
tiated locutions actually uttered prior to the next round) to the setL� in the case
of Combination and Termination rules, or to the set�, in the case of Commitment
rules. Details of these definitions can be found in [9]. For present purposes, it is
sufficient to note that a dialogue game protocol includes a specification of such
mappings, and that they induce a partition of the possible instantiated locutions for
each agent at each round:Obligatory moves:instantiated locutions, one of which
must be uttered by the agent at the next round;Legal moves:instantiated locutions
which may be uttered by the agent at the next round;Forbidden moves:instantiated
locutions which may not be uttered by the agent at the next round; andTermination
moves:instantiated locutions which if uttered by the agent at the next round will
result in termination of the dialogue. We next define adialectical system.

Definition 1: SupposeA is a finite set of agents,� a finite set of topics of discus-
sion (including a possible subset of action commitments), andD a dialogue game
protocol with a set of locutionsL. We say that the 4-tuple~D = (A;�;L;D) is a
dialectical system. If the size ofA is p, the size of� is q and the size ofL is l, we
say that~D has dimensionn = pql. A dialogueundertaken in accordance with such
a dialectical system is a time-ordered sequence of locutions uttered by the agents
in A, each element of which consists of an instantiated locution from the setL�,
uttered in accordance with the rules of dialogue gameD.

We refer to dialogues undertaken in accordance with a dialectical system as be-
ing associated withor underthe dialectical system. We also refer to such dialogues
as legal dialogues, although we do not permit sequences of locutions under a di-
alectical system which do not conform to the rules of the corresponding dialogue
game. In the next section, we present a geometric semantics for dialogue systems
and their associated dialogues.
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3.2 Dialogue paths

Let ~D = (A;�;L;D) be a dialectical system, and setn = pql, where these con-
stants are defined as in Section 3.1. We interpret the associated dialogues as paths
in the realn-dimensional spaceRn+. We do this by labeling each axis ofRn+

with a triple (Pi; �k; Lj), for all Pi 2 A, for all �k 2 � and for allLj 2 L. The
path corresponding to a dialogue, which we call adialogue path, commences from
the origin, and proceeds as follows: Whenever participantPi utters locutionLj
concerning topic�k, the path moves from whatever is its current position forward
one unit in a direction parallel to the axis labeled(Pi; �k; Lj). We first define such
paths formally as follows:

Definition 2: A dialogue pathis a functiond(:) : R+ ! Rn+, such that conditions
(a), (b) and (c) are each satisfied:

(a) d(0) = ~0;
(b) Either:
(i) For all integersk 2 R+, d(k) = (y1; y2; : : : ; yn) where eachyj 2 Z+ and

Pn
j=1 yj = k; or

(ii) There is an integerm � 0 such that for all positive integersk � m,
d(k) = (y1; y2; : : : ; yn) where eachyj 2 Z+ and

Pn
j=1 yj = k, and for all

integersk > m, d(k) = d(m);
(c) If x 2 R+ not an integer, thend(x) = d([x] + 1), where[x] is the integer

part ofx.

Definition 3: Let ~D = (A;�;L;D) be a dialectical system, and letdL be an as-
sociated dialogue, that is, a possibly-infinite time-ordered sequence of locutions
fromL instantiated by the topics in�, uttered by agents inA in accordance with
the rules of gameD. Suppose thet-th element ofdL is the instantiated locution
Lj(t; Pi; �k), for t = 1; 2; : : :. The dialogue pathd associated withdL is the func-
tion d : R+ ! Rn+ obtained by settingd(0) = ~0, setting eachd(t) equal to:
d(t � 1) + (0; : : : ; 0; 1; 0; : : : ; 0), where the non-zero co-ordinate corresponds to
that axis labeled(Pi; �k; Lj); and whered(x) = d([x] + 1), whenx 2 [t� 1; t).
We say thatd is the dialogue path whichcorresponds toor matchesdL.

It is easy to see that such ad is a dialogue path. Thus, for each legal dialogue we
have an associated continuous directed path throughRn+, starting from the origin,
made up of straight-line segments each parallel to an axis of the space, and each
one unit in length. Such paths may represent infinite (condition b i of Definition
2) or terminating (condition b ii) dialogues. In the latter case, we say that the path
d is a terminating path with terminal time-pointm or that the pathterminates at
m, wherem is the integer mentioned in condition (b) (ii) of Definition 2. In this
case, we also say the dialogue path is of lengthm. If the former case, we say that
the pathd is non-terminatingor infinite. It will be useful to distinguish generic
dialogue paths (as defined above) from those which obey the rules of the dialogue
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game,D.

Definition 4: Letd : R+ !Rn+ be a dialogue path. SupposeA is a set of agents
of sizep, � a set of topics of discussion of sizeq, andD a dialogue game protocol
with a set of locutionsL of sizel, withn = pql, such that there is a legal dialogue
between the agents inA concerning the topics in� and conducted according to the
rules ofD using the set of locutionsLwhose dialogue path matchesd. Then we say
thatd is a dialogue path underor is legal underthe dialectical system(A;�;L;D).

In general, not all dialogue paths will correspond to legal dialogues. This is
because the various combination, termination and commitment rules create subsets
of Rn+ which a legal dialogue path either cannot enter or must traverse. Because
the combination rules typically specify which instantiated locutions may, may not
or must be uttered depending on the previous utterances in the dialogue and the
identity of the agent speaking, these forbidden and obligatory regions will differ
at each round in the dialogue. Thus, because the histories of two dialogues at
any one time may be different, one dialogue path may traverse a region which
is forbidden to another dialoue path; a dialogue path may even traverse a region
which is forbidden to itself later or earlier in the same dialogue. In the sections
below we will refer to the Forbidden Region and the Termination Region for a
dialogue path under particular dialectical system at a particular time point, with
the obvious meanings.

3.3 Path and system equivalence

Because our focus is on specific types of agent interactions, such as negotiations
or persuasions, we are concerned to see what external action commitments are
made in the course of a dialogue, and what information is transferred between
participants to achieve these commitments. We therefore require some measure of
these, which we obtain by first examining the syntax of each locution-type.

Definition 5: Suppose~D = (A;�;L;D) is a dialectical system, withL 2 L a
locution-type. We define the information possibly transferred by speakers utter-
ing locutionL, denotedPossInfo(L), by the set of all possible subsets of� which
could be instantiated intoL. Similarly, the actions possibly committed to by partic-
ipants uttering locutionL, denotedPossActs(L), is the set of all possible subsets
of �a which could be instantiated as actions inL. A procedural locutionL has
PossInfo(L) = PossActs(L) = f;g, i.e. the set containing only the empty set.

For example, the locution with syntaxseekprice(k; Pi; �), with k is positive
integer (a time stamp),Pi 2 A an agent, and� 2 � a proposition, will have
PossInfo(seekprice) = ff�g j � 2 �g, i.e. all singleton subsets of�. By con-
trast, the locution with syntaxprefer(k; Pi; �;  ) with k andPi as before, and with
�;  2 � propositions, will havePossInfo(prefer)= ff�; 
g j �; 
 2 �; � 6= 
g,
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i.e. all subsets of two distinct elements of�. Thus, PossInfo(seekprice) 6=
PossInfo(prefer). Thus, each locution defines a subset ofP(�)�P(�a). Each ut-
terance of an information-transferring locutionL in a given dialogue is instantiated
with the contents of one element of the subsetPossInfo(L) of P(�). Considering
instantiation leads us to define the information actually transferred and actions ac-
tually committed to by participants in a given dialogue.

Definition 6: Letd be a dialogue path under a dialectical system~D = (A;�;L;D),
and letdL be the corresponding dialogue. We define theinformation transferredby
d, denotedInfo(d), as the set of information transferred by the locutions uttered in
dL, i.e.

Info(d) = f� 2 � j 9Lj(t; Pi; �) 2 dLg.
Likewise, we define theactions committed toby d, denotedActs(d), as the set of
action propositions committed to by the speakers of locutions uttered indL, i.e.

Acts(d) = f� 2 �a j 9Lj(t; Pi; �) 2 dLg.

Using these definitions, we next define a notion of “closeness” of two dialogue
paths.

Definition 7: Let d; e : R+ ! Rn+, be two legal dialogue paths under the same
dialectical system(A;�;L;D). We say thatd is close toe precisely in the case
when both paths are terminating and Info(d) = Info(e) and Acts(d) = Acts(e).

Note that two close paths may terminate at different time-points, i.e. be of different
length. We have the following result, whose straightforward proof is omitted.

Proposition 1: The relation of closeness between two legal dialogue paths is an
equivalence relation. 2

We can therefore speak of two dialogue pathsd and e under the same dialogue
system beingequivalent, which we denote byd � e. We also refer to the cor-
responding dialogues being equivalent. We denote the equivalence class of a di-
alogue pathd by [d], which we call apath-equivalence. We also have the following.

Proposition 2:For any dialectical system~D, the set of path-equivalence classes of
legal dialogue paths under~D is finite.
Proof. This result follows from the assumption that the set� is finite. 2

Using the notion of path-equivalence, we now define a relationship of similarity
between dialectical systems.

Definition 8: Suppose~D = (AD;�D;LD;D) and ~E = (AE ;�E ;LE ; E) are two
dialectical systems of dimensionm andn respectively. We say that~D is similar to
~E if there exists a one-to-one and onto functionh : Rm+ ! Rn+ such that for
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every terminating dialogue pathd under ~D there is a terminating dialogue pathe
under ~E with h(d) = e and withInfo(d) = Info(e) and withActs(d) = Acts(e), and
such that for all dialogue pathse0 � e under ~E , there exists a dialogue pathd0 � d

such thath(d0) = e0.

In other words, two dialogue systems are similar if the first can be mapped to
the second so that terminating dialogues are mapped to terminating dialogues while
preserving information-transfers and action-commitments, and so that equivalent
dialogue paths are mapped to equivalent dialogue paths. Clearly, for such a map
h to exist, the two universes of discourse�D and�E must intersect, as must their
respective action subsets. The second condition in the definition ofh, the existence
of a d0 for everye0 with h(d0) = e0, may be considered as analogous to a conti-
nuity requirement onh, since dialogue paths which are close to one another in the
second dialectical system are required to be the images of dialogue paths close to
one another in the first. As with path-equivalence, our notion of similarity of di-
alectical systems is an equivalence relationship, a statement whose straightforward
proof we omit.

Proposition 3: The relationship� between dialectical systems is an equivalence
relation. 2

We can therefore speak of two dialectical systems~D and ~E beingequivalent, de-
noted ~D � ~E . This notion of equivalence of dialectical systems is a global prop-
erty defined in terms of the existence of local properties, i.e. similarity of dialogue
paths. Note that the equivalence mappingh maps legal dialogue paths to legal di-
alogue paths; since such paths avoid Forbidden Regions in their respective spaces,
thenh preserves this structure in mappingRm+ toRn+.

4 Comparing Dialectical Systems

In this section, we begin with a connection between the equivalence of dialectical
systems and the sets of equivalence classes of the dialogue paths under them.

Proposition 4: Suppose~D � ~E are two equivalent dialectical systems. Then the
respective sets of path-equivalence classes generated by legal terminating dialogue
paths under each system are isomorphic.
Proof. We need to show that there is a one-to-one and onto map between the
two sets of path-equivalence classes. Let� = �D [ �E be the union of the
two universes of discourse, and�a = �Da [ �Ea the union of the two subsets
of action propositions. By the definition of path-equivalence, each class in the
set of path-equivalence classes for a specific dialectical system corresponds to a
unique subset ofP(�) � P(�a), whereP(X) is the power set ofX. For each
path-equivalence under~D, assign to it the path-equivalence under~E corresponding

9
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to the same subset ofP(�) � P(�a). Such a path-equivalence class under~E
exists because the equivalence mappingh from ~D to ~E preserves the information
transmitted and the actions committed to by each dialogue. This mapping is one-
to-one because each path-equivalence class is associated with a unique subset of
P(�)�P(�a).

To prove it is onto, suppose, for purposes of contradiction, there is some path-
equivalence class[e] under ~E which corresponds to a subset ofP(�) � P(�a) to
which no path-equivalence class under~D corresponds. Consider a dialogue pathe

in the path-equivalence class[e]. Because~D � ~E , then there must be a dialogue
pathd under ~D such thath(d) = e. Thus,Info(d) = Info(e) andActs(d) = Acts(e).
But this just means that[d] is associated with the same subset ofP(�)�P(�a) as
is [e], thus contradicting the assumption. 2

Proposition 4 shows that dialogue equivalence, which is defined in terms of map-
pings between real spaces, preserves the structure of the sets of associated path-
equivalence classes. This is really not surprising given the definition of dialogue
equivalence. However, it allows us to deduce the following interesting corollary:

Proposition 5: Suppose~D = (A;�;LD;D) and ~E = (A;�;LE ; E) are two di-
alectical systems of dimensionm andn respectively, such thatLE = LD [ fL

0g.
Moreover, suppose thatf;g 6= PossInfo(L0) 6=

S
Lj2J

PossInfo(Lj), for all

J � LD. Then ~D and ~E are not equivalent.
Proof. If we had ~D � ~E then, by Proposition 4, we would have an isomorphism
of the two sets of path-equivalence classes. However, sincef;g 6= PossInfo(L0)
6=
S
Lj2J

PossInfo(Lj), for all J � LD, there is at least one instantiation of
locutionL0 which transfers a non-empty subset ofP(�) not transferred by any di-
alogue without this locution. Since the dialogues of system~D consist only of the
locutions inLD, we thus have a contradiction. Hence~D and ~E are not equivalent.2

A similar result applies to dialogue systems which differ only by a locution which
commits to actions not committed to by the other locutions. Moreover, both results
apply if there is more than one locutionL0 2 LE n LD which transfers information
or commits to actions not possible using the locutions inLD. Similarly, we have
the following corollary, whose similar proof we omit.

Proposition 6: Suppose~D = (A;�;LD;D) and ~E = (A;�;LE ; E) are two di-
alectical systems of dimensionm andn respectively, such that the protocolsD and
E differ only by a rule inE which terminates a dialogue under some conditions.
Then ~D � ~E only if for each terminating dialogue-pathe underE in which the rule
is invoked and leads to termination there is a terminating dialogue pathd underD
with Info(d) = Info(e) andActs(d) = Acts(e). 2

These corollaries are important because they provide us with some guidance
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for the design of dialogue systems. With them, we know that adding a locution
or a termination rule which transfers information not transferred in the current set
of locutions will create a non-equivalent system, i.e. a dialogue system in which
there will be dialogues transferring different information or committing to different
actions. Dialogue-system equivalence, as we have defined it here, is not the only
criterion one could use for design and assessment of dialogue game protocols;
one may wish to add or not add such locutions or rules for other reasons, such as
overall simplicity or to encode a particular theory of argumentation [12]. However,
we believe dialogue equivalence is an important criterion and these results give us
a purchase on understanding its implications for dialogue-game protocol design.

5 Conclusion

In this paper, we have defined a novel geometric semantics for dialogue game pro-
tocols for interactions between autonomous agents and begun to explore its formal
properties. We have used these properties to show that two protocols which differ
only in one locution are not equivalent if that additional locution transmits informa-
tion or commits its speaker to actions which are not expressible by any combination
of the other locutions. Although our methods are not sophisticated mathematically,
we believe our results are important because of the guidance they provide for the
design and evaluation of dialogue game protocols. We believe this application do-
main contains further potential for investigation. Firstly, we have not yet used the
fact that dialogue paths are time-directed and are monotonically non-decreasing.
Nor have we used the fact that our geometric semantics embeds dialogue paths in
a real space with holes (the Forbidden Regions) and thus may make them liable to
continuous approximation. Secondly, we believe the results here could be readily
expressed in category-theoretic terms. Both these streams are the subject of future
work.5
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Categories of dimaps and their dihomotopies in

po-spaces and local po-spaces
�

Stefan Soko lowskiy

Gda�nsk, 6 August 2001

This report investigates a number of di�erent notions of dimaps in [local] po-spaces,

and of their dihomotopies. It discusses their respective advantages and drawbacks in

modeling concurrency. This should be considered as a contribution towards putting

some order into the foundations of the approach.
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2 Stefan Soko lowski Dimaps and dihomotopies

see [1] by Fajstrup, Goubault and Raussen). Possible executions of a family of concurrent

processes are modeled in this framework as trajectories (dipaths) in the spaces of their

possible con�gurations. The competition of processes for resources may be portrayed as

\holes" in these spaces. Now, small deformations of a trajectory, not involving \jumping"

over the holes, accounts for insigni�cant changes of the order of execution without any

rescheduling of the use of resources. Such harmless deformations give rise to an analog

of the topological notion of homotopy. In principle, the investigation of such holes and

deformations should be similar to the investigation of topological spaces by algebraic

topological tools.

However, the foundations of the geometric and algebraic-topological theory of con-

currency are not yet �rmly set. While the notion of po-space as a home of the �nitely

running processes (see, e.g., [1] by Fajstrup, Goubault and Raussen) seems appropriate

and suÆciently well understood, the same is only partially true of the local po-spaces

serving the in�nitely running processes. In fact, as recently as a year ago we have felt it

needed tuning up (cf. [2] by Fajstrup and Soko lowski).

There are more doubts on the side of the morphisms. The natural notion of a dipath in

a po-space X (a continuous and monotone mapping of the ordered interval ~I into X) does

not readily generalize to a dimap of arbitrary po-spaces amenable to usual homotopical

(or rather dihomotopical) investigations. The natural notion of dihomotopy equivalence

of po-spaces seems a lot too permissive in that it identi�es too many po-spaces which,

from a computational point of view, had better be kept apart. And most importantly,

the natural construction of the dihomotopy posets (cf. [7] by Soko lowski), corresponding

to the homotopy groups in algebraic topology, fails to be functorial.

The situation is even more unstable in the local po-spaces. The notion of long dipath

in X (cf. [5] by Raussen), which is a continuous and locally monotone mapping of the

non-negative real numbers R�0 into X, gives rise to a classi�cation of such dipaths into

�nite ones that correspond to terminating computations (e.g., deadlocks) and in�nite

ones that correspond to in�nite computations. This is nice. But there are examples of

�nite long dipaths which are dihomotopic to in�nite ones. And this is most unwelcome,

even unacceptable, if the notion of dihomotopy should have a computational meaning.

This report presents some of the problems and, in some cases, puts forward restrictions

on the notions of dimap and dihomotopy designed to keep the problems away. But there

seems to be no hope for a single notion of dimap and a single notion of dihomotopy, nice

and simple. We had better get used to dealing with many categories of dimaps, each good

for one purpose and useless for another.

Acknowledgements:

This report was born out of discussions with Lisbeth Fajstrup and Martin Raussen,

and they are, in a \moral" sense, its coauthors.

1.1 Basic notions and notations

This report deals with po-spaces, i.e., topological spaces X with a partial order � which

is closed as a subset of X �X. In most cases (not always), the po-spaces are assumed

to be pointed, i.e., to have a distinguished least point 0 with respect to the order. The
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2. Global po-spaces 3

pointedness of the po-spaces does not a�ect the theory a lot, it just simpli�es some

formulations.

This report deals with local po-spaces too. Technically, this is a complicated concept,

cf. [2] by Fajstrup and Soko lowski. But for the purposes of this report, a local po-space is

a topological space with an open cover by po-spaces and such that, in a loose sense, the

local partial orders on these open sets coincide1.

Throughout this note, the following po-spaces are used for auxiliary purposes:

� I| the interval [0 : : 1] with the standard topology and the discrete order:

s � s0
def
() s = s0

� ~I| the interval [0 : : 1] with the standard topology and the standard order.

� R�0 | the set of non-negative reals [0 : : +1) with the standard topology and the

standard order.

By a dimap between [local] po-spaces will always be meant a continuous and [locally]

monotone mapping between these spaces. Sometimes additional restrictions will be put

on dimaps giving rise to subcategories of the full category of [local] po-spaces. A dihome-

omorphism is a dimap which has an inverse dimap.

A dihomotopy from a [local] po-space X to a [local] po-space Y is a continuous and

[locally] monotone mapping from I�X to Y . Again, sometimes restrictions wil lbe

put on this general notion of dihomotopy. Two dimaps ';  : X ! Y are dihomotopic

(denoted by ' '  ) i� there exists a dihomotopy H from X to Y such that ' = H h0; i
and  = H h1; i.

A dipath in a po-space X is a dimap � : ~I! X. The set of dipaths in X will be

denoted by D1X. The set of initial dipaths in a pointed po-space X is

I1X
def
=
�
� 2 D1X

���0 = 0
	

where 0 is the least point in X. A dipath models a �nite computation of a system of

concurrent processes. Its monotonicity accounts for the fact that time only 
ows forward.

Its continuity rules out a \teleportation" that would, out of the blue, change the state of

such a system into a completely di�erent and remote state.

2 Global po-spaces

2.1 Fixed-ends dihomotopy of dipaths

In a pointed po-space X, which is our main concern, any two initial dipaths are diho-

motopic to each other. To see this, take dihomotopies that contract each dipath to a

constant dipath �t
def
= 0, and glue them together in the obvious way. This shows that

the unrestricted dihomotopy is useless for a classi�cation of dipaths.

1The complicated part of this de�nition is the exact formulation of this coincidence, and of the

independence from a particular cover.
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4 Stefan Soko lowski Dimaps and dihomotopies

The movement of the end-point of a dipath throughout the dihomotopy has to be

somehow restricted. A very general approach is adopted in [1] by Fajstrup, Goubault

and Raussen, where the notion of dihomotopy of dipaths is parameterized by an arbitrary

subset A � X and a requirement that the dihomotopy keeps the end-point of the dipath

within A 2. I will assume A to be a singleton set, but I will allow every dihomotopy to

have a di�erent singleton set restriction:

1 De�nition:

A �xed-ends dihomotopy of dipaths in X is a continuous and monotone mapping

H : I�~I! X such that H hs; 0i = H h0; 0i and H hs; 1i = H h0; 1i
for all s 2 I

(i.e., the end-points of the dipaths are kept �xed). Two dipaths � and � are �xed-ends

dihomotopic (denoted by � 'd �) if there exists a �xed-ends dihomotopy H of dipaths

such that � = H h0; i and � = H h1; i.

Of course, a necessary condition for two dipaths to be �xed-ends dihomotopic is that they

have the same end-point. There is, therefore, at least one �xed-ends dihomotopy class

for each reachable point of X. If there are holes in X, the set of �xed-ends dihomotopy

classes of dipaths may be bigger.

Computationally, �xed-ends dihomotopies identify the executions of the concurrent

system in which the shared resources are allocated to particular processes in the same

order. This corresponds to going around the holes in a po-space in the same way.

Note that the de�nition of �xed-ends dihomotopy of dipaths does not readily generalize

to a dihomotopy of other dimaps of po-spaces, not even of pointed po-spaces. In particular,

in other po-spaces, there is no obvious counterpart of the requirement that the end-

points of the dipaths are �xed, because there may be no (or many) end-points. The

property of pointedness is computationally natural, because it accounts for a system

of concurrent processes beginning in a well-de�ned initial state, but the existence of

a biggest point would rule out many useful examples. On the other hand, since two

dimaps from a general po-space X to Y are not necessarily dihomotopic to each other,

the dihomotopy classi�cations of general dimaps is not necessarily as meaningless as the

dihomotopy classi�cation (without �xed-ends) of dipaths.

For the time being, we need to put up with the fact that the dihomotopy classi�cation

of dipaths is di�erent from the dihomotopy classi�cation of other dimaps. In particular,

that � 'd � implies � ' � but not the other way round.

2.2 Problems with dihomotopy equivalence

It is natural to de�ne the dihomotopy equivalence of two (local) po-spaces X and Y

as a pair of dimaps X

'

 

q

i

Y such that  Æ ' ' idX and ' Æ  ' idY . But it is un-

clear whether the dihomotopy equivalence of two po-spaces has any computational con-

sequences. In view of the restriction on the notion of dipath dihomotopy discussed in

2Actually, there are two subsets of X restricting, respectively, the begin-point and the end-point of

the dipath. For simplicity, I am assuming the former set to be f0g.
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2.2. Problems with dihomotopy equivalence 5

Figure 1: The single square hole and the Swiss 
ag.

�

�
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�
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��

Figure 2: Two \thin" spaces corresponding to the ones in Fig. 1.

Sec. 2.1, two (local) po-spaces may be dihomotopy equivalent without any natural rela-

tion on the sets of their dipaths, even up to dipath dihomotopy.

2 Example

Consider the square with a single square hole and the Swiss 
ag in Fig. 13. It is

easy to realize that they are dihomotopy equivalent, respectively, to the \thin" po-

spaces in Fig. 2 (cf. [3] by Gaucher). Now, a dihomotopy may contract the two straight-

line segments in the right-hand side po-space, showing that the original po-spaces are

dihomotopy equivalent4, even though one of them allows for a deadlock while the other

does not. This is an e�ect that we most certainly do not want since this is our 
agship

example of the applicability of dihomotopy considerations in concurrency.

On the other hand, the dipaths in the single square hole po-space behave quite

di�erently from the dipaths in the Swiss 
ag. This demonstrates that the dihomotopy

equivalence of po-spaces without further requirement may have no deeper computational

meaning.
2

The particular anomaly referred to in Example 2 may be ruled out by requiring that

the dimaps and the dihomotopies involved are strict. For po-spaces X and Y , ' : X ! Y

3The implied ordering of the po-spaces in the �gures in this report is from the left to the right and

from the bottom upwards.
4As pointed out by a referee, there is a more direct way of demonstrating that the po-spaces in Fig. 1

are dihomotopy equivalent.
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6 Stefan Soko lowski Dimaps and dihomotopies

HHHHHHHHHHHH

Figure 3: The square without holes and the square with the upper triangle clipped o�.

is a strict dimap if and only if ' is continuous and

8x;x0 x < x0 ) 'x < 'x0

(for local po-spaces, use the obvious counterpart). A dihomotopy H : I�X ! Y is strict

i� H ht; i is a strict dimap for all t 2 I. The fact that strict dimaps ' and  are strictly

dihomotopic will be denoted by ' 's  .

However, two strictly dihomotopic po-spaces may still dramatically di�er in the be-

haviour of the processes they model.

3 Example

The po-spaces in Fig. 3 are dihomotopy equivalent, as shown in the last section of [7].

It is easy to see that the dihomotopy equivalence given there is strict. But there is only

one maximal point in the �rst one and a continuum of maximal points in the second

one.
2

The maximal points have an important computational meaning, corresponding to possible

outcomes of the execution of a system of concurrent processes. For this reason, these two

po-spaces had better not be identi�ed. This casts more doubt on the usefulness of the

strict dihomotopy equivalence of the po-spaces.

A strict dihomotopy may contract \space" but not \time" to single points | but

please, take this informal statement with a big grain of salt, because there are hardly any

space contractions that would leave time una�ected. The notion is not nice, because the

set of strict dimaps is not closed in the set of all dimaps: the limit of a sequence of strict

dimaps may fail to be strict (see Example 31 on page 20).

2.3 Fundamental posets

When the initial dipaths in a certain pointed po-space X are identi�ed up to �xed-

ends dihomotopy, the resulting set ~�1X
def
= I1X�'d of equivalence classes has a natural

partial order inherited from the pre�x relation on initial dipaths: � v � i� � is the

restriction, up to a reparameterization, of � to the interval [0 : : t0] for a certain t0 � 1.

The dihomotopy posets ~�1X were studied in [8] and in [7] by Soko lowski. A related notion

of dihomotopy set (without the partial order) appears in [1] by Fajstrup, Goubault and

Raussen and is further studied in a number of unpublished notes by Raussen, where it

gives rise to interesting considerations concerning dicomponents (cf. [4]).
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2.3. Fundamental posets 7

The construction ~�1 of the dihomotopy poset has certain good properties for investi-

gating po-spaces. It is functorial: dimaps are in a natural way translated to monotone

functions on partial orders. In fact, this functoriality is used in [8] for proving a certain

unimplementability result. And, as demonstrated in [7], it generalizes easily to diho-

motopy posets ~�n in higher dimensions. These posets may, in principle, detect higher-

dimensional holes that arise from the investigations of critical regions that serve more

than one process at the same time.

One problem with dihomotopy posets is that, in general, they are enormous. As

noticed in Sec. 2.1, in the absence of any holes in a po-space, its dihomotopy poset is

as big as the space itself, while one would want it to be trivial. In higher dimensions,

the dihomotopy posets of uninteresting po-spaces without holes become huge function

spaces, so the situation is even worse. For a useful tool, all this wealth of uninteresting

complexity had better be factored out. This is done by collapsing the dihomotopy poset

to a much smaller one. The de�nition of collapsing given below is much simpler than the

one from [7], although the relations de�ned are the same5.

4 De�nition:

The collapsing preorder is the relation v � I1X � I1X de�ned as follows6:

q@
@@I

�
���

q q� � � ���v
� �

def
()

0
BBB@ 8
2D1X

q@
@@I

�
���

q q� � � ���v
� �

6
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���

�
�
�

�
�
���
�
�

�
�

��

1
CCCA

Informally, we may view dipaths as partial realizations of maximal (not further ex-

tendible) dipaths. While time 
ows, dipaths may grow and this growth is irreversible. At

a given moment, a dipath has already made some \decisions" where to be heading, while

some other decisions may still be open. The collapsing preorder v compares the numbers

of decisions already made. Informally, � v � means that � can still make all the decisions

that � can make and, possibly, some more.

5 Proposition:

1. The collapsing preorder v is a preorder in I1X (re
exive and transitive).

2. 'd � v, i.e., the �xed-ends dihomotopy is �ner than the collapsing preorder.

6 De�nition:

The collapsing equivalence or collapse is the relation

� <

= �
def
() � v � & � v �

7 Corollary:

The collapsing equivalence <= is an equivalence relation in I1X. The collapsing preorder v
induces a partial order (denoted by v too) on the set of equivalence classes.

5This is proven in [6].
6Such pictures will appear instead of mathematical formulae. I �nd them easier to read and not

diÆcult to turn into a more standard notation. When a closed diagram is �lled in with dashes, this

means that there is a dipath dihomotopy between the edges of the �lled in shape.
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8 Stefan Soko lowski Dimaps and dihomotopies

�

�

'
�!

'Æ�

'Æ�

Figure 4: The <
=-equivalence of dipaths may not be preserved by a dimap.

8 De�nition:

The fundamental po-set of a po-space X is the set of equivalence classes


1X
def
=

I1X�<
=

with the partial order v.

Since the equivalence classes wrt the collapse are larger than the �xed-ends dihomo-

topy classes (Prop. 5), the transition from a po-space X to 
1X is a further reaching

simpli�cation than the one from X to ~�1X. [7] gives many examples of po-spaces and

their fundamental po-sets. By the usual category-theoretical nonsense, dihomeomorphic

po-spaces have isomorphic fundamental po-sets (some clues about the way of proving this

follow in Sec. 2.4 | Thm. 14). On the sad side: Examples 2 and 3 show that dihomotopy

equivalent po-spaces may have non-isomorphic fundamental po-sets.

2.4 Functoriality of the fundamental poset

But [7] also gives the evidence that the construction 
1 of fundamental po-sets is not

functorial with respect to dimaps7. A counterexample is provided by the embedding of

the left-hand side square in Fig. 4 into the right-hand side rectangle with a hole. 
1' is

not well-de�ned, since � <
= � but not ' Æ � v ' Æ � | because ' Æ � may still decide to

go under the hole while ' Æ � is already committed to go over the hole.

This does not preclude, however, that the fundamental poset construction may be

functorial with respect to a smaller category of dimaps. One proposal is discussed below.

9 De�nition:

A dimap ' : X ! Y will be called a superior dimap if it satis�es the following condition:

8�2I1X 8�2D1Y

q

q

q

6

6

'Æ�

�
) 9
2D1X

q

q

q

6�



&

q

q

q q

6

6 �

'Æ�

� 'Æ

�� ��v

(1)

This means that in the target po-space Y , for every dipath there is a bigger (superior)

dipath which is the image via ' of a dipath in X.

7Under the natural de�nition of 
1' for a dimap ' : X ! Y : 
1'[�]
def
= [' Æ �].
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2.4. Functoriality of the fundamental poset 9

10 Theorem:

Assume X and Y are pointed po-spaces and ' : X ! Y is a superior dimap that preserves

the least points: '0 = 0. Then ' is monotone with respect to the preorder v in the

following sense:

8�;�02I1X � v �0 ) ' Æ � v ' Æ �0

Proof of Thm. 10:

Take an arbitrary dipath � 2 D1Y such that

q

q

@
@@I'Æ�

�
���
�
���

'Æ�0
q q

�

Condition (1)

implies

q

q

@
@@I�

�
����0

� � � ���vq q

6

and

q q

q q

q@
@@I'Æ�

�
���
�
���

'Æ�0

�6'Æ

�� ��w

By Def. 4 of the collapsing preorder v,

there exist dipaths Æ; Æ0 2 D1X such that

q@
@@I

�
���

q q

� �0

6

q

�
�
�
���

Æ @
@@I Æ0
q

��

�
�
��

�
���

�
�
�

�
�
���
�
�

�
�

��

This translates via ' to

q@
@@I

�
���

q q

'Æ� 'Æ�0

6'Æ


q

�
�
�
���

'ÆÆ @
@@I 'ÆÆ0
q

q

�
����

�� ��w

��

�
�
��

�
���

�
�
�

�
�
���
�
�

�
�

��

Again by the de�nition of the collapsing preorder:

q@
@@I

�
���

q q

'Æ� 'Æ�0

6'Æ


q

�
�
�
���

'ÆÆ @
@@I 'ÆÆ0
q

q

�
����

�� ��w

q

�
�
��3

C
C
C
CCO

��

�
�
��

�
���

�
�
�

�
�
���
�
�

�
�

��

PP

P
PP

P
P
P

P
P
P

P
PP

PP

This implies that '� v '�0.

2

11 Proposition: The composition of superior dimaps is a superior dimap.

The po-spaces with superior dimaps form, therefore, a category.

12 Corollary:

Any superior dimap ' : X ! Y induces a monotone function 
1' : 
1X ! 
1Y by


1'[�]
def
= [' Æ �]

13 Corollary:


1 is a functor from the category of po-spaces with superior dimaps to po-sets with
monotone functions.
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10 Stefan Soko lowski Dimaps and dihomotopies

14 Theorem:

Any two dihomeomorphic po-spaces have isomorphic fundamental posets.

Proof of Thm. 14:

Just note that dihomeomorphisms are superior dimaps8.

2

So at last we have achieved the functoriality of the fundamental poset construction.

The price to pay is a restriction on the class of allowed dimaps. An embedding of a square

into a bigger square is a superior dimap, hence a superior dimap need not be surjective

in the strict sense, but it has to be \surjective enough" to cover all inextendible dipaths

in the target po-space:

15 Proposition:

For any superior dimap ' : X ! Y , all the maximal points of 
1Y belong to the image


1' (
1X).

The following examples should give more insight into the severity of the restriction.

16 Example

An embedding of the \letter C" shape into a square with a hole is or is not a superior

dimap, depending on the positioning of that shape with respect to the hole. Fig. 5

shows an embedding which is a superior dimap (the letter C shape | light gray, the

hole | dark gray). The right-hand side picture is the fundamental poset of both the

letter C and the square with the hole; the induced monotone mapping is the identity

on this poset.

The two embeddings in Fig. 6 are not superior dimaps. In each case, the o�ending

dipaths � (fat curve within the letter C) and � (thin curve extending the fat one) have

the same meaning as in Def. 9 of superior dimap9.

Filling a hole in a square, as does ' in Fig. 7, is a superior dimap. Fig. 8 presents the

induced monotone function on the fundamental posets.
2

t

t t

A
A
A
A
A
A
A
AAK

�
�
�
�
�
�
�
���

Figure 5: A superior dimap embedding and the corresponding 
1 po-set.

8In [7], the same fact has been proven by showing that dihomeomorphisms are so called dipath sur-

jections. Incidentally, every dipath surjection is a superior dimap.
9As pointed out by Martin Raussen, the �rst version of this example given in [6] contained a faulty

statement.
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2.4. Functoriality of the fundamental poset 11

Figure 6: Non-superior dimap embeddings.

X

-'

Y

Figure 7: Filling a hole: a superior dimap.

And now a word of caution. Even though the restricted category of dimaps has some

good properties, they are still not good enough. Namely, the fundamental posets of po-

spaces, which are superior dimap dihomotopy equivalent, are not necessarily isomorphic.

Consider the following example:
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12 Stefan Soko lowski Dimaps and dihomotopies

AAK

AAK AAK

���

������

A

B C

D E F


1X

-


1'

AAK ���
G

H K


1Y


1'A = 
1'B = G


1'D = H


1'C = 
1'E = 
1'F = K

Figure 8: The monotone function induced by �lling the hole (Fig. 7).

17 Example

For any 0 � t < 1, de�ne the following po-space Xt:

Xt
def
=

8>><
>>:hx; yi 2

~I�~I

��������
(1) (0 � x � t & 0 � x � t) _
(2) (x = 0 & y > t) _
(3) (x > t & y = 0) _
(4) x = y > t

9>>=
>>;

�
�
�
�

(1)

(2)

(3)

(4)

| {z }
t

Note that X0 consists of three straight-line segments only. Now de�ne a pair of dimaps

X0

'

 

q

i

X1

2

by

' hx; yi
def
= hx; yi  hx; yi

def
=

8>><
>>:
h0; 0i if 0 � x � 1

2
& 0 � x � 1

2

h0; 2y � 1i if x = 0 & y > 1

2

h2x� 1; 0i if x > 1

2
& y = 0

h2x� 1; 2y � 1i if x = y > 1

2

It is easy to see that both ' and  are superior dimaps; and that there exists a superior

dimap dihomotopy between  Æ ' and idX0
and another superior dimap dihomotopy

between ' Æ  and idX1

2

. On the other hand, the respective fundamental posets are

di�erent, as shown in Fig. 9.
2

@@I 6���
r

r r r


1X0

AAK

AAK AAK

���

������

r

r r

r r r


1X1

2

Figure 9: Di�erent fundamental posets of superior dimap dihomotopy equivalent po-

spaces.

This would suggest that our notion of dihomotopy equivalence is not yet re�ned enough.
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2.5. Weak dipath retractions 13

2.5 Weak dipath retractions

Condition (1) in Def. 9 of a superior dimap does not give any systematic assignment of 
's

to various �'s. If the existence of such a systematic assignment is assumed, the dimap '

becomes a weak dipath retraction:

18 De�nition:

A dimap ' : X ! Y is a weak dipath retraction i�

1. it is a coretraction in the usual sense, i.e., there exists a dimap  : Y ! X such that

 Æ ' = idX , and

2. the dimaps ' and  satisfy the following condition:

8�2I1X 8�2D1Y

q

q

q

6

6

'Æ�

�
)

q

q

q q

6

6 �

'Æ�

� 'Æ Æ�
�� ��v

So a weak dipath retraction is a coretraction on points and almost a retraction on dipaths.

In a related report [4], Martin Raussen assigned to po-spaces fundamental categories,

which seemed to have a lot in common with the fundamental po-sets. In particular, Martin

pointed out that the assignment was functorial for continuous and monotone retractions

on dipaths. Later, he thought that being a retraction on dipaths was so much to ask from

a mapping, as to make the notion useless. The weak dipath retractions presented here

may be a way out.

On the other hand, retractions play a special rôle in modelling computer systems

because they have the 
avour of implementations; a coretraction corresponds to encoding

and a retraction corresponds to decoding.

19 Proposition: Every weak dipath retraction ' : X ! Y is a superior dimap.

Therefore, the function 
1' is well-de�ned and monotone; and 
1 is a functor from

the po-spaces with weak retractions to po-sets with monotone functions.

A weak dipath retraction is always injective and, in general, not surjective.

89



14 Stefan Soko lowski Dimaps and dihomotopies

20 Example

An injection of a square into a bigger square is a weak dipath retraction. Since 
1

assigns a singleton to a square, the monotone function induced by this injection is the

identity.

Filling the hole (Example 16) is a weak dipath retraction; indeed, its inverse  is

de�ned by

 hx; yi
def
=

�
hx; yi if x � 1=2

h1=2; yi if x � 1=2

Note that  itself is not a superior dimap, Def. 18 does not require it to be. Con-

sequently, there may be no monotone function induced on fundamental posets by an

inverse dimap of a weak dipath retraction.

Fig. 10 presents an embedding of the po-space composed of two faces and the diagonal

of a square, into a square with two holes adjacent to its edges. This is a superior dimap

but not a weak dipath retraction. Indeed, an inverse dimap would have to contract the

whole E-area to the initial point A to be monotone; this contradicts the requirement

that ' is a retraction on points. This example shows that the monotone function

induced by a superior dimap is not necessarily surjective on the respective fundamental

posets. This function is given in Fig. 11.
2

�
�
�
�
�
�
�

A

B C

D

X

-'

E

F

G

H

K

L

Y

Figure 10: A superior dimap which is not a weak dipath retraction.

@@I 6���
A

B C D


1X

-


1'

AAK

AAK AAK

���

������

E

F G

H K L


1Y


1'A = E


1'B = H


1'C = K


1'D = L

Figure 11: The non-surjective monotone function induced by the superior dimap from

Fig. 10.

3 Local po-spaces

Martin Raussen [5] proposed a framework for handling long dipaths | i.e., dimaps of

R�0 into local po-spaces, cf. the de�nition in the beginning of Sec. 3.1 | and their diho-
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3.1. Long dipaths 15

motopies. In particular, he made the distinction between the dipaths which have a limit

(extendible and �nite inextendible) and the ones that have no limit (in�nite inextendible).

The two kinds of long dipaths play very di�erent rôles. The ones that have a limit corre-

spond to the computations that either successfully or unsuccessfully terminate. The ones

without a limit model in�nitely running processes.

As noted in [5], a dipath with a limit may be dihomotopic to a dipath without a limit

| see Example 21 below. This is unfortunate, because a computationally very crucial

distinction escapes the formalism of algebraic topology of concurrent processes. Martin

conjectures that this cannot happen in cubical complexes.

Rather than restricting the class of local po-spaces under consideration, I propose a

critical look at the classical notion of dihomotopy: an arbitrary dimap from I�X to Y .

When the notion of dihomotopy is applied to long dipaths, as in [5], it is not clear how

a dihomotopic deformation should behave \in the in�nity". My answer, described below,

is: it had better be continuous there as well. More precisely, dihomotopies of long dipaths

had better be \uniform" mappings | as de�ned in Sec. 3.2 below. As demonstrated in

the sequel, a uniform dihomotopy never identi�es an in�nitely running process with a

terminating one.

Uniformity is normally studied in the context of metric rather than topological spaces,

at least as much as I know about them. My area of interest is compact local po-spaces10.

I have therefore generalized the uniformity requirement so that it does not require a

metric11.

3.1 Long dipaths

A long dipath in a local po-space X is a dimap � : R�0 ! X. It may or may not have a

limit in X. A long dipath is:

� extendible if an x = limt!+1 �t exists and it is not a �nal point (i.e., there exists a

non-constant dipath beginning in x);

� �nite inextendible if an x = limt!+1 �t exists and it is a �nal point;

� in�nite inextendible if limt!+1 �t does not exist.

The �nite inextendible long dipaths model the executions that have terminated, either

successfully or in a deadlock. The in�nite inextendible long dipaths model the executions

that go on for ever. The extendible long dipaths do not have a counterpart in computing

since their \longness" may disappear after a reparameterization. A deadlocked execution

(�nite inextendible) may be dihomotopic to an in�nitely running (in�nite inextendible)

even in a compact local po-space:

10Which is a larger class than �nite cubical complexes.
11As pointed out by a referee, uniformity is studied in general topological spaces. I do not know whether

or not these studies have something to do with the notion from Def. 22
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16 Stefan Soko lowski Dimaps and dihomotopies

21 Example

Take the in�nite strip R�0 � I and introduce a non-standard partial order:

hx1; y1i � hx2; y2i
def
() x1 � x2 & y1 � y2 & x1 � y2 � x2 � y1

The last condition in the above conjunction means that the vector hx2; y2i is \steeper"

than hx1; y1i.
The veri�cation, that this is a partial order and that it is closed in the standard

topology, is straightforward. Note that two distinct points of the same height, hx1; yi
and hx2; yi with x1 6= x2, may be �-related only if y = 0. A dipath going through

a point hx; yi with y > 0 must eventually converge to a point on the horizontal axis

y = 1, whose points are incomparable. Fig. 12 gives some example long dipaths. It also

suggests a dihomotopy between the many �nite long dipaths converging to a point on

the horizontal axis t = 1, and the single in�nite long dipath going along the horizontal

axis t = 0. Formally, this dihomotopy is given by:

H : I� R�0 ! R�0 � I

H h�; ti
def
=

�
� � t

1 + (1� �) � t
;

(1� �) � t

1 + (1� �) � t

�

This is a non-compact global po-space. It can be wrapped on a cylinder I� S1, which

is a compact local po-space, without losing the unwelcome dihomotopicity of a �nite

and an in�nite long dipaths.
2
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Figure 12: Dihomotopy between �nite and in�nite dipaths.

From now on, X will denote a compact local po-space, while � and � will denote long

dipaths.

3.2 Uniform dihomotopies

22 De�nition:

Assume X is a compact local po-space and Y is a local po-space (not necessarily compact).

A dimap H : I� Y ! X is a uniform dihomotopy i� H is uniform, i.e., for every �nite

cover U of X by open sets there exists a real Æ > 0 such that

8y2Y 8s;s02I j s� s0 j< Æ ) H h[s; s0]; yi � U for a certain U 2 U .
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3.2. Uniform dihomotopies 17

The above de�nition makes a technical sense for any local po-space X but it may be

meaningless if all �nite covers of X contain \big" sets, which is the case in non-compact

spaces.

Two dimaps ';  : Y ! X are said to be uniformly dihomotopic (denoted: ' 'u  ) if

there exists a uniform dihomotopyH : I� Y ! X such thatH h0; i = ' andH h1; i =  .

23 Proposition:

The uniform dihomotopy relation 'u is an equivalence in the set of dimaps from Y to X.

24 Example

By S1 denote the circle
�
et�2�i

�� 0 � t � 1
	

. The following two long dipaths(
� : R�0 ! S1

�t
def
= e0�2�i

and

(
� : R�0 ! S1

�t
def
= et�2�i

(� is constant) are dihomotopic:(
H : I� R�0 ! S1

H hs; ti
def
= es�t�2�i

But they are not uniformly dihomotopic, which may be seen by investigating their

liftings to the universal covering of S1 by a helix.
2

25 Proposition:

If both X and Y are compact then every dihomotopy H : I� Y ! X is uniform.

Proof of Prop. 25 (actually, a draft of a proof):

Let U be a �nite cover of X. Since both I and Y are compact, there exists a �nite

cover V of I and a �nite cover W of Y such that

� each set V 2 V is an interval; and

� for every hs; yi 2 I� Y there exist V 2 V and W 2 W such that

hs; yi 2 V �W � H�1U

for a certain U 2 U .

This means the Cartesian product I� Y has been covered by a �nite \grid" of base open

sets whose images by H are completely contained in the original cover U of X. Now,

de�ne

Æ
def
= min

�
diam (V \ V 0)

��V; V 0 2 V & V \ V 0 6= ;
	

(diamA
def
= inf

�
j s� s0 j

�� s; s0 2 A	 is the diameter of a set A � I).

2

93



18 Stefan Soko lowski Dimaps and dihomotopies

3.3 Uniform invariance of the �niteness of long dipaths

The following proposition is the local po-spaces' counterpart of the elementary fact that

a bounded increasing sequence has a limit. Note that its satisfaction is based on the

compactness of X:

26 Proposition:

If there exists a po-open set V � X such that �[t0;+1) � V for a certain t0 2 R�0 then

limt!+1 �t exists.

I will also need the following topological (rather than ditopological) fact:

27 Proposition:

If x 2 V � X where V is open, then there exists a cover U of X so �ne that

x 2 U 2 U & U 0 \ U 6= ; ) U 0 � V

for all U; U 0 2 U .

Informally, Prop. 27 says that a point sits so \deeply" inside its neighbourhood that it

can be separated not only from the exterior of that neighbourhood but also from the open

sets that intersect the exterior. All the proof needs are separation properties, which is

OK, because X is compact and therefore normal.

Now assume H : I� R�0 ! X is a uniform dihomotopy on long dipaths. To distin-

guish the �nite from the in�nite ones, consider the set

LH
def
=
�
s 2 I

�� limt!+1H hs; ti exists
	

28 Lemma: LH is open in I.

Proof of Lemma 28:

For an �s 2 LH we have to �nd an open neighbourhood totally contained in LH . By

the de�nition of LH , the limit

�x
def
= lim

t!+1
H h�s; ti (2)

exists. Take a po-neighbourhood V of �x and a �nite cover U of X selected by Prop. 27.

Select a Æ for this cover from the uniformity condition:

8t2R�0
8s;s02I j s� s0 j< Æ ) H h[s; s0]; ti � U for a certain U 2 U . (3)

Let s be close to �s: j s� �s j< Æ; and let �x 2 U 2 U . By (2), there is a �t such that

H h�s; [�t;+1)i � U (4)

and by (3), there exist sets Ut 2 U such that

H h[�s; s]; ti 2 Ut for all t � �t. (5)

Since H h�s; ti 2 Ut \ U (cf. (4) and (5)), Ut � V for all t � �t. Therefore, H hs; ti 2 V
for t � �t and thus H hs; [�t;+1)i � V . Now, Prop. 26 implies the existence of the limit

limt!+1H hs; ti.
This completes the proof of Lemma 28.
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3.3. Uniform invariance of the �niteness of long dipaths 19

2

29 Lemma: LH is closed in I.

Proof of Lemma 29:

Let s0; s1; s2; : : : be a convergent sequence in LH :

�s
def
= lim

n!+1
sn and (6)

xn
def
= lim

t!+1
H hsn; ti for n 2 N . (7)

We need to prove that �s 2 LH .

Since X is compact, there exists a convergent subsequence

�x
def
= lim

k!+1
xnk (8)

To prove that limt!+1H h�s; ti = �x, take an arbitrary neighbourhood V of �x and �nd a

�nite cover U of X as in Prop. 27. Select a Æ for that cover from the uniformity condition.

Let �x 2 U 2 U ; then U � V . Let ` be such that for any k � `:

xnk 2 U (cf. (8)) (9)

and

j snk � �s j< Æ (cf. (6)).

Let �t be such that

H hsn`; [�t;+1)i � U (cf. (7) and (9)).

The uniformity condition implies the existence of sets Ut 2 U such that

H h[sn`; �s]; ti � Ut for all t � �t.

Since H hsn`; ti 2 Ut \ U , Ut � V for all t � �t. Therefore,

H h�s; ti 2 V for all t � �t.

This completes the proof of Lemma 29.

2

30 Corollary:

If the long dipaths �; � : R�0 ! X are uniformly dihomotopic then

limt!+1 �t exists if and only if limt!+1 �t exists.

Proof of Cor. 30:

By Lemma 28 and Lemma 29, LH is either empty or the whole I.

2
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3.4 Discussion of related notions

Uniform dihomotopies are not only continuous, they are \continuous in the in�nity"

too. As demonstrated in Sec. 3.3, the uniformity of the dihomotopies implies some good

properties of respective maps, thus answering the problem raised in [5]. But there are

other problems worth mentioning.

In [5], Martin Raussen considers a di�erent restriction on the set of allowed morphisms

of (local) po-spaces: a dimap f : Y ! Z is busy if

� is in�nite ) f Æ � is in�nite

for an arbitrary long dipath � : R�0 ! Y 12.

Note that the set of busy dimaps is not closed in the set of all dimaps:

31 Example

Consider the sequence of dimaps

fn : R�0 ! R�0

fnt
def
= t

n

for n 2 N . Each of them is strict (as de�ned on p. 6) and busy, but the limit �ft
def
= 0

is neither strict nor busy.
2

Unlike strictness, business does not contribute anything new in the compact case;

in particular, busy dimaps cannot serve for distinguishing the dihomotopy types of the

po-space with a square hole and the Swiss 
ag:

32 Proposition: If Y is compact then every dimap f : Y ! Z is busy.

33 Example

In the case when Y is not compact, the two classes have a non-empty intersection

but neither is contained in the other:

R�0

R�0

�
��

�
��

�
��

�
��

Busy but not strict.

R�0

R�0

Strict but not busy.

2

12This is equivalent but not identical to the original de�nition in [5].
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