
B
R

IC
S

N
S

-01-5
C

orradini&
Vogler(eds.):

M
T

C
S

’01
P

roceedings

BRICS
Basic Research in Computer Science

Preliminary Proceedings of
the 2nd International Workshop on

Models for Time-Critical Systems

MTCS ’01

Aalborg, Denmark, August 25, 2001

Flavio Corradini
Walter Vogler
(editors)

BRICS Notes Series NS-01-5

ISSN 0909-3206 August 2001

Copyright c© 2001, Flavio Corradini & Walter Vogler
(editors).
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Notes Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory NS/01/5/

Second International Workshop on

Models for Time-Critical Systems

MTCS 2001

Aalborg, Denmark

August 25, 2001

Editors:

Flavio Corradini, University of L'Aquila, Italy

Walter Vogler, University of Augsburg, Germany

This is a preliminary version.

The �nal version is considered for publication in

Electronic Notes in Theoretical Computer Science

http://www.elsevier.nl/locate/entcs

Table of Contents

Foreword . v

Timed Process Algebras

Jos Baeten (Invited Speaker) . 1

Timed Automata with Urgent Transitions

Roberto Barbuti and Luca Tesei . 3

Petri Nets with Discrete Phase Type Timing:

A Bridge Between Stochastic and Functional Analysis

Andrea Bobbio and Andr�as Horv�ath . 22

Extending Timed Automata for Compositional Modeling

Healthy Timed Systems

V��ctor Braberman and Alfredo Olivero .39

Non-determinism in Probabilistic Timed Systems with General Distributions

Mario Bravetti and Alessandro Aldini . 58

Towards a Process Algebra for Shared Processors

Mikael Buchholtz, Jacob Andersen and Hans Henrik L�vengreen 87

Privacy in Real-Time Systems

Ruggero Lanotte, Andrea Maggiolo-Schettini and Simone Tini 100

Characterizing Non-Zenoness on Real-Time Processes

Jitka St�r��brn�a and Insup Lee . 111

iii

iv

Foreword

A large class of systems can be speci�ed and veri�ed by abstracting away

from the temporal aspects. This is the class of systems where time a�ects

the performance but not the functional behaviour. In time-critical systems,

instead, time issues become essential. Their correctness depends not only on

which actions a system can perform but also on their execution time. Due

to their importance, time-critical systems have attracted the attention of a

considerable number of computer scientists from various research areas.

This volume contains the preliminary proceedings of the 2nd International

Workshop on Models for Time-Critical Systems (MTCS 2001); MTCS 2001

was held on 25 August 2001 as one of �ve satellite workshops co-located with

the 12th International Conference on Concurrency Theory (CONCUR 2001),

held in Aalborg (Denmark) 21-24 August 2001.

The �rst workshop, MTCS 2000, was held in State College (Pennsylvania,

USA) on 26 August 2000, co-chaired by Flavio Corradini and Paola Inverardi.

As for MTCS 2000, the objectives of MTCS 2001 were (i) to validate the more

promising proposals on models for time-critical systems, ranging from theory

to practice and (ii) to promote interaction between di�erent research areas in

the �eld of time-critical systems. Despite its focus on time-critical systems,

MTCS 2001 was also open for more general time-related issues.

The seven papers in this volume were selected for presentation by the Pro-

gram Committee from submissions received in response to a Call for Papers.

The �nal versions of these papers are considered for publication in Electronic

Notes in Theoretical Computer Science: http://www.elsevier.nl/locate/entcs.

The volume includes the contribution by the Invited Speaker Jos Baeten

(Eindhoven University of Technology).

We would like to thank Kim G. Larsen and Mogens Nielsen (CONCUR

2001 Conference Chairs) and Hans H�uttel (Satellite Workshops Chair) for the

opportunity they gave us to organize MTCS 2001 and for their support. Many

thanks are due to Jos Baeten (Invited Speaker), and to the members of the

Program Committee as well as their sub-referees for their accurate work. We

would also like to thank Michael Mislove for his help during the proceedings

editorial process and to BRICS for the publication of the preliminary proceed-

ings.

Flavio Corradini, University of L'Aquila, Italy

Walter Vogler, University of Ausburg, Germany

v

MTCS 2001 - Program Committee

Rajeev Alur (USA) Jos Baeten (NL) Frank de Boer (NL)

Flavio Corradini (IT) Paola Inverardi (IT) Je� Kramer (UK)

Gerald L�uttgen (UK) Je� Magee (UK) Andrea Maggiolo-Schettini (IT)

Bran Selic (CA) Joseph Sifakis (FR) Walter Vogler (DE)

vi

MTCS 2001 Preliminary Proceedings

Timed Process Algebras 1

Jos Baeten
2

Computing Science Department

Eindhoven University of Technology

P.O.Box 513, 5600 MB

Eindhoven, The Netherlands

We present an integrated framework of several process algebras dealing

with timing. The timing of actions is either relative (to the time at which the

preceding action is performed) or absolute, the algebraic format can include

time-stamped actions or be two-phase (delays and actions separate), and the

time scale on which time is measured is either discrete or continuous.

The presented theories are all extensions of ACP with explicit termination.

All theories are given by operational rules and are axiomatized. We have an

integrated framework in the following sense. All theories are generalizations of

ACP without timing, and the theories with relative timing and absolute timing

in which time is measured on a continuous time scale are generalizations of the

theories with relative timing and absolute timing in which time is measured

on a discrete time scale. Besides, the theories with absolute timing can easily

be extended with a mechanism for parametric absolute timing which provides

an alternative way to deal with relative timing. That is, the extended theories

are generalizations of the corresponding theories with relative timing. In all

cases, time-stamped and two-phase versions are interde�nable.

If one theory is a generalization of another theory, this roughly means that

the processes considered in the former theory essentially include the processes

considered in the latter theory. That is the reason why abstraction from

timing is possible in a theory with timing and discretization is possible in a

theory with continuous timing. Abstraction from timing enables analysis of

systems without carrying the timing details wherever they are not needed,

discretization enables analysis of systems at a level where time is measured

with a �nite precision wherever that is suÆcient.

In this framework, we can de�ne many relevant features: strong choice vs.

weak choice, maximal progress, time outs, state operator, process creation.

1
Joint work with C.A. Middelburg and M.A. Reniers.

2
Email: jos@win.tue.nl

This is a preliminary version. The �nal version is considered for publication in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Jos Baeten

References

[1] J.C.M. Baeten and C.A. Middelburg. Process algebra with timing: real time and

discrete time. In: Handbook of Process Algebra, eds. J.A. Bergstra, A. Ponse

and S.A. Smolka, North-Holland 2001, pp. 627{684.

[2] J.C.M. Baeten and M.A. Reniers. Termination in timed process algebra. Report

CSR 00-13, Dept. of Comp. Sci., Technische Universiteit Eindhoven 2000.

2

MTCS 2001 Preliminary Proceedings

Timed Automata with Urgent Transitions

Roberto Barbuti and Luca Tesei
1;2

Dipartimento di Informatica

Universit�a di Pisa

Corso Italia, 40

56125 Pisa - Italy

Abstract

In this paper we propose an extension to the formalism of timed automata by

allowing urgent transitions. A urgent transition is a transition which must be taken

within a �xed time interval from its enabling time. We give a set of rules formally

describing the behaviour of urgent transitions and we show that, from a language

theoretic point of view, the addition of urgency does not improve the expressive

power of timed automata. However, from a speci�cation point of view, the use of

urgent transitions is crucial, especially in modular speci�cation of systems.

Keywords: real-time systems, timed automata, modular speci�cation,

parallel composition.

1 Introduction

Timed automata are widely recognized as a standard model for describing

systems in which the time plays a fundamental role [6,7]. Since their in-

troduction, timed automata have been widely studied from di�erent points of

view [4,5,8,9], in particular for their possible use in the veri�cation of real-time

systems [1,2,3,10,19,20,22].

Usually the expressiveness of timed automata is given in terms of accepted

timed languages, but, because of their use as a speci�cation formalism, also

the ease to describe real-time systems must be taken into account. For this

purpose many extensions to the basic model have been proposed (see for ex-

ample [11,16,17,18,21]). All these extensions have been discussed with respect

to the expressiveness of the original model.

In this paper we present a further extension: timed automata with urgent

transitions. The notion of urgency in timed automata was already introduced

1
Email: barbuti@di.unipi.it

2
Email: tesei@di.unipi.it

This is a preliminary version. The �nal version is considered for publication in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Barbuti and Tesei

in [13,14,15], where the urgency of transitions outgoing from a state is induced

by the impossibility (due to the failure of a condition) to stay in the state

while the time elapses. In this paper we consider a slightly di�erent notion of

urgency. Urgent transitions are transitions which must be performed within

a given time interval starting from their enabling.

From the expressiveness point of view, both the approaches are suitable for

specifying timed systems. The approach in [13,14,15] allows, in some cases,

more general urgency conditions, while, in other cases, such as \as soon as

possible" transitions, our approach allows more general time constraints.

In this preliminary version of the paper we impose that at most one urgent

transition can exit from a state. We precisely de�ne such a behavior by means

of an operational semantics.

We show that, from the language theoretic point of view, timed automata

and timed automata with urgent transitions are equivalent. This is proved by

de�ning a transformation from a timed automaton with urgent transitions to

a timed automaton which accepts the same language. However, the transfor-

mation is not a congruence with respect to parallel composition, thus it cannot

be applied to a component which is supposed to be used in di�erent environ-

ments. Thus, the use of urgent transitions is fundamental for the modular

speci�cation of systems.

2 Timed automata

We recall the de�nition of timed automata [7]. In the following, R is the set

of real numbers and R+ the set of non-negative real numbers. Q is the set

of rational numbers and Q+ is the set of positive rational numbers. A clock

takes values from R+ . Given a set X of clocks, a clock valuation over X is

a function assigning a non-negative real number to every clock. The set of

valuations of X , denoted VX , is the set of total function from X to R+ . Given

� 2 VX and Æ 2 R+ , with � + Æ (resp. � � Æ) we denote the valuation that

maps each clock x 2 X into �(x)+ Æ (resp. �(x)� Æ). Note that if there exists

x 2 X such that �(x)� Æ < 0, �(x)� Æ is not a clock evaluation.

Given a set X of clocks, a reset
 is a subset of X . The set of all resets of

X is denoted by �X . Given a valuation � 2 VX and a reset
, with �n
 we

denote the valuation

�n
(x) =

8><
>:
0 if x 2

�(x) if x 62

Given a set X of clocks, the set 	X of clock constraints over X are de�ned

by the following grammar:

 ::= true j false j ^ j x#t

4

Barbuti and Tesei

where x; y 2 X , t 2 N is a natural number, and # is a binary operator in

f<;>;�;�;=g. Note that the negation operator is not needed because the

negation of an atomic constraint x#t (# di�erent from =) can be expressed

as another constraint of the same kind. The negation of a constraint x = t can

be expressed by x < t_ x > t. The disjunction can be simulated, as usual, by

duplicating the edges in the automaton. Actually, in this version of the work,

we do not allow more than one urgent action outgoing from a state, thus we

have a restriction on the constraints of such actions.

Clock constraints are evaluated over clock valuations. The satisfaction by

a valuation � 2 VX of the clock constraint 2 	X , denoted � j= , is de�ned

as follows:

� j= true and � 6j= false

� j= 1 ^ 2 i� � j= 1 ^ � j= 2

� j= x#t i� �(x)#t

De�nition 2.1 [Timed automaton] A timed automaton T is a tuple

(Q;�; E ; I; R;X), where: Q is a �nite set of states, � is a �nite alphabet of

actions, E is a �nite set of edges, I � Q is the set of initial states, R � Q is

the set of repeated states, X is a �nite set of clocks. Each edge e 2 E is a

tuple in Q� 	X � �X � ��Q.

If e = (q; ;
; �; q0) is an edge, q is the source, q0 is the target, is the

constraint, � is the label,
 is the reset.

The semantics of a timed automaton T is given in terms of accepted timed

language. The de�nition of such a language is based on an in�nite transition

system S(T) = (S;!), where S is a set of states and ! is the transition

relation. The states S of S(T) are pairs (q; �), where q 2 Q is a state of T ,

and � is a valuation. An initial state of S(T) is a state (q; �), where q 2 I

is an initial state of T and � is the valuation which assigns 0 to every clock

in X . At any state q, given a valuation �, T can stay idle or it can perform

an action labeling an outgoing edge e. If T stays idle, a transition is possible

to a state of S(T) where the state of T is the same, but the valuation has

been modi�ed according to the elapsed time. If T moves along an outgoing

edge e = (q; ;
; �; q0), this corresponds to a transition, labeled by �, of S(T)

from the state (q; �) to the state q0; �n
. This transition is possible only if the

current clock valuation respects the constraint of e. The rules to derive the

transitions of S(T) are the following:

1:
Æ 2 R+

(q; �)
Æ

�!(q; � + Æ)
2:

(q; ;
; �; q0) 2 E ; � j=

(q; �)
�
�!(q0; �n
)

Rule 1: represents the case in which T stays idle in a state and the time

passes, while Rule 2: corresponds to the occurrence of an action.

5

Barbuti and Tesei

De�nition 2.2 [run, action sequence] Given a timed automaton

T = (Q;�; E ; I; R;X), a run of the automaton is an in�nite sequence of states

and transitions of S(T)

s0
l0
�! s1

l1
�! : : :

where

- s0 = (q; �) where q 2 I and �(x) = 0 for every x 2 X

- a state q 2 R exists such that q occurs in�nitely often in the pairs of the

sequence fsig

Note that, given a run s0
l0�! s1

l1�! : : :, for each i, li 2 (�[R+). Let r be

a run.

- The time sequence tj of the time elapsed from state s0 to state sj in r is

de�ned as follows:

t0 = 0

ti+1 = ti +

8><
>:
0 if li 2 �

li otherwise

- The event sequence of the events occurring during r, including the elapsed

times, is de�ned as follows:

(l0; t0)(l1; t1) : : :

- The action sequence of r is the projection of the event sequence of r on the

pairs f(l; t)jl 2 �g

De�nition 2.3 [timed word, timed language] Let � be an alphabet. A timed

word over � is an in�nite sequence of pairs (�0; t0)(�1; t1) : : : such that �i 2 �,

and ti 2 R+ , ti � ti + 1, for all i.

A timed language over � is a subset of the set of all timed words over �.

De�nition 2.4 [acceptance] Given a timed automaton T = (Q;�; E ; I; R;X),

a timed word w over � is accepted by T if a run r of T exists such that w = v,

where v is the action sequence of r. The set of timed words accepted by T is

called the accepted language of T .

Note that we use the B�uchi acceptance condition for the runs.

A parallel composition is de�ned on timed automata. Here we recall the

de�nition given in [7].

De�nition 2.5 [Product] Let T1 = (Q1;�1; E1; I1;X1) and

T2 = (Q2;�2; E2; I2;X2) be two timed transition tables with X1 \X2 = ;. The

product of T1 and T2, denoted by T1 k T2, is given as follows:

T1kT2 = hQ1 �Q2;�1 [�2; E ; I1 � I2; R
0;X1 [X2i

where E is de�ned by:

6

Barbuti and Tesei

(i) Synchronization actions

8� 2 �1 \ �2; 8(q1; 1;
1; �; q
0
1
) 2 E1; 8(q2; 2;
2; �; q

0
2
) 2 E2

E contains ((q1; q2); 1 ^ 2;
1 [
2; �; (q
0
1
; q0

2
))

(ii) T1 actions

8� 2 �1n�2; 8(q; ;
; �; q
0) 2 E1; 8s 2 Q2

E contains ((q; s); ;
; �; (q0; s))

(iii) T2 actions

8� 2 �2n�1; 8(q; ;
; �; q
0) 2 E2; 8s 2 Q1

E contains ((s; q); ;
; �; (s; q0))

This de�nition shows what we expect in parallel behaviors:

� Common symbols of the alphabets are synchronization actions. A synchro-

nization action can be executed if and only if all the component automata

involved can execute it. The action must be executed synchronously by all

of them.

� Other symbols can be executed by each component independently according

to its original speci�cation.

De�ning the set of repeated states, R0, of a parallel composition according

to the B�uchi acceptance condition requires a slight di�erent construction with

a lot of details. We refer to [7] for this.

3 Timed automata with urgent transitions

In this section we extend the model of timed automata with a new feature

which is useful in the speci�cation of a real-time systems. The idea is to

provide, in each state of the automaton, the possibility of labeling one of

the outgoing edges as urgent. Intuitively the labeled edge must be taken

with higher priority with respect to the others, provided that its constraint is

satis�ed by the current clock valuation.

To be more precise, we introduce a constant ` 2 Q+ which represents the

length of a time interval in which an enabled urgent action must be executed.

The time interval is [t; t + `) where t is the instant in which the constraint

associated to the urgent transition becomes satis�ed by the current clock val-

uation.

Choosing this notion of urgency allow us to de�ne precisely the behavior of

urgent actions. The intuitive idea \urgent transitions must be taken as soon

as possible" introduces some problems when applied in a model with a dense

time domain. Consider a state of a timed automaton in which the current

value of clock x is in [0; 1] and there is an outgoing urgent transition with a

clock constraint x > 1. Letting the time to elapse, at which time would the

urgent transition be executed? It is not possible to answer precisely to this

question since the time domain is dense. To avoid this problem we introduced

the constant ` and the interval [0; `) the action must be executed within. The

7

Barbuti and Tesei

choice of a right-open interval is also related to the denseness. Suppose, now,

` = 1. If we chose an interval [0; `] the upper bound of the interval within

the urgent transition must be executed would not be precisely de�ned. This is

because the lower bound is not precisely de�ned. The right-open interval allow

us to express the upper bound as x � 2. If the transition has a constraint in

the form of x � 1 then the upper bound is expressed by x < 2. The denseness

also imposes the constant ` be greater than 0. The choice ` = 0 could be

interpreted as \immediately", but this leads to the problem discussed above.

However, since ` 2 Q+ , it can be chosen as small as we want. In other words,

the \as soon as possible" limit behavior can be approximated with arbitrary

precision.

If the constraint of the urgent transition is already satis�ed when a state

is entered then the interval starts at the instant in which the state is entered.

We have chosen this approach for a uniform treatment of urgent transitions.

Note that the speci�cation of ` could be local to each urgent transition.

For the sake of simplicity we discuss the case in which ` is a global parameter.

The case of local speci�cation can be caught by a slight modi�cation of the

de�nition, the semantics and the transformation.

If a state has no urgent outgoing edges then the behavior is the usual one

of timed automata. This also happens when a state is entered and the urgent

transition is not enabled.

Moreover, when an urgent transition is enabled in a state, the unique way

to continue the run is to execute it, both while the associated constraint is

satis�ed and within the interval speci�ed above.

De�nition 3.1 [Timed automaton with urgent transitions] Let ` 2 Q+ be a

constant. A timed automaton with urgent transitions T `
u is a tuple

(Q;�; E ;U ; I; R;X), where: Q is a �nite set of states, � is a �nite alphabet of

actions, E and U are �nite sets of edges, the non-urgent and the urgent ones,

I � Q is the set of initial states, R � Q is the set of repeated states, X is a

�nite set of clocks. Each edge e 2 E [U is a tuple in Q�	X ��X ���Q. U

is the set of urgent transitions. To impose that at most one urgent transition

can exit from a state we require that (q1; 1;
1; �1; q
0
1
); (q2; 2;
2; �2; q

0
2
) 2 U

i� q1 6= q2.

The class of all timed automata with urgent transitions will be denoted by

T `
u .

In the following the superscript ` could be omitted and, when this happens,

it should be considered implicitly de�ned.

For timed automata with urgent transitions T `
u we de�ne an in�nite transi-

tion system S(T `
u) = (Su;!) as for timed automata. The states Su are triples

(q; �; Æq) such that q 2 Q is the current state of the automata T `
u, � is the

current clock valuation and Æq 2 R+ [f0g is a number recording the time

elapsed since the state q has been entered. The rules to derive the transitions

of S(T `
u) are the following:

8

Barbuti and Tesei

(Time)
Æ 2 R+

(q; �; Æq)
Æ

�!(q; � + Æ; Æq + Æ)

(Non-Urgent 1)
(q; ;
; �; q0) 2 E ; � j= ; (:9(q; u;
u; �u; q

0
u) 2 U)

(q; �; Æq)
�
�!(q0; �n
; 0)

(Non-Urgent 2)

(q; ;
; �; q0) 2 E ; � j=

(q; u;
u; �u; q
0
u) 2 U ; (:9Æ: 0 � Æ < Æq ^ � � Æ j= u)

(q; �; Æq)
�
�!(q0; �n
; 0)

(Urgent)
(q; u;
u; �u; q

0) 2 U ; � j= u; (� � ` 6j= u _ Æq < `)

(q; �; Æq)
�u
�!(q0; �n
u; 0)

Rule (Time) lets the time elapse in a state and updates both the clock

valuation and the time elapsed in the state.

Rule (Non-Urgent 1) is used when Tu is in a state without outgoing

urgent edges. In this case the behavior is the same as timed automata. Note

that when a new state is entered the time elapsed is set to 0.

Rule (Non-Urgent 2) manages the case in which Tu is in a state with

a (unique by de�nition) urgent transition. The \:9" condition in the rule

requires that the urgent transition has never been enabled since the current

state was entered. If this is false the rule is not applicable.

Rule (Urgent) executes an urgent action �. The condition (� � ` 6j=

 _ Æq < `) ensures that an urgent transition is taken either before a time `

is elapsed after its enabling time, or the time elapsed in the state is less than

`. Without this guard an urgent transition could be �red after the expiry

time expressed by `. This would not be sound with respect to the notion of

urgency.

Note that if S(Tu) is in a state in which an urgent transition can be ex-

ecuted by the rule (Urgent) it cannot be postponed until its constraint be-

comes false. This because the \:9" condition of rule (Non-Urgent 2) will

never be true and the run could not proceed.

The notion of run for a timed automata with urgent transitions is de�ned

in the same way as for timed automata using the transition system S(Tu).

Similarly for the accepted timed language.

Example 3.2 Figure 1 shows an example of a timed automaton with a urgent

transition, indicated by the letter u. In this example we consider ` = 1. The

automaton can execute the action b when the value of the clock x is in the

interval (0; 1]. When the value of x becomes greater than 1, b cannot be

performed any longer and the urgent action a must be executed. Moreover,

because of the urgency, a must be performed while the value of x is in the

9

Barbuti and Tesei

interval (1; 2].

s

u x > 1,x > 0,
b,

{x}

a,

{x}

Fig. 1. An automaton with urgent transitions, T 1

u

4 The expressive power of timed automata with urgent

transitions

In this section we show that, from a language theoretic point of view, the

expressive power of timed automata with urgent transitions is equivalent to

the one of timed automata. This is shown by providing a transformation which

preserves the accepted language. Because timed automata are special cases

of timed automata with urgent transitions, the transformation is only given

starting from the latter ones.

In the next section we show that the transformation is not compositional,

thus, for speci�cation purposes, the use of urgent transitions is fundamental.

4.1 The region form of a timed automata

Let T l
u be a timed automaton with urgent transitions. We give a transforma-

tion that builds a timed automata accepting the same timed language.

Note that if ` = a
b
with a and b natural numbers, it is always possible to

transform a T
a

b
u automaton to an isomorphic one T a

u by multiplying all the

constants in the clock constraints by b. So we can assume without loss of

generality that ` is a positive natural number. For the sake of simplicity we

assume in this section that ` = 1, but the transformation can be easily de�ned

for any positive natural number.

Given a set of clocks X , a clock region, as de�ned in [7], is an equivalence

class of clock evaluations such that, given two clock evaluations � and � 0

belonging to it, for every clock constraint , � j= i� � 0 j= . Note that,

given a timed automaton T and a set of clocks X , the clock regions are �nite.

Let us denote such a set by Reg(T;X). We denote the equivalence class of

a clock evaluation � as [�]. A clock region � 2 Reg(T;X) can be uniquely

identi�ed by specifying, for every clock x 2 X , one clock constraint of the set

Cx = fx = cjc = 0; 1; : : : ; cxg [fc� 1 < x < cjc = 1; 2; : : : cxg [fx > cxg

where cx is the greatest constant to which x is compared in the constraints of T .

Moreover, for every pair of clocks x and y such that we speci�ed c�1 < x < c

and d � 1 < y < d, for some c; d, an inequality of type fract(x)#fract(y)

10

Barbuti and Tesei

where # 2 f<;=; >g must be speci�ed. Here fract(x) is the fractional part

of the value of clock x.

Given a clock region � 2 Reg(T;X) and x 2 X we denote by RT (�; x) the

unique clock constraint in Cx specifying �.

In [7] it is shown how to construct, given a clock region � 2 Reg(T;X),

the ordered set of clock regions that are time successors of �. We denote such

set by succ(�). The order �� of the clock regions in the set succ(�) is total

and such that � �� �
0 i� �0 is a time successor of �.

Given a clock region � 2 Reg(T;X) and a reset
 � X , we denote by

[
 ! 0]� the clock region such that, for all x 2
, the constraint in � for x is

substituted by x = 0.

In the following we need a transformation of clock constraints which gives

a logically equivalent constraint min() such that it does not contain redun-

dancies. Essentially the transformation drop from the atomic constraints

which are implied by others, yielding a minimal conjunction of constraints. In

other words, for each clock x 2 X , there is only one constraint in min() of

the forms x = c, x#c, c#x#0d or c#x, where #;#0 2 f<;�g. Let us denote

by select(min(); x) such unique constraint.

The following de�nition describes a �rst transformation, in region form,

of a timed automaton with urgent transitions. To this purpose a state of

the transformed automaton records both the state of the original one and

the equivalence class (clock region) of the values of clocks when the state is

entered.

De�nition 4.1 Let Tu = (Q;�; E ;U ; I; R;X) be a timed automaton with

urgent transitions.

The corresponding timed automaton in region form,

T r
u = (Qr;�; Er;U r; Ir; Rr;X)

is de�ned as follows:

- the states in Qr and Rr are of the form hq; �i where q 2 Q and � is a clock

region,

- the states in Ir are of the form hq; [�0]i where q 2 I and �0(x) = 0 for all

x 2 X

- (hq; �i; min() ^
V

x2X RTu(�
00; x);
; �; hq0; [
 ! 0]�00i) 2 Er (resp. U r) i�

(q; ;
; �; q0) 2 E (resp. U), � 2 Reg(Tu;X), and �00 2 succ(�).

Note that the new states are built exactly as the ones of the region au-

tomaton as de�ned in [7].

This construction di�ers from the one for region automata because con-

straints and resets are maintained on the edges. These constraints are modi�ed

in order to force the corresponding edge to enter only one of the time succes-

sor clock regions (in the sense that for other regions the constraint is always

false).

It is important to note that a timed automaton with urgent actions in

11

Barbuti and Tesei

region form may not meet the requirement that at most one urgent transition

can exit form the same state. This is not a problem because this automaton

is intended as an intermediate state in the transformation.

Example 4.2 In Figure 2 it is shown the automaton of Figure 1 in region

form, denoted by T 1r
u . Note that the constraints explicitly shows the time

successor clock region to which they refer. Note that all the edges with a false

constraint have been removed and, in the states, there is only the [x = 0]

region because both the original edges reset x.

<s, [x=0]>b, {x} a, {x}

x = 1, b, {x}

0 < x < 1, 1 < x ,u

x > 1, b, {x}

Fig. 2. Automaton T
1r
u

4.2 Making the urgent transitions ` consistent

The second step of the transformation will adapt the constraints of the urgent

transitions of T r
u making them consistent with the semantics we gave in Sec-

tion 3. More precisely clock constraints are adapted according to the behavior

expressed by the rule (Urgent). In this step we consider only the urgent

actions and neglect the other ones which remain unchanged. The third step

will adapt these according to the semantics.

Let hq; �i be a state of T r
u such that in state q of Tu there was an out-

going urgent transition eq = (q; ;
; �; q0). The latter became, in T r
u , a set

of transitions Eq
� = f(hq; �i; min() ^

V
x2X RTu(�

00; x);
; �; hq0; [
 ! 0]�00i) 2

U r j �00 2 succ(�)g. Note that � is the clock region when hq; �i is entered

by T r
u and all the outgoing urgent transitions Eq

� are labeled by the same ac-

tion. We adapt the clock constraints of these to handle the expiration time

expressed by `, i.e. to force the action to be executed within ` time units from

the instant it becomes enabled.

There are three possible cases.

- First, min() is implied by �, that is, if � 2 � then � j= . In other words

the urgent action is already enabled when the state is entered. Here we

simply add to each transition in Eq
� a new constraint imposing that the

time elapsed in the state be less than ` = 1. To do this we add in T r
u a new

12

Barbuti and Tesei

clock variable for each state. Whenever a state is entered the correspondent

clock is reset, so it can be used in the constraints of outgoing edges as a

measure of the time elapsed in the state.

- Second, min() is equivalent to false or it is consistent, but it will never

be true letting the time to elapse from �. For the latter case consider, for

instance, � = [x = 1 ^ y = 2] and = x < 1 ^ y > 2. In this case we do

nothing.

- Third, min() is not implied by � and will be implied by a time successor

of �. In this case we have to ensure that, starting from the instant in which

min() will become true, the transition will be taken within ` time units.

This case requires some new notation and de�nitions. Using the total order

�� de�ned in the set succ(�) we can determine, as the time elapses, the

�rst clock region in which min() will be true. Let us denote this clock

region by fst succ(�; min()) = min�02succ(�)(�
0) min()). Moreover

we can establish the immediate predecessor, according to the total order, of

a clock region �0 in the set succ(�). Let use denote this by prec(�0). Note

that if �0 is the minimum in succ(�), then its predecessor is �.

De�nition 4.3 [Set of Crucial Clocks] The set

cruc(�; min()) = X � fx 2 X j RTu(prec(fst succ(�; min())); x))

select(min(); x)g contains the only clocks that determine the truth of the

constraint min() in the region fst succ(�; min()).

Let us explain the concept of \crucial" by an example.

Example 4.4 Let min() be 0 < x < 2 ^ 1 < y < 3. If � is [x = 0 ^ 0 <

y < 1] then fst succ(�; min()) = [1 < y < 2 ^ 0 < x < 1; fract(y) >

fract(x)] and prec(fst succ(�; min())) = [y = 1 ^ 0 < x < 1]. In

prec(fst succ(�; min())), the value of clock x implies the atomic constraint

select(min(); x) = 0 < x < 2, so x is not crucial for min() becomes true.

Thus, we have cruc(�; min()) = fyg.

If � is [y = 1 ^ x = 0] then fst succ(�; min()) = [1 < y < 2 ^ 0 < x <

1; fract(y) = fract(x)] and prec(fst succ(�; min())) is � itself. Here both

x and y are crucial clocks.

Note that the set of crucial clocks always contains at least one element. If

this were not true, the clock region prec(fst succ(�; min())) would implies

min(). But, by de�nition, fst succ(�; min()) is the minimum clock region

that implies min() and prec(fst succ(�; min())) is strictly less than it

using the order de�ned in succ(�) [f�g. A contradiction.

The constraint select(min(); x), given any crucial clock x, can be used

to determine a constraint that force the urgent action to be executed within

` = 1 time units from it became enabled. To do this we add to any transition

in Eq
� the additional constraint add(�; min())) constructed as follows. Given

a crucial clock x (we can choose any one):

13

Barbuti and Tesei

� add(�; min())) is (x < c + 1) if select(min(); x) is either (x = c) or

(c � x#d) or (x � c). Here c < d and # 2 f�; <g.

� add(�; min())) is (x � c+ 1) if

select(min(); x) is either (c < x#d) or (c < x). Here c < d and

2 f�; <g.

Adding add(�; min()) to all transitions in Eq
� we ensures that the urgent

action will be executed according to its semantics.

De�nition 4.5 Let T r
u = (Qr;�; Er;U r; Ir; Rr;X) be a timed automaton

with urgent transitions in region form. The `-consistent version of it, `T r
u , is

the timed automaton (Qr;�; Er;U r
` ; I

r; Rr;X r) where X r = X [fxqjq 2 Qrg

and U r is constructed as follows:

� (hq; �i; ^ xhq;�i < `;
 [fxhq0;�0ig; �; hq
0; �0i) 2 E 0 i�

(hq; �i; ;
; �; hq0; �0i) 2 U r and (�)),

� (hq; �i; min(min()^
V

x2X RTu(�
00; x)^add(�; min()));
[fxhq0;�0ig; �; hq

0; �0i)

2 E 0 i�

(hq; �i; min()^
V

x2X RTu(�
00; x);
; �; hq0; [
 ! 0]�00i) 2 U r, � 2 Reg(Tu;X),

�00 2 succ(�) and (� 6))

4.3 The quiet version of a timed automaton with urgent transitions

Now, in order to achieve the desired behavior, in each state of `T r
u we have to

turn o� all the originally non-urgent outgoing transitions when at least one of

the edges obtained by the originally urgent transition is enabled. This is the

third transformation step.

Let e = (hq; �i; ;
; �; hq0; �0i) be a non-urgent outgoing transition from a

state in `T r
u . We map e in some transitions e0 = (hq; �i; ^ �;
; �; hq0; �0i) of

the new automaton where � is the constraint that will become false when at

least one of the outgoing urgent transitions of a state in `T r
u becomes true.

De�nition 4.6 Let be a constraint without redundancies over a set of

clocks X . The upper opening O() of is obtained by deleting from all the

constraints of the form x � c and x < c, and by substituting all the constraints

of the form x = c by x � c, for all x 2 X . Clearly this de�nition requires

constraints of the form c#x#d, # 2 f<;�g, to be considered as c#x ^ x#d.

The upper opening of the disjunction of all urgent edges constraints (with-

out redundancies), outgoing from a state in `T r
u , describes a right-in�nite

time interval to the beginning of which a urgent transition must be taken.

The negation of this disjunction must be added to all the constraints of non-

urgent edges of T r
u outgoing from the same state.

The negation of a complex formula can introduce disjunction of constraints.

We denote by DNF+ an operation that, given a constraint which contains nega-

tions, push the negation operator inside, using the logical axioms for :;^;_,

14

Barbuti and Tesei

until it is applied to atomic constraints. Then it transforms the negations of

these constraints to the correspondent positive ones (x = c will be translated

into x < c _ c < x). Finally, it transforms the formula in disjunctive nor-

mal form. It returns the set containing all the conjunctive components of the

formula.

De�nition 4.7 Let `T r
u = (Qr;�; Er;U r

` ; I
r; Rr;X r) be the `-consistent ver-

sion of a timed automaton with urgent transitions in region form T r
u . The

quiet version of it, T r, is the timed automaton (Qr;�; E = U r
` [E

0; Ir; Rr;X r)

where E 0 is constructed as follows:

(hq; �i; ^ �;
 [fxhq0;�0ig; �; hq
0; �0i) 2 E 0 i�

(hq; �i; ;
; �; hq0; �0i) 2 Er, and

� 2 DNF+(:(
W

uO(min(u))) for all (hq; �i; u;
u; �u; hq
00; �00i) 2 U r

` .

Example 4.8 Figure 3 shows the automaton T 1r which is the quieted version

of the automaton T 1

u of Figure 1. Note that the constraint x > 1 on the edge

for b has been modi�ed to 1 < x ^ x � 1 by the last transformation. Thus,

being always false has been removed. In �gure, the clock xs;[x=0] is omitted

because it is useless in this case.

<s, [x=0]>

0 < x < 1,

b, {x} a, {x}

x = 1, b, {x}

1 < x <= 2,

Fig. 3. Automaton T
1r

The transformation allows to state the following result.

Proposition 4.9 Let Tu be a timed automaton with urgent transitions, T r
u

the corresponding timed automata in region form and T r its quiet version. Tu

and T r accept the same timed language.

5 Using timed automata with urgent transitions as a

speci�cation formalism

In the previous section we de�ned a new feature for the timed automata spec-

i�cation formalism. After that we showed how to compile a timed automaton

with urgent transition into a standard timed automaton.

Indeed, a speci�cation formalism needs a way to de�ne systems as a com-

position of components. For timed automata this mechanism is the parallel

15

Barbuti and Tesei

composition of De�nition 2.5. The parallel composition of timed automata

with urgent transitions is de�ned in the same way, but the following remarks:

� the urgency of a transition of a component with a synchronization action �

extends to the transition obtained using the rule (i) of De�nition 2.5 even

if the transition of the partner was not urgent

� the urgency of a transition of a component extends to the transition obtained

by the rules (ii) and (iii) of De�nition 2.5

� if the interleaving of actions leads to a reachable state with more than one

outgoing urgent transition, then the composition is not possible.

The latter restriction follows from the limitation we gave in De�nition 3.1.

We plan to extend our de�nition to manage multiple outgoing urgent transi-

tions. Most of the future work will concern the de�nition of a precise behavior

in that case.

It is easy to see that the transformation de�ned in the previous section is

not a congruence with respect to parallel composition. In other words if we

have two timed automata, T 1

u and T 2

u , with urgent transition the automaton

T 1

u k T
2

u , when de�ned, is not equivalent, in general, to T r
1
k T r

2
(the standard

parallel composition of the quiet version of them).

This fact makes the transformation not feasible for modular speci�cations,

i.e. it must be applied to the whole system (the parallel composition of all

components).

s

u
a,

{x}

x > 2,

Fig. 4. Automaton T
01
u

Consider the automaton T 01
u of Figure 4, the automaton T 1

u of Figure 1

and the parallel composition T 1

u k T
01
u . The action a, being a synchronization

action, can be performed only when the value of the clock x is greater than

2. Thus b can be performed when the value of x is in (0; 2]. Using the quiet

version of T 1

u (Figure 3) in the parallel composition leads to a wrong behavior:

T 1r k T 01
u cannot perform the action a.

5.1 An example

In this last section we show a simple example. In Figure 5 is given the speci�-

cation of a scheduler. The scheduler assigns resources to two processes, P1 and

P2, alternatively. To each process the resources are assigned for 2 time units.

If, during the elaboration of a process, an interruption occurs, it must be han-

dled immediately. This is speci�ed by considering the interruption handling a

16

Barbuti and Tesei

urgent action. It is important to note that, because of urgent transitions, the

scheduler behaves in the correct way independently from the environment in

which will be introduced. The interruption handling will preempt all the non-

urgent transitions of the environment thus preserving the intended behavior

of the scheduler.

P1 P2

Int1 Int2

x = 2, switch, {x}

x = 2, switch, {x}

uu x < 2,
done,

{}

x < 2,
done,

{}
true,true,

int,
{} {}

int,

Fig. 5. A simple scheduler

6 Related works

The notion of urgency for timed formalisms has been studied in the past.

In [12] the urgency of actions has been investigated in the process algebra

�eld with the concept of discrete time.

A closer approach to ours can be found in [13,14,15]. There the states of a

timed automaton are associated with time progress conditions (TPC). TPC

are state conditions which specify that the time can progress at a state by Æ

only if all the intermediate times Æ0, 0 � Æ0 < Æ, satisfy it.

TPC are computed from deadlines. Deadlines are clock constraints associ-

ated to transitions in addition to the usual constraints (which, in this setting,

are called guards). The de�ned class of timed automata is called Timed Au-

tomata with Deadlines (TAD).

Given a state q, its TPC is intuitively computed as follows. Consider the

set I = fi j ti is a transition outgoing from qg of indexes of transitions from

q. The TPC of q, cq, is obtained as the negation of the disjunction of the

deadlines, di, of all the transitions from q, cq = :
W

i2I di. In a state of a run,

(q; �), the time can progress by Æ, (q; �)
Æ

�!(q; � + Æ), if 8Æ0 < Æ:� + Æ0 j= cq.

Given a transition in a TAD, with guard and deadline d, we can found

in [14] the following remark.

\The relative position of d with respect to Æ determines the urgency of the

action. For a given Æ, the corresponding d may take two extreme values: �rst,

d = Æ, meaning that the action is eager and, second, d = false, meaning that

17

Barbuti and Tesei

the action is lazy. A particularly interesting case is the one of a delayable

action where d is the falling edge of a right-closed guard Æ (cannot be disabled

without enforcing its execution).

The condition d) Æ guarantees that if time cannot progress at some state,

then at least one action is enabled from this state. Restriction to right-open

TPC guarantees that deadlines can be reached by continuous time trajectories

and permits to avoid deadlock situations in the case of eager transitions. For

instance, consider the case where d = Æ = x > 2, implying the TPC x � 2,

which is not right-open. Then, if x is initially 2, time cannot progress by any

delay Æ, according to above de�nition. The guard is not satis�ed either,

thus, the system is deadlocked."

This limitation is very intuitive: if the eager transition has a left-open

guard, the time at which it can be �red is unde�ned. Using our concept of

urgent transition we avoid this problem because the transition can be �red in

the interval [0; `). On the other hand to �re \as soon as possible" a transition

with a left-closed guard, say 2 � x, we have only to change it in 2 = x.

Example 6.1 Let us use our notion of urgency to model a producer-consumer

system that is considered in [15]. The partners are supposed to communicate

with a zero-length bu�er. Figure 6(a) and 6(b) show the producer and the

consumer respectively.

The producer in state 1 is producing a new item. This process requires a

time that is between lp and up time units. When in state 3, the producer can

communicate with a handshake in the time interval [l0p; u
0
p] to send an item.

Conversely the consumer in state 2 can communicate with a handshake in

the time interval [l0c; u
0
c] to receive an item. When in state 4 the consumer is

consuming the item needing a time between lc and uc time units. Note that

actions produce and consume represent the end of the correspondent processes.

Also note that handshake is a urgent action for both the components. The

parallel composition is shown in Figure 7. In [15] authors use both di�erent

notions of compositions of guards and deadlines to obtain di�erent behaviors

of the whole system. Here we study how these behaviors can be simulated in

our model varying the constraint for the handshake action in Figure 7 and

the urgency parameter `.

The �rst behavior to consider is the usual one coming from standard par-

allel composition. The constraint is the conjunction of the components

handshake-transition constraints. The parameter ` in this case is max((u0p �

l0p); (u
0
c�l

0
c)), i.e. the length of the largest interval expressed in the components

behavior. The system can execute the handshake only if both clock x and y are

in the intervals expressed in the speci�cation of components. This behavior,

as observed in [15], could be too restrictive since it may cause deadlock.

To relax this condition we can set the constraint of Figure 7 to x �

l0p ^ y � l0c. Now the upper bounds are not considered and, starting from the

instant in which the constraint becomes satis�ed, the action has to be executed

18

Barbuti and Tesei

<_ <_

full
4

empty
2

u

lc <_ <_ lc’ <_ <_<_<_lp up up’lp’ uc uc’

full

3

empty
1

u

x y y

{x}

produce handshake

{x}

x

consume

{y}

handshake

{y}

(b)(a)

Fig. 6. A Producer-Consumer system: the components

<_<_lp upx <_<_lp upx

lc <_ <_ uc
y

{x}

produce

u handshake, {x, y}

produce

{x}
consume

{y}

(1,2)

(3,2)

(3,4)

(1,4)
ψ,

Fig. 7. A Producer-Consumer system: parallel composition

within ` time units. We set ` to min((u0p� l0p); (u
0
c� l0c)). This ensures that at

most one of the upper bounds can be violated. This behavior is similar to the

one speci�ed in [15] by a deadline x = u0p ^ y � u0c _ y = u0c ^ x � u0p. There

the handshake can be postponed as long as one of the intervals is not violated,

but when the end of this interval is reached the action becomes urgent and

must be executed. Clearly, since in the current approach we can specify only

one outgoing action for each state, our model is a slight more restrictive. As a

matter of fact, if the shortest interval is the one associated to clock y and the

clock values are such that the �rst constraint satis�ed is y � l0c, then, when

the constraint becomes true (i.e. x � l0p becomes true), the action must be

executed before the upper bound associated to y (actually it should wait until

x = u0p) because we de�nitely chose ` = (u0c � l0c). A similar remark can be

done considering the choice of ` = (u0p � l0p).

There is another synchronization scheme for this example that authors in

[15] call \best-e�ort", that is \either no upper bound is violated if possible,

or the transition is executed as soon as possible". To express a similar scheme

we use the constraint = x � l0p ^ y � l0c as above and a constant ` as small

as we want to precisely approximate the \as soon as possible" behavior. In

19

Barbuti and Tesei

this example this is precisely de�nite since the constraint = x � l0p ^ y � l0c
uses the operator �. Indeed, the action should be executed when x = l0p or

y = l0c (depending on which one becomes true after). In this version of the

work we always have to consider the approximation, even for precisely de�nite

behaviors (i.e. those with operators \�" and \="). However, note that by

using the approximation we can manage also the constraints in which is used

the operator > in place of �.

7 Conclusion

In this paper we introduce a notion of urgency for timed automata. We com-

pare it with other approaches to urgency, in particular the one of [13,14,15].

In this version of the paper we introduce the limitation that no more than

one urgent transition can exit from a state. We plan to remove this limitation

in future works.

References

[1] Aceto, L., Bouyer, P., Burgue~no, A. and Guldstrand Larsen, K. The Power

of Reachability Testing for Timed Automata. Proc. Foundations Software

Technology and Theoretical Computer Science, Springer LNCS 1530, 245{256,

1998.

[2] Aceto, L., Burgue~no, A. and Guldstrand Larsen, K. Model Checking via

Reachability Testing for Timed Automata. Proc. TACAS, Springer LNCS 1384,

263{280, 1998.

[3] Alur, R., Courcoubetis, C. and Dill, D.L. Model-Checking in Dense Real-time.

Information and Computation, 104, 2{34, 1993.

[4] Alur, R., Courcoubetis, C., Halbwachs, N., Dill, D.L. and Wong-Toi, H.

Minimization of Timed Transition Systems. Proc. CONCUR 1992, Springer

LNCS 630, 340{354, 1992

[5] Alur, R., Courcoubetis, C. and Henzinger, T.A. The Observational Power of

Clocks. Proc. CONCUR 1994, Springer LNCS 836, 162{177, 1994.

[6] Alur, R. and Dill, D.L. Automata for Modelin Real-time Systems. Proc.

ICALP'90, Springer LNCS 443, 322{335, 1990.

[7] Alur, R. and Dill, D.L. A Theory of Timed Automata. Theoretical Computer

Science, 126, 183{235, 1994.

[8] Alur, R., Fix, L. and Henzinger, T.A. Event-Clock Automata: A Determinizable

Class of Timed Automata. Theoretical Computer Science, 211, 253-273 (1999).

[9] Alur, R. and Henzinger, T.A. Back to the Future: Towards a Theory of Timed

Regular Languages. Proc. FOCS 1992, 177{186, 1992.

20

Barbuti and Tesei

[10] Alur, R. and Henzinger, T.A. A Really Temporal Logic. Journal of ACM, 41,

181{204, (1994).

[11] Barbuti, R., De Francesco, N. and Tesei,L. Timed Automata with non-

Instantaneous Actions To appear in Fundamenta Informaticae.

[12] Bolognesi, T. and Lucidi, F. Timed Process Algebras with Urgent Interactions

and a Unique Powerful Binary Operator. REX Workshop 1991, Springer LNCS

600, 124-148, 1992.

[13] Bornot, S. and Sifakis, J. Relating Time Progress and Deadlines in Hybrid

Systems. HART 1997, Springer LNCS 1201, 286{300, 1997.

[14] Bornot, S., Sifakis, J. and Tripakis, S. Modeling Urgency in Timed Systems.

COMPOS 1997, Springer LNCS 1536, 103{129, 1998.

[15] Bornot, S. and Sifakis, J. Modeling Urgency in Timed Systems. To appear on

Information and Computation.

[16] Cho�rut ,C. and Goldwurm, M. Timed Automata with periodic Clock

Constraint. Int. Report 225-98, 1998.

[17] Demichelis,F. and Zielonka, W. Controlled Timed Automata Proc. CONCUR

98, Springer LNCS 1566, 455{469, 1998.

[18] Gupta, V., Henzinger, T.A. and Jagadeesan, R. Robust Timed Automata.

Proc. HART 97, Springer LNCS 1201, 331-345, 1997.

[19] Henzinger, T.A. and Kopke, P.W. Veri�cation Methods for the Divergent Runs

of Clock Systems. Proc. Formal Techniques in Real-Time and Fault-Tolerant

Systems, Springer LNCS 863, 351{372, 1994.

[20] Henzinger, T.A., Nicollin, X., Sifakis, J. and Yovine, S. Symbolic Model

Checking for Real-Time Systems. Information and Computation, 111, 193{244,

1994.

[21] Lanotte, R., Maggiolo-Schettini, A. and Peron, A. Timed Cooperating

Automata Fundamenta Informaticae, 43, 96-107, (2000).

[22] Yovine, S. Model Checking Timed Automata. Lectures on Embedded Systems,

Springer LNCS 1494, 114{152, 1996.

21

MTCS 2001 Preliminary Proceedings

Petri Nets with Discrete Phase Type Timing:

A Bridge Between Stochastic and Functional Analysis

Andrea Bobbio 1

DISTA, Universit�a del Piemonte Orientale, Alessandria, Italy

Andr�as Horv�ath
2

Dipartimento di Informatica, Universit�a di Torino, Torino, Italy

Abstract

The addition of timing speci�cation in Petri Nets (PN) has followed two main

lines: intervals for functional analysis or stochastic durations for performance and

dependability analysis. The present paper proposes a novel technique to analyze

time or stochastic PN models based on discretization. This technique can be seen

as a bridge between the world of functional analysis and the world of stochastic

analysis. The proposed discretization technique is based on the de�nition of a new

construct called Discrete Phase Type Timing - DPT that can represent a discrete

cumulative density function (cdf) over a �nite support (or a deterministic cdf)

as well as an interval with non-deterministic choice (or a deterministic duration).

In both views, a preemption policy can be assigned and a strong (the transition

must �re when the interval expires) or a weak (the transition can �re when the

interval expires) �ring semantics. The paper introduces the DPT construct and

shows how the expanded state space can be built up resorting to a compositional

approach based on Kronecker algebra. With this technique a functional model

can be quanti�ed by adding probability measures over the �ring intervals without

modifying the (compositional) structure of the PN model.

1 Introduction

The inclusion of timing speci�cation in Petri net models has followed two main

streams of research. In the �rst one time is assigned as a deterministic value

(constant or interval) while in the second stream, the activities are assumed

to have a random duration. We will refer to the �rst class of models as Time

Petri Nets (TPN) and to the second class as Stochastic Petri Nets (SPN).

1 Email: bobbio@di.unito.it
2 Email: horvath@di.unito.it

This is a preliminary version. The �nal version is considered for publication in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Bobbio, Horv�ath

TPN are devoted to specify and verify properties of systems where timing is

a critical parameter that may a�ect the behavior of the system. In this line

of research [18], time is assigned as a constant value or as an interval de�ned

by a min (earliest �ring time - EFT) and a max (latest �ring time - LFT)

value. The �ring semantics is interleaving and with non-determinism (no

weight is assigned to the action of atomic �ring inside the allowed interval or

for resolving con
icts). Further developments along this line are documented

in [4,9]. In [15] a modi�ed �ring semantics is introduced: time is assigned as

intervals, and �ring may be forced when the maximum time expires (strong

�ring semantics) or �ring may be not mandatory when the maximum time

expires (weak �ring semantics). Analysis of TPN models involves the search

for reachable conditions through the exploration of �ring zones [4,22].

Since the initial work in [20,19], SPN have found a sound theoretical base

and consolidated applications when the �ring time assigned to timed transi-

tions is an exponentially distributed random variable, so that the evolution

of the system throughout its reachability graph is mapped into a continuous

time Markov chain (CTMC). A number of tools exploit this paradigm and the

most extensive applications are in the area of performance and dependability

modeling and analysis [2]. However, reality is not always exponential and

attempts have been made to include in SPN generally distributed transitions

[1,7]. Particular emphasis has been devoted to models in which determinis-

tic times [3,17] are combined with exponential random variables. In order to

completely specify the non-Markovian stochastic process underlying the be-

havior of a SPN with generally distributed transition times, each transition

is assigned an age variable. The way in which the age variable accounts for

the time in which the transition has been enabled is governed by three mem-

ory policies [7]. In the preemptive repeat di�erent (prd) policy (also called

enabling memory) the age variable is reset each time the transition is disabled

or �res; in the preemptive repeat identical (pri) policy [6], when the transition

is disabled its age variable is reset, but when the transition is enabled again

an identical �ring time must be completed. Finally, in the preemptive resume

(prs) policy the age variable maintains its value when the transition is disabled

and then re-enabled, and is reset only when the transition �res.

Under the restriction that the marking process arising from these SPN is

a Markov regenerative process [11,7], an analytical solution can be envisaged.

Otherwise, an approximate solution can be obtained through a \Markovian-

ization", by assigning to each transition a continuous Phase type distributions

[8].

More recently, a new class of SPN has been explored, namely the one

obtained by assigning to each timed transition a Discrete phase type (DPH)

distribution [12,23,21,16]. DPH distributions are distributions arising from the

time to absorption in discrete-time Markov chains with absorbing states and

have been extensively explored in [5], where a �tting algorithm has been also

provided. The peculiarity of the class of DPH distributions, is that it contains

23

Bobbio, Horv�ath

cdf with �nite support like the deterministic or the (discrete) uniform. The

use of DPH in Petri net models, allows to include cdf with �nite support

and any mixture of preemption policies. Moreover the transition matrix over

the expanded state space may be expressed in a compositional way by means

of Kronecker algebra [21], without the need of generating and storing the

complete matrix. Hence, the cost of storing the model is of the same order as

the cost of storing the reachability graph of the untimed PN and the solution

may exploit eÆcient algorithms [10] for block matrices in Kronecker form.

This paper shows that the discretization technique, up to now adopted in

SPN, can be seen as a bridge between the world of the functional analysis

and the world of the stochastic analysis. To this end, we de�ne an extended

construct, called Discrete Phase Type Timing (DPT), that encompasses the

features of the DPH distributions and of the intervals (or constants) with non-

determinism. By assigning to each timed transition of a PN a DPT we can

build up both a functional model, in the line of those discussed in [18,4,15]

and a stochastic model in the line of those discussed in [21,16]. One goal of

this paper is to show that a functional model can be quanti�ed by adding

probability measures over the �ring intervals without modifying the structure

of the underlying PN model. Since the DPT class inherits the properties of

DPH random variables and non-deterministic intervals, the DPT-PN model

shares the same characteristics examined in [21,16] for DPH stochastic PN. In

particular, the compositional structure of the expanded state space [21] can

be exploited also for the functional model. Moreover, we can associate to any

DPT a preemption policy, so that functional analysis can be carried out taking

into account interruption and restart mechanisms that were not covered by

previous models, and, furthermore, we can accommodate in the model both

weak and strong �ring semantics as de�ned in [15].

Discretization implies a state expansion and incurs in the state space ex-

plosion problems. The compositional approach via Kronecker algebra may

alleviate this problem, and we can bene�t from eÆcient storage techniques as

those presented in [13]. Moreover, where DPT are used for functional analysis,

the PN model may be interfaced with eÆcient discrete model-checking tools

[14].

The paper is organized as follows. Section 2 introduces the Discrete Phase

Type Timing structures that will be used to describe the local evolution of

the transitions of the model. Section 3 describes the global evolution of the

process. In Section 4 two demonstrative examples are given. Conclusions are

drawn in Section 5.

2 Structures and matrices to describe local evolution

of transitions

This section is organized as follows. Section 2.1 and Section 2.2 introduces

the DPT structures and corresponding matrices for functional and stochastic

24

Bobbio, Horv�ath

1 1 1 0 0

b� a+ 1

b

A

1 0 0

a

B

Fig. 1. A: Local evolution of a transition with interval �ring [a; b] in case of strong

time semantics and prd or prs policy. B: Local evolution of a transition with interval

�ring [a;1] in case of either weak or strong time semantics and prd or prs policy

analysis, respectively. These structures describe how the local descriptor of a

transition evolves in a step if the transition is enabled. The applied structures

depend on the adopted memory policy as well.

Throughout the paper we assume that minimal and maximal �ring times

are integer values and the minimal �ring time is strictly positive. Note that a

model in which all minimal and maximal �ring times are integer multiples of

a common time unit can be handled the same way. Zero minimal �ring time

can be handled as well by properly supplementing the model by immediate

transitions.

2.1 Functional analysis

Transitions with prd or prs preemption policy

The structure used to represent the local evolution of an enabled transition

with strong time semantics and �ring interval [a; b] is depicted in Figure 1A.

When the initial phase of the structure is chosen the process may enter any

of the phases signed with 1. The arrows represent the possible state-jumps;

having more than one outgoing arc from a phase indicates a non-deterministic

choice. The transition �res if a state-jump to the �lled state occurs. In every

step, if the transition is enabled, the process steps to the next phase. This

structure ensures that the �ring time of the transition will be in the interval

[a; b] and the transition �res for certain when it reaches the upper limit of

its �ring interval. The structure is represented by the row vector t0 that

describes the possible initial phases, the square matrix T that describes the

possible state-jumps and the column vector tf that gives the phases of which

�ring may happen. These vectors and matrices, which will describe the local

evolution of an enabled transition, are

t0 = [1; : : : ; 1| {z }
b�a+1

; 0; : : : ; 0| {z }
a�1

]; T =

2
6666666664

0 1 0 : : :

0 0 1 0 : : :

. . .

0 : : : 0 1

0 : : : 0

3
7777777775

; tf =

2
6666664

0

...

0

1

3
7777775
:

25

Bobbio, Horv�ath

In case of �ring interval [a;1] (still with strong time semantics) the struc-

ture depicted in Figure 1B is applied. Having been enabled for a time units the

transition may either �re or remain in the last phase. Observing the structure

one can easily write its descriptors t0;T and tf .

Assuming weak time semantics, the local evolution of an enabled transition

with �ring interval [a; b] is followed using the structure shown in Figure 2A.

When the transition is enabled for b time units it either �res or the process

steps to the phase signed by the circle with thicker line from which there is

no outgoing arc. This structure guarantees that the �ring time will be in the

interval [a; b] and makes it possible that the transition does not �re in the

interval. If the �ring interval is [a;1], there is no di�erence between strong

and weak time semantics. Hence the structure depicted in Figure 1B is used.

b

0

1

0

0

a

1

0

0

0

1

0

0

0

0

1

0

0

0

0

1 1 1 0 0

b� a+ 1

b

0

A B

Fig. 2. A: Local evolution of a transition with interval �ring [a; b] in case of weak

time semantics and prd or prs policy. B: Local evolution of a transition with interval

�ring [a; b] in case of pri policy.

The above described structures are used in a di�erent manner in case of

prd than in case of prs transitions. When a prs transition is preempted the

phase in which it was preempted is recorded; in case of re-enabling the process

enters this state. Instead, when a prd transition is re-enabled, the initial state

is chosen according to t0.

Transitions with pri policy

In case of pri transitions, the amount of time the transition spent enabled is

lost and we have to ensure that the �ring time of the transition is the same

after it is re-enabled. This requirement can not be ful�lled with the structures

presented above. Instead, the structure of Figure 2B is used. When the

transition gets preempted the column in which the process was when the

preemption happened is recorded; in case of re-enabling the process enters the

�rst phase of this column. The realization of a transition with �ring interval

[a;1] would require an in�nite state structure, and hence it is not considered.

When we adopt weak time semantics the gray phase drawn with thicker

26

Bobbio, Horv�ath

line is present as well. So that, it is possible that the transition does not �re in

the interval [a; b]. When the process is in this phase when getting preempted,

it returns to this phase in case of re-enabling.

2.2 Stochastic analysis

Transitions with prd or prs preemption policy

A discrete Phase type (DPH) distribution is the distribution of the time to

absorption in a discrete-time Markov chain. As a counterpart of the weak

time semantics in stochastic analysis, we introduce and make use of possibly

defective discrete Phase type (PDDPH) distributions (see Appendix A for the

de�nition of PDDPH distributions). A PDDPH distribution is associated to

every timed transition of the Petri net. A Markov chain describing a PDDPH

distribution may have two absorbing states. A jump to the absorbing phase

referred to as �ring absorbing phase (drawn with a �lled circle) causes the

transition to �re. A jump to the other absorbing phase, referred to as local

absorbing phase and drawn with a thicker line, means that the transition

can not �re anymore in its current sampling period (i.e. it can �re in the

future only if it gets disabled and then it is re-sampled again). Without

loss of generality we may assume that there are no other absorbing states or

absorbing group of states in the chain.

A simple example for PDDPH distribution is depicted in Figure 3A. When

the �ring time of a transition is sampled the process enters one of the phases

according to the initial probabilities; initial probabilities are written next to

the phases. In Section 2.1 several outgoing arcs of a place represented a non-

probabilistic choice. Instead, during stochastic analysis, outgoing arcs of a

given phase represent a probabilistic choice among the arcs, i.e. a real value

from the interval [0; 1] is associated to each arc (these values are not depicted

in Figure 3A) which gives the probability that a given arc will be chosen

in the next step (the sum of the values associated to the outgoing arcs of a

given place is 1). While in functional analysis weak time semantics implies a

non-deterministic choice on whether the transition �res or not, using PDDPH

distributions leads to a probabilistic choice. By computing the steady state

probability of the two absorbing states one can determine how \defective" the

transition is.

p1

p2

p3

pn

pdef

1

A

b� a+ 1

b

p1 p2 pb�a+1

pdef

0 0

1 1 1 1 1

B

Fig. 3. A: Possibly defective DPH distribution. B: Possibly defective DPH distri-

bution with �nite support [a; b] for prd or prs transitions.

27

Bobbio, Horv�ath

A PDDPH distribution is described by its initial probability vector

t0 = [p1; p2; : : : ; pn; pdef];

its transition matrix T which governs the phase-jumps, and a column vector

tf which contains the probabilities of jumping to the �ring absorbing state.

We make two comments at this point. First, it is not necessary to have local

absorbing state. Second, the row of T that corresponds to the local absorbing

state contains a single non-zero value which is a 1 in the diagonal.

With PDDPH distributions one can realize a �nite support distribution as

shown in Figure 3B, it can be either defective or not, depending on the actual

value of pdef. When not defective this structure is the stochastic counterpart

of the structure shown in Figure 1A, when defective it is the stochastic coun-

terpart of the structure shown in Figure 2A. In functional analysis, the only

knowledge we have is that the transition �res in the interval [a; b] in a non-

deterministic manner. Instead, in stochastic analysis, it is possible to de�ne

the exact probability that the transition �res at a given time instant in the

interval [a; b].

Figure 4A depicts the possibility of having defective or non-defective DPH

distributions with support [a;1]. The process enters either the local absorbing

state or the state on the left side of the �gure after which it has to take at

least a steps before absorption.

b

a

pa pa+1 pa+2 pb

pdef

1 1 1 1

1 1 1 1

1 1

1
1

1

1

1

1
1

a� 1

pdef

0 0

0

0
0

0

1� pdef

1

1 1

A B

Fig. 4. A: Possibly defective DPH distribution with support [a;1] for prd or prs

transitions. B: Possibly defective DPH distribution with �nite support [a; b] for pri

transitions.

The di�erence between handling prs and prd transitions in case of preemp-

tion is the same as when performing functional analysis.

Transitions with pri preemption policy

As for functional analysis a di�erent structure is applied for transitions with pri

policy. This structure, which is the probabilistic counterpart of the structure

shown in Figure 2B, is depicted in Figure 4B.

28

Bobbio, Horv�ath

3 Global process

For describing the global evolution of the process the method presented in [21]

is followed with two important di�erences. First, we handle prs transitions

in a manner that corresponds exactly to the de�nition of the prs preemption

policy 3 . Second, we extend [21] with the possibility of having transitions

with pri preemption policy in the model.

In order to describe the global evolution of the process we need extended

knowledge on the reachable markings of the net. We call the graph we use

extended reachability graph (erg). A node of the erg carries the following

information:

� the number of tokens in the places of the net,
� the set of preempted transitions with memory (the phase in which these

transitions were preempted has to be recorded),
� the set of prs transitions that were candidates for �ring but did not �re; these

transitions, because of the de�nition of prs memory policy, are candidates

for �ring immediately when they get enabled.

The last entry of the above list requires some further explanation. In the con-

sidered model (either functional or stochastic) it can happen that two or more

transitions have the same �ring time instant. These transitions are called can-

didates for �ring. Having a set of candidates the resulting marking depends on

the order of �rings and it can happen that a transition �ring prevents another

candidate from �ring. The set of possible orders (in case of functional analy-

sis) or the probability of a given order (in case of probabilistic analysis) can be

determined based on priority considerations; this issue is not in the scope of

this paper. Not having additional priority information on the transitions, one

can assume that all orders of the candidates are possible (functional analysis)

or all orders have equal probability (probabilistic analysis) [21].

A simplest example of erg is shown in Figure 5. Even if the net has

two reachable markings, still the erg has four nodes. In marking P3 three

situations have to be distinguished: the marking was reached by the �ring of

T1, the marking was reached by the �ring of T2 and T1 was not candidate for

�ring, the marking was reached by the �ring of T2 and T1 was candidate for

�ring.

The following notations are used to describe the procedure. We assume

that the number of nodes in the erg is �nite and denoted by N . The ith

node of the erg will be denoted by mi. The set of prs and pri transitions are

denoted by S and I, respectively. The �ring interval of a pri transition Ti is

denoted by [a(i); b(i)]. The set of transitions that are enabled inmi is denoted

by Ai. The set of transitions that are disabled but have memory in mi is

denoted by Bi. The set of transitions that were candidates but did not �re

when the process entered extended markingmi is denoted by Ci. The number

3 A prs transition that was candidate for �ring but did not �re has to be candidate for
�ring immediately when it gets enabled again. This fact was not considered in [21].

29

Bobbio, Horv�ath

prs prd prd

P1
P2

P3

T1 T2 T3 with memory

P1 P2

P3 T1
,

T3

T2

P3

T1

T3

immediate candidateP3 T1
,

T2
, was candidate for firingT1

T3

Fig. 5. In marking P3 transition T1 may either have or not have memory

of transitions in the net is M . The transitions are ordered and the ith one is

denoted by Ti.

The local evolution of a transition is described by the vectors and matrix

introduced in Section 2.1 for functional and in Section 2.2 for stochastic anal-

ysis. The descriptors of transition Ti; 1 � i � M are denoted by t0
(i), T (i)

and tf
(i).

3.1 Global descriptor

During the analysis, the transient descriptors of the system are stored in the

vectors pi; 1 � i � N . In a vector pi every position corresponds to a combi-

nation of local descriptors of the transitions that are enabled or are disabled

but have memory in the extended marking mi. In case of functional analysis

the vector pi contains 0s and 1s. An entry 1 in pi means that it is possible

that the process is in mi with descriptors corresponding to the position of

the entry. Instead, when performing stochastic analysis, pi may contain any

real value in [0; 1]. In this case, an entry of pi gives the probability that the

process is in mi with descriptors corresponding to the position of the entry.

Let us denote the number of phases of the structure representing transi-

tion Ti by ni and the local descriptor of Ti by li. The vector [l1; l2; : : : ; lM],

which contains the descriptors of all the transitions, together with the index of

extended marking de�nes a state of the process. If a transition T1 is disabled

and does not have memory its descriptor equals 1. When Ti is enabled in an

extended marking we have 1 � li � ni. The phase in which a prs transition

gets disabled has to be recorded; for a prs transition Ti that is disabled but has

memory in mj 1 � li � ni. In case of a pri transition Ti with �ring interval

[a; b] that is disabled but has memory in mj only the column in which it got

disabled is recorded (Figure 2B and 4B), hence 1 � li � b� a+ 1.

In the following we describe how to �nd a given combination of the local

descriptors in the vector pi. We use a so-called mixed-based numbering scheme

which is closely related to the Kronecker product operator. Let us use the

30

Bobbio, Horv�ath

notation

n
(k)

i =

MY
j=k

s
(j)

i ; where s
(j)

i =

8>>>>>><
>>>>>>:

1 if Tj =2 Ai [Bi

nj if Tj 2 Ai;

nj if Tj 2 Bi \ S;

b(j) � a(j) + 1 if Tj 2 Bi \ I;

i.e. s
(j)

i is the number of di�erent values the descriptor lj may have in extended

marking mi. Then, in the state space spanned by the local descriptors, the

possibility or the probability that the process is in discrete marking mi and

the local descriptors are [l1; l2; : : : ; lM] is given by the mth entry of pi with

m = (: : : ((l1 � 1)s
(2)

i + (l2 � 1))s
(3)

i : : :)s
(M)

i + lM � 1 =

MX
k=1

(lk � 1)n
(k+1)

i ;

where n
(M+1)

i = 1.

Let us assume that the initial extended marking is mi. Then, initially

pi =
O

k;Tk2Ai

t0
(k);

where
 denotes the Kronecker-product operator (see Appendix B for the

de�nition of the operator).

Note that none of the disabled transitions can have memory in the initial

marking. All entries of all the other transient vectors are set to 0 at the

beginning of the analysis.

3.2 Global evolution

In the following we show how to build the matrix P that describes the global

evolution of the process.

For functional analysis the resulting matrix is the incidence matrix of the

model, i.e. a 1 or a 0 in position (i; j) means that macrostate j is reachable or

not in one step from macrostate i, respectively. The evolution of the process is

followed by successive multiplication of the transient vector [p1;p2; :::;pN] by

P . This way we are given the set of possible macrostates at time 1+; 2+; 3+; ::: ,

i.e. right after integer multiples of the chosen time unit.

In case of stochastic analysis a probabilistic choice is de�ned in the intervals

assigned to the transitions with a given common step-size Æ. The matrix P

is the transition matrix of the underlying discrete-time Markov chain of the

process, i.e. the value in position (i; j) gives the one step probability from

macrostate i to macrostate j. Once again, the evolution of the process is

followed by successive multiplication of the transient vector [p1;p2; :::;pN] by

P . This way we are given the probability of macrostates at time Æ; 2Æ; 3Æ; ::: .

The matrix P is built as an N � N block-matrix in which each block is

expressed as the sum of Kronecker-products of suitable matrices. The diagonal

31

Bobbio, Horv�ath

blocks P ii; 1 � i � N are square matrices describing the evolution of the

process inside the macrostate corresponding to mi. The o�-diagonal blocks

P ij; 1 � i; j � N describe the jumps from any state of macrostate mi to

any state of macrostate mj. First we consider the case when none of the

transitions �re.

Evolution when no �ring happens

When none of the transitions �re in a step the process remains in the same

macrostate. Hence, this case contributes to the diagonal entries P ii; 1 � i �
N of P . A diagonal block is expressed by the following Kronecker-product

P ii =

MO
j=1

Qj(1)

where

� Qj = T
(j)

if Tj 2 Ai, i.e. Tj is enabled inmi and its evolution is described

by T (j)
;

� Qj is an identity matrix, its size is nj � nj if Tj 2 Bi \ S and b(j) � a(j) +

1� b(j) � a(j) + 1 if Tj 2 Bi \ I, i.e. the descriptor of a disabled transition

having memory is kept;
� Qj = 1 if Tj =2 Ai [Bi, i.e. the transition does not contribute to the

evolution of the macrostate and has no in
uence on the Kronecker-product.

Evolution in case of �rings

Firing of a set of transitions is considered by the expression

P ij+ =
X

L2S(Ai)

Wij(L)

MO
k=1

Qk(L)(2)

where the function S(�) gives the set of non-empty subsets of its argument,

and Wij(L) has the following meaning:

� In case of functional analysis its value is 1 if from extended marking mi

having the transitions in L as candidates the next extended marking can be

mj; it is 0 otherwise. Wij(L) can be determined by considering all possible

orders of L.
� In case of stochastic analysis the value of Wij(L) is the probability that

being in mi, having the transitions in L as candidates the next extended

marking is mj. The value of Wij(L) may be determined by assigning a

probability to all possible orders of L. The choice when all ordering has the

same probability is discussed in [21].

During the calculation of Wij(L) the set Ci has to be considered as well.

In (2) instead of = we use + = because if a sequence of �rings leads back to

the same extended marking (it can easily happen in the presence of immediate

transitions) the quantity of the right hand side is added to the quantity de�ned

in (1). The term Qk(L) is determined according to the following situations:

32

Bobbio, Horv�ath

� If Tk 2 L, i.e. if Tk is one of the candidates the following cases has to

distinguished:

� if Tk is neither enabled nor it has memory inmj (i.e. Tk =2 Aj [Bj), then

Qk = tf
(k),

� if Tk is re-enabled in mj (i.e. Tk 2 Aj), then Qk = tf
(k)t0

(k),

� if Tj is not enabled but has memory in mj (i.e. Tk 2 Bj) which can

happen as a result of a sequence of �ring, then Qk = tf
(k)t0

(k).
� If Tk 2 (Ai=L) \ (Aj [Bj), i.e Tk is enabled in mi, it does not �re and is

enabled or has memory in mj, then Qk = T
(k)
.

� If Tk 2 (Ai=L) and Tk =2 Aj [Bj, i.e. Tk gets disabled and does not have

memory inmj, then Qk = e
(k)� tf

(k) (where e(k) is a vector of size nk with

all entries equal to one).
� If Tk 2 (Bi \ Bj) , i.e. it is not enabled but has memory in both mi and

mj, then Qk is the identity matrix of proper size (its size is nk � nk if Tk
is of prs size, while its size is b(k) � a(k) + 1 � b(k) � a(k) + 1 if Tk is of pri

type).
� If Tk is of prs type and Tk 2 (Bi\Aj) , i.e. it is not enabled but has memory

inmi and gets enabled inmj, thenQk is the identity matrix of size nk�nk.

� If Tk is of pri type and Tk 2 (Bi\Aj) , i.e. it is not enabled but has memory

in mi and gets enabled in mj, then Qk is of size b(k) � a(k) + 1 � nk and

de�ned as

[Qk]ij =

8<
:
1; if j = (i� 1)a(k) + i;

0; otherwise.

This matrix insures that being re-enabled the local descriptor of the pri

transition corresponds to the �rst phase of the proper column.
� If Tk =2 (Ai \ Bi) and Tk 2 (Aj \ Bj), i.e. it is neither enabled nor has

memory in mi and either enabled or has memory in mj, then Qk = t0
(k).

� If Tk is neither enabled nor has memory in both inmi andmj, thenQk = 1,

and hence does not have any in
uence on the Kronecker-product.

3.3 Complexity

The complexity of the proposed procedure is di�erent for functional than for

stochastic analysis for two reasons.

� The structure that describes the local evolution of the process is usually

larger in case of stochastic analysis. In case of functional analysis, a tran-

sition with �ring interval [1 : 2] is represented by a two phase structure. In

case of probabilistic analysis a discrete probability mass function is placed

in the interval. If it is done with step-size 0.2 (which means that the �ring

time may be 1,1.2,1.4,...,2.0) 10 phases are needed.
� In case of functional analysis, a state described by a global descriptor is

possible or not in a given time instant. So that the transient vectors contain

0s and 1s which can be stored eÆciently using binary decision diagrams. In

33

Bobbio, Horv�ath

case of probabilistic analysis the transient vectors contain real values whose

storage requires more memory.

The length of the transient vector describing an extended marking is the

product of the number of di�erent values that the local descriptors may have in

that marking. This product can be very large if many transitions are enabled

or have memory in an extended marking.

The matrix describing the global evolution of the process is stored in a

memory-eÆcient manner by using Kronecker-expressions. Di�erent algorithms

can be implemented to perform Kronecker-products, a comparison of the com-

plexity of these algorithm is found in [10].

4 Examples

Two examples are given in this section. The �rst, simple one is presented to

show that a net may have di�erent functional behavior for di�erent preemption

policies. On the second example both functional and stochastic analysis are

performed.

T3 T4

T5 T6 T7

T8

T1 T2

P4

P5

P6

P7

P8

P9

P10

P11

P12

P1

P2 P3

P13

t2

t3 t4

t1

[5; 5]
[2; 3] [1; 3]

[a; a]

[2; 4] [2; 3] [2; 3]

[1; 3]

P2

P1

P3 P4

P6

P5

P7

P8

T1 T2

T3

T4t1 t2

[10;20] [15;15]

[12;12]

[5;5]

A B

Fig. 6. A: Di�erent reachable markings in case of adopting di�erent preemption

policies for T1. B: Producer-consumer model.

The time Petri net depicted in Figure 6A has di�erent reachable markings

when adopting di�erent preemption policies for transition T1. We assume

strong time semantics. Whichever policy is chosen, it is possible that T1 �res

before T2 (if the �ring time of T1 is chosen lower than 15); in this case the net

ends up in marking (P3; P8). If T2 �res before T1 the behavior depends on the

memory policy of T1:
� prd policy: T1 either �res or does not �re in marking (P1; P7) (it �res if its

rechosen �ring time is less than 12),
� prs policy: T1 �res in marking (P1; P7) since its \clock" starts from 15

entering this marking and its maximal �ring time is 20,

34

Bobbio, Horv�ath

� pri policy: T1 does not �re in marking (P1; P7) since its �ring time is not

rechosen and it is greater than 15.

The second example, which is a simple producer-consumer model, is de-

picted in Figure 6B. Production, represented by deterministic transition T2,

may get preempted. The preemption is modeled by transitions T3 and T4, and

places P4 and P5. Transition T2 is of prs type, i.e. the work done is not lost

in case of preemption. Production restarts after a time units (represented by

transition T1). Consumption consists of two steps represented by transitions

T5 and T8. The �rst phase of consumption may get preempted which feature

is modeled by the subnet P9, P10, T6 and T7. For transition T5 prd or prs

memory policy is considered. The aim of the analysis is to determine if the

consumer �nishes its two-phase job before the arrival of the next one. A token

in place P12 indicates an error (i.e. another job arrived before the consumer

�nished the previous one), while a token in place P13 indicates that one cy-

cle of production-consumption was successful. The model is evaluated with

strong time semantics.

From the functional point of view possible questions are: \Is it possi-

ble that a token appears in place P12?" or \What is the shortest, longest

cycle-time?". From the stochastic point of view one could ask: \What is the

probability that a token appears in place P12?" or \What is the probability of

successfully �nishing a cycle before time t?". In case of performing stochastic

analysis a discrete probability distribution is de�ned on the interval. For all

non-deterministic transitions we assumed to have discrete uniform distribu-

tion with step-size 0.1 (for example the �ring time of transition T3 may be

2.0,2.1,2.2,...,2.9 or 3.0 with equal probability of 1/11).

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

P
ro

ba
bi

lit
y

Time

prd,a=20, failure
prd,a=20, success

prd,a=8, failure
prd,a=8, success

prs, success

Fig. 7. Probability of failure or correctly �nished cycle as a function of time

The example was evaluated, using a preliminary implementation of the

presented Kronecker-based description, with a = 8, a = 20 and with either prd

or prs memory policy for transition T5. From the point of view of functional

analysis the results are the following. For both values of a: if the adopted

memory policy is prd consumption may either terminate in time or may not,

35

Bobbio, Horv�ath

Analysis prd, a = 8 prd, a = 20 prs, a = 8 prs, a = 20

Functional 2133 3645 3249 5625

Stochastic 14696100 24236100 16964100 46052100

Table 1

Size of the discretized state space

while for prs policy it terminates always before the next production. The

earliest possible time to �nish correctly the production and consumption is

9 time units for all the cases. As a probabilistic result, Figure 7 depicts the

probability of having a correct or erroneous outcome as a function of time (in

case of prs policy for transition T5, erroneous outcome is not possible and for

both values of a we have the same curve).

The size of the discretized state space for the di�erent cases are given in

Table 1. As one could observe functional analysis requires much smaller state

space.

5 Conclusion

The paper has introduced a new construct called Discrete Phase Type Timing

- DPT that can represent probabilistic or non-deterministic choice over an

interval. For both cases it gives the possibility of assigning preemption policy

to the transitions of the system. Both weak and strong time semantics can be

handled (or even mixed in the same model).

A compositional approach, based on Kronecker algebra, was given to build

the matrix that describes the evolution of the expanded state space. This

description is similar to the one given in [21] with the di�erences that it

follows the behavior of a prs transition in an exact manner and provides the

possibility of having pri transitions in the model. It was shown as well that the

same compositional description can be utilized for functional and for stochastic

analysis.

Through a simple example the possibility of performing both functional

and probabilistic analysis of the same model has been demonstrated.

References

[1] M. Ajmone Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte, and A. Cumani.

The e�ect of execution policies on the semantics and analysis of stochastic Petri

nets. IEEE Transactions on Software Engineering, 15:832{846, 1989.

[2] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.

Modelling with Generalized Stochastic Petri Nets. Wiley Series in Parallel

Computing, 1995.

36

Bobbio, Horv�ath

[3] M. Ajmone Marsan and G. Chiola. On Petri nets with deterministic and

exponentially distributed �ring times. In Lecture Notes in Computer Science,

volume 266, pages 132{145. Springer Verlag, 1987.

[4] B. Berthomieu and M. Diaz. Modelling and veri�cation of time dependent

systems using Time Petri Nets. IEEE Transactions on Software Engineering,

17(3):259{273, 1991.

[5] A. Bobbio, A. Horv�ath, M. Scarpa, and M. Telek. Acyclic discrete phase

type distributions: Properties and a parameter estimation algorithm. Technical

Report of Budapest University of Technology and Economics - Submitted for

publication, 2000.

[6] A. Bobbio, V.G. Kulkarni, A. Pulia�to, M. Telek, and K. Trivedi. Preemptive

repeat identical transitions in Markov Regenerative Stochastic Petri Nets. In

Petri Nets and Performance Models '95, pages 113{122. IEEE CS Press, 1995.

[7] A. Bobbio, A. Pulia�to, and M. Telek. A modeling framework to implement

combined preemption policies in MRSPNs. IEEE Transactions on Software

Engineering, 26:36{54, 2000.

[8] A. Bobbio and M. Telek. Non-exponential stochastic Petri nets: an overview

of methods and techniques. Computer Systems: Science & Engineering,

13(6):339{351, 1998.

[9] G. Bucci and E. Vicario. Compositional validation of time-critical systems using

communicating time Petri nets. IEEE Transactions on Software Engineering,

21:969{992, 1995.

[10] P. Buchholz, G. Ciardo, P. Kemper, and S. Donatelli. Complexity of memory-

eÆcient Kronecker operations with applications to the solution of Markov

models. INFORMS Journal on Computing, 13(3):203{222, 2000.

[11] Hoon Choi, V.G. Kulkarni, and K. Trivedi. Markov regenerative stochastic

Petri nets. Performance Evaluation, 20:337{357, 1994.

[12] G. Ciardo. Discrete-time markovian stochastic petri nets. In W. J. Stewart,

editor, Computations with Markov Chains, pages 339{358. Kluwer, 1995.

[13] G. Ciardo and A. Miner. A data structure for the eÆcient Kronecker solution

of GSPNs. In Proc. 8th Int. Workshop on Petri Nets and Performance Models

(PNPM'99), pages 22{31. IEEE CS Press, 1999.

[14] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of

�nite state concurrent systems using temporal logic speci�cations: A practical

approach. ACM Transactions on Programming Languages and Systems,

8(2):244{263, 1986.

[15] C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezze�e. A uni�ed high level

Petri net formalism for time-critical systems. IEEE Transactions on Software

Engineering, 17:160{171, 1991.

37

Bobbio, Horv�ath

[16] A. Horv�ath, A. Pulia�to, M. Scarpa, and M. Telek. A discrete time approach

to the analysis of non-Markovian stochastic Petri nets. In Tools 2000, volume

1786 of Lecture Notes in Computer Science, pages 171{187, Schaumburg, IL,

USA, March 2000. Springer-Verlag.

[17] C. Lindemann. Performance Modelling with Deterministic and Stochastic Petri

Nets. John Wiley, 1998.

[18] P. Merlin and D. J. Faber. Recoverability of communication protocols. IEEE

Transactions on Communication, 24(9):1036{1043, 1976.

[19] M.K. Molloy. On the integration of delay and throughput measures in

distributed processing models. Technical report, Phd Thesis, UCLA, 1981.

[20] S. Natkin. Les reseaux de Petri stochastiques et leur application a l'evaluation

des systemes informatiques. Technical report, These de Docteur Ingegneur,

CNAM, Paris, 1980.

[21] M. Scarpa and A. Bobbio. Kronecker representation of Stochastic Petri nets

with discrete PH distributions. In International Computer Performance and

Dependability Symposium - IPDS98, pages 52{61. IEEE CS Press, 1998.

[22] E. Vicario. Static analysis and dynamic steering of time dependent systems.

IEEE Transactions on Software Engineering (to be published), 2001.

[23] R. Zijal, G. Ciardo, and G. Hommel. Discrete deterministic and stochastic

petri nets. In Proc. Measurement, Modeling, and Valuation of Computer-

and Communication-Systems (MMB), pages 103{117, Freiberg, Germany, 1997.

VDE-Verlag.

Appendix A: Discrete phase type distributions

Possibly defective discrete phase type (PDDPH) distributions are de�ned in

terms of discrete-time Markov chains (DTMC) with absorbing states. A dis-

crete random variable X is PDDPH distributed if and only if there exists a

DTMC fZi; i � 0g with n+1 states of which the (n+1)th is absorbing (there

can be other absorbing states as well) and PrfX � ig = PrfZi = n+ 1g, i.e.
X is the time to reach state n + 1. If state n + 1 is not the only absorbing

state the distribution can be defective. A PDDPH distribution is given by the

initial probability vector of its DTMC (t0) and the one-step transition matrix

(T) that governs the evolution among the states excluding state n+ 1. Then

the distribution of X is given by PrfX � ig = 1� t0T
ie, where e is a vector

with all entries equal to 1.

Appendix B: Kronecker-product operator

The Kronecker-product C = A
B of matrix A of size (ar � ac) and matrix

B of size (br � bc) is of size (arbr � acbc) and is de�ned by

C i;j = Ai2;j2Bi1;j1; where i = i2ar + i1; j = j2ac + j1:

38

MTCS 2001 Preliminary Proceedings

Extending Timed Automata for Compositional
Modeling Healthy Timed Systems

V��ctor Braberman
1;2

Computer Science Department, FCEyN,

Universidad de Buenos Aires,

Buenos Aires, Argentina

Alfredo Olivero 3;4

Department of Information Technology, FIyCE,

Universidad Argentina de la Empresa,

Buenos Aires, Argentina

Abstract

We introduce the notion of Timed I/O Components as Timed Automata \�a la"

Alur & Dill where an \admissible" I/O interface is declared. That notion has, what

we consider, a key modeling property: non-zeno preservation under syntactically-

checkable \I/O compatibility" among interacting components. Also a reduced par-

allel composition is possible based on the ability of statically detect in
uence of

behavior between components [8,10]. On the other hand, with some simple extra

conditions, modular assume-guarantee style of reasoning like [13,16] is valid in our

model.

1 Introduction: on Non-Zeno and Non-Blocking Mod-

els

Well-de�ned models of timed systems usually are required to be \non-zeno".

Roughly speaking, non-zenoness means that any �nite run can be extended to

a time-divergent in�nite run (i.e., no \black-alleys", time can always progress).

On the one hand, zenoness is usually a symptom of ill-modeling, on the other

hand non-zenoness is required to perform some veri�cation procedures when

semantics is restricted to divergent runs.

1 Research supported by UBACyT grant X156 and TW72
2 Email: vbraber@dc.uba.ar
3 Research supported by UADE grant ING6-01
4 Email: aolivero@uade.edu.ar

This is a preliminary version. The �nal version is considered for publication in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Braberman & Olivero

Unfortunately, non-zenoness is not preserved by parallel composition. Non-

Zeno systems may produce time-locks when connected.

I/O Timed Components (I/O TCs) are compositional models developed for

expressing non-zeno timed behavior built on top of Timed Automata (TAs) [8].

They impose a modeling discipline for guaranteeing that parallel composition

among \compatible" I/O TCs is a natural way to constrain the behavior of

individual components without introducing zeno behavior. Let us pinpoint

some interesting aspects of I/O TCs:

� I/O interfaces allow simple syntactic checks that ensure non-zeno preserva-

tion under parallel composition.

� By using I/O interfaces it is possible to calculate, in a quite precise way,

the in
uence of a component on the behavior of another component (see

[8,10]). As far as we know, this is a completely new goal for I/O interfaces.

� Since I/O TCs are built on top of a simple notion of TAs \�a la" Alur-

Dill -with a communication based on label sharing- they are immediately

supported by several checking tools like Kronos [12], Uppaal [6],etc.

� I/O TCs are de�ned without resorting to \receptiveness games" like in

live I/O Timed Automata [13], Reactive Modules [5], etc. Conditions for

checking good I/O label division are easy to automate.

� We believe that they are suitable to compactly model high-level non-blocking

abstractions (see discussion in [8] and Sect. 3).

� With some extra constraints on I/O TCs, it is possible to apply \assume-

guarantee"-style rules (e.g.,[16]) for re�nement checking. Like in [16] those

constraints are not based on more general but complicated receptiveness

games [13,5]). Those constraints are not basic properties for I/O TCs (which

are mainly inspired in non-zeno preservation). We think that this separation

has theoretical and practical interest.

� I/O notions are rather independent of the underlying timed (or untimed 5)

formalism used to describe the dynamics.

It is worth mentioning related work on preserving \reactivity and activ-

ity" of components. In [7], an algebraic framework based on the temporal

properties of synchronization operation is presented (they aim at getting high

level synchronization facilities). Our point of view is a functional classi�cation

of transitions. In that line of research, authors of [16] present non-blocking

Timed Processes to get a family of automata where they can apply an as-

sume/guarantee style of reasoning. Communication between components is

based on signal change instead of label sharing and it is suited to circuit mod-

eling. Di�erently from our approach, output changes are constrained to be

5 We believe that this I/O model can be adapted to the untimed framework by chang-
ing timed divergence conditions with fairness constraints [11,13], an usual way to specify
progress in the untimed framework.

40

Braberman & Olivero

non-transient and the update of inputs is independent from the update of out-

puts. Since that model is focused on breaking circularity of assume-guarantee

rules, the underlying notion of non-zenoness does not need to rule out black-

alleys; instead de�nitions rule out forcing in�nitely many transitions within a

�nite interval.

Liveness and I/O interfaces have been considered in a general setting for

simulation proof methods \�a la" Lynch-Vaandrager [13] geared towards the-

orem provers. In that work, Live Timed I/O automata using a notion of

\responsiveness" is de�ned based on games which embeds several proposals

for fair I/O timed systems [17,21], etc. A closer model are the Reactive Mod-

ules of [5]. Unlike our notions, it is based on receptiveness games to de�ne

non-blocking and I/O variables to communicate modules.

In next section we recall Timed Automata. In Sect. 3, we formally present

I/O Timed Components. Some applications are mentioned in Sect. 4. Con-

ditions to get assume-guarantee rule are discussed in Sect. 5. Finally, we

summarize the results and mention some future work.

2 Timed Automata

Timed Automata (TA) is one of the most widely used formalism to model

and analyze timed systems and is supported by several tools (e.g., [12,6,15],

etc.). This presentation partially follows [23]. Given a �nite set of clocks (non-

negative real variables) X = fx1; x2; : : : ; xng, a valuation is a total function

v : X
tot

! R�0 where v(xi) is the value associated with clock xi. We de�ne VX as

the set [X
tot

! R�0] of total functions mapping X to R�0 . 0 2 VX denotes the

function that evaluates to 0 all clocks. Given v 2 VX and t 2 R�0 , v+t denotes

the valuation that assigns to each clock x 2 X the value v(x)+t. Given a set of

clocks X, a subset � � X and a valuation v we de�ne Reset�(v) as a valuation

that assigns zero to clocks in � and keeps the same value than v for the

remaining clocks. Given a set of clocksX we de�ne the sets of clock constraints

	X according to the grammar: 	X 3 ::= x � cjx � x
0 � cj ^ j _ ,

where x; x0 2 X;�2 f<;�;=;�; >g and c 2 N .

A valuation v 2 VX satis�es 2 	X (v j=) i� the expression evaluates

true when each clock is replaced with its current value speci�ed in v.

De�nition 2.1 [Timed Automata] A timed automaton (TA) is a tuple A =

hS;X;�; E; I; s0i where S is a �nite set of locations, X is a �nite set of clocks,

� is a set of labels, E is a �nite set of edges, (each edge e 2 E is a tuple

hs; a; ; �; s0i where: s 2 S is the source location, s0 2 S is the target location,

a 2 � is the label, 2 	X is the guard, � � X is the subset of clocks reset

at the edge), I : S
tot

! 	X is a total function associating with each location a

clock constraint called location's Invariant, and s0 2 S is the initial location.

Given a TA A = hS;X;�; E; I; s0i we de�ne Locs(A) = S, Clocks(A) =

41

Braberman & Olivero

X, Labels(A) = �, Edges(A) = E, Inv(A) = I, Init(A) = s0, and given an

edge e = hs; a; ; �; s0i 2 E we de�ne src(e) = s, Label(e) = a, Guard(e) = ,

Rst(e) = �, tgt(e) = s
0. The State Space QA of a TA A is the set of states

(s; v) 2 S � VX for which v j= I(s) and q0 = (Init(A); 0) is its initial state.

Given a state q = (s; v) we denote: q+t = (s; v+t), q@ = s, and q(xi) = v(xi).

The semantics of a TA A can be given in terms of the Labeled Transition

System (LTS) of A, denoted GA = hQA; q0; 7!;�i. The relation 7! is the

set of (time or discrete) transitions between states. Let t 2 R�0 ; the state

(s; v) has a time transition to (s; v + t) denoted (s; v) 7!�

t
(s; v + t) if for all

t
0 � t, v + t

0 j= I(s), where � is a �ctitius label. Let �� denote � [f�g.

Let e 2 E be an edge; the state (src(e); v) has a discrete transition to the

state (tgt(e); v0) denoted (src(e); v) 7!
Label(e)

0 (tgt(e); v0) if v j= Guard(e) and

v
0 = ResetRst(e)(v).

We write q 7!l

0 (the label l 2 � is enable at the state q 2 QA) if q 7!
l

0 q
0

for some q0 2 QA. Given a subset �0 � �, we write q 7!�0

0 (all labels l 2 �0

are enable at the state q 2 QA) if q 7!
l

0 for all l 2 �0.

A �nite run r of A starting at q is a �nite sequence q 7!a0

t0
q1 7!

a1

t1
::: 7!

an�1

tn�1

qn of states and transitions inGA. The time of occurrence of the kth (k � n�1)

transition is equal to
P

k�1

i=o
ti and is denoted as �r(k). The time length of the

run (denoted as �r) is equal to �r(n). An in�nite run is just an in�nit sequence

of states and transitions in GA. The set of �nite and in�nite runs starting at

q is denoted as RA(q). We call Lab(r) the set of all labels in the run r.

A divergent run is an in�nite run such that
P1

i=o
ti = 1. The set of

divergent runs of a TA A starting at state q is denoted R1
A
(q). A TA is non-

zeno when any �nite run starting at the initial state can be extended to a

divergent run, that is, the set of �nite runs is equal to the set of �nite pre�xes

of divergent runs. We say that the state q is reachable if there is a �nite run

starting at the initial state which ends at q; we denote the set of all reachable

states in a TA A as Reach(A).

Given a run r = q 7!
a0

t0
q1 7!

a1

t1
::: 7!

an�1

tn�1
qn ::: 2 RA(q), the exhibited

timed-event sequence of r, is a sequence r�� = (a0; �r(0)); (a1; �r(1)); (a2; �r(2));

...(an�1; �r(n� 1)); ::: of pairs (l; t) 2 (��)� R�0 .

Given a run r 2 RA(q) and a set of labels L � �, the exhibited timed-event

sequence over L, denoted as rL, is the maximum subsequence of r�� containing

pairs (l; t) such that l 2 L. (the sequence rL shows the L-labeled transitions

and their time stamps). Given a timed-event sequence over L named rL, its

length is denoted as #rL, its k-th pair (with k < #rL) is denoted as rL[k] and

its pre�x up to the k-th pair (with k < #rL) is denoted as rL[0:::k]. Given a

pair p = (l; t) in rL, we de�ne lab(p) = l and time(p) = t.

Given two TAs A and A
0 and a set of labels L � � \ �0, we say that

A �L A
0 (A is a re�nement of A0 w.r.t L) i� for all �nite run r 2 RA(q0)

there exists a run r0 2 RA0(q00) such that �r = �r0 and rL = r
0
L
.

The parallel composition of TAs is de�ned over classical synchronous prod-

42

Braberman & Olivero

uct of automata.

De�nition 2.2 [Parallel composition] Given two TA A1 = hS1; X1;�1; E1; I1; s01i,

and A2 = hS2; X2;�2; E2; I2; s02i where X1\X2 = ;. Let E 0 be the set of edges

de�ned over the S1 � S2 as follows:

h(s1; s2); a; ; �; (s
0
1; s

0
2)i 2 E

0 ()

hs1; a; ; �; s
0
1i 2 E1 ^ a =2 �jj ^ s2 = s

0
2, or

hs2; a; ; �; s
0
2i 2 E2 ^ a =2 �jj ^ s1 = s

0
1, or

hsi; a; i; �i; s
0
i
i 2 Ei ^ a 2 �jj ^ = (1 ^ 2) ^ � = �1 [�2

where �jj = �1 \ �2.

The parallel composition A1jjA2 is de�ned as: A = hS;X1 [X2;�1 [

�2; E; I; (s01; s02)i where S � S1�S2 is the set of locations reachable traversing

the edges of E 0 from the initial location (s01 ; s02), E � E
0 is the subset of edges

with source and target in S, and for all (s1; s2) 2 E, I((s1; s2)) = I(s1)^I(s2).

The k operator is commutative and associative. We will denote ki2I Ai the

parallel composition of an indexed set of TA. If q is a state of that parallel

composition �i(q) will denote the local state of TA Ai (locations and local-

clock values).

3 I/O Timed Components

In this section we de�ne I/O concepts formally.

Given a TA A, we will divide Labels(A) (its set of labels) into three sets:

InA (input-labels), OutA (output-labels) and �A (internal-labels), such that

fInA; OutA; �Ag 2 Part(Labels(A)), where Part(S) is the set of all partitions

of the set S. We de�ne the set ExpA of exported labels (or interface labels) of

A as ExpA = InA [OutA.

A set of input selections of A is a set IA = fIA1 ; I
A

2 ; : : : ; I
A

k
g 2 Part(InA),

a set of output selections of A is a set OA = fOA

1 ; O
A

2 ; : : : ; O
A

h
g 2 Part(OutA).

Note that IA [OA [f�Ag 2 Part(Labels(A)).

Let us de�ne what is a correct I/O (uncontrollable/controllable) interface

labels for a TA.

De�nition 3.1 [Admissible Input/Output interface for a TA] Given a non-

zeno TA A, and the sets IA; OA of input and output selections of A, the

pair (IA; OA) is an admissible input/output interface for A i� the following

conditions hold:

For any state q 2 Reach(A)

(i) for any input selection I
A

n
2 I

A there exists a label i 2 I
A

n
such that

q 7!i

0. That is, given any input selection I
A

n
2 I

A, the TA can always

synchronize using some of the labels of IA
n
(there is always at least one

alternative of every input selection enabled at each state).

43

Braberman & Olivero

(ii) there exists a run r 2 R
1
A
(q) such that Lab(r) \ InA = ;. Input is not

mandatory and thus non-zenoness must be guaranteed without them 6 .

(iii) for any output selection OA

m
2 OA, if there exists a label o 2 OA

m
such that

q 7!o

0 then q 7!
O
A

m

0 . All labels of an output selection are simultaneously

enabled or disabled.

(iv) for any run r 2 RA(q), if a label o 2 OutA appears an in�nite number of

times in r, then necessarily r 2 R1
A
(q) (non-transientness of outputs 7).

In the Appendix A.1 we show how to check I/O admissibility.

De�nition 3.2 [I/O TCs] An I/O Timed Component (or I/O TC) is a tuple

(A; (IA; OA)) where A is a non-zeno TA and (IA; OA) is an admissible I/O

interface for A.

An output selection of size greater than one models alternative behaviors

of the component according to the state of the component exporting those

labels as input selection (similar to an external non-deterministic choice in

Process Algebra-like notations, see example 3.4).

Given an I/O TC C = (A; (IA; OA)), C may also denote the underlying

TA A when it can be deduced from the context. Thus, operations performed

on I/O TCs should be understood as operations on its underlying TAs.

De�nition 3.3 [Compatible Components] Given two I/O TCs C1 = (A1,

(IA1, OA1)) and C2 = (A2; (I
A2; O

A2)), they are compatible components if and

only if:

(i) Labels(A1) \ Labels(A2) � ExpA1
\ ExpA2

(i.e., all common labels are

exported by both A1 and A2),

(ii) for all IA1

n
2 IA1 and IA2

m
2 IA2 if #IA1

n
> 1 and #IA2

m
> 1 then IA1

n
\IA2

m
=

; (intersection of input selections of size greater than one must be empty).

(iii) OutA1
\ OutA2

= ; (the components don't share output labels).

(iv) for all I 2 IA1 [IA2 and O 2 OA1 [OA2 then either I \O = ; or I � O

(output selection covers all input alternatives).

We refer to a set of pair-wise compatible components as a compatible set

of components. I/O compatibility means that underlying TAs can not block

each other and moreover, we will show that the composition of compatible

components is itself a component and therefore a non-zeno automata.

6 Note that this property is stronger than non-zenoness since it also requires time divergence
avoiding input-labeled transitions. It is similar to progressiveness in [19] and feasibility in
[21].
7 This requirement together with the previous divergence property (item (ii) of Def. 3.1)
and non-zenoness of the underlying TA are closely related to the notion of Strong I/O
Feasibility of [21].

44

Braberman & Olivero

Example 3.4 CSMA/CD (Carrier Sense, Multiple Access with Collision De-

tection) is widely used protocol on LANs on the MAC sublayer. It solves the

problem of sharing a single channel in a broadcast network (a multi-access

channel). When a station has data to send it �rst listens to the channel to

check whether it is idle or busy. If the bus seems idle it begins sending the

message, else it waits a random amount of time and then repeats the sensing

operation. When a collision occurs, the transmission is aborted simultaneously

in all the stations that were transmitting and they wait a random time to start

all over again. We formally model the timing aspects of the protocol using I/O

timed components (see Fig.1) based on the model presented in [18]. Sender

components share a bus component. We suppose that the bus is a 10Mbps

Ethernet with worst case propagation delay � of 26 ms. Messages have a �xed

length of 1024 bytes, and so the time � to send a complete messages, includ-

ing the propagation delay, is 808 ms. The bus is error-free, no bu�ering of

incoming messages is allowed. Note that fSendOKi; SendBusyig is an output

selection of sender i and the selection depend on the input actually enabled

in the bus state. In fact, SendBusyi is enabled when the head of a message

has already propagated. It takes at most � to propagate the collision signal

to all the senders. The sender stays at most Æ in the transmission location.

Note also that the sender non-deterministically makes a new attempt to send

before 2� elapsed since the last attempt. In models like Timed Process [16], it

would be necessary for the sender component to issue a signal standing for the

sensing of the bus state, and then wait for the status answer of the bus com-

ponent (which can not arrive at zero time due to a \non-immediate response"

constraint in that model). That two phase modeling idiom, common in soft-

ware models, can be reduced in our modeling framework using appropriate

Input and Output selections.

In [8], the reader can found how several examples taken from the literature

are modeled as I/O TCs.

3.1 I/O Components: Composition and Non-Zenoness

Let us state some results that help to prove that a TA-model is non-zeno.

Firstly, we will see how an admissible interface can be derived for the parallel

composition of two compatible I/O TCs. This is a rather strong result which

implies the following fact: given two compatible I/O TCs C1 and C2 then the

composition, which turns out to be non-zeno, is also a I/O TC (i.e., A1 k A2 is

non-zeno and moreover it can be given an admissible I/O interface). Brie
y,

the new input interface is constituted by the original input selections that

do not loose \selectivity property" of item (i) of Def. 3.1. That property

is preserved for any input selection whenever there is no matching output

selection and it is not properly included into another input selection.

Something similar can be done to build the new output interface. Since

output selections that intersect with input selections of size greater than one

45

Braberman & Olivero

wait

send1ok

{y}

end1 I={{send1ok,send1busy},{end1},{end2}, { send2ok,send2busy}}}
O={{collision}}

end2

send2ok
{y}

send1ok

send2ok

end2
end1

wait trans

retry
x1<52

collision
send1ok

send1busy

collision

collision

{x1}

{x1}

{x1}
{x1}

send1ok

{x1}

end1
x1=808

sendbusy1
{x1}

I={{collision}}
O={{send1ok,send1busy}, {end1}}

x1<=808

collision

y<26

y<26

y<26
send1ok

send2ok

send1busy
send2busy
y>=26

y>=26

SENDER 1

BUS

end2
end1

Fig. 1. I/O Components of the CSMA/CD Protocol

may loose the simultaneous availability property (item (iii) of Def. 3.1), they

are not part of the new output selections. However, all the labels of those

\lost" output selections can be safely added as output selections of size 1

(singletons trivially satisfy item (iii) of Def. 3.1). Thus, all exported labels of

the components are exported in the composition. This fact is important to

prove that this construction can be generalized to the parallel composition of

n components:

Theorem 3.5 Given an indexed set S = f(Ai; (I
Ai; O

Ai)g1�i�n of n I/O TCs

such that they are pair-wise compatible, we de�ne the sets IA =
S

1�i�n I
Ai,

IA>1 =
S

1�i�nfI 2 I
Ai=#I > 1g, OA =

S
1�i�nO

Ai.

(A; (IA; OA)) is a component where:

A =k1�i�n Ai

I
A = fI 2 IA= 8I

0 2 IA : I 6� I
0 ^ 8O0 2 OA : I \ O0 = ;g and,

O
A = fO 2 OA= 8I

0 2 IA>1 : I
0\O = ;g[ffog=o 2 O 2 OA^9I

0 2 IA>1 :

I
0 \O 6= ;g

Proof. See Appendix A. The basic idea is that, from the point of view of

a component, its partners do not block its outputs: they just select them

(items (i) and (iii) of Def. 3.1), also it does not require inputs to allow time

elapse (item (ii) of Def. 3.1). On the other hand, a subset of I/O TCs can not

engage themselves in an in�nite activity in a �nite interval of time since this

46

Braberman & Olivero

is ruled out by item (iv of Def. 3.1). 2

In the example 3.4 the resulting interface of the parallel compositionA =def

SENDER1 k BUS is IA = ffSend2ok; Send2Busyg; fend2gg,OA = ffend1g,

fSend1okg, fSend1Busyg, fcollisiongg. Note that since simultaneous avail-

ability of output selection fSend1ok; Send1Busyg is lost, they became single-

ton output-selections.

4 Applications of I/O TCs

Non Zeno Models:

Compatibility is a syntactical condition that ensures non-zenoness of the

resulting parallel composition. As was already said, non-zenoness is a property

required to perform some veri�cation procedures. In [8,9] we model Real-Time

System execution architectures by means of I/O TCs. We use I/O compati-

bility to ensure that I/O TCs modeling the connectors and the environment

do not block the rest of the system (the tasks). As was already explained,

I/O selections may be an useful mechanism to model in a single transition

action/result on software entities.

Reduction:

Safety requirements are commonly modeled by means of virtual compo-

nents (Observers) which are composed in parallel with the system under ana-

lysis (SUA) (e.g., [1,9]). In [8,10] we present a technique that, given the SUA

and an observer, builds a smaller parallel composition equivalent to the origi-

nal one up to the branching structure of the LTS. In a few words, we develop

a technique that calculates the components that may be forgotten at each ob-

server location since their future behavior do not in
uence the future evolution

of the SUA up to the observer. Under some reasonable assumptions on the

topology of the observers, those remaining sets (the relevant components) are

proper subsets of the set of all components. The time needed for veri�cation

is drastically reduced in some cases. The core of that technique is a notion of

potential \direct in
uence" of an automaton behavior over another automaton

behavior. A naive solution would say that an automaton A potentially in
u-

ences another automaton B i� they share a label. Unfortunately, this would

lead to a rather large symmetrical overestimation. Then, by using the I/O

interface attached to TAs, we are able to de�ne an asymmetrical condition of

behavioral in
uence that could be statically checked. That is, we provide a

better overestimation of potential in
uence than simple label sharing. It is

worth mentioning that the technique presented in [10] is based on a simpler

notion of I/O interface than the one presented in this article. The details of

that \relevance calculus" using the de�nitions of this paper can be found in

[8].

47

Braberman & Olivero

5 On Breaking Circularity in Assume-Guarantee Rules

The authors of [16] present a simple modularity principle for abstraction rela-

tions in Timed Processes. Assume-guarantee rule has an apparent circularity:

to prove that A k B is a re�nement of A0 k B0 it suÆces to prove that (1) A is

a re�nement of A0 assuming that the environment behaves like B0, and (2) B

is a re�nement of B0 assuming that the environment behaves like A0. For this

rule to be true in our setting, we have to add a couple of conditions. Firstly,

let us de�ne when an state is non urgent from the point of view of outputs.

De�nition 5.1 [Non-Urgent state] Given a I/O TC C = (A; (IA; OA)), a

state q is not output urgent (denoted asNU(q)) i� there exists a run r 2 RA(q)

such that 0 < �r and Lab(r) � �A.

De�nition 5.2 [Non-Blocking Extra Conditions] We say that an I/O TC

satis�es the Non-Blocking Extra Conditions if and only if:

(i) Guards and Invariants are closed predicates (i.e., its binary relations are

only �, = or �).

(ii) Inputs do not disable nor enable urgent outputs: given a state q 2

Reach(A) and a label i 2 InA, if q 7!
i

0 q
0 then NU(q) i� NU(q0) 8 .

It is easy to see that those properties are preserved by parallel composition

A =kj2J Aj. Firstly note that guards and invariants of A are inherited from

the components Aj. For the item (ii) of Def. 5.2, if q 7!i

0 q
0 then i is an

unmatched input of one component, namely k, and thus q and q0 just di�er

in the local state of k. Also, NU(q) if and only if for all j 2 J NU(�j(q))

(since the set of internal labels of the composition A is the union of internal

labels of components Aj). Therefore, NU(q) i� NU(q0) since NU(�k(q)) i�

NU(�k(q
0)) and the rest of the components remain the same.

Theorem 5.3 (Assume/Guarantee) Given the I/O TCs A;B;A0
; B

0 sat-

isfying the non-blocking extra conditions such that A and B are I/O com-

patible, and A
0 and B

0 have the same I/O interface that A and B resp. If

(A k B0) �ExpA
A
0 and (A0 k B) �ExpB

B
0 imply that (A k B) �ExpA[ExpB

(A0 k B0).

Proof. See appendix. 2

6 Conclusions and Future Work

We present I/O Timed Components, a simple compositional notion that ex-

tends Timed Automata \�a la" Alur-Dill to get live non-zeno models [8], also

providing some important methodological advantages like in
uence detection

8 This property can be checked, for instance, using the veri�cation engine of Kronos
tool[12].

48

Braberman & Olivero

[10]. Assume-guarantee modular reasoning like [16] is obtained by adding a

couple of constraints to I/O TCs without resorting to games. In our opin-

ion, keeping non-zeno preservation conditions apart from the ones that break

circularity in assume guarantee has practical and theoretical value.

We believe that admissible interfaces of a TA could be ordered according

to the information it provides about availability of labels. That is, (I1; O1) �

(I2; O2) i� the admissibility of the interface (I1; O1) for a TA A implies the

admisibility of (I2; O2) for A. We would like to study if this relationship

between interfaces could be a declarative way to de�ne the I/O interface of

the composition.

Conditions for assume-guarantee could be weakened, for instance: it is

suÆcient for A and B to satisfy that inputs do not enable urgent outputs, and

for A0 and B0 to satisfy that inputs do not disable urgent outputs.

References

[1] Alpern, B., and F. Schneider, Verifying Temporal Properties without Temporal

Logic, ACM Trans. Programming Languages and Systems, 11 (1) (1989), 147{

167.

[2] Alur, R., \Techniques for Automatic Veri�cation of Real-Time Systems," Ph.D.

thesis, Stanford University, 1991.

[3] Alur, R., C. Courcoubetis, and D. Dill, Model-Checking for Real-Time Systems

In Proceedings of Logic in Computer Science, IEEE Computer Society, Los

Alamitos, Calif, 414-425, 1990. Also in Information and Computation, 104 (1)

(1993) 2{34.

[4] Alur, R. and D. Dill, A Theory of Timed Automata, Theoretical Computer

Science, 126 (1994) 183{235.

[5] Alur, R., and T. Henzinger, Modularity for Timed and Hybrid Systems, In

Proceedings of CONCUR'97, LNCS 1243, 1997.

[6] Bengtsson, J., K.G. Larsen, F. Larsson, P. Pettersson, and W. Yi, UPPAAL- A

Tool Suite for the Automatic Veri�cation of Real-Time Systems, In Proceedings

of Hybrid Systems III, LNCS 1066, Springer Verlag, 1996, 232{243.

[7] Bornot, S., and J. Sifakis. An Algebraic Framework for Urgency To appear in

Information and Computation, Academic Press.

[8] Braberman, V. \Modeling and Checking Real-Time System Designs," Ph.D

Thesis, Universidad de Buenos Aires, 2000. [Thesis]

[9] Braberman, V., and M. Felder, Veri�cation of Real-Time Designs: Combining

Scheduling Theory with Automatic Formal Veri�cation, In Proceedings of 7th

European Conf. on Software Eng./ 7th ACM SIGSOFT Symposium on the

Foundations of Software Eng., (ESEC/FSE 99), LNCS 1687, Springer Verlag,

Sept. 1999, 494{510.

49

Braberman & Olivero

[10] Braberman, V., D. Garbervetski, and A. Olivero, Ignoring Components during

the Veri�cation of Timed Systems Submitted to IEEE RTSS'01.

[11] Clarke, E., O. Grumberg and D. Peled, \Model Checking", MIT Press, January

(2000), 330pp..

[12] Daws, C., A. Olivero, S. Tripakis, and S. Yovine, The Tool KRONOS, In

Proceedings of Hybrid Systems III, LNCS 1066, Springer Verlag, 1996, 208{

219.

[13] Gawlick, R., R. Segala, J. Sogaard-Andersen, N. Lynch Liveness in Timed

and Untimed Systems, In Proceedings of ICALP , LNCS 820, Springer Verlag,

166-177, 1994. Also in Information and Computation (1998).

[14] Henzinger, T.A., X. Nicollin, J. Sifakis, and S. Yovine, Symbolic model checking

for real-time systems. Information and Computation, 111(2) (1994), 193{244.

[15] Larsen, K.G., F. Laroussinie, CMC: A Tool for Compositional Model-Checking

of Real-Time Systems, In Proceedings of. FORTE-PSTV'98, 439-456, Kluwer

Academic Publishers, 1998.

[16] Kurshan, R. P., S. Tasiran, R. Alur, and R. K. Brayton, Verifying Abstractions

of Timed Systems, In Proceedings CONCUR 96, LNCS 1119, Springer Verlag,

1996.

[17] Merritt, M., F. Modugno, and M. Tuttle, Time Constrained Automata, In

Proceedings of CONCUR'91, LNCS 527, Springer Verlag, 1991.

[18] Nicollin, X., J. Sifakis, and S. Yovine, Compiling Real-Time Speci�cation into

Extended Automata, IEEE Trans. on Soft. Eng.,Vol. 18 (9) (1992), 794{804.

[19] Springintveld, J., F. Vaandrager, P. D'Argenio , Testing Timed Automata, To

appear in Theoretical Computer Science, 254 (1-2) (2001), 225{257.

[20] Tripakis, S. \L'Analyse Formelle des System�es Temporis�es en Practique", Phd.

Thesis, Univesit�e Joseph Fourier, December 1998.

[21] Vaandrager, F., N. Lynch, Action Transducers and Timed Automata, In

Proceedings of CONCUR'92, LNCS 630, 436-455, 1992.

[22] Yi, Wang, Real-Time Behavior of Asynchronous Agents, In Proceedings of

CONCUR'90, LNCS 458, Springer Verlag, 1990.

[23] Yovine, S., Model-Checking Timed Automata, Embedded Systems,

G. Rozemberg and F. Vaandrager eds., LNCS 1494, Springer Verlag, 1998.

Appendix

A On I/O Timed Components

Lemma A.1 Given two I/O-compatible components C1 = (A1; (I
A1; O

A1))

and C2 = (A2; (I
A2; O

A2)), we de�ne the sets IA = I
A1 [IA2, IA>1 = fI 2

IA=#I > 1g, OA = O
A1 [OA2.

50

Braberman & Olivero

C = (A; (IA; OA)) is a component where:

A =k1�i�n Ai

I
A = fI 2 IA= 8I

0 2 IA : I 6� I
0 ^ 8O0 2 OA : I \ O0 = ;g and,

O
A = fO 2 OA= 8I

0 2 IA>1 : I
0\O = ;g[ffog=o 2 O 2 OA^9I

0 2 IA>1 :

I
0 \O 6= ;g

Proof. The most diÆcult point is the proof that A1 k A2 is indeed non-zeno

regardless input transitions (item (ii), Def. 3.1). We will see that any state

reachable by a �nite run is not a timelock. Moreover, time can elapse avoiding

input transitions. Let q be a reachable state by a �nite run of A1 k A2 then

q
1 = �A1

(q) and q2 = �A2
(q) are reachable states (by �nite runs) of A1 and

A2 resp. Let k 2 R�0 be a constant. From the de�nition of component, there

must be runs r1; r2 starting in q1 and q2 resp. of time length equal to k such

that r1 does not contain any InA1
transition and r2 does not contain any

InA2
transition (thus they do not contain any label in I

A). Now, we show

a procedure to obtain a run r of A1 k A2 from r1 and r2. To obtain such a

run, we would need to merge r1 and r2. If the discrete transitions of r1 and

r2 are sorted according to the time of occurrence, it is easy to combine them

obtaining r till the �rst output-labeled transition which shared by the other

automaton is found. To outline the merge, lets r1 = q
1 7!

l1

t1
q
1
1 7!

l2

t2
:::q

1
n
,

and r2 = q
2 7!

l
0

1

t
0

1

q
2
1 7!

l
0

2

t
0

2

:::q
2
n0
. Now, suppose that t1 � t

0
1 (the other case

is symmetrical) and l1 is not shared by A2 (or it is �). Then - thanks to

the parallel composition interleaving semantics - the resulting run r can be

build as follows: r = q 7!
l1

t1
(q11; q

2 + t1) concatenated with the run obtained

using the same procedure from (q11 ; q
2 + t1) with r1 = q

1
1 7!

l2

t2
:::, and r2 =

q
2 + t1 7!

l
0

1

t
0

1
�t1

q
2
1 7!

l
0

2

t
0

2

:::q
0
n0
. Clearly this procedure can be iterated �nitely till

we reach the end of both runs (the variant is sum of the number of transitions

of both runs), thus obtaining a run of A of time length k, or till a shared label

is found. 9

Without loss of generality, let us suppose that the earliest still non syn-

chronized shared output-transition qj 7!
o

0 qj+1 belongs to r1 and o 2 O 2 OA1.

Let I 2 IA2 , I � O be the corresponding matching input selection (i.e., o 2 I)

by compatibility (item (iv), Def. 3.3). By de�nition of input selection, there

is a transition labeled i0 2 I enabled in A2 at the time of occurrence of that

j
th transition. By de�nition of output selection, at qj there must be also a

discrete transition qj 7!
i
0

0 s. By applying this procedure, we can �x up both

runs to get a �nite run starting at q such that either it has time length k or

it ends with an output transition into an intermediate state q0. Therefore,

since both TA are non-transient for output labeled transitions (item (iv) of

I/O interface admissibility), by repeating the whole procedure from those in-

9 Note that if one of the runs is empty then it just remains a set of discrete (0 time)
transitions in the other run (both have originally the same time length) and therefore we
can omit that suÆx since we have already built a run of time length k.

51

Braberman & Olivero

termediate states (i.e., obtaining new r1, r2, etc.), a run of time length k is

eventually built (if not, either the projection of that in�nite run on A1 or A2

would show an in�nite number of output-labeled transitions, and since there is

a �nite number of labels at least one output label would be repeated in�nitely

often thus violating item iv of I/O interface admissibility). The rest of the

items of I/O interface are proven as follows:

� the new input and output labels are disjoint (input selections intersecting

with an output selections are not part of the new interface).

� Input Selection Property (item (i)): given an state q of A and an input

selection I of IA, we know that I belongs either to IA1 or to IA2. Without

loose of generality, lets suppose that it belongs to IA1. Then, there exists

i 2 I such that �1(q) 7!
i

0 r. We also know that if i 2 Labels(A2) then

fig 2 I
A2 (input selection of size 1) and thus there exists s such that

�2(q) 7!
i

0 s and then q 7!i

0 (r; s).

� Output Selection Property (item (iii)): Similar to the previous one.

� �nally, a run containing an in�nite number of internal or output-labeled

transitions is necessarily time-divergent (item (iv)). Indeed, since any run

of A can projected into a run of A1 and a run of A2 and one of those

runs must exhibit an in�nite number of outputs or internal transitions and

therefore diverge.

2

Theorem 3.5

Given an indexed set S = f(Ai; (I
Ai; O

Ai)g1�i�N of N I/O TCs such that

they are pair-wise compatible, we de�ne the sets IA
n =

S
1�i�n I

Ai, IA>1
n =S

1�i�nfI 2 I
Ai=#I > 1g, OA

n =
S

1�i�nO
Ai.

C = (A; (IA; OA)) is a component where:

A = k1�i�N Ai

I
A = fI 2 IA

N
= 8I 0 2 IA

N : I 6 �I 0 ^ 8O0 2 OA

N : I \ O0 = ;g and,

O
A = fO 2 OA

N
= 8I 0 2 IA>1

N : I 0 \ O = ;g [ffog=o 2 O 2 OA

N
^ 9I 0 2

IA>1
N : I 0 \ O 6= ;g

Proof. By induction. Base case is solved by the last lemma. Case n+1. By

inductive hypothesis we know that

C
n = (An

; (In; On)) is a component where:

A
n =k1�i�n Ai

I
n = fI 2 IA

n
= 8I 0 2 IA

n : I 6� I
0 ^ 8O0 2 OA

n : I \O0 = ;g and,

O
n = fO 2 OA

n
= 8I 0 2 IA>1

n : I 0 \ O = ;g [ffog=o 2 O 2 OA

n
^ 9I 0 2

IA>1
n : I 0 \O 6= ;g

We know that Cn+1 = (An+1; (In+1; On+1)) is compatible with all Ci =

(Ai; (I
Ai; O

Ai)) for 1 � i � n. Let us show that is compatible with the

52

Braberman & Olivero

interface for the n components but �rstly let pinpoint some facts about the

interface (In; On) of Cn.

(i) An exported label of Ci (1 � i � n) is also exported by Cn. This comes

from the following facts: (a) Input labels remain as input labels in the

biggest input selection containing it except in the case that the input

selection matches with an output selection (in that case, I � O), and (b)

Output labels remain in the interface.

(ii) Input selections of In are input selections of some of its constituent com-

ponents (i.e., If I 2 I
n then there exists k 2 N : 1 � k � n such that

I 2 IAk)

(iii) IfO is an output selection ofOn, if there exist k 2 N : 1 � k � n such that

O 2 O
Ak and no Input selection of size greater than one intersects it or

there exists O0 2 OAk and O = fag � O
0, and there exists m : 1 � m � n

such that I 0 2 IAm and I 0 � O
0.

Therefore, suppose that An+1 has a common label with k1�i�n Ai then, for

instance, that label belongs to a kth automata and therefore belongs to the

interface of the components Ck and Cn+1. If that label is an output label of

the Cn+1 component, that label is exported by Cn due to the �rst observation.

The compatibility (item (ii) of Def. 3.3) I \ I 0 6= ; then either #I = 1 or

#I 0 = 1 is trivially true due to the observation that input selections of Cn

are input selections of the original components and the pairwise compatibility.

Similarly, if an output selection O ofOAn+1 intersects with some input selection

I of In then that input selection must be an input selection of some component

and therefore that input selection must be included in the output selection

(i.e., I � O). If an input selection I of IAn+1 intersects with some output

selection of On namely O, then either it is an input selection of size one and it

is trivially included in O, or, by the last observation, we know that there exists

k such that O 2 O
Ak and thus I � O (that is, due to pairwise compatibility,

I must be the only input selection of size greater than 1 intersecting with O

and then by the last observation O must belong to On).

Therefore, they are compatible components and by Lemma A.1:

such that (I 0n+1; O0n+1) is a compatible interface, where:

I
0n+1 = fI 2 I

n [IAn+1= 8I 0 2 I
n [IAn+1 : I 6� I

0 ^ 8O0 2 O
n [OAn+1 :

I \O0 = ;g and,

O
0n+1 = fO 2 On[OAn+1= 8I 0 2 In[IAn+1^#I > 1 : I 0\O = ;g[ffog=o 2

O 2 On [OAn+1 ^ 9I 0 2 In [IAn+1 ^#I > 1 : I 0 \O 6= ;g

It is not diÆcult to see that this interface is equivalent to: (In+1; On+1)

where

I
n+1 = fI 2 IA

n+1
= 8I 0 2 IA

n+1 : I 6� I
0 ^ 8O0 2 OA

n+1 : I \ O0 = ;g and,

O
n+1 = fO 2 OA

n+1
= 8I 0 2 IA>1

n+1 : I 0 \ O = ;g [ffog=o 2 O 2

OA

n+1
^ 9I 0 2 IA>1

n+1 : I 0 \O 6= ;g

In fact, if we write In+1 in terms of In we need to add the input selections

53

Braberman & Olivero

of IAn+1 which are not strictly included in an Input Selection of other IAk

and do not match with an output selection. On the other hand, we have to

eliminate from I
n the input selections strictly included in an input selection

of IAn+1 and the ones that match with an Output Selection of OAn+1. That is,

I
n+1 = (In�fI 2 IA

n
= 9I 0 2 IAn+1 : I � I

0_9O 2 OAn+1 : I \O 6= ;g[fI 0 2

I
An+1= 8I 2 IA

n : I 0 6� I ^ 8O 2 On

A
: I 0 \O = ;g

Let us show that the de�nition of I 0n+1 speci�es that manipulation: note

that, though I
n may contain less Input Selections than the union of them

(
S

1�i�n I
Ai), it is easy to see that (a) If an input selection of the union is

not present in In then, either it is included on another input selection of In,

or it intersects an output selection of On, and (b) 9O 2 O
n : I \ O 6= ; i�

9k � n;O 2 O
Ak : I \ O 6= ; (all output label remains). Therefore, the set

fI 0 2 I
An+1= 8I 2 IA

n : I 0 6� I ^ 8O 2 O
n

A
: I 0 \ O = ;g is equivalent to

fI 0 2 I
An+1= 8I 2 I

n : I 0 6� I ^ 8O 2 O
n : I 0 \ O = ;g. This proves that

in I 0n+1, the same input selections of IAn+1 �ltered by the In+1 are present.

Finally, In � fI 2 IA
n
= 9I 0 2 IAn+1 : I � I

0 _ 9O 2 OAn+1 : I \ O 6= ;g

is equivalent to fI 2 I
n
= 8I 0 2 I

An+1 : I 6� I
0 ^ 8O 2 O

An+1 : I \ O = ;g

and we can conclude that I 0n+1 = I
n+1.

On the other hand, to write On+1 in terms of On, the output selections

of OAn+1 that do not match with input selections of size greater than one

must be added as well as the singletons for the ones that match. Besides, the

output selections of On must be checked against the input selections of In+1
to eliminate and convert into singleton output selections the ones that match

with input selections of size greater than one. Again, this is speci�ed by the

de�nition of O0n+1. 2

A.1 Guaranteeing I/O Admissibility

For the sake of self containment we provide suÆcient syntactic constraints and

checking-algorithms to guarantee that (A; (IA; OA)) is indeed a component.

For example, to satisfy the property of input being non-blocking, we can

resort to the following syntactic property: 8I 0 2 IA : 8l 2 Locs(A) : Inv(l) =W
fe:Label(e)2I0^src(e)=lgGuard(e). That is, while the invariant is valid at least

one I'-labeled transition is enable.

To check that any output selection is simultaneously enabled one of the

possible syntactic property is the following: 8l 2 Locs(A); 8o; o0 2 O 2 OA :

_

fe2Edges(A):src(l)=e^Label(e)=og

Guard(e) =
_

fe02Edges(A):src(l)=e0^Label(e0)=o0g

Guard(e0)

To check non-zenoness we use an observer automaton with three locations:

location 1 is entered non-deterministically from initial location 0 and it is

left to go to a trap location 2 whenever input occurs. Then, we ask whether

A k Observer satis�es the following TCTL [14] formula : 82(@ = 1 !

54

Braberman & Olivero

NO INPUT

I1 . . . In

0 1

2

1I . . . In

Fig. A.1. Observer for Checking Non-Zeno Regardless Input

9 ��1 @ = 1), i.e., whether time can elapse without traversing an input edge

(See Fig. A.1).

For non-transientness of outputs, it suÆces to require that no pair of out-

puts or internal events can occur closer than one time unit. This can be done

by resorting to an observer TA or, alternatively, adding and checking some

syntactic constraints on output edges, for instance, having a minimum delay

guard on a clock reset in the potential previous events. Another alternative is

checking strong non-zenoness [20] for sequences containing an in�nite number

of output labels.

B Assume Guarantee

Lemma B.1 (Extending event sequences) Given a TA A with closed pred-

icates (item (i), Def. 5.2) and a set L of labels, if r 2 RA(q0) then there exists

r
0 2 RA(q0) such that,

(i) rL = r
0
L
,

(ii) �r � �r0, and

(iii) 9k : 0 � k < #rL : �r0 � time(r0
L
[k]) 2 N.

Proof. This can be done by following a procedure on r that, step by step,

shifts forward not visible transitions (i.e., not L-labeled transitions) to be at

integer distance of a visible transition. 2

Theorem 5.3

Given the I/O TCs A;B;A0
; B

0 satisfying the non-blocking extra conditions

such that A and B are I/O compatible, and A
0 and B

0 have the same I/O

interface that A and B resp. If (A k B0) �ExpA
A
0 and (A0 k B) �ExpB

B
0

imply that (A k B) �ExpA[ExpB (A0 k B0).

Proof. This is the sketch of the proof. Let L = ExpA [ExpB. Let r 2

RAkB(q0) be a �nite run such that there is no run in A0 k B0 of the same time

length exhibiting the sequence of timed events rL. First note there exists a

maximum k < #rL such that there exits r0 2 RA0kB0(q00) with rL[0:::k] = r
0
L
.

There are two cases:

55

Braberman & Olivero

(i) There exists r0 2 RA0kB0(q00) such that rL[0:::k] = r
0
L
, and time(r0

L
[k+1]) �

time(rL[k + 1]).

(ii) For all r0 2 RA0kB0(q00), �r0 � time(rL[k + 1]) and rL[0:::k] = r
0
L
implies

time(r0
L
[k+1]) < time(rL[k+1]) (something urgent must happen before).

Before treating the cases, let r be a run in A k B, and r0 a run in A0 k B0

such that rL[0:::k] = r
0
L
. It is easy to see that we can project the run r into

a run of A and a run of B. On the other hand, run r0 can be projected into

a run of A0 and a run of B0. Due to the hypothesis on exported labels and

labeling, we can safely recombine those runs to get a run rAB0 of A k B0 and a

run rA0B of A0 k B with the same time length of r0. Let qA be the last state of

rAB0 projected into A, qB the last state of rA0B projected into B, qA0 the last

state of rA0B projected into A0, and qB0 the last state of rAB0 projected into

B
0.

Case i:

Suppose that lab(rL[k+1]) = o 2 OA

m
(the other case is analogous). Then,

at the last state of rAB0 it is possible to execute some o0 2 O
A

m
(at qA A can

perform any output in OA

m
and B0 is receptive to at least one of them). From

the fact that (A k B0) �ExpA
A
0, we can show the existence of a run rA0 of

A
0 such that rA0

Exp
A
0
is equal to r0

L
[0:::k + 1] projected into ExpA0 (= ExpA).

Due to the fact that OA

m
= O

A
0

s
is simultaneously enabled, there is a run r0

A0

of A0 exhibiting rL[0:::k + 1] projected into ExpA0 . On the other hand, r

shows that o is enabled at qB. We can replace the original projection of rA0B

on A
0 by the run r

0
A0. Then, from the fact that (A0 k B) �ExpB

B
0 we can

conclude that there is a run rB0 in B0 exhibiting rL[0:::k + 1] projected into

ExpB0 . Combining the new runs r0
A0 and rB0 for A0 and B0 resp., we conclude

that there is a run r
� in RA0kB0(q00) such that its exhibited sequence over L

r
�
L
[0:::k + 1] is equal to rL[0:::k + 1], a contradiction.

Case ii:

Let r0 2 RA0kB0(q00) such that �r0 � time(rL[k+1]) and r0
L
[0:::k] = rL[0:::k],

let r00 be the pre�x run of r0 such that r00
L
= rL[0:::k]. By the previous lemma

and the assumptions of this case, there exists another run � in A0 k B0 such

that �L = r
00
L
= rL[0:::k], �r00 � �� < time(rL[k + 1]), and 9s : 0 � s �

k : �� � time(rL[s]) 2 N . This means that, when runs show that in A0 k B0

something urgent must happen before time time(rL[k + 1]), there must exist

a maximum value for its ocurrence. As shown, this follows from the fact

that, for any r
00 such that r00

L
= rL[0:::k] there exists a longer � such that

�L = r
00
L
= rL[0:::k] and there are a �nite number of those � (� ends at integer

time distance of some event and before time(rL[k + 1])). We will show that

any such � ends at a state where time can ellapse arriving to an absurd.

We know that NU(qA) and NU(qB). From the fact that q 7!i
p implies

NU(q)) NU(p) (item (ii), Def. 5.2), A can wait, and any �nite number

56

Braberman & Olivero

of inputs of A (outputs of B0) can not change this fact (an in�nite number

of outputs of B0 would also imply time-divergence). Then, there exists w 2

RAkB0((qA; qB0)) such that �w > 0 and Lab(w)\OutA = ;. Since �0 = rAB0 Æw

(rAB0 prolonged with w) is a run of A k B0 there exists a run rA0 of A0 such

that �r
A
0
= ��0 and rA0

Exp
A
0
= �

0
Exp

A
0

. Thus, rA0 can be split as r0
A0 Æ r

00
A0

such that �r00
A
0

= �w and r
00
A0
Exp

A
0

= wExp
A
0
. Then from the last state of r0

A0

(denoted q
0
A0) there exists a non-transient run (r00

A0) such that it exhibits no

Output label. Then, there exists a state s in the run r
00
A0 such that NU(s).

Using Def. 5.1 and item (ii) of Def. 5.2 (q 7!i
p implies NU(p)) NU(q)) we

can conclude NU(q0
A0). Analogously, NU(q0B0). Therefore, the combination of

those runs shows the possibility of A0 k B0 to exhibit �0 plus a positive time

increment (the minimum possible increment between A
0 and B

0). Thus, we

arrive to an absurd.

2

57

MTCS 2001 Preliminary Proceedings

Non-determinism in Probabilistic Timed
Systems with General Distributions

Mario Bravetti 1 and Alessandro Aldini 2

Dipartimento di Scienze dell'Informazione,

University of Bologna, Mura Anteo Zamboni 7, 40127 Bologna, Italy

Abstract

In this paper we address the problem of adequately handling non-deterministic

choices in Generalised Semi-Markov Processes (GSMPs), i.e. probabilistic timed

systems where durations of delays are expressed by means of random variables with

a general probability distribution. In particular we want the probabilistic duration

of a delay not to be decided all at once when the delay starts, but step by step

in each system state (in the theory of GSMPs this corresponds to recording spent

lifetimes instead of residual lifetimes of delays). In this way an adversary cannot take

decisions a priori, based on the knowledge he may get about the future behavior

of the system. In order to accomplish this, we consider Interactive Generalised

Semi-Markov Processes (IGSMPs). We start by formalizing the class of well-named

IGSMP models and the class of Interactive Stochastic Timed Transition Systems

(ISTTSs) which are both closed under CSP parallel composition and hiding. Then,

we introduce a semantics for IGSMPs which maps well-named IGSMP models onto

ISTTSs by recording spent lifetimes of delays. Finally, we show that two weakly

bisimilar IGSMPs give rise to two weakly bisimilar semantic models and that our

semantic mapping is compositional with respect to both CSP parallel composition

and hiding.

1 Introduction

The importance of modeling the behavior of concurrent systems with respect

to time has been widely recognized [18,17,3,10,5]. Moreover due to the fact

that either systems are frequently described at a high level of abstraction,

or the temporal behavior of some system component is inherently probabilis-

tic (e.g. transmission time of a message through a network), it is important

1 Email: bravetti@cs.unibo.it
2 Email: aldini@cs.unibo.it

This is a preliminary version. The �nal version is considered for publication in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Bravetti and Aldini

that the modeling paradigm employed allows for the speci�cation of prob-

abilistic time. To this aim several modeling techniques have been de�ned

to specify systems including activities with probabilistic exponentially dis-

tributed duration [18,17,3,10,5]. These approaches have the advantage to be

easily tractable from both the modeling and analysis viewpoint since the un-

derlying performance models are just simple Markov Chains. The price to

pay is a strong limitation in the expressiveness of these modeling paradigms,

since even �xed (non probabilistic) durations cannot be represented. Some

previous e�orts have been made in order to develop models for general dis-

tributions [16,2,9,24,6,14]. In particular in [8] we have recognized that a for-

malism expressing systems with generally distributed delays should originate

from probabilistic models which are well-founded from the viewpoint of prob-

ability theory. More precisely, we have considered Generalised Semi-Markov

Processes (GSMPs), i.e. probabilistic timed systems where durations of de-

lays are expressed by means of random variables with a general probability

distribution. A GSMP describes the temporal behavior of a system by using

elements, which act similarly as clocks of a Timed Automata (see e.g. [23]).

In particular the temporal delays in the evolution of a system are represented

by clocks (elements) whose duration is determined by an associated generally

distributed random variable. In this way the temporal behavior of the system

is \guided" by the events of start and termination of clocks (elements). Fol-

lowing the idea of [17], where the same problem is attacked for exponential

distributions, we have introduced in [6] the possibility of specifying systems

as the parallel composition of subsystems described by GSMPs, by developing

the calculus of Interactive Generalized Semi-Markov Processes (IGSMPs).

An IGSMP represents the behavior of a component by employing both

standard action transitions, representing the interactive behavior of the com-

ponent, and clock start transitions and clock termination transitions, repre-

senting the timed probabilistic behavior of the component. Action transitions

are just standard CCS/CSP transitions: when several action transitions are

enabled in an IGSMP state, the choice among them is just performed non-

deterministically and when IGSMPs are composed in parallel they synchronize

following the CSP [19] approach, where the actions belonging to a given set

S are required to synchronize. Clock start transitions are labeled with a

clock name and a weight and represent the event of start of a temporal delay

whose probabilistic duration is given by the distribution associated with the

clock. When several clock start transitions are enabled in an IGSMP state,

the choice among them is performed probabilistically according to the weights

of the transitions. Clock termination transitions are labeled with a clock name

and represent the event of termination of the corresponding temporal delay.

A system stays in a state enabling several termination transitions until one of

the temporal delays currently in execution terminates and the corresponding

transition is performed.

Introducing non-determinism in probabilistic systems with general distri-

59

Bravetti and Aldini

butions causes new problems to arise with respect to the classical theory

of GSMPs. Such problems arise when we consider the interplay of non-

deterministic choices and the probabilistic behavior of clocks when IGSMPs

are actually executed. Following the classical approach of discrete event sim-

ulation (see e.g. [12]), in the instant a clock starts, the clock is set to a tempo-

ral value sampled from its duration distribution. As time passes clock counts

down and it terminates when it reaches value zero. From a technical viewpoint

this means that, while the GSMP proceeds from state to state, we keep track

of the quantity of time that clocks must still spend in execution (the residual

lifetimes of the clocks). This approach to the execution of an IGSMP, which

has been previously applied in [14] to systems including non-determinism and

generally distributed time, has the drawback that an adversary can base its

decisions (concerning non-deterministic choices) on the knowledge obtained a

priori about the future behavior of the system, e.g. the information about the

quantity of time that a delay will spend in execution.

In this paper we consider a new alternative approach to the execution

of systems including non-determinism and generally distributed time which

adequately handles non-deterministic choices. The idea is that we want the

probabilistic duration of a generally distributed delay not to be decided all at

once when the delay starts, but step by step in each system state. More pre-

cisely, this is realized by keeping track of the quantity of time spent by clocks

in execution (spent lifetimes of clocks), and by evaluating, when a new IGSMP

state is entered, the distribution of the residual duration of the clock from (i)

the duration distribution associated with the clock, and (ii) the time it has

already spent in execution. Such an approach, which is based on recording

spent lifetimes instead of residual lifetimes, is adherent to the classical behav-

ior of Timed Automata [23] where clocks are increased (and not decreased)

while time passes. Besides it indeed solves the problem of executing a system

with non-deterministic choices because, since the residual duration of clocks is

sampled in every state traversed by the IGSMP, the adversary cannot gain a

priori knowledge on the system behavior. Finally, considering spent lifetimes

instead of residual lifetimes is correct also from a probabilistic viewpoint, be-

cause in probability theory the two approaches are both valid alternative ways

to interpret a GSMP [13]. It is worth noting that the choice of adopting this

alternative approach for representing the execution of an IGSMP is concep-

tual and not at all related with the technical di�erences between the formalism

considered in [14] and IGSMPs. We could apply the technique used in [14] to

IGSMPs as well.

Similarly as in [14], based on our approach to the execution of an IGSMP,

we produce a semantics for IGSMPs which maps an IGSMP onto a transition

system where: (i) the passage of time is explicitely represented by transitions

labeled with numeric time delays and (ii) duration probability distributions

are turned into in�nitely branching probabilistic choices which lead to states

performing numeric time delays with di�erent durations. Di�erently from [14]

60

Bravetti and Aldini

we express semantic models of IGSMPs by means of \interactive" probabilistic

timed transition systems which can be themselves composed and we develop a

semantic mapping which is compositional with respect to parallel composition

and hiding.

More precisely, we start (in Sect. 2) by formalising the model of IGSMPs

and the model of well-named IGSMPs (a canonical form for IGSMPs which

makes it simple to establish weak bisimulation over IGSMPs). With respect

to [6], where well-named IGSMPs are de�ned as the class of semantic models

obtained from the terms of a process algebra, in this paper we characterize

well-named IGSMPs directly as a class of transition systems. Moreover we

show that the class of well-named IGSMPs is closed with respect to CSP

parallel composition and hiding and we introduce a notion of weak bisimu-

lation over well-named IGSMPs. Then, (in Sect. 3) we introduce the model

of Interactive Stochastic Timed Transition Systems (ISTTSs) which include:

standard action transitions, representing the interactive behavior of a system

component, numeric time transitions representing a �xed temporal delay, and

probabilistic transitions (expressed by means of probability spaces) represent-

ing (in�nitely branching) probabilistic choices. Moreover we show that the

class of ISTTSs is closed with respect to CSP parallel composition and hid-

ing and we introduce a notion of weak bisimulation over ISTTSs. Moreover,

(in Sect. 4) we present the semantics for IGSMPs which maps IGSMPs onto

ISTTSs and we show that weakly bisimilar IGSMPs give rise to weakly bisim-

ilar semantic models and that the semantic mapping is compositional with

respect to both CSP parallel composition and hiding. Finally, (in Sect. 5) we

report some concluding remarks. The proofs of the results in this paper can

be found in [4].

2 Interactive Generalized Semi-Markov Process

In this section we will present the model of Interactive Generalized Semi-

Markov Processes (IGSMPs) and of well-named Interactive Generalized Semi-

Markov Processes: a canonical form for IGSMPs which introduces some con-

straints on clock names and makes it simple to establish equivalence over

IGSMPs. We �rst brie
y introduce some basic notions about GSMPs, and

then we discuss in depth the model of IGSMPs and well-named IGSMPs.

2.1 The GSMP Model

The class of generalized semi-Markov processes (GSMPs) has been introduced

by Matthes (1962) in [21] and represents the temporal behavior of a system

through elements (or clocks) each with an associated duration probability

distribution (element lifetime). What characterizes GSMPs (e.g. with respect

to Semi-Markov Processes) is the possibility of having multiple active elements

in a state, so that when an active element terminates (it dies) a state change

61

Bravetti and Aldini

occurs and the other elements continue their life in the following state, thus

carrying over their residual duration.

De�nition 2.1 A generalized semi-Markov process (GSMP) is a stochastic

process de�ned on a set of states fs j s 2 Sg as follows. In each state s there

is a set of active elements e taken from a set El. The set El is partitioned

into two sets El0 ed El� with El = El0 [El�. If e 2 El0 the element e has

an exponentially distributed lifetime, if instead e 2 El� it has an arbitrarily

distributed lifetime. Whenever in a state s an active element e dies, the process

moves to the state s0 2 S with a given probability P (s; e; s0).

In GSMPs the following restrictions are considered [21]:

� When the process moves from a state to another, no more than one element

of El� can be born or die contemporaneously.

� The active elements of El� that do not die in a state keep their residual

duration.

A GSMP can be analyzed through simulative techniques and/or mathe-

matical techniques (based on phase-type approximation or insensitivity [21])

in order to obtain performance measures of a system.

2.2 The IGSMP Model

The model of Interactive Generalized Semi-Markov Processes extends that

of Generalized Semi-Markov Processes by expressing in addition to GSMP

clocks (or elements) execution, also the execution of standard actions which

can synchronize and have a zero duration. Such an approach, which is in-

spired from [17], is also quite usual in real-time process algebras [23] where

transitions representing temporal delays are distinguished from standard ac-

tion transitions which are performed in zero time. As far as probabilistic delays

are concerned, they are modeled as in GSMPs by means of clocks C whose du-

ration is expressed through general probability distributions. In the following

we will distinguish di�erent clocks used in an IGSMP through \names", where

Cn denotes the clock with name n. In an IGSMP the execution of a clock Cn

is represented by means of two events: the event of clock start C+

n followed by

the relative event of clock termination C�
n . Therefore in an IGSMP we have

three types of transitions: standard action transitions representing action ex-

ecution, clock start transitions representing events C+

n and clock termination

transitions representing events C�
n . When a transition C+

n is performed by

the IGSMP the clock Cn starts and continues its execution in every state tra-

versed by the IGSMP. Whenever the clock Cn terminates, then the IGSMP

executes the corresponding termination transition C�
n . In particular, since, as

in GSMPs, each started clock Cn which has not terminated yet must continue

its execution in each state traversed by the IGSMP, all such states must have

an outgoing transition C�
n . Obviously clocks which can be simultaneously

under execution in an IGSMP state must have di�erent names (even if they

62

Bravetti and Aldini

have the same duration distribution), so that the event of termination of a

clock C�
n is always uniquely related to the corresponding event of start of the

same clock C+

n . Similarly as GSMPs, IGSMPs can also express probabilis-

tic choices. This is obtained by associating with each start transition C+

n a

weight w 2 RI +. In this way when a state of the IGSMP enables several clock

start transitions hC+

n ; wi, the choice of the clock to be started is performed

probabilistically according to the weights w of the transitions. For instance, a

state enabling two transitions labeled with hC+

n ; wi and hC
+

n0; w
0i respectively

starts clock Cn with probability w=(w + w0) and starts clock Cn0 with prob-

ability w0=(w + w0). On the other hand, similarly as in [17], IGSMPs also

have, in addition to GSMPs, the capability of expressing non-deterministic

choices. This because, as in standard labeled transition systems deriving from

CCS/CSP terms, in the states of an IGSMP action transitions are just non-

deterministically chosen. In particular alternative transitions labeled with

invisible � actions represent internal non-deterministic choices which are per-

formed in zero time and can never be \resolved" through synchronization with

other system components. On the contrary, visible actions a in an IGSMP are

seen as incomplete actions which wait for a synchronization with other sys-

tem components (they represent potential interaction with the environment).

Therefore the choice of such actions in any IGSMP state is governed by an

external form of non-determinism, as their execution completely depends on

the environment. Note that since we adopt a CSP synchronization policy for

IGSMPs which produces visible actions from the synchronization of visible

actions (thus allowing for multiway synchronization) the only way to turn an

incomplete action in a complete one is by means of a hiding operator, which

turns visible actions into � actions. Similarly as in [17] an IGSMP represents

a complete system only when it does not include any transition labeled by a

visible action. This approach di�ers from that of the stochastic automaton

model of [14], where two di�erent kinds of semantics have to be de�ned in or-

der to describe the actual behavior of closed systems and the potential behavior

of open systems. In our approach both the potential and the actual behavior

of the system are represented within the same model and complete systems

are obtained by hiding all the actions of the model. Note that IGSMPs repre-

senting complete systems may still include non-determinism due to multiple

internal � transitions enabled in the same state (internal non-determinism).

Therefore, adversaries (or schedulers) play an important role in the perfor-

mance analysis of IGSMPs in that they allow internal non-determinism to be

removed from an IGSMP thus turning it into a GSMP.

More precisely, in an IGSMP we have four di�erent kinds of state:

- silent states, enabling invisible action transitions � and (possibly) visible

action transitions a only. In such states the IGSMP just performs a non-

deterministic choice among the � transitions in zero time and may poten-

tially interact with the environment through one of the visible actions (see

e.g. Fig. 1.a).

63

Bravetti and Aldini

- probabilistic states, enabling hC+

n ; wi transitions and (possibly) visible action

transitions a only. In such states the IGSMP just performs a probabilistic

choice among the clock start transitions in zero time and may potentially

interact with the environment through one of the visible actions (see e.g.

Fig. 1.b).

- timed states, enabling C�
n transitions and (possibly) visible action transi-

tions a only. In such states the IGSMP executes all the clocks labeling the

outgoing termination transitions according to their residual duration dis-

tribution. The clock that terminates �rst determines the transition to be

performed. Note that since, as in GSMPs, we assume that clocks cannot

terminate at the same instant, we always have a unique clock terminating

before the other ones (see e.g. Fig. 1.c). While the IGSMP sojourns in

the state, it may (at any time) potentially interact with the environment

through one of the outgoing visible action transitions.

- waiting states, enabling standard visible actions only or no transition at

all. In such states the IGSMP sojourns inde�nitely. It may, at any time,

potentially interact with the environment through one of the outgoing visible

action transitions (see e.g. Fig. 1.d).

(d)(c)(b)(a)

<C , w>+ + C − C −ττ

aaaa

<C , w >’
n n’ n n’

Fig. 1. Some examples of possible states of an IGSMP

In the following we present the formal de�nition of Interactive General-

ized Semi-Markovian Transition System (IGSMTS), then we will de�ne In-

teractive Generalized Semi-Markov Process as IGSMTSs possessing an initial

state. Formally, we denote with PDF the set of probability distribution func-

tions over RI ranged over by f; g; : : : and with PDF+ the set of probability

distribution functions over RI + [f0g such that f(x) = 0 for x < 0 (repre-

senting duration distributions). Weights, belonging to RI +, are ranged over

by w;w0; : : :. Moreover, we denote the set of standard action types used in a

IGSMTS by Act , ranged over by �; �0; : : :. As usual Act includes the special

type � denoting internal actions. The set Act �f�g is ranged over by a; b; : : :.

The set of clocks of an IGSMTS is denoted by C = fCn j n 2 CNamesg,

where CNames is a set of clock names. Given a set C, we denote with

C+ = fhC+

n ; wi jCn 2 C; w 2 RI +g the set of events denoting the starting

of a clock and C� = fC�
n jCn 2 Cg the set of events denoting the termination

of a clock. Let C+ [C� be ranged over by �; �0; : : :. The set of states of an

IGSMTS is denoted by �, ranged over by s; s0; : : :. We assume the follow-

ing abbreviations that will make the de�nition of IGSMTSs easier. Let us

suppose that T � (� � Labels � �) is a transition relation, where Labels is

a set of transition labels, ranged over by l. We use s
l

���! s0 to stand for

64

Bravetti and Aldini

(s; l; s0) 2 T , s
l

���! to stand for 9s0 : s
l

���! s0, and s
l

���!= to stand for

6 9s0 : s
l

���! s0.

De�nition 2.2 An Interactive Generalized Semi-Markovian Transition Sys-

tem (IGSMTS) is a tuple G = (�; C; D;Act ; T+; T�; Ta) with

� � a set of states,

� C a set of clocks,

� D : C �! PDF+ a function that assigns a duration probability distribution

function to each clock,

� Act a set of standard actions,

� T+ � (��C+��), T� � (��C���), and Ta � (��Act ��) three tran-

sition relations representing clock start and termination events and action

execution, respectively, such that: 3

1 8s 2 �:

s
�

���! =) 6 9�: s
�

���!

2 8s 2 �:

9Cn; w: s
hC+

n ;wi

������! =) 6 9Cn0: s

C�

n0

���!

3 9S : � �! P(C) the active clock function, such that 8s 2 �:

a) - s
�

���! s0 =) S(s0) = S(s)

- s
hC+

n ;wi

������! s0 =) S(s0) = S(s) [fCng

- s
C�

n

���! s0 =) Cn 2 S(s) ^ S(s0) = S(s)� fCng

b) 9Cn; w: s
hC+

n ;wi

������! =) Cn 62 S(s)

c) Cn 2 S(s) ^ s
�

���!= ^ 6 9Cn0; w: s

hC+

n0
;wi

������! =) s
C�

n

���!

4 8s 2 �:

s
hC+

n ;wi

������! s0 =) act(s0) � act(s)

where the enabled action function act : � �! P(Act) is de�ned by act(s) =

f� j s
�

���!g.

De�nition 2.3 An Interactive Generalized Semi-Markov Process (IGSMP)

is a tuple G = (�; C; D;Act ; T+; T�; Ta; s0), where s0 2 � is the initial state of

the IGSMP and (�; C; D;Act ; T+; T�; Ta) is an IGSMTS such that function S

in item 3 of De�nition 2.2 also satis�es S(s0) = ;.

The constraints over transition relations T+, T� and Ta guarantee that

each state of the IGSMP belongs to one of the four kind of states above. In

particular, the �rst requirement says that if a state can perform internal � ac-

3 For the sake of readability here and in the rest of the paper we assume the following

operator precedence when writing constraints for transition relations: existential quanti�er

> \and" operator > implication.

65

Bravetti and Aldini

tions then it cannot perform events of clock starts or clock terminations. Such

a property derives from the assumption of maximal progress: the possibility

of performing internal actions prevents the execution of delays. The second

requirement says that if a state can perform clock start events then it cannot

perform clock termination events. Such a property derives from the assump-

tion of urgency of delays: clock start events cannot be delayed but must be

performed immediately, hence they prevent the execution of clock termination

transitions. The third requirement checks that clock starting and termination

transitions are consistent with the set of clocks that should be in execution in

each state of the IGSMP. This is done by de�ning a function S which maps

each state onto the expected set of clocks in execution, i.e. the set of clocks

which have started but not terminated yet. In particular, in the initial state

s0 such a set is empty. The constraint a) de�nes the construction rule of the

active clock set for each state reachable from s0. In the case of a transition

from a state s to a state s0 labeled with an standard action, the active clocks

of s0 stem from the active clocks of s, as no clock can be terminated given that

a standard action has been performed. If a transition from s to s0 is labeled

with a clock start event hC+

n ; wi, then s0 inherits the active clock set of s and

adds to this set the started clock Cn. Finally, in the case of a transition from

s to s0 labeled with a clock termination event C�
n , s

0 inherits the active clock

set of s without such a terminated clock Cn. Constraints b) and c) concern

the legality of the outgoing transitions of a state. In particular, the former

says that a the name of a clock labeling a starting transition must be fresh

(i.e. no clock with such a name must be currently in execution). The latter

says that each state without � and hC+

n ; wi outgoing transitions must have

a C
�
n0 outgoing transition for each active clock Cn0. This de�nition preserves

both the maximal progress and the urgency of delays assumptions and, in each

state where it is possible, guarantees the possibility of terminating each delay

that is still active. The fourth requirement of De�nition 2.2 implements the

following constraint over the structure of IGSMPs which makes their theory

simpler. The unique role of clock start transitions in an IGSMP must be to

lead to a timed state where the started clocks are actually executed, hence the

execution of such transitions cannot cause new behaviors to be performable

by the IGSMP. Such a constraint is satis�ed by the semantic models of terms

of the calculus of IGSMPs introduced in [6]. Formally, we require that the set

of action transitions enabled after a clock start transition is a subset of (or

equal to) the set of action transitions enabled before such a transition. This

guarantees that no new behaviors can be introduced by clock start transitions

because: (i) no new behavior beginning with a � transition can be executable

after a clock start transition (states enabling clock start transitions cannot

enable � transitions), and (ii) every potential behavior beginning with a tran-

sition a executable after a clock start transition can never be actually executed

by hiding a, because before the clock start transition there is a potential be-

havior beginning with the same action a, which, when hidden, preempts the

66

Bravetti and Aldini

clock start (see the following Sect. 2.5 about the hiding of IGSMPs).

2.3 The Well-Named IGSMP Model

The model of well-named IGSMPs represents a canonical form for IGSMPs

which introduces some constraints on clock names and makes it simple to

develop an equivalence notion over IGSMPs which matches clocks with the

same duration distribution. Well-named IGSMPs are exactly the class of

semantic models obtained from the terms of the process algebra introduced

in [6]. Here we will characterize well-named IGSMPs directly as a class of

transition systems.

The constraint on the use of clock names in an IGSMP that we consider

concerns the names k which are used for clocks when they start. As we already

explained the name used for a starting clock must be fresh, i.e. no clock with

such a name must be currently in execution. The requirement that we now

add is that the new clock name which is used must depend from the duration

distribution f associated with the starting clock and from the names of the

clocks (with the same distribution f) already in execution, according to a

�xed rule. In particular, we take the set of clock names to be de�ned by

CNames = (PDF+ � NI +), where \f; i" is a name for a clock with associated

distribution f . The name \f; i" which is used for a starting clock must be

such that i is the least i 2 NI + which is not used in the name of any clock

with the same distribution f already in execution. Note that, similarly as

for standard ST models [1,7,11,15], using just duration distributions as clock

names is not suÆcient because indexes i 2 NI + are needed in order to uniquely

relate the clock termination event to the corresponding clock start event, even

in the situation where several clocks with the same duration distribution are

simultaneously executed (this is also observed in [8]).

Since in a well-named IGSMP names for clocks cannot be chosen arbitrarily

and the clock names which are considered make it clear by themselves which

is the duration distribution associated with a clock, with respect to IGSMTSs

(De�nition 2.2), in the de�nition of well-named IGSMTSs we omit set C and

function D.

De�nition 2.4 A well-named Interactive Generalized Semi-Markovian Tran-

sition System is a tuple G = (�;Act ; T+; T�; Ta) where � and Act are de�ned

as in De�nition 2.2, while the de�nition of the transition relations T+, T� and

Ta is obtained from that given in De�nition 2.2 by substituting the constraint

b) of item 3 with:

b) 9Cf;i; w: s

hC+

f;i
;wi

������! =) i = minfj j j 2 NI +; Cf;j 62 S(s)g

Note that the new version of constraint b) guarantees that the name used

for a starting clock is always fresh as required by the old version of constraint

b) (see De�nition 2.2).

67

Bravetti and Aldini

De�nition 2.5 A well-named Interactive Generalized Semi-Markov Process

is a tuple G = (�;Act ; T+; T�; Ta; s0), where s0 2 � is the initial state of the

well-named IGSMP and (�;Act ; T+; T�; Ta) is a well-named IGSMTS such

that function S in item 3 of De�nition 2.2 also satis�es S(s0) = ;.

As an important remark, we would like to point out that, since the rule

expressed by constraint b) of De�nition 2.5 reuses the indexes i of terminated

clocks, each IGSMP with a �nite set of states can be transformed into a well-

named IGSMP with a �nite set of states, by renaming clocks.

2.4 Parallel of Well-Named IGSMPs

Now, we address the problem of de�ning parallel composition �a la CSP [19] of

well-named IGSMPs, where the standard actions of a given set S are required

to synchronize and the synchronization of two actions of type a is again an

action of type a.

Intuitively, it should be clear that when composing in parallel two IGSMPs,

a suitable renaming of the clocks is necessary in order to obtain a IGSMP, i.e.

preserve the requirements on transition relations of De�nition 2.3. Indeed

composing in parallel two IGSMPs could lead to some con
ict concerning

the identi�cation of the clocks of the composed model through names. More

precisely, we have to cope with a name con
ict whenever two clocks with

the same name \f; i" are simultaneously in execution in both IGSMPs. In

such a case the same name identi�es two di�erent clocks by compromising the

relationship between the start and termination events of the two clocks. When

considering well-named IGSMPs instead of just IGSMPs we have in addition

the problem of preserving the rule for the name of starting clocks expressed

by constraint b) of De�nition 2.5.

The solution that we adopt consists in using l and r (left and right) as

references to the two well-named IGSMPs G 0;G 00 which are composed in par-

allel with G 0 kS G
00 and relating each clock name locally used in G 0 (or G 00) to

the well-named IGSMP G 0 (or G 00) through the reference l (or r). In this way

Cf;li (Cf;ri) denotes the clock Cf;i executed by G 0 (G 00). In order to obtain

a well-named IGSMP, when building the composed model, such \extended"

names are renamed so that the rule for the name of starting clocks expressed

by constraint b) of De�nition 2.5 is satis�ed. For instance, let us suppose that

both G 0 and G 00 execute a clock with the same duration distribution f . For

both well-named IGSMPs in isolation we represent such an event by activating

the clock Cf;1. Somehow in the composed model we have to distinguish such

clocks through names because they can be simultaneously in execution. Let

us suppose that in G 0 kS G
00 the �rst delay with distribution f that starts is

the one executed by G 0. According to the well-naming rule in the composed

model such a clock must get name \f; 1". Hence we map Cf;1 to the \ex-

tended" name of the clock Cf;1 executed by G 0, thus creating the following

mapping:

68

Bravetti and Aldini

Cf;1 �! Cf;l1

denoting that the �rst clock with distribution f of the composed model Cf;1

corresponds to the �rst clock with distribution f of the lefthand well-named

IGSMP. Then, if the second clock to be executed is the clock Cf;1 belonging

to the righthand well-named IGSMP, in the composed model we create the

fresh name \f; 2" (according to the well-naming rule) and have in addition

the following mapping:

Cf;2 �! Cf;r1

In Table 1 we present an example of execution of a composed model G 0 kS G
00

by showing how the mapping function (between the clock names of the com-

posed model G 0 kS G
00 and the corresponding clock names locally used in G 0

and G 00) for clocks with distribution f evolves.

Well-named IGSMPs Composed Model Mapping Function

G 0 starts Cf;1 G 0 kS G
00 starts Cf;1 Cf;1 �! Cf;l1

G 00 starts Cf;1 G 0 kS G
00 starts Cf;2 Cf;1 �! Cf;l1

Cf;2 �! Cf;r1

G 00 starts Cf;2 G 0 kS G
00 starts Cf;3 Cf;1 �! Cf;l1

Cf;2 �! Cf;r1

Cf;3 �! Cf;r2

G 00 ends Cf;1 G 0 kS G
00 ends Cf;2 Cf;1 �! Cf;l1

Cf;3 �! Cf;r2

G 0 starts Cf;2 G 0 kS G
00 starts Cf;2 Cf;1 �! Cf;l1

Cf;2 �! Cf;l2

Cf;3 �! Cf;r2

Table 1

Renaming of the clocks in G0 kS G
00

By following such a procedure, we build the composed model by dynami-

cally storing all current mappings between the clock names of the composed

model and the local clock names of the two well-named IGSMPs by employing

a table (mapping function) for each distribution f . In general, when a clock

Cfi with distribution f is started by one of the two composed well-named

IGSMPs, we do the following: (i) we choose the �rst index j for the distribu-

tion f which is unused in the composed model (by checking the table related

to the duration probability distribution f), and we use the name \f; j" for the

69

Bravetti and Aldini

clock in the composed model; (ii) we add to the table related to distribution f

the mapping Cf;j �! Cf;li if the clock is executed by the lefthand well-named

IGSMP or Cf;j �! Cf;ri if the clock is executed by the righthand well-named

IGSMP. When a clock Cfi with distribution f is terminated by one of the

two composed well-named IGSMPs, we do the following: (i) we establish the

name \f; j" associated with the terminating clock in the composed model by

checking the table related to distribution f (it must include Cf;j �! Cf;li if

the clock is executed by the lefthand well-named IGSMP or Cf;j �! Cf;ri if

the clock is executed by the righthand well-named IGSMP); (ii) we remove

from the table related to the duration probability distribution f the mapping

for the name \f; j" of the composed model.

Now we formally de�ne the parallel composition G1 kS G2 of two well-named

IGSMPs G1 and G2, where the synchronization set S is a subset of Act �f�g.

We denote with Loc = fl; rg, ranged over by loc the set of locations,

where l stands for left and r for right. We denote a mapping function, whose

elements are pairs (j; loci), with mapf which ranges over the set MapF of

partial bijections from NI + to Loc � NI +. Moreover, a global mapping M is a

relation from PDF+ to NI +�(Loc�NI +) such that 8f 2 PDF+

:Mf 2 MapF 4 ,

i.e. M is a global mapping including a mapping function for each di�erent

duration distribution. We denote the set of global mappings M by M. In

the following we use the shorthand f : (j; loci) for (f; (j; loci)) 2 M . Finally

we make use of the auxiliary function n : MapF �! NI + that computes the

new index to be used for a clock name according to the well-naming rule,

by choosing the minimum index not used by the other clocks with the same

distribution already in execution, i.e. n(mapf) = minfk j k 62 dom(mapf)g.

De�nition 2.6 The parallel composition G1 kS G2 of two well-named IGSMPs

G1 = (�1;Act ; T+;1; T�;1; Ta;1; s0;1) and G2 = (�2;Act ; T+;2; T�;2; Ta;2; s0;2), with

S being the synchronization set, is the tuple (�;Act ; T+; T�; Ta; (s0;1; s0;2; ;))

with

� � = �1 � �2 �M the set of states,

� T+ � (� � C+ � �), T� � (� � C� � �), and Ta � (� � Act � �) are the

least transition relations, such that 8(s1; s2;M) 2 �:

1l s1
�

���! s0
1
; � 62 S =) (s1; s2;M)

�

���! (s0
1
; s2;M)

2 s1
a

���! s0
1
^ s2

a

���! s0
2
; a 2 S =)

(s1; s2;M)
a

���! (s0
1
; s0

2
;M)

3l s1

hC+

f;i
;wi

������! s0
1
^ s2

�

���!= =)

(s1; s2;M)

hC+

f;n(Mf)
;wi

���������! (s0
1
; s2;M [ff : (n(Mf); li)g)

4l s1

C�

f;i

���! s0
1
^ s2

�

���!= ^ 6 9Cg;h; w: s2

hC+

g;h
;wi

������! ^ f : (j; li) 2M =)

4 Given a relation M from A to B, we denote with Ma the set fb 2 B j (a; b) 2Mg.

70

Bravetti and Aldini

(s1; s2;M)
C�

f;j

���! (s0
1
; s2;M � ff : (j; li)g)

and also the symmetric rules 1r; 3r; 4r referring to the local transitions of

G2, which are obtained from the rules 1l; 3l; 4l by exchanging the roles of

states s1 (s
0
1
) and s2 (s

0
2
) and by replacing li with ri, hold true.

� (s0;1; s0;2; ;) 2 � the initial state

Each state s 2 � of the composed model is represented by a triple in-

cluding a pair of states (s1 2 �1 and s2 2 �2) and an auxiliary memory M

containing all the mappings currently active in such a state. Rules 1 (2) de-

scribe the behavior of the composed model in the case of a standard action �

performed by one (or both, via a synchronization) well-named IGSMPs, when

� 62 S (� 2 S). Rules 3 and 4 de�ne the behavior of the composed model

in the case of delays locally performed by components. When in G1 (G2) oc-

curs a transition labeled with hC+

f;i; wi, denoting the beginning of a delay with

duration distribution f , then the new index n(Mf) is determined for identi-

fying the action at the level of the composed model, and the new mapping

f : (n(Mf); li) (f : (n(Mf); ri)) is added to M . Conversely, when in G1 (G2)

occurs a transition labeled with C
�
f;i, denoting the termination of a clock with

duration distribution f , the particular clock with index j associated to li (ri)

inMf terminates at the level of the composed model, and the index j becomes

available. Note that the negative clauses in the premises enforce the maximal

progress and the urgency of delays assumptions.

Theorem 2.7 Let G1 and G2 be two well-named IGSMPs. Then for each

S � Act � f�g, G1 kS G2 is a well-named IGSMP.

2.5 Hiding of Well-Named IGSMPs

Now, we address the problem of de�ning hiding of well-named IGSMPs, where

the standard actions of a given set L are turned into invisible � actions.

As we already explained, the capability of hiding actions make it possible

to turn visible \incomplete" actions into invisible \complete" ones, thus giving

the possibility of building a complete system from several system components.

In particular while a visible action transition (as long as it is enabled) can

delay inde�nitely before being performed, when such an action is turned into

an invisible action it must be executed in zero time.

Now we formally de�ne the hiding G=L of a well-named IGSMP G, where

the set L of the visible actions to be hidden is a subset of Act � f�g.

De�nition 2.8 The hiding G=L of a well-named IGSMP

G = (�;Act ; T+;1; T�;1; Ta;1; s0) with L being the set of visible actions to be

hidden is the tuple (�;Act ; T+; T�; Ta; s0) where T+ � (� � C+ � �), T� �

(� � C� � �), and Ta � (� � Act � �) are the least set of transitions, such

that 8s 2 �: 5

5 In order to distinguish transition of T+;1, T�;1 and Ta;1 from transitions of T+, T� and

71

Bravetti and Aldini

1 s
�

���!1s
0; � 62 L =) s

�

���! s0

2 s
a

���!1s
0; a 2 L =) s

�

���! s0

3 s
�

���!1s
0 ^ 6 9a 2 L: s

a

���!1 =) s
�

���! s0

Rules 1 and 2 are standard. Rule 3 says that the e�ect of the hiding

operator over states of G which enable standard actions in L is to preempt all

clock related transitions according to the maximal progress assumption.

Theorem 2.9 Let G be a well-named IGSMP. Then for each L � Act �f�g,

G=L is a well-named IGSMP.

2.6 Equivalence of Well-Named IGSMPs

Now we will recall the notion of weak probabilistic bisimulation over IGSMPs

which has been introduced in [6]. In particular weak bisimulation matches

the execution of clocks with the same duration distribution similarly as in the

dynamic approach of [7], deals with probabilistic choices similarly as in [20],

and abstracts from standard � actions similarly as in [22]. Such an equivalence

is shown in [6] to be a congruence with respect to both parallel composition

and hiding.

In our context we express cumulative probabilities by aggregating weights.

De�nition 2.10 Let G = (�;Act ; T+; T�; Ta) be a well-named IGSMTS.The

function TW : �� PDF+ � P(�) �! RI + [f0g, which computes the aggre-

gated weight that a state s 2 � reaches a set of states I 2 P(�) by starting

a delay with duration distribution f 2 PDF+ is de�ned as: 6

TW (s; f; I) =
X

fjw j 9i 2 NI +
; s

0 2 I: s

hC+

f;i
;wi

���! s
0 jg

Let NPAct = Act [C�, the set of non-probabilistic actions, be ranged over

by �. Let
�

=) denote (
�

���!)�
�

���! (
�

���!)�, i.e. a sequence of transitions

including a single � transition and any number of � transitions. Moreover,

we de�ne
�̂

=) =
�

=) if � 6= � and
�̂

=) = (
�

���!)�, i.e. a possibly empty

sequence of � transitions.

De�nition 2.11 Let G = (�;Act ; T+; T�; Ta) be a well-named IGSMTS. An

equivalence relation � on � is a weak bisimulation i� s1 � s2 implies

� for every � 2 NPAct and s0
1
2 �,

s1
�

���! s0
1
implies s2

�̂
=) s0

2
for some s0

2
with s0

1
� s0

2
,

Ta we denote the former with \���!1" and the latter simply with \���! ".
6 We use fj and jg to denote multiset parentheses. The summation of an empty multiset is

assumed to yield 0. Since the method for computing the new index of a delay f that starts

in a state P is �xed, we have that several transitions f+ leaving P have all the same index

i.

72

Bravetti and Aldini

� s2
�̂

=) s0
2
for some s0

2
such that, for every f 2 PDF+ and equivalence class

I of �,

TW (s1; f; I) = TW (s0
2
; f; I)

Two states s1 and s2 are weakly bisimilar, denoted by s1 � s2, i� (s1; s2) is

included in some weak bisimulation. Two well-named IGSMPs (G1; s0;1) and

(G2; s0;2) are weakly bisimilar, if their initial states s0;1 and s0;2 are weakly

bisimilar in the well-named IGSMTS obtained with the disjoint union of G1
and G2.

3 Interactive Stochastic Timed Transition Systems

In this section we introduce Interactive Stochastic Timed Transition Sys-

tems (ISTTSs) that will be used in the next section to de�ne a semantics

for IGSMPs. We �rst brie
y introduce some basic notions about probability

spaces.

3.1 Probability Spaces

In this section we recall some basic notions related to measure theory and we

introduce some notation that will be used in the rest of the paper.

De�nition 3.1 A �-algebra on a set
, denoted by F , is a family of subsets of

 that contains
 and is closed under complementation and countable union.

The elements of a �-algebra F are called measurable sets. The pair (
;F) is

called a measurable space.

De�nition 3.2 The Borel �-algebra on a set
 with a topology, denoted

by B(
), is de�ned to be the �-algebra generated by the open subsets (or

equivalently, by the closed subsets) of
.

De�nition 3.3 A �nite measure � on a measurable space (
;F) is a function

that assigns a non-negative real value to each element of F , such that �(;) = 0

and, supposed fCigi2I , with I � NI , to be a family of disjoint elements of F ,

�([i2ICi) =
P

i2I �(Ci). The triple (
;F ; �) is called a measure space. If

we have in addition that �(
) = 1, then the triple (
;F ; �) is also called a

probability space.

We now de�ne some operations over measure spaces and probability spaces.

De�nition 3.4 Let (
;F ; �) be a measure space and let f be a function

de�ned on
, then f(
;F ; �) denotes the triple (f(
); fC � f(
) j f�1(C) 2

Fg; �0g), where 8C � f(
): �0(C) = �(f�1(C)).

It is easy to verify that, since (
;F ; �) is a measure space, f(
;F ; �) is

a measure space as well. Such a measure space is called the measure space

induced by f from (
;F ; �). Moreover if (
;F ; �) is a probability space, then

f(
;F ; �) is a probability space as well.

73

Bravetti and Aldini

De�nition 3.5 Let (
;F ; �) be a measure space and let p be a positive real

number, then p�(
;F ; �) denotes the triple (
;F ; �0), where 8C �
: �0(C) =

p � �(C).

It is easy to verify that, since (
;F ; �) is a measure space, p � (
;F ; �) is

a measure space as well.

De�nition 3.6 Let (
0;F 0; �0) and (
00;F 00; �00) be two measure spaces, then

(
0;F 0; �0) + (
00;F 00; �00) denotes the triple (
0 [
00; fC �
0 [
00 j C \
0 2

F 0 ^C \
00 2 F 00g; �), where 8C �
0 [
00: �(C) = �0(C \
0)+ �00(C \
00).

It is easy to verify that, since (
0;F 0; �0) and (
00;F 00; �00) are measure

spaces, (
0;F 0; �0) + (
00;F 00; �00) is a measure space as well. Moreover, con-

sidered a set of probability spaces f(
i;Fi; �i)gi2I , with I � NI �nite index

set, and a set fpigi2I of positive real numbers such that
P

i2I pi = 1, we have

that
P

i2I pi � (
i;Fi; �i) is a probability space.

De�nition 3.7 Let (
0;F 0; �0) and (
00;F 00; �00) be two measure spaces, then

(
0;F 0; �0) � (
00;F 00; �00) denotes the triple (
0�
00; fC 0�C 00 j C 0 2 F 0^C 00 2

F 00g; �0), where 8C 0 �
0; C 00 �
00: �0(C 0 � C 00) = �0(C 0) � �00(C 00).

It is easy to verify that, since (
0;F 0; �0) and (
00;F 00; �00) are measure

spaces, (
0;F 0; �0) � (
00;F 00; �00) is a measure space as well. Moreover, if

(
;F ; �) is a probability space, then (
0;F 0; �0) � (
00;F 00; �00) is a probability

space as well.

We now show that a probability distribution function on real numbers

de�nes a unique probability space over the Borel �-algebra of real numbers.

Theorem 3.8 Let F 2 PDF be a probability distribution function on RI .

There is a unique probability measure P on B(RI) such that 8a; b 2 RI ; a <

b: P ((a; b]) = F (b)� F (a).

Finally, we present a notion of equivalence over measure spaces which

relates measure spaces with di�erent domains by assuming that they assign

measure 0 to the every set of elements not included in their domain.

De�nition 3.9 Let (
0;F 0; �0) and (
00;F 00; �00) be measure spaces. We say

that (
0;F 0; �0) is equivalent to (
00;F 00; �00), written (
0;F 0; �0) � (
00;F 00; �00),

if 8C 0 2 F 0: C 0 \
00 2 F 00 ^ �00(C 0 \
00) = �0(C 0) and 8C 00 2 F 00: C 00 \
0 2

F 0 ^ �0(C 00 \
0) = �00(C 00).

Note that the de�nition above implies that if (
0;F 0; �0) � (
00;F 00; �00)

then both
0 �
00 2 F 0 with �0(
0 �
00) = 0 and
00 �
0 2 F 00 with

�00(
00 �
0) = 0.

3.2 The ISTTS Model

In this section we formally introduce Interactive Stochastic Timed Transi-

tion Systems (ISTTS) which include three type of transitions: standard ac-

74

Bravetti and Aldini

tion transitions, representing the interactive behavior of a system component,

probabilistic transitions (expressed by means of probability spaces) represent-

ing (in�nitely branching) probabilistic choices and numeric time transitions

representing a �xed temporal delay.

As far as standard actions are concerned they have exactly the same be-

havior as in IGSMPs. In ISTTS non-deterministic choices can arise not only

from transitions labeled with standard visible actions (like in IGSMPs), but

also from transitions representing the passage of time. As usual in the real

time literature (see e.g. [23]), several timed transition leaving a state o�er the

possibility to the observer to choose the amount of time after which he wants

to observe the status of the system.

In ISTTS we have two di�erent kinds of state:

� silent states which are exactly like in IGSMPs.

� probabilistic states enabling probabilistic transitions, expressed by a prob-

ability space PS , and (possibly) visible action transitions a only. In such

states the ISTTS just chooses a new state in zero time according to the prob-

ability space and may potentially interact with the environment through one

of its visible actions (see e.g. Fig. 2.a).

� timed states enabling numeric timed transitions t and (possibly) visible ac-

tion transitions a only. In such states the ISTTS just performs a non-

deterministic choice among the numeric timed transitions (which cause the

amount of time labeling the transition to pass) and may potentially interact

with the environment through one of its visible actions (see e.g. Fig. 2.b).

(a) (b)

a a t t
m1

. . .
PS

Fig. 2. Some examples of possible states of an ISTTS

In the following we present the formal de�nition of Interactive Stochastic

Timed Transition System (ISTTS), then we will de�ne Rooted Interactive

Stochastic Timed Transition Systems as ISTTSs possessing an initial state.

Formally, given a time domain TD � RI + [f0g, we use t; t0; : : :, representing

time values, to range over TD .

De�nition 3.10 An Interactive Stochastic Timed Transition System (ISTTS)

is a tuple D = (�;TD ;Act ; P; Tt; Ta) with

� � a set of possibly in�nite states,

� TD a time domain, i.e. the set of possible values over which the labels of

the numeric timed transitions range,

� Act a set of standard actions,

� P : �0 ! PS (� � �0), where �0 � � and PS (�00) denotes the family of

probability spaces (�000;F ; �) over sets of states �000 � �00, the probabilistic

75

Bravetti and Aldini

transition relation which associates a probability space with some of the

states of the ISTTS; and Tt � (� � TD � �) and Ta � (� � Act � �)

two transition relations representing time passage and action execution,

respectively. P , Tt and Ta must be such that 8s 2 �:

- s
�

���! =) s 62 dom(P) ^ 6 9t:s
t

���!

- s 2 dom(P) =) 6 9t:s
t

���!

- s
�

���! _ 9t:s
t

���! _ s 2 dom(P)

De�nition 3.11 A Rooted Interactive Stochastic Timed Transition System

(RISTTS) is a tuple D = (�;TD;Act ; P; Tt; Ta; s0), where s0 2 � is the initial

state and (�;TD ;Act ; P; Tt; Ta) is an ISTTS.

The meaning the constraints over transition relations is the following. The

�rst requirement says that (similarly as in IGSMPs) if a state that can perform

internal � actions then it cannot perform neither probabilistic transitions nor

timed transitions (maximal progress assumption). The second requirement

says that (similarly as in IGSMPs) if a state that can perform probabilis-

tic transitions then it cannot perform timed transitions (urgency of choices

assumption). The third requirement says that (similarly as in IGSMPs) we

cannot have states where time is not allowed to pass (time deadlocks).

3.3 Parallel of Rooted ISTTSs

Now we de�ne, similarly as for IGSMPs, the parallel composition �a la CSP of

RISTTSs.

In such a parallel composition the discrete timed transitions of the com-

posed RISTTSs are constrained to synchronize, so that the same amount of

time passes for both systems, i.e. when time advances for one RISTTS it must

also advance for the other RISTTS.

De�nition 3.12 The parallel composition D1 kS D2 of two RISTTSs D1 =

(�1;TD ;Act ; P1; Tt;1; Ta;1; s0;1) and D2 = (�2;TD;Act ; P2; Tt;2; Ta;2; s0;2), with

S � Act � f�g being the synchronization set, is the tuple

(�;TD;Act ; P; Tt; Ta; (s0;1; s0;2)) with:

� � = �1 � �2 the set of states

� P the partial function de�ned over �1 � �2 obtained from P1 and P2 as

follows: 8s1 2 �1; s2 2 �2:

P (s1; s2) = Id1s2(P1(s1)) if s1 2 dom(P1) ^ s2
t

���!

P (s1; s2) = Id2s1(P2(s2)) if s2 2 dom(P2) ^ s1
t

���!

P (s1; s2) = P (s1) � P (s2) if s1 2 dom(P1) ^ s2 2 dom(P2)

P (s1; s2) is not de�ned otherwise

with Id1s2 : �1 �! (�1 � fs2g) de�ned by 8s 2 �1: Ids2(s) = (s; s2) and

Id2s1 : �2 �! (fs1g � �2) de�ned by 8s 2 �2: Ids1(s) = (s1; s).

76

Bravetti and Aldini

� Tt � (� � TD � �) and Ta � (� � Act � �) the least transition relations,

such that

1l s1
�

���! s0
1
; � 62 S =) (s1; s2)

�

���! (s0
1
; s2)

1r s2
�

���! s0
2
; � 62 S =) (s1; s2)

�

���! (s1; s
0
2
)

2 s1
a

���! s0
1
^ s2

a

���! s0
2
; a 2 S =) (s1; s2)

a

���! (s0
1
; s0

2
)

3 s1
t

���! s0
1
^ s2

t

���! s0
2
=) (s1; s2)

t

���! (s0
1
; s0

2
)

� (s0;1; s0;2) 2 � the initial state.

When evaluating the probability spaces associated by function P to the

states of the composed model we make use of induced probability spaces (see

De�nition 3.4) and we enforce the maximal progress assumption. Moreover we

produce a single \global" probability space whenever both RISTTSs engage in

probabilistic choices (we assume that choices are performed independently).

When evaluating action transitions we just make use of standard rules. Finally

we require timed transitions to synchronize.

Theorem 3.13 Let D1 and D2 be two RISTTSs. Then for each S � Act �

f�g, D1 kS D2 is a RISTTS.

3.4 Hiding of Rooted ISTTSs

Now we de�ne, similarly as for IGSMPs, the hiding of RISTTSs.

De�nition 3.14 The hiding D=L of a RISTTS

D1 = (�;TD ;Act ; P1; Tt1; Ta1; s0), with L � Act �f�g being the set of visible

actions to be hidden, is the tuple (�;TD ;Act ; P; Tt; Ta; s0), with:

� P the partial function obtained from P1 by removing from its domain those

states (and the associated probability spaces) which enable at least one

transition labeled with an action in L

� Tt � (� � TD � �) and Ta � (� � Act � �) the least transition relations,

such that 8s 2 �: 7

1 s
�

���!1s
0; � 62 L =) s

�

���! s0

2 s
a

���!1s
0; a 2 L =) s

�

���! s0

3 s
t

���!1 ^ 6 9a 2 L: s
a

���!1 =) s
t

���!

Similarly as for IGSMPs, in the de�nition of the hiding operator in addition

to standard rules we make use of rules which enforce the maximal progress

assumption.

Theorem 3.15 Let D be a RISTTS. Then for each L � Act � f�g, D=L is

a RISTTS.

7 In order to distinguish transition of Tw;1, Tt;1 and Ta;1 from transitions of Tw, Tt and Ta
we denote the former with \���!1" and the latter simply with \���! ".

77

Bravetti and Aldini

3.5 Equivalence of Rooted ISTTSs

Now we introduce a notion of weak bisimulation for RISTTSs which consti-

tutes an extension of the approach of [20] to probability spaces and abstracts

from standard � actions similarly as in [22].

Given an equivalence relation � on a set � and a set I � �, we �rst

de�ne the function EC I;� : I ! �=� which maps each state s 2 I into the

corresponding equivalence class [s]� in �.

De�nition 3.16 Let D = (�;TD ;Act ; P; Tt; Ta) be an ISTTS. An equiva-

lence relation � on � is a weak bisimulation i� s1 � s2 implies

� for every � 2 Act ,

s1
�

���! s0
1
implies s2

�̂
=) s0

2
for some s0

2
with s0

1
� s0

2
,

� for every t 2 TD,

s1
t

���! s0
1
implies s2

t

���! s0
2
for some s0

2
with s0

1
� s0

2
,

� s2
�̂

=) s0
2
for some s0

2
such that, denoted P (s1) = (�1;F1; �1) and P (s0

2
) =

(�2;F2; �2), we have that EC�1;�(P (s1)) � EC�2;�(P (s
0
2
))

Two states s1 and s2 are weakly bisimilar, denoted by s1 � s2, i� (s1; s2) is

included in some weak bisimulation. Two RISTTSs (D1; s0;1) and (D2; s0;2)

are weakly bisimilar, if their initial states s0;1 and s0;2 are weakly bisimilar in

the ISTTS obtained with the disjoint union of D1 and D2.

In the last item we exploit induced probability spaces (see De�nition 3.4)

and equivalence between probability spaces (see De�nition 3.9) to check that

states s1 and s
0
2
have the same aggregated probability to reach the same equiv-

alence classes.

4 A Semantics for Interactive Generalized Semi-Markov

Processes

In this section we present a semantics for well-named Interactive Generalized

Semi-Markov Processes which maps them onto Interactive Stochastic Timed

Transition Systems. Such a semantics explicitely represents the passage of

time by means of transitions labeled with numeric time delays and turns

probability distributions of durations into in�nitely branching probabilistic

choices which lead to states performing numeric time delays with a di�er-

ent duration. In particular, di�erently from [14] where a technique based on

residual lifetimes of clocks is used, the states of the semantics of an Interactive

Generalized Semi-Markov Process encode the spent lifetimes of clocks. This

means that, in a timed state of the IGSMP where several clocks Cn1 : : : Cnk

are in execution, the time delay originated by a clock Cni is determined ac-

cording to its residual distribution of duration which is evaluated from (i)

its associated duration distribution and (ii) its spent lifetime. Once we have

78

Bravetti and Aldini

sampled a time value ti from the residual duration distribution of each clock

Cni, we just take the minimum tmin of the sampled values and we consider

the clock Cnmin
which sampled such a time value. Such a \winning clock" is

the clock that terminates in the timed state of the IGSMP. After this event

the other clocks (which are still in execution) carry over their spent lifetimes,

which now is given by t0i = ti + tmin. Since, according to this approach, the

residual duration of a clock is re-sampled in each IGSMP state until it termi-

nates, an adversary (or scheduler) which resolves non-deterministic choices in

an IGSMP cannot gain information about the future behavior of the system

on which to base its decisions.

Example 4.1 Let us consider the IGSMP depicted in Fig. 3, where three

temporal delays are started by activating three clocks Cn1 , Cn2 , and Cn3.

In particular, we concentrate on the case in which Cn2 is the �rst clock to

terminate.

In Fig. 4 we show the semantics of the IGSMP of Fig. 3 obtained by

following an approach similar to that of [14], which encodes in each state the

residual lifetimes of clocks. Each state is enriched with the set of active clocks

together with their residual lifetimes. In state hs0; ;i (where no clock is active)

three numeric time delays t1, t2, and t3 are sampled and associated with the

lifetime of the clocks Cn1, Cn2, and Cn3, respectively. Depending on which

is the clock Cnmin
sampling the minimum time value tmin in state hs0; ;i, we

move to one of three di�erent classes of states, one for each possible winning

clock. Afterwards, a temporal transition labeled with a numeric time value t

between 0 and tmin is taken, and each residual duration is accordingly modi�ed

by subtracting tmin from the residual lifetime of each clock. For the sake of

readability in Fig. 4 we just depict one trace leading from s0 to a state s1

which belongs to the class of states for which Cn2 is the winning clock (i.e. t2
is tmin), and then from s1 to the state s2 via the transition labeled with the

time value t2, so that in s2 the clock Cn2 is terminated. In state s2 the residual

lifetimes of the remaining active clocks Cn1 and Cn3 are t1� tmin and t3� tmin

respectively. By exploiting this information an adversary may already know

which clock between Cn1 and Cn3 will terminate �rst and consequently guide

the nondeterministic choice in state s2.

In Fig. 5 we show the semantics of the IGSMP of Fig. 3 obtained by

following the approach that we adopt in this paper, which is based on the

spent lifetimes of clocks. Each state is enriched with: (i) the set of active

clocks together with their spent lifetimes, and (ii) a pair Cn : t containing the

time value sampled by the winning clock in a timed state of the IGSMP and

the clock name. The latter �eld is set to \�" whenever the IGSMP is not in a

timed state. The sampling executed in state hs0; ;;�i leads to a state where

the three starting clocks are associated with the spent lifetime 0 (because the

corresponding transition does not represent a passage of time but simply the

result of the sampling), and the winning clock Cn and its sampled value are

reported too. As in the case of Fig. 4, in Fig. 5 we just report one trace leading

79

Bravetti and Aldini

s
1

C −n2

s
2

C −

C −

...

...
...

...

...

+ ++ τ

τ
s

0

<C , 1 > <C , 1 > <C , 1 >n1 n2 n3

n1

n3

Fig. 3. Example of an IGSMP

from s0 to a state s1 which belongs to the class of states for which Cn2 is the

winning clock (i.e. Cn2 is Cnmin and t2 is its sampled value), and then from s1

to the state s2 via the transition labeled with the value t2, so that in s2 the

clock Cn2 is terminated. In state s2 the spent lifetimes of the remaining active

clocks Cn1 and Cn3 are both equal to t2, and their residual durations depend

on both such a value and the duration distribution associated with the clocks.

Since, according to this approach, the time to termination of clocks Cn1 and

Cn3 is re-sampled, an adversary cannot gain in advance any information about

the future behavior of the system and he cannot exploit this information when

resolving the nondeterministic choice in state s2.

n1 n2 n3

n1
<s ,{(C ,t −t),(C ,t −t)}>

t

..
.

...

τ

τ

...

2
...

..
.

..
.

..
.

..
.

0<s , > <s ,{(C ,t),(C ,t),(C ,t)}> 21 3

t 2

1

1 2 23n3

Fig. 4. Example of semantics based on residual lifetimes

n1 n2 n3

n1 n2 n3

n3n1

n1 n2 n3 n1

...

.
.
.

.
.
.

.
.
.

t

.
.
.

...

τ

τ

...

2

.
.
.

0
<s , , >

1
<s ,{(C ,0),(C ,0),(C ,0)},C :t >3

1
<s ,{(C ,0),(C ,0),(C ,0)},C :t >2

n3

n2
<s ,{(C ,t),(C ,t)}, >

1
<s ,{(C ,0),(C ,0),(C ,0)},C :t >1

22
t2

Fig. 5. Example of semantics based on spent lifetimes

In the following we introduce some preliminary de�nitions which are needed

to de�ne the semantics of IGSMPs.

De�nition 4.2 Given a duration probability distribution f 2 PDF+ and a

time value t 2 RI + [f0g, we denote by [f j t] the residual duration distribu-

tion of a clock Cn with duration distribution f which, after t time units from

80

Bravetti and Aldini

when it started, has not terminated yet (t is its spent lifetime). More formally,

if T is a random variable with distribution f , i.e. 8t0 2 RI + [f0g: f(t0) =

P (T � t0), then [f j t] is the probability distribution de�ned as follows. For

all t0 2 RI + [f0g we have that:

[f j t](t0) = P (T � t
0 + t j T > t)

Theorem 4.3 Given f 2 PDF+ and t 2 RI + [f0g, we have that for all

t0 2 RI + [f0g:

[f j t](t0) =
f(t+ t0)� f(t)

1� f(t)

Consider a family of probability distribution functions f1; : : : ; fk 2 PDF .

We denote by R(f1; : : : ; fk) the probability space
Q

i=1:::k(RI ;B(RI); Pi), where

Pi is the unique probability measure on B(RI) obtained from fi (see Theo-

rem 3.8).

De�nition 4.4 Let the residual duration distribution of the set of clocks

Cn1; : : : ; Cnk in execution in an IGSMP state be f1; : : : ; fk, i.e. the probability

that a certain tuple of residual durations (t1; : : : ; tk) is sampled from the clocks

is described by the probability space R(f1; : : : ; fk). For each I � f1; : : : ; kg

such that jIj � 2, the event Term(I) of contemporaneous termination of the

clocks fCni j i 2 Ig in execution is the following measurable subset of the

sample space RI k:

Term(I) = f(t1; : : : ; tk) j 9t: (8i 2 I: ti = t) ^ (8i =2 I: ti > tg

Since in an IGSMP clocks in execution in a state cannot terminate at the

same time instant (see Sect. 2.1) we have that each event Term(I) of con-

temporaneous termination of a subset fCni j i 2 Ig of the clocks in execution

Cn1; : : : ; Cnk occurs with probability 0. More formally, we have that in each

state of an IGSMP, if (RI k;F ; P) is the probability space R(f1; : : : ; fk) ex-

pressing the residual duration of the clocks Cn1; : : : ; Cnk in execution in the

state, for each I � f1; : : : ; kg such that jIj � 2, we have P (Term(I)) = 0. We

exploit this fact in order to reduce the domain of the probability space for a set

of active clocks. In particular instead of considering the entire R(f1; : : : ; fk)

we can just restrict to consider �R(f1; : : : ; fk) de�ned as follows.

De�nition 4.5 �R(f1; : : : ; fk) is the triple (�RI
k
; �F ; �P) de�ned as follows. Let

(RI k;F ; P) be the probability space R(f1; : : : ; fk), then we have:

� �RI
k
= RI k �

S
I�f1;:::;kg;jIj�2

Term(I)

� �F = fE � F j E � �RI
k
g

� �P = f(E; p) j E 2 �F ^ (E; p) 2 Pg

81

Bravetti and Aldini

Theorem 4.6 Let (RI k;F ; P) be the probability space R(f1; : : : ; fk). If 8I �

f1; : : : ; kg: jIj � 2) P (Term(I)) = 0, then �R(f1; : : : ; fk) is a probability

space.

(P1)
(9Cn: s

C�

n

���!) ^ fCn1 ; : : : ; Cn
k
g = dom(v)

P (hs; v;�i) = Sample
fnig
s;v (�R([D(Cn1) j v(Cn1)]; : : : ; [D(Cn

k
) j v(Cn

k
)]))

(P2)
(9Cn; w: s

<C+
n
;w>

���!) ^ Pr = f (<Cn; s
0>; w=TW (s)) j s

<C+
n
;w>

���! s0 g

P (hs; v;�i) =
P
<Cn;s0>2dom(Pr) Pr(<Cn; s

0>) � P (hs0; v [f(Cn; 0)g;�i)

(T1) hs; v; Cn :ti
t0

���!hs; v + t0;�i 0 � t0 < t

(T2)
s

C�

n

���! s0

hs; v; Cn :ti
t

���!hs0; (v � Cn) + t;�i

(T3)
(69�: s

�
���!) ^ s

�
���!=

hs; v;�i
t

���!hs; v;�i
t � 0

(A1)
s

�
���! s0

hs; v;�i
�

���!hs0; v;�i
(A2)

s
a

���! s0

hs; v; Cn :ti
a

���!hs0; v;�i

TW (s) =
P
fjw j 9Cn: s

<C+
n
;w>

���! jg

Sample
fnig
s;v (t1; : : : ; tk) = hs; v; Cnmin :tmin i

where min is the only index i such that: ti = min
j2f1;:::;kg

tj

Table 2

Semantic rules for IGSMPs

We are now in a position to formally de�ne the semantics of an IGSMP.

De�nition 4.7 The semantics of an IGSMP G = (�; C; D;Act ; T+; T�; Ta; s0)

is the RISTTS [[G]] = (�0; RI + [f0g;Act ; P; Tt; Ta; s
0
0
) where:

� �0 = (� � Spent � Sample) is the set of states of the RISTTS, where

Spent , ranged over by v, is the set of partial functions from C to RI + [

f0g, expressing the time already spent in execution by the clocks currently

82

Bravetti and Aldini

in execution in the IGSMP (clocks in the domain of Spent), and Sample,

ranged over by sample, is the set (C � (RI + [f0g)) [f�g, where a pair

(Cn; t), also written Cn : t, denotes that the IGSMP is currently executing

a set of clocks and that clock Cn has sampled the minimum residual time

delay with t being the value of such a delay; while \�" denotes that started

clocks are not under execution (e.g. the IGSMP is in a choice state or in a

silent state).

� RI + [f0g is the time domain: we consider continuous time.

� Act is the set of standard actions considered in the IGSMP.

� P , which associates a probability space (expressing next state probability)

to some of the states in �0, is de�ned to be the least partial function on �0

satisfying the operational rules in the �rst part of Table 2.

� Tt is the set of timed transitions which are de�ned as the least relation over

�0 � (RI + [f0g)� �0 satisfying the operational rules in the second part of

Table 2.

� Ta is the set of action transitions which are de�ned as the least relation over

�0 � Act � �0 satisfying the operational rule in the third part of Table 2.

� s0
0
= hs0; ;;�i is the initial state of the RISTTS, where the IGSMP is in

the initial state and no clock is in execution.

In Table 2 we make use of the following notation. Given v 2 Spent , we

de�ne v�Cn to be the partial function obtained from v by removing Cn (and

the associated value) from its domain. We de�ne v + t, with t 2 RI + [0,

to be the partial function obtained from v by adding t to the time value

associated with each clock in the domain of v. We use the notation fnig to

stand for fnigi=1:::k, representing the sequence of names n1; : : : nk (in Table 2

the length k of the sequence is always clari�ed by the context in which fnig is

used). Finally in the forth part of Table 2 we de�ne two auxiliary functions.

The function TW : � �! RI + [f0g computes the overall weight of the

clock start transitions leaving a state of an IGSMP. Moreover, given a sate of

the IGSMP s 2 �, a partial function mapping active clock into their spent

lifetimes v 2 Spent , and a sequence fn1; : : : ; nkg of clock indexes, the function

Samplefnigs;v maps a tuple (t1; : : : ; tk) of time values sampled by clocks into the

corresponding state hs; v; Cnmin
: tmini reached in the RISTTS, where min is

the index of the clock which sampled the least time value. Note that function

Samplefnigs;v is used in Table 2 for deriving (via induction, see De�nition 3.4)

a probability space over the states of the RISTTS from the probability space
�R([D(Cn1) j v(Cn1)]; : : : ; [D(Cnk) j v(Cnk)]) over residual durations sampled

by active clocks in a state of the IGSMP.

Theorem 4.8 Let G 0, G 00 be two well-named IGSMPs. If G 0 � G 00 then [[G 0]] �

[[G 00]].

The following theorems show that the semantics of well-named IGSMPs is

83

Bravetti and Aldini

indeed compositional.

Theorem 4.9 Let G 0, G 00 be two well-named IGSMPs. For each S � Act�f�g

we have [[G 0]] kS[[G
00]] � [[G 0 kS G

00]].

Theorem 4.10 Let G be a well-named IGSMP. For each L � Act � f�g we

have [[G]]=L � [[G=L]].

5 Conclusion

Dealing with non-determinism in probabilistic systems with general distribu-

tions raises a series of problems, including the correct management of the

residual durations of generally distributed delays in system states and the in-

terplay of non-deterministic choices and probabilistic behaviors of temporal

delays. The former problem can be solved by representing the temporal be-

havior of a system by using clocks (as in Timed Automata [23]) or elements

(as in GSMPs [21]) whose durations are associated with generally distributed

random variables. In particular we can correctly manage the residual dura-

tions of active clocks (elements) in system states with two di�erent approaches

which are borrowed from the theory of GSMPs: one based on spent clock life-

times and one based on residual clock lifetimes. In this paper we have shown

how to apply the former approach to the speci�cation and analysis of concur-

rent systems including generally distributed delays, instead of using the latter

approach as previously done in the literature [14]. In the former approach

(similarly as in Timed Automata [23]) states are enriched with spent lifetimes

of clocks and for each timed state where a clock Cn is active, the residual

duration of Cn is sampled depending on both its spent lifetime and its asso-

ciated duration distribution. In the latter approach (similarly as in classical

Discrete Event Simulation [12]), the lifetime of each clock is sampled all at

once at the clock start event, and states are enriched with residual lifetimes

of clocks directly determining their residual duration. As we have shown, the

drawback of the approach based on residual lifetimes, with respect to the one

we propose, is that an adversary which is in charge of solving non-determinism

may get information about the future system behavior since the duration of

delays is decided a priori.

Our approach has been formalized by starting from the theory of Interac-

tive GSMPs [6]. We �rst have characterized IGSMPs as a class of transition

systems and then we have introduced the class of the Interactive Stochastic

Timed Transition Systems (ISTTSs), which are both closed with respect to

CSP parallel and hiding operators. Then we have used ISTTSs to de�ne a

compositional semantics for IGSMPs which realizes the approach based on

spent lifetimes mentioned above.

84

Bravetti and Aldini

References

[1] L. Aceto, M. Hennessy, \Adding Action Re�nement to a Finite Process

Algebra", in Information and Computation 115:179-247, 1994

[2] M. Ajmone Marsan, A. Bianco, L. Ciminiera, R. Sisto, A. Valenzano, \A

LOTOS Extension for the Performance Analysis of Distributed Systems", in

IEEE/ACM Trans. on Networking 2:151-164, 1994

[3] M. Bernardo, \Theory and Application of Extended Markovian Process

Algebra", Ph.D. Thesis, University of Bologna (Italy), 1999

[4] M. Bravetti, A. Aldini, \Non-determinism in Probabilistic Timed Systems

with General Distributions", Technical Report UBLCS-2001-08, University of

Bologna (Italy), July 2001

[5] M. Bravetti, M. Bernardo, \Compositional Asymmetric Cooperations for

Process Algebras with Probabilities, Priorities, and Time", in Proc. of the 1st

Int. Workshop on Models for Time-Critical Systems (MTCS 2000), ENTCS

39(3), State College (PA), 2000

[6] M. Bravetti, R. Gorrieri, \The Theory of Interactive Generalized Semi-Markov

Processes", to appear in Theoretical Computer Science

[7] M. Bravetti, R. Gorrieri, \Deciding and Axiomatizing Weak ST Bisimulation

for a Process Algebra with Recursion and Action Re�nement", to appear in

ACM Transactions on Computational Logic

[8] M. Bravetti, M. Bernardo, R. Gorrieri, \Towards Performance Evaluation

with General Distributions in Process Algebras", in Proc. of the 9th Int. Conf.

on Concurrency Theory (CONCUR '98), LNCS 1466:405-422, 1998

[9] E. Brinksma, J.P. Katoen, R. Langerak, D. Latella, \A Stochastic Causality-

Based Process Algebra", in Computer Journal 38:553-565, 1995

[10] P. Buchholz, \Markovian Process Algebra: Composition and Equivalence",

in Proc. of the 2nd Int. Workshop on Process Algebra and Performance

Modelling (PAPM '94), pp. 11-30, Erlangen (Germany), 1994

[11] N. Busi, R.J. van Glabbeek, R. Gorrieri, \Axiomatizing ST Bisimulation

Equivalence", in Proc. of the IFIP Working Conf. on Programming Concepts,

Methods and Calculi (PROCOMET '94), pp. 169-188, 1994

[12] C.G. Cassandras, \Discrete Event Systems. Modeling and Performance

Analysis", Aksen Associates, Irwin, 1993

[13] D.R. Cox, \The Analysis of non-Markovian Stochastic Processes by

the Inclusion of Supplementary Variables", in Proc. of the Cambridge

Philosophical Society 51:433-440, 1955

[14] P.R. D'Argenio, \Algebras and Automata for Timed and Stochastic Systems",

Ph.D. Thesis, Univ. Twente, 1997

85

Bravetti and Aldini

[15] R.J. van Glabbeek, F.W. Vaandrager, \Petri Net Models for Algebraic

Theories of Concurrency", in Proc. of the Conf. on Parallel Architectures

and Languages Europe (PARLE '87), LNCS 259:224-242, 1987

[16] N. G�otz, U. Herzog, M. Rettelbach, \TIPP - A Stochastic Process Algebra",

in Proc. of the 1st Workshop on Process Algebras and Performance Modelling

(PAPM '93), pp. 31-36, Edinburgh (UK), 1993

[17] H. Hermanns, \Interactive Markov Chains", Ph.D. Thesis, Univ. Erlangen-

N�urnberg, 1998

[18] J. Hillston, \A Compositional Approach to Performance Modelling",

Cambridge University Press, 1996

[19] C.A.R. Hoare, \Communicating Sequential Processes", Prentice Hall, 1985

[20] K.G. Larsen, A. Skou, \Bisimulation through Probabilistic Testing", in

Information and Computation 94:1-28, 1991

[21] K. Matthes, \Zur Theorie der Bedienungsprozesse", in Trans. of the 3rd

Prague Conf. on Information Theory, Stat. Dec. Fns. and Random Processes,

pp. 513-528, 1962

[22] R. Milner, \Communication and Concurrency", Prentice Hall, 1989

[23] X. Nicollin, J. Sifakis, S. Yovine, \Compiling Real-Time Speci�cations into

Extended Automata", in IEEE Trans. on Software Engineering, 18(9):794-804,

1992

[24] C. Priami, \Stochastic �-Calculus with General Distributions", in Proc. of the

4th Workshop on Process Algebras and Performance Modelling (PAPM '96),

CLUT, pp. 41-57, Torino (Italy), 1996

86

MTCS 2001 Preliminary Proceedings

Towards a Process Algebra for
Shared Processors

Mikael Buchholtz, Jacob Andersen, and Hans Henrik L�vengreen

Informatics and Mathematical Modelling

Technical University of Denmark

DK{2800 Lyngby, Denmark

Abstract

We present work-in-progress on a timed process algebra that models sharing of

processor resources allowing preemption at arbitrary points of time. This enables

us to model both the functional and the timely behaviour of concurrent processes

executed on a single processor. Applications of the model for program semantics

and kernel development are outlined.

1 Introduction

To argue about correctness of a real-time system both the functional and

timely behaviour of the system have to be taken into account. One abstraction

of a system is to view it as a number of concurrent processes. In many real

systems this abstraction will be realised by executing the processes on a shared

processor where execution is switched among the processes. For such a system,

the fact that processes have to share the processor cannot be ignored, since it

may in
uence both the timely and the functional behaviour of the system.

Systems of processes sharing a common processor is well described in the

theory of scheduling, see e.g. [7]. However, scheduling theory ignores what the

processes actually do, so it is not suÆcient to describe the functional behaviour

of a system.

As an alternative approach, many process algebras have been developed

that provide an elegant way to describe both the functional and timely be-

haviour of a system. However, these process algebras typically assume max-

imal parallelism, which may be interpreted as if each process had its own

dedicated processor. Therefore, they cannot adequately model real-time sys-

tems where processes share a processor.

Under the assumption of maximal parallelism, you may say that the pro-

cessor will always be available to a process. This means that the passing of

This is a preliminary version. The �nal version is considered for publication in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Buchholtz, Andersen, and L�vengreen

time may be described without considering whether the processor is available

or not. In many process algebras this leads to modelling time as transitions

like P
t
! P 0, stating that the process P changes into P 0 while t units of time

pass.

To remedy the problem that this model of time cannot be used as a model

of systems with a shared processor, we propose a new model. Our simple idea

is to say a process may let time pass in two di�erent ways, which gives rise to

transitions of the following two types

� P
Æ(t)
�! P 0 stating that t units of time pass, without the process using the

processor.

� P
�(t)
�! P 0 stating that t units of time pass, while the process does use the

processor.

In this model we are able to express that one process preempts another process

currently using the processor. Thus, we are able to describe scheduling of

processes in accordance with standard scheduling theory.

In this paper we present work-in-progress on a process algebra, which uses

the above model as the underlying model of time. To keep the process algebra

simple, we have restricted ourselves to focusing on a simple, but typical case

where a number of sequential processes composed in parallel share a single

processor. Extending this setup to a more general setting is left for future

work.

This paper is organised as follows: First, we present the process algebra,

giving its syntax and semantics. Second, we give some examples of applications

in which the process algebra has been used. Afterwards, we brie
y comment

on related works. As this paper presents work-in-progress, we conclude by

outlining future work.

2 Syntax and Semantics

In this section we present the process algebra. First, we give the syntax and

a short informal semantics. Second, we give a formal operational semantics of

the algebra.

The process algebra de�nes three syntactic categories

Prog of programs executed on a mono processor with T ranging over it.

Par of parallel compositions with A ranging over it.

Proc of process expressions with P ranging over it.

In general, when we de�ne a variable to range over some set we also let any

primed or indexed versions of the variables range over the same set. The

88

Buchholtz, Andersen, and L�vengreen

syntax of the process algebra is given by the grammar

T ::= hhAii

A ::= A1 k A2 j P

P ::= e:P j P1 [] P2 j rec X : P j X j STOP

An entire program is placed in a separate syntactic category and is also char-

acterised syntactically by double angled brackets. This allows us to argue

about an entire program separately. A1 k A2 is parallel composition of the

two constituents which will share a common processor.

e:P is pre�x of an event e to the process P . Events belong to the set

E = AE [TE [CE { a set of actions, a set of timed events, and a set of

communication events. Actions are events that take no time and which a

process may engage in without interaction from other processes. We let �

range over AE . In this paper, the semantics of actions is not further de�ned.

We use the positive real numbers, R + , to model time and let t range

over this set. The timed events belong to the set TE = fÆ(t); �(t) j t 2 R +g.

The timed event Æ(t) means that the process delays for t time units, without

requesting processor time. �(t) means that the process requests t units of

processor time in order to continue.

Intuitively, communication between processes takes place on channels from

the set Chan with c ranging over it. The set of communication events is

CE = fc!; c? j c 2 Chang. Two processes may synchronise by performing the

events c! and c?, respectively, on the same channel c.

P1 [] P2 is non-deterministic choice between P1 and P2. Standard recursion

is written rec X : P where X is a process variable from some set PVar . We

require that a process variable may only appear inside a recursive process,

where it has been de�ned. STOP means that the process has terminated.

We give the process algebra an operational semantics that de�nes a labelled

transition system hS; L;�!i. A labelled transition system is a three-tuple

consisting of a set of states S, a set of labels L with l ranging over it, and

a transition relation �!� S � L � S, which describes possible transitions

between states.

We give the semantics for all three syntactic categories of the process

algebra by one common labelled transition system. Hence, the states of this

labelled transition system will be a subset of Prog [Par [Proc.

The labels are given as L = f�g [TL [CL. All transitions describing

actions will be labelled with the label � . The set TL contains the timed labels,

which reuse the names of the timed events, i.e. TL = fÆ(t); �(t) j t 2 R +g.

Transitions labelled Æ(t) means that t time units passes without using the

processor while a label �(t) means that the processor is in use. Communication

labels are taken from the set CL = fc!; c?; c j c 2 Chang with cl ranging over

it. The labels c! and c? are used for requests for communication while the

label c is used when the communication is performed.

89

Buchholtz, Andersen, and L�vengreen

The transition relation is de�ned by the smallest relation satisfying the

inference rules given in the following.

Pre�x:

�:P
�
! P

Æ(t):P
Æ(t)
�! P Æ(t):P

Æ(t0)
��! Æ(t� t0):P if 0 < t0 < t

�(t):P
�(t)
�! P �(t):P

�(t0)
��! �(t� t0):P if 0 < t0 < t

�(t):P
Æ(t0)
��! �(t):P

c!:P
c!
! P c!:P

Æ(t)
�! c!:P

c?:P
c?
! P c?:P

Æ(t)
�! c?:P

Actions � take no time. They are internal to the process and may be seen

as abstractions of what the process actually does. A delay event Æ(t) may

be performed in one step, where all the time passes at once, or it may be

divided into several transitions. The request for processor time has the same

properties. Furthermore, an extra inference rule is added to describe what

happens if the process is preempted. In this case the process will let time

pass, but its request for processor time is unchanged. Note that there is a

di�erence between the intuitive understanding of the event �(t) and the label

�(t). The event means that the process requests t units of processor time,

while a transition labelled �(t) means that the process actually gets t units of

processor time.

Communication can either be performed instantaneously or postponed

without using the processor. When processes are joined in a program, as

we will see shortly, communication is made urgent.

Choice:

P1
�
! P 0

1

P1 [] P2
�
! P 0

1

P2
�
! P 0

2

P1 [] P2
�
! P 0

2

P1
Æ(t)
�! P 0

1 P2
Æ(t)
�! P 0

2

P1 [] P2
Æ(t)
�! P 0

1 [] P
0

2

In the rules for choice we use a set of initial labels f�g[CL[f�(t) j t 2 R+g,

ranged over by �. If either of the processes in the choice can perform an initial

event, the whole construct proceeds as that process. Otherwise both processes

must be able to delay and the choice will be postponed.

Recursion:

P [rec X : P=X]
l
! P 0

rec X : P
l
! P 0

Recursion is done in the standard way, where P [P1=X] is the process P with

90

Buchholtz, Andersen, and L�vengreen

any free occurrences of the process variable X substituted with the process

P1.

Stop:

STOP
Æ(t)
�! STOP

Even a terminated process cannot prevent time from passing.

Parallel composition:

A1
�
! A0

1

A1 k A2
�
! A0

1 k A2

A2
�
! A0

2

A1 k A2
�
! A1 k A

0

2

A1
�(t)
�! A0

1 A2
Æ(t)
�! A0

2

A1 k A2
�(t)
�! A0

1 k A
0

2

A1
Æ(t)
�! A0

1 A2
�(t)
�! A0

2

A1 k A2
�(t)
�! A0

1 k A
0

2

A1
Æ(t)
�! A0

1 A2
Æ(t)
�! A0

2

A1 k A2
Æ(t)
�! A0

1 k A
0

2

A1
c!
! A0

1 A2
c?
! A0

2

A1 k A2
c
! A0

1 k A
0

2

A1
c?
! A0

1 A2
c!
! A0

2

A1 k A2
c
! A0

1 k A
0

2

A1
cl
! A0

1

A1 k A2
cl
! A0

1 k A2

A2
cl
! A0

2

A1 k A2
cl
! A1 k A

0

2

For time to pass in the parallel composition it is required that both of its

constituents are able to let it do so. Furthermore, the rules for parallel com-

position ensure that at most one process is allowed to use the processor.

Program:

A
�
! A0

hhAii
�
! hhA0ii

A
c
! A0

hhAii
c
! hhA0ii

A
�(t)
�! A0 8c � A

c

=!

hhAii
�(t)
�! hhA0ii

A
Æ(t)
�! A0 8c � A

c

=! 8t0 � A
�(t0)

=��!

hhAii
Æ(t)
�! hhA0ii

At the program level urgency of communication is ensured. That is, if a com-

munication is possible, it will be performed before time can pass. Furthermore,

the construct enforces the scheduling decision that the processor may not be

idle if any process is able to run.

91

Buchholtz, Andersen, and L�vengreen

3 Applications

The process algebra has been developed while working on formal development

of a real-time kernel for a shared processor [1]. In this section we give examples

of a number of applications for which our time model and the process algebra

have been used during this work.

3.1 Scheduling

The process algebra, as presented in section 2, allows any process to preempt

another process. The process algebra speci�es that preemption is possible at

any given time i.e. may happen with an arbitrary �ne granularity. However,

such a behaviour will not occur in a real system. Instead, processes will be

scheduled according to some scheduling strategy. In the process algebra, we

will enforce scheduling strategies by giving restrictions on how a process is

allowed to preempt another process.

We aim for the scheduling decisions to be made only at one speci�c place,

thus making it easier to implement di�erent strategies. This will be done at

the outermost level, i.e. in the semantics of the program construct hhAii. In

order to make scheduling decisions in this construct it will be necessary to

know, which processes that are currently requesting the processor. We add

this information in the timed labels �(t), by including an identi�cation of the

process, which uses the processor. Each sequential process will be given a name

from a set of process names, PName, with p ranging over it. Accordingly, we

change the labels for use of processor time to �p(t), stating that the process

named p gets t units of processor time. Consequently, we must change the

inference rules of the semantics, which involve transitions with the label �(t).

If a process named p includes a pre�x of the timed event �(t) we now use

the rules

�(t):P
�p(t)
��! P �(t):P

�p(t0)
��! �(t� t0):P if 0 < t0 < t

�(t):P
Æ(t0)
��! �(t):P

To include process names in the labels in parallel composition, we only need

to change two rules

A1
�p(t)
��! A0

1 A2
Æ(t)
�! A0

2

A1 k A2
�p(t)
��! A0

1 k A
0

2

A1
Æ(t)
�! A0

1 A2
�p(t)
��! A0

2

A1 k A2
�p(t)
��! A0

1 k A
0

2

As a �rst example of how to enforce scheduling in the semantics of the

program construct, we regard strict priority based scheduling { meaning that

a process may only run if no process with a higher priority wants to run.

Each process is assigned a static priority (a natural number) by the function

prio : PName ! N . The rules for a program, which is executed using priority

92

Buchholtz, Andersen, and L�vengreen

based scheduling may then be given as

A
�
! A0

hhAii
�
! hhA0ii

A
c
! A0

hhAii
c
! hhA0ii

A
Æ(t)
�! A0 8c � A

c

=! 8p0; t0 � A
�
p0 (t0)

=���!

hhAii
Æ(t)
�! hhA0ii

A
�p(t)
��! A0 8c � A

c

=! 8p0; t0 � prio(p0) > prio(p)) A
�
p0(t0)

=���!

hhAii
�p(t)
��! hhA0ii

We only pose restriction on which processes are allowed to use the processor,

letting action and communication be performed by any process at any time.

In the same way as the rules for priority based scheduling we may give dif-

ferent sets of rules to enforce other scheduling strategies. In many scheduling

strategies, however, it is necessary to add a scheduler state. We may incorpo-

rate such a state by adding it to the transition system at the program level.

That is, if Sch is the type of scheduler state, then the type of states in the

transition system will become (Prog � Sch) [Par [Proc.

As an example we look at round robin scheduling where processes are

scheduled in some �xed order. Each process will get at most a �xed quantum

Q of processor time before it is preempted by the process next in line.

In the speci�cation of round robin scheduling the scheduler state contains

information on which process is the current process and on the time left of

the current quantum i.e. we set Sch = PName � R .

A
�
! A0

hhhAii; hp; qii
�
! hhhA0ii; hp; qii

A
c
! A0

hhhAii; hp; qii
c
! hhhA0ii; hp; qii

A
Æ(t)
�! A0 8c � A

c

=! 8p0; t0 � A
�
p0 (t0)

=���!

hhhAii; hp; qii
Æ(t)
�! hhhA0ii; hp; qii

A
�p(t)
��! A0 8c � A

c

=!

hhhAii; hp; qii
�p(t)
��! hhhA0ii; hp; q � tii

if t � q

hhhAii; hp; 0ii
�
! hhhAii; hnext(p); Qii

8t � A
�p(t)

=��! A
�

=! 8c � A
c

=! A
�
p0(t0)

���! A0

hhhAii; hp; qii
�
! hhhAii; hnext(p); Qii

if p0 6= p

93

Buchholtz, Andersen, and L�vengreen

Only the current process is allowed to use the processor. We assume that

the order in which the processes must be scheduled is given by function next :

PName ! PName, such that next(p) gives the process which must be granted

the processor after the process p. We switch current process in one of two cases,

which are speci�ed in the last two rules. In the �rst case the current processes

has used its entire quantum, while in the second case the current process

does not request the processor. In the later case we additionally require that

some process actually requests processor time. In doing so, we prevent the

occurrence of an in�nite sequence of (pointless) process switching steps.

3.2 Semantics of a Programming Language

We have used the process algebra to give semantics to a small programming

language, which resembles Hoare's CSP [5] or Occam [3]. Programs of the

language are from the syntactic category RProg with R ranging over it and

consist of a �xed number of sequential processes in parallel. Each process

contains one statement S from the syntactic category Stm. Programs are

built from the grammar

R ::= R1 ||R2 j S

S ::= delay t j c? j c! j S1;S2 j
[c1?! S1

[] c2?! S2]
j
[c?! S1

[] delay t! S2]

Statements are (possibly a sequential composition of) delay, synchronous com-

munication, guarded alternative, or communication with time-out.

The language is a \real" programming language, so it does not explicitly

describe how processor time is required to execute di�erent language con-

structs. In order to give semantics to the language we give a translation from

programs of the language into programs of the process algebra. This transla-

tion may be done on the structure of the language, translating each language

construct separately.

To translate an entire program we use the function T : RProg ! Prog

while the function T R : RProg ! Par translates parallel composition. These

two translations are straight forward mapping directly between corresponding

constructs. More interesting is the translation of statements where we use the

continuation style function T S : Stm ! Proc ! Proc. For the translation of

statements below STOP is passed as continuation of an entire statement to

describe that the statement terminates at the end.

T [[R]]
def
= hhT R[[R]]ii

T R[[R1 ||R2]]
def
= T R[[R1]] k T R[[R2]]

T R[[S]]
def
= T S[[S]]STOP

As the �rst example of the translation of statements, regard the construct

delay t, which delays for at least t time units. In the de�nition of the transla-

tion function the argument P is the process algebra expression, which describes

94

Buchholtz, Andersen, and L�vengreen

what happens after the execution of delay t.

T S[[delay t]]P
def
= �(Tdelay):Æ(t� Tdelay):P

The translation gives that the construct �rst uses Tdelay units of processor

time to execute the statement and �gure out for how long it has to delay.

Afterwards the statement delays for t� Tdelay time units.

Communication in the language is synchronous just as it is in the process

algebra. Thus, the translation becomes quite simple.

T S[[c?]]P
def
= �(Trcom):c?:P

T S[[c!]]P
def
= �(Trcom):c!:P

First, Trcom units of processor time is used to get ready to perform communi-

cation. Second, communication may itself be performed in the same manner

as for the process algebra.

Sequential composition is done in the standard way for continuation style

semantics

T S[[S1;S2]]P
def
= T S[[S1]]T S[[S2]]P

The (binary) alternative statement using communication guards should

proceed as the statement following the guard if communication is possible.

T S

��
[c1?! S1

[] c2?! S2]

��
P

def
= �(2 � Trcom):

�
c1?:T S[[S1]]P

[] c2?:T S[[S2]]P

�

First, the processor is used for 2 � Trcom units of time. This processor time

is used to decide between which channels the choice will be performed. Af-

terwards the actual choice can take place. The translation becomes relatively

simple, since the choice operator of the process algebra has exactly the seman-

tics we desire for the selection between communication guards.

As a �nal example, we look at communication with time-out. The state-

ment proceeds as S1 if communication is possible within t time units. Other-

wise, a time-out occurs and the statement proceeds as S2.

T S

��
[c?! S1

[] delay t! S2]

��
P

def
= �(Trcom + Trdelay):

�
c?:T S[[S1]]P

[] Æ(t):�:T S[[S2]]P

�

Note that if communication on the channel c is not ready, the choice may be

postponed for up to t time units before a special time-out action � can occur.

Since actions are urgent, the choice will be made after at most t time units.

We see from the examples of the translation that it provides a clear overview

of timings of the di�erent statements. For example, use of processor time may

easily be added as the timed event �(t). In [1] we have used the technique

described here for a larger language, which contains amongst other things

recursion and alternative with multiple branches. The translations required

for these new language construct follow the ideas described above closely and

introduces no substantial novelties.

95

Buchholtz, Andersen, and L�vengreen

3.3 Development of a Real-Time Kernel

In [1] we have used the ideas for kernel development from the ProCoS project

[8] to develop a real-time kernel for use in small embedded mono processor

systems. In this, we have used the model of time presented in this paper to

describe how processes share the processor.

As depicted in Figure 1, the development of the kernel comprises three

development levels, each of which describes the embedded system at a cer-

tain level of abstraction. At the topmost level, the Programming Language

Level, the system is regarded as a number of concurrent processes described

by a program in a CSP-like language. At the middle level, the Machine Lan-

guage Level, the system is still regarded as a number of concurrent processes.

However, each process is given in an assembler-like language with instructions

consisting of an op-code and arguments. Each processes is executed at its own

virtual machine so management of e.g. a program counter, stack, and store

can be described in detail. At the lowest level, the Kernel Level, the system is

described as one virtual machine which executes all the processes, explicitly

switching execution among them. In this description there is a clear distinc-

tion of which parts of the virtual machine that describe process behaviour and

which parts that are not relate directly to a process i.e. the parts that must

be handled by the kernel.

Programming Language Level

stack

store

pc

stack

store

pc

stack

store

pc

Kernel Level

stack

store

pc

stack

store

pc

stack

store

pc

Machine Language Level

p2 p3p1

v

v

p2 p3p1

Fig. 1. Overview of kernel development levels for a system with three processes.

The behaviour of the system at each level is described by a labelled tran-

sition system. For the topmost level this transition system is given by an op-

erational semantics of the CSP-like language according to the ideas described

in section 3.2. At the other levels the transition systems are also de�ned by

96

Buchholtz, Andersen, and L�vengreen

a number of inference rules. At all levels, we use the same model of time,

thus having transition systems with actions and timed labels as described for

the process algebra. In the development of the kernel we have dealt with at

great number of aspects, which are outside the scope of this paper. These in-

clude: assignment of variables with evaluation of expressions, communication

with value passing, upper and lower bounds on execution times, an external

interface using shared memory, kernel overhead, and timer interrupts.

Correctness of the system is based on a binary implementation relation, v,

between the transition systems describing two consecutive development lev-

els. The implementation relation allows for a lower level to remove any non-

determinism of an upper level. Except for this di�erence between their be-

haviours, the lower level must behave in the same way as the upper level.

4 Related Work

Related work is to be found in concurrency models that simultaneously address

the issues of time, resource sharing, and priorities. Within process algebra,

a number of approaches deal with time and priorities (see e.g. [4]). However,

the only process algebraic approach that addresses all three issues seems to

be [2]. In this algebra, the usage of a set A of resources for a period of t time

units is denoted by a timed event At and its behaviour given by the rule

At:P
At

0

�! At�t0 :P if 0 < t0 � t

similar to one of our �(t) rules. However, they do not provide any means for

allowing a partially completed resource usage to be temporarily preempted

by another process. Their model, therefore, seems adequate only for non-

preemptive scheduling strategies, cf. the classical job-shop scheduling prob-

lems. The novelty of our approach thus basically lies in the rule

�(t):P
Æ(t0)
��! �(t):P

allowing for the arbitrary preemption found in real-time operating systems.

Our work has been inspired by the approach of [9] that distinguishes be-

tween time passing and (processor) time consumption. Their underlying be-

haviour model, however, does not have a notion of instantaneous events and

they use logical characterisation of models rather than taking a constructive

approach. The wealth of results and techniques developed for models based

on transition systems, therefore, cannot immediately be related to this work.

5 Future Work

In section 3.1 we have described how a speci�c scheduling strategy may be

expressed by modi�cation of the transition rules. A more general approach

would be to specify the scheduling at the level of the algebra as a kind of plug-

in component. However, we have encountered problems in giving a uni�ed

97

Buchholtz, Andersen, and L�vengreen

representation that will work for a broad range of schedulers. For example,

we should cater for a scheduler, which itself uses processor time. We are

currently looking at di�erent ways of integrating scheduling into the process

algebra.

Also, the model should be generalised to handle multi-processors and per-

haps other preemptable resources.

A large task lies in describing the theoretical implications of the process

algebra. Some of this ground has already been covered in our kernel devel-

opment. However, the traditional bisimulation equivalence has shown to be

too strong for this application. Rather, we have focused on implementation

relations that allow an implementation to behave more deterministically than

its speci�cation. These relations also need further studies.

For instance, in the process algebra presented here, timed events may only

be used to give precise timings. For real systems, however, exact timings

of all operations are not always known. Furthermore, di�erent knowledge of

timings may be available at the di�erent levels in the development. In our

kernel work, we have solved these problem by introducing upper and lower

bounds on timed events. This gives rise to events such as �(tl; tu), stating

that a process requires a non-deterministic amount of processor time between

tl and tu time units. The implementation relation should then allow for an

implementation to remove or reduce this non-determinism of timing.

A major concern of the implementation relation is that it should be compo-

sitional, i.e. distribute over parallel composition. However, ensuring this has

proven to be a non-trivial task due to the non-monotonic nature of resource

sharing and urgency.

One of the goals of our work is to link resource-aware models like the one

presented here, with standard timed models (e.g. timed automata) making

them amenable for analysis by tools such as Uppaal [6] and others. One way

to accomplish this would be to derive a timed automaton from a processor

constrained transition system expressed in our model.

References

[1] Andersen, J. and M. Buchholtz, \Formal Development of a Real-Time Kernel,"

Master's thesis, Department of Information Technology, Technical University of

Denmark (2001).

URL http://www.imm.dtu.dk/people/mib/masters/

[2] Br�emond-Gr�egoire, P. and I. Lee, A process algebra of communicating shared

resources with dense time and priorities, Theoretical Computer Science (1997),

pp. 179{219.

[3] Burns, A., \Programming in Occam-2," Addison-Wesley, 1988.

[4] Cleaveland, R., G. L�ottgen and V. Natarajan, Priority in process algebra, in:

98

Buchholtz, Andersen, and L�vengreen

J. Bergstra, A. Ponse and S. Smolka, editors, Handbook of Process Algebra,

North-Holland, 2001 pp. 711{765.

[5] Hoare, C. A. R., Communicating sequential processes, Communications of the

ACM 21 (1978), pp. 666{677.

[6] Larsen, K. G., P. Pettersson and W. Yi, Uppaal in a Nutshell, Int. Journal on

Software Tools for Technology Transfer 1 (1997), pp. 134{152.

[7] Liu, J. W. S., \Real-Time Systems," Prentice Hall, 2000.

[8] S�gaard-Andersen, J. F., C. �. Rump and H. H. L�vengreen, A systematic kernel

development, SIGSOFT Software Engineering Notes 16 (1991), pp. 55{65.

[9] Zhou Chaochen, M. R. Hansen, A. P. Ravn and H. Rischel, Duration

speci�cations for shared processors, in: Formal Techniques in Real-Time and

Fault-Tolerant Systems, Second International Symposium Proceedings, 1991, pp.

21{32.

99

MTCS 2001 Preliminary Proceedings

Privacy in Real-Time Systems

Ruggero Lanotte 1;2

Dipartimento di Informatica, Universit�a di Pisa, Corso Italia 40, 56125 Pisa,

Italy

Andrea Maggiolo-Schettini 1;3

Dipartimento di Informatica, Universit�a di Pisa, Corso Italia 40, 56125 Pisa,

Italy

Simone Tini 1;4

Dipartimento di Informatica, Universit�a di Pisa, Corso Italia 40, 56125 Pisa,

Italy

Abstract

We study the problem of privacy in the framework of Timed Automata. By dis-

tinguishing between secret and observable actions we formulate a property of no-

privacy in terms of a property of the language accepted by a Timed Automaton,

and we give an algorithm checking such property.

1 Introduction

One of the main requirements of mobile code is that it must guarantee some

kind of security to clients executing it. One of the security requirements is the

client's privacy, namely that executing mobile code does not imply leaking of

private information.

Several papers (see, among the others, [3,4,5,6,7]) dealing with privacy,

consider two-level systems, where the high level (or secret) behavior is dis-

tinguished from the low level (or observable) one. In the mentioned papers,

systems respect the property of privacy if there is no information
ow from

1
Research partially supported by MURST Progetto Co�nanziato TOSCA.

2
Email: lanotte@di.unipi.it

3
Email: maggiolo@di.unipi.it

4
Email: tini@di.unipi.it

This is a preliminary version. The �nal version is considered for publication in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Lanotte, Maggiolo-Schettini and Tini

the high level to the low level. This means that the secret behavior cannot in-

uence the observable one, or, equivalently, no information on the observable

behavior permits to infer information on the secret one.

Our aim is to study the problem of privacy in real-time systems in the

framework of Timed Automata [1]. When using this formalism, the possible

behaviors of a system are described by a set of in�nite timed words, namely

in�nite sequences of pairs (action performed, time of �ring). In describing

two-level systems, we distinguish between high-level and low-level actions.

We formulate a no-privacy property as follows: if, whenever one can observe

a given timed sequence of observable actions, one is sure that the system

performs a certain secret action, then the system is insecure. The reason is

that one can infer information on the secret behavior from the observation of

the observable one.

We give an algorithm that exploits the region graph obtained from a Timed

Automaton and checks the no-privacy property for a given sequence of observ-

able actions and a given secret action.

2 HL Timed Automata

In this section we introduce the formalism of HL Timed Automata, as an

extension of Alur and Dill's Timed Automata.

2.1 Security alphabet and timed words

A security alphabet is a pair consisting of two disjoint �nite sets of actions

(L;H). The set L contains the low actions, which can be performed by the

system and can be observed by the external environment, and the set H

contains the high actions, which can be performed by the system and are

visible only inside the system.

Given any time domain T (non-negative rational numbers, or non-negative

real numbers, as examples), a timed word ! on (L;H) and T is a pair of func-

tions (!1; !2) such that !1 : N ! (L [H) and !2 : N ! T . Intuitively, ! de-

scribes the behavior of a system that performs action !1(i) at time
P

i

h=0
!2(h).

A timed word must satisfy the time progress property, namely for each time

value t 2 T , there is some index i such that
P

i

h=0
!2(h) > t.

Given a timed word ! = (!1; !2), let us denote with !L the projection of !

on L, namely the (possibly �nite) sequence (!1(i1); !2(i1)); (!1(i2); !2(i2)); : : :

such that, for each index ij, !1(ij) 2 L and, for each ij < k < ij+1, !1(k) 2 H.

The sequence !L describes the part of ! that can be observed by the external

environment.

Let us denote with F! the function that gives the index in ! of the low action

in position j in !L, namely F!(j) = ij.

101

Lanotte, Maggiolo-Schettini and Tini

2.2 Clock valuations and clock constraints

We assume a set X of variables measuring time, called clocks. Intuitively,

clocks increase uniformly with time when an automaton is in whatsoever state.

A clock valuation over a set of clocks X is a mapping v : X ! T assigning

time values to clocks. For a clock valuation v and a time value t, let v + t

denote the clock valuation such that (v+t)(x) = v(x)+t. For a clock valuation

v and a subset of clocks Y � X, let v[Y] denote the clock valuation such that

v[Y](x) = 0, if x 2 Y , and v[Y](x) = v(x), otherwise.

Given a set of clocks X, we consider the set of clock constraints over X,

denoted �(X), which is de�ned by the following grammar, where � ranges

over �(X), x 2 X, c 2 T and # 2 f<;�;=; 6=; >;�g:

� ::= x# c j� ^ � j :� j� _ � j true :

We write v j= � when the clock valuation v satis�es the clock constraint �.

More precisely, v j= x# c i� v(x)# c, v j= �1 ^�2 i� both v j= �1 and v j= �2,

v j= �1 _ �2 i� either v j= �1 or v j= �2, v j= :� i� v 6j= �, and v j= true.

2.3 The formalism

De�nition 2.1 Given a security alphabet (H;L), a HL Timed Automaton

(TAHL) is a tuple A = ((L;H); A1; : : : ; Am), where, for each 1 � i � m,

Ai = (Qi; q
0
i
; Æi; Xi) is a sequential automaton, with:

� a �nite set of states Qi

� an initial state q0
i
2 Qi

� a set of clocks Xi

� a set of transitions Æi � Qi � �(Xi)� (L [H)� 2Xi �Qi.

The sets of clocks X1; : : : ; Xm are pairwise disjoint.

Intuitively, a transition (q; �; a; Y; q0) of an automaton Ai �res in corre-

spondence with the performance of action a when state q is active and the

clock valuation of Ai satis�es the clock constraint �. In such a case, state q0

is entered and the clocks in Y are reset.

Let us describe now the behavior of a TAHL A = ((L;H); A1; : : : ; Am).

A con�guration of A is a tuple s = ((q1; v1); : : : ; (qm; vm)) such that, for

each 1 � i � m, qi is a state in Qi and vi is a clock valuation over the set of

clocks Xi.

The initial con�guration s0 is the tuple ((q01; v
0
1); : : : ; (q

0
m
; v0

m
)), with q0

i
the

initial state of Ai and with v0
i
the clock valuation such that vi(x)

0 = 0 for

each clock x 2 Xi.

There is a step from con�guration s = ((q1; v1); : : : ; (qm; vm)) to con�gura-

tion s0 = ((q01; v
0

1); : : : ; (q
0

m
; v0

m
)) through action a at time t, written s!a

t
s0, if

and only if, for each 1 � i � m, there is a transition (qi; �i; a; Yi; q
0

i
) 2 Æi such

102

Lanotte, Maggiolo-Schettini and Tini

��
��
u1 ��

��
u2

��
��
u3

��
��
u4

��
��
u5

��
��
u6 ��

��
u7

-

�
��	

@@R��	

?

HHHHHHj�

� ae; fzg

re

ac; fzg

rc
z 2 T1

aw; fzg

rw; z 2 T1

re; z 2 T1

ae
��
��
c2

��
��
c1
6
?

ac
rc; fxgx 2 T2

��
��
s2

��
��
s1
6
?

aw
rw; fygy 2 T3

Au

Ac Aw

T1 = [1; 2], T2 = [2; 5], T3 = [100; 250]

Fig. 1. The web system.

that (vi + t) j= �i and v0

i
= (vi + t)[Yi]. Intuitively, each clock constraint �i is

satis�ed by the clock valuation vi + t and all clocks in Yi are reset.

A timed word (!1; !2) is accepted by A if there exists a in�nite sequence

of steps s0 !
!1(0)

!2(0)
s1 !

!1(1)

!2(1)
: : : from the initial con�guration s0.

The language accepted by A (denoted by L(A)) is the set of timed words

accepted by A.

By application of a cartesian product construction, any TAHL can be trans-

formed into an equivalent (namely, accepting the same language) TAHL con-

sisting of only one sequential component, namely into an Alur and Dill's Timed

Automaton.

Proposition 2.2 For any TAHL A there exists a TAHL A
0 composed by one

only sequential automaton such that L(A) = L(A0).

3 The No-privacy Property

Given sequences d and d0, let d �P d0 denote the fact that d is a pre�x of d0.

Let a 2 H, d be a �nite sequence (a1; t1); : : : ; (ah; th) with a1; : : : ; ah 2 L

and t1; : : : ; th 2 T , and i be an index 1 � i < h. We de�ne the no� privacy

property NPr(d; i; a) for a TAHL A as follows:

for each ! 2 L(A); d �P !L implies a 2 f!1(F!(i)+1); : : : ; !1(F!(i+1)�1)g:

Intuitively,NPr(d; i; a) expresses that, whenever the sequence d of low symbols

is read, the high symbol a is read between the low level actions ai and ai+1,

and, therefore, there is an information
ow from high level to low level, namely

information on the secret behavior can be inferred from information on the

observable behavior.

Example 3.1 We model the time attack on web privacy described in [2]. The

attack compromises the privacy of user's web-browsing histories by allowing

103

Lanotte, Maggiolo-Schettini and Tini

a malicious web site to determine whether or not the user has recently visited

some other, unrelated, web page w. A Java applet is embedded in the mali-

cious web site and is run by the user's browser. The applet �rst performs a

request to a �le of w, and then performs a new request to the malicious site.

So, the malicious site can measure the time elapsed between the two requests

which it receives from the user, and, if such a time is under a certain bound,

it infers that w was in the cache of the browser of the user, thus implying that

w has been recently visited by the user.

In Fig. 1 we model this problem. Automaton Ac represents the cache. The

time elapsed between a request rc and an answer ac is in the interval [2; 5].

Automaton Aw represents the site w. The time elapsed between a request rw
and an answer aw is in the interval [100; 250]. The automaton Au represents

the requests by the user that downloads the page of the malicious site. First

of all, it performs a request re to the malicious site. Then, when it receives

the answer ae, it performs a communication either with the cache or with the

site w in a time belonging to the interval [1; 2]. Finally, it performs another

request re and it waits for an answer from the malicious site. We assume that

there are transitions from state c1 to state c1 labeled with symbols re, ae, rw
and aw. Analogously there are transitions from state s1 to state s1 labeled

with symbols re, ae, rc and ac.

The only visible actions for the malicious site are re and ae, so the alphabet

(L;H) is (fre; aeg; frc; ac; rw; awg).

Now, if we consider d = (re; 10)(ae; 20)(re; 200), then we have the no pri-

vacy property NPr(d; 2; aw).

3.1 Region graph

Our aim is to show that the property NPr(d; i; a) is decidable.

To this purpose, let us recall �rst the notion of region graph of a timed

automaton, as given in [1]. By proposition 2.2 it suÆces to consider automata

with only one sequential component.

As in [1], without loss of generality we assume clock constraints permitting

only comparison with integer constants. In fact, given any automatonA, there

is a constant t such that, for each constant c appearing in a clock constraint

in A, c � t is an integer. Let A � t be the automaton obtained by replacing

each c appearing in a clock constraint in A by c � t. In [1] it is proved that

a word (a1; t1) : : : (an; tn) : : : is in the language L(A) if and only if the word

(a1; t1 � t) : : : (an; tn � t) : : : is in the language L(A � t). As a consequence,

NPr(d; i; a) holds for A if and only if NPr(d � t; i; a) holds for A � t.

Let us consider the equivalence relation � over clock valuations that con-

tains each pair of clock valuations v and v0 such that:

� for each clock x, either bv(x)c = bv0(x)c, or both v(x) and v0(x) are greater

than cx, with cx the largest integer appearing in clock constraints over x.

� for each pair of clocks x and y with v(x) � cx and v(y) � cy, fract(v(x)) �

104

Lanotte, Maggiolo-Schettini and Tini

fract(v(y)) if and only if fract(v0(x)) � fract(v0(y)) (fract(z) indicates

the fractional part of z).

� for each clock x with v(x) � cx, fract(v(x)) = 0 if and only if fract(v0(x)) =

0.

Note that for each pair of valuations v and v0, and for each clock constraint

� in A, it holds that:

if v � v0 then v j= � i� v0 j= �:

A clock region is an equivalence class of clock valuations induced by �.

We denote by [v] the equivalence class of � containing v. Note that the set of

clock regions is �nite.

Clock regions can be expressed with conditions of the form x = c, c < x <

c+ 1 and x > cx.

A region is a pair (q; [v]), with q a state and [v] a clock region. The initial

region is the pair (q0; [v0]) with q0 the initial state and v0 the valuation such

that v0(x) = 0, for each clock x.

The region graph R(A) is a graph having the regions of A as set of

nodes and having an edge h(q; �); a; I; (q0; �0)i, with I an interval of the form

(c; c0),[c; c] or (cm;1) (where c < cm, c 2 N and cm is the largest constant

that appears in the constraints of A) if and only if, for each pair of valuations

v 2 � and v0 2 �0, (q; v)!a

t
(q0; v0) for some time t 2 I.

Note that, di�erently from [1], we label edges of the region graph also with

an interval.

Without loss of generality, we can consider only the nodes that can be

reached from the initial region without cycles of edges labeled with interval

[0; 0] which would violate the assumption of progress of time.

3.2 Checking no-privacy

Our algorithm checking no-privacy constructs a set of intervals by applying

operations, which are de�ned below, to intervals of the region graph.

Given two intervals I and I 0, let us denote with I � I 0 the interval

I � I 0 = ft� t0 j t 2 I and t0 2 I 0g :

Given a step leading to a region (q; �) in a time in the interval I, and a step

from (q; �) to another region (q0; �0) in the interval I 0, a time in I+I 0 is needed

to reach (q0; �0) through (q; �), provided that the waiting time in q does not

depend on the time consumed to reach q.

Given two intervals I and I 0, let us denote with I � I 0 the interval such

that inf(I � I 0) = inf(I) + inf(I 0) + 1, sup(I � I 0) = sup(I) + sup(I 0) � 1.

Moreover, if inf(I�I 0) = sup(I�I 0) then we assume that (I�I 0) is left-closed

and right-closed. Otherwise, I � I 0 is left-closed if and only if both I and I 0

are, and I � I 0 is right-closed if and only if both I and I 0 are.

105

Lanotte, Maggiolo-Schettini and Tini

Given a step leading to a region (q; �) in a time in the interval I, and a

step from (q; �) to another region (q0; �0) in the interval I 0, a time in I � I 0

is needed to reach (q0; �0) through (q; �), provided that the waiting time in q

depends on the time consumed to reach q, in the sense that the longer is the

time consumed before entering q, the shorter is the waiting time in q. This

happens if there is a constraint c < x < c+ 1 in �, for some clock x.

Finally, let us denote with (I)t the interval:

(I)t =

8>>><
>>>:

I if sup(I) � t

I [[sup(I);1) if inf(I) � t < sup(I)

(t;1) otherwise.

Note that t 2 I if and only if t 2 (I)t. We have introduced notation (I)t since

the set of the intervals (I)t, such that I is a sum (obtained by means of either

+ or �) of intervals of a region graph, is �nite.

Let us de�ne now the algorithm Ch-path-symb. Given regions p and q, a

high symbol a, a constant t and a low symbol a0, Ch-path-symb checks whether

there exists a sequence of steps labeled with symbols in H n fag followed by a

step labeled with a0 and taking from p to q at time t.

Algorithm 1

Ch-path-symb(p,q:region, a:high-symbol, t:T , a0: low symbol): boolean

(i) tovisit:=f(p; [0; 0]; false)g;

(ii) visited:=;;

(iii) while true do

(iv) if empty(tovisit) then return false

(v) else

(vi) (r; I; tt):=extract(tovisit);

(vii) add((r; I; tt),visited);

(viii) if (tt=true and (r = q) and t 2 I) then return true;

(ix) if tt=false then

(x) for each edge hr; a00; I 0; r0i 2 R(A) with a00 2 H n fag [fa0g

(xi) if x = t0 is a constraint in r then c:=(r0; (I + I 0)t; (a
00 = a0))

(xii) else if I 0 = [0; 0] then c:=(r0; I; (a00 = a0))

(xiii) else c:=(r0; (I � I 0)t; (a
00 = a0))

(xiv) if c62 visited ^ ((I + I 0)t 6= (t;1)) then Add(c,tovisit).

A tuple (r; I; false) means that the region r can be reached from p in a

time in the interval I by reading symbols in Hnfag. A tuple (r; I; true) means

that the region r can be reached from p in a time in the interval I by reading

106

Lanotte, Maggiolo-Schettini and Tini

symbols in H n fag and, subsequently, symbol a0.

So the algorithm considers �rstly the pair (p; [0; 0]; false). Given a pair

(r; I; false) and an edge hr; a00; I 0; r0i in R(A) for some symbol a00 2 H n fag[

fa0g, if the clock region in r satis�es x = t0 for some clock x and constant t0,

then the algorithm considers either the pair (r0; (I + I 0)t; false), if a
00 6= a0, or

the pair (r0; (I+ I 0)t; true), if a
00 = a0. The condition x = t0 in r ensures that a

time in I 0 must be elapsed after r is entered. We use interval (I + I 0)t instead

of (I + I 0) to guarantee that Ch-path-symb generates �nite intervals.

If, on the contrary, the clock region in r does not satisfy x = t0 for any

clock x and constant t0, then there are two cases. If hr; a00; I 0; r0i is such

that I 0 = [0; 0], then the clock regions of r and r0 coincide, and, therefore, we

consider the tuple (r0; I; (a00 = a0)). Otherwise, the tuple (r; (I�I 0)t; (a
00 = a0))

is considered. The interval (I�I 0)t takes into account that the minimal (resp.

maximal) waiting time in r follows the maximal (resp. minimal) waiting time

needed to reach r. Also in this case we use interval (I� I 0)t instead of (I� I 0)

to guarantee that Ch-path-symb generates �nite intervals.

Finally, if a tuple (r; I; tt) with r = q, t 2 I and tt = true is generated,

then Ch-path-symb terminates successfully.

The following lemmata state the correctness of the algorithm.

Lemma 3.2 For any pair of regions p and q, high symbol a, time t and low

symbol a0, Ch-path-symb(p,q,a,t,a0) terminates.

Proof. Both the regions of the graph and the intervals that can been gener-

ated by the algorithm are �nite and, as a consequence, also the tuples (r; I; tt)

that are generated are �nite. 2

Lemma 3.3 If (!1; !2) 2 L(A) with f!1(i); !1(i+1); : : : ; !1(j� 1); !1(j)g �

H n fag and !1(j + 1) the low symbol a0, then there exists an in�nite se-

quence of steps (q0; v0) !
!1(0)

!2(0)
(q1; v1) !

!1(1)

!2(1)
: : : if and only if Ch-path-

symb((qi; [vi]),(qj+2; [vj+2]),a,
P

j+1

h=i
!2(h),a

0).

Lemma 3.3 is a direct consequence of the properties of the region graph

proved in [1].

We de�ne also the algorithm Ch-path that checks whether there exists a

sequence of steps labeled with high symbols and followed by a step labeled

with the low symbol a0 taking from a given region p to a given region q in

a given time t. We obtain it from Ch-path-symb by replacing the condition

a00 2 H n fag [fa0g in line (x) with the condition a00 2 H [fa0g.

The following results are the analogous of Lemma 3.2 and Lemma 3.3.

Lemma 3.4 For any pair of regions p and q, time t and low symbol a0, Ch-

path(p,q,t,a0) terminates.

107

Lanotte, Maggiolo-Schettini and Tini

Lemma 3.5 Let (!1; !2) 2 L(A) with f!1(i); !1(i+1); : : : ; !1(�1j); !1(j)g �

H and !1(j+1) the low symbol a0, then there exists an in�nite sequence of steps

(q0; v0) !
!1(0)

!2(0)
(q1; v1)!

!1(1)

!2(1)
: : : if and only if Ch-path ((qi; [vi]),(qj+2; [vj+2]),P

j+1

h=i
!2(h), a

0).

The following algorithm Ch-NPriv checks whether there exists a sequence

of steps from the initial region (q0; [v0]) due to a low sequence d that does not

perform the high symbol a between the low symbols in d(i) and d(i + 1). At

iteration k, the set A contains the regions that can be reached from (q0; [v0])

by reading d(0); : : : ; d(k), by reading symbols in H n fag between d(i) and

d(i + 1), and by reading symbols in H between d(j) and d(j + 1), for each

j 6= i. So, if A is empty then the sequence of steps we were looking for does

not exist, and NPr(d; i; a) holds.

Algorithm 2

Ch-NPriv(d:L� sequence, i:N, a:high� symbol): boolean

(i) k:=0;

(ii) A:=f(q0; [v0])g;

(iii) while k � length(d) do

(iv) (a0; t):=d(k);

(v) B:=;;

(vi) while A6= ; do

(vii) (q; [v]):=extract(A);

(viii) for each region (q0; [v0]) 2 R(A)

(ix) if (k = i and Ch-path-symb((q; [v]),(q0; [v0]),a,t,a0)) OR

(x) (k 6= i and Ch-path((q; [v]), (q0; [v0]),t,a0))

(xi) then Add((q0; [v0]),B);

(xii) A:=B;

(xiii) k:=k+1;

(xiv) return A = ;.

The following results state the correctness of the algorithm Ch-NPriv.

Lemma 3.6 For any �nite sequence d, index i and high symbol a, the algo-

rithm Ch-NPriv(d,i,a) terminates.

Theorem 3.7 For any �nite sequence d, index i and high symbol a, it holds

that NPr(d; i; a) if and only if Ch-NPriv(d,i,a).

Note that Ch-NPriv(d,i,a) performs at most k times the body of the ex-

ternal cycle. The internal cycle calls either the algorithm Ch-path-symb or

the algorithm Ch-path at most jR(A)j times, with jR(A)j the number of re-

gions of R(A). Finally, both Ch-path-symb and Ch-path construct at most

108

Lanotte, Maggiolo-Schettini and Tini

O(jR(A)j � t2) tuples.

Corollary 3.8 It is decidable in polynomial time whether NPr(d; i; a).

4 Further Work

In this paper we have introduced the \no-privacy" property, which corresponds

to the ability, by an attacker, to infer information on the private behavior of

a system from the observable behavior.

To model a real time system that respects privacy, we can consider prop-

erties derived from the property NPr(d; i; a) considered in the paper.

The �rst step is to consider properties such as 9a 2 H:NPr(d; i; a), mean-

ing that the performance of some secret action follows a sequence of observable

actions, and 9i 2 [1; length(d)�1]:NPr(d; i; a), meaning that the performance

of some secret action is implied by a sequence of observable actions. Both

properties are decidable, since NPr(d; i; a) is decidable and it is suÆcient to

enumerate the cases.

An interesting property is 9d:NPr(d; i; a). This property holds if there is a

sequence of observable actions implying a secret action. In this case we cannot

enumerate the cases. Moreover, even if such a property would be decidable, we

cannot enumerate to prove the property 9d:9i 2 [1; length(d)�1]:NPr(d; i; a).

So, one may consider weaker properties. As an example, the property

9d. length(d) � n and NPr(d; i; a) considers only �nite-length sequences

of observable actions. (It is usually suÆcient to observe a �nite number of

observable actions to describe time attacks on protocols). Note that the se-

quences d such that length(d) � n are not �nite because times are in�nitely

many.

We might also consider sequences d in (� � Interval)� instead of (� �

T ime)�. This kind of sequences permit to consider more general behaviors.

As an example, a possible sequence is (a; [0;1))(b; [3; 3])(c; [2; 5)), meaning

that a is performed in the interval [0;1), b is performed 3 units of time after

a, and c is performed when a time in [2; 5) after b is elapsed.

Our aim is to study the decidability of such properties.

References

[1] Alur, R., and D.L. Dill: A theory of timed automata. Theoretical Computer

Science 126 (1994), 183{235.

[2] Felten, E.W., and M.A. Schneider: Timing attacks on Web privacy. Proc. 7th

ACM Conference on Computer and Communications Security, 25{32, 2000.

[3] Focardi, R., and R. Gorrieri: Automatic compositional veri�cation of some

security properties. Proc. Second International Workshop on Tools and

109

Lanotte, Maggiolo-Schettini and Tini

Algorithms for the Construction and Analysis of Systems, Lecture Notes in

Computer Science 1055, Springer, Berlin, 1996, 167-186.

[4] Focardi, R., and R. Gorrieri: A classi�cation of security properties for process

algebras. Journal of Computer Security 3 (1995), 5{33.

[5] Focardi, R., R. Gorrieri, and F. Martinelli: Information
ow analysis in

a discrete-time process algebra. Proc. 13th Computer Security Foundation

Workshop, IEEE Computer Society Press, 2000.

[6] Volpano, D., and G. Smith: Con�nement properties for programming languages.

SIGACT News 29 (1998), 33{42.

[7] Smith, G., and D. Volpano: Secure information
ow in a multi-threaded

imperative language. Proc. ACM Symposium on Principles of Programming

Languages, 1998, 355{364.

110

MTCS 2001 Preliminary Proceedings

Characterizing Non-Zenoness on Real-Time
Processes

Jitka St�r��brn�a 1;2 and Insup Lee 2

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104

Email: fjitkas; leeg@saul.cis.upenn.edu

Abstract

In this paper we examine an important property of correct system design that is

called non-Zenoness or time progress. We present a method that allows to check

non-Zenoness on a restricted subclass of real-time processes. The processes that

we examine are constructed by nondeterministic sum and parallel composition with

synchronization. The method is based on the construction of a �nite representation

of the potentially in�nite state space of a process, that preserves time progress.

1 Introduction

There has been a number of proposed formalisms to describe real-time sys-
tems, in which system designs could be formally speci�ed, analyzed and tested

before implementation. The existing formalisms include real-time process al-

gebras, namely the Algebra of Communicating Shared Resources (ACSR) [4],
[6], Timed Automata [1], and Timed Systems (TS) [3], among others. The

process algebraic and timed systems frameworks slightly di�er in their use of

time. In ACSR, there is a distinction between two types of actions: timed

actions and instantaneous events. Timed actions represent resource consump-
tion of a �xed time duration, whereas instantaneous events are used mainly
for process synchronization. In Timed Systems, (and similarly in Timed Au-

tomata), events represent state change and have no duration, however it is

possible to let time pass in any state of the system, while certain temporal

conditions are satis�ed.

1 The author was partially supported by GA �CR grant no. 201/00/1023
2 This research was supported in part by NSF CCR-9988409, NSF CCR-0086147, NSF

CISE-9703220, ARO DAAG55-98-1-0393, ARO DAAG55-98-1-0466, ARO DAAD19-01-1-

0473, DARPA ITO MOBIES F33615-00-C-1707, and ONR N00014-97-1-0505.

This is a preliminary version. The �nal version is considered for publication in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

St�r��brn�a and Lee

There are many properties that are required from a correctly designed

process. The deadlock and livelock-freedom properties are among the most

important. A feature that pertains speci�cally to timed systems, is called non-

Zenoness or time progress. Informally speaking, this characteristic ensures

that a system cannot perform an in�nite number of transitions within a �nite

amount of time. Since this feature is usually de�ned as a quality of all in�nite

runs of a system, it is in general undecidable. This property has been studied

for Timed Systems in [3], where the authors proposed a notion of structural

non-Zenoness as a condition on a �nite graph underlying a TS. The presence

of this condition implies that in every in�nite execution of the TS, time will

always progress.

For real-time process algebras, we need to distinguish between discrete and

dense time domain. When we consider discrete time domain where all timed

actions take exactly one time unit to execute, time progress can be expressed

as the quality that every in�nite execution sequence contains in�nitely many

timed actions. Testing this property on any ACSR process may still involve

searching in�nite runs of a process. It would be therefore helpful to be able to

de�ne a similar condition as structural non-Zenoness in the context of process
algebras. Since process algebras are in general more expressive than TS (TS

are �nite-state systems, whereas even rather simple ACSR process may be
in�nite-state), we will limit our attention to a core class of (possibly in�nite-
state) processes for which we will be able to construct a �nite representation

that will preserve the non-Zeno property.

The class of processes studied in this paper is basically determined by the

operators of action and event pre�x, nondeterministic choice and parallel com-
position where we allow event synchronization. For any process constructed

out of these operators we will show how to de�ne a �nite labeled graph whose
edges correspond in a precise way to the labeled transitions of the process.
Additionally, any cycle in this �nite graph that will only consist of edges la-

beled by events will be related to a Zeno execution run of the initial process.
Although we have not been able to prove it yet, we also believe that the other
direction might work, i.e. any Zeno run of a process will manifest itself as a

aforementioned cycle. Later on in this paper we will add the restriction op-

erator and modify the construction so that an analogous condition holds for

this enriched class.

2 Background

The class of processes we will examine in this paper is a fragment of ACSR, a
timed process algebra that includes features for representing synchronization,

time, resource requirements, and priorities. The time domain of ACSR can

be either discrete [4] or dense [6], however in this paper we will concentrate
exclusively on discrete time. The actions of processes in this algebra are of

two kinds: timed actions and instantaneous events. A timed action takes one

112

St�r��brn�a and Lee

time unit to execute and is represented as a list of resources and associated

�xed priorities, e.g. f(data; 2); (cpu; 1)g. A distinguished action ; stands for

one time unit of idling. An instantaneous event takes no time to execute

and is represented as a pair of a label and a �xed priority, e.g. (chan; 3). A

distinguished event label � is used to denote the synchronization of events.

For the purpose of simplicity, we will not consider the internal structure

of timed actions or events. We assume that capital letters A;B; : : : range

over timed actions, and letters e; f; : : : range over instantaneous events. For

every event e, there is a complementary event �e, such that ��e = e. The special

synchronization event � arises when two complementary events are executed

in parallel. The Greek letter � will be used to denote either a timed action or

an event.

We will consider processes de�ned by the following syntax:

P ::= NIL j X j A : P j e:P j P + P j PkP j recX:P

NIL is a process that executes no action. There are two Pre�x operators,

A : P and e:P , corresponding to the two types of actions. The operator P +Q

represents nondeterministic Choice. PkQ is the Parallel composition of P and

Q, that can synchronize or interleave on events, whereas for timed actions, we
only consider interleaving. The Recursion operator recX:P allows to specify
in�nite behavior.

The operational semantics of the process terms is represented by labeled
transition systems (LTS). These are determined by structured operational

semantics rules presented in Figure 1. We use P [recX: P=X] as the standard
notation for substitution of recX: P for all free occurrences of X in P .

(ActT) �

A : P
A
�! P

(ActI) �
e:P

e
�! P

(SumL) P
�
�! P 0

P +Q
�
�! P 0 (SumR)

Q
�
�! Q0

P +Q
�
�! Q0

(ParL) P
�
�! P 0

PkQ
�
�! P 0kQ

(ParR)
Q

�
�! Q0

PkQ
�
�! PkQ0

(ParS)
P

e
�! P 0; Q

�e
�! Q0

PkQ
�
�! P 0kQ0

(Rec)
P [recX: P=X]

�
�! P 0

recX: P
�
�! P 0

Fig. 1. SOS rules

We assume commutativity and associativity of the parallel composition op-

erator (the notion of equivalence on labeled transition systems being strong

bisimulation). The n-th power of a process P , denoted P n, stands as an abbre-
viation for the term Pk : : :kP

| {z }

n

. In this work we allow for interleaving of timed

113

St�r��brn�a and Lee

actions in the context of parallel composition. The reason for that will be

explained in Section 4, where the main construction of the paper is presented.

The full discrete version of ACSR (see [6]) contains these additional op-

erators: Scope P�e
t (Q;R; S), Restriction PnF , and Close [P]I. In the Scope

operator, process P executes for a maximum of t time units. If P successfully

terminates within t units by executing an event labeled with �e then control

proceeds to Q. If P fails to do so then control proceeds to R. Lastly, at any

time while P is executing, it may be interrupted by S.

The Restriction operator PnF limits the behavior of P in the sense that no

events with labels in F are permitted to execute. Finally, the Close operator

[P]I produces a process that monopolizes the resources in I.

3 Non-Zenoness on Restricted ACSR

The notion of non-Zenoness appears among other desirable properties in the

validation of process design correctness. Intuitively, the purpose of instan-

taneous events is process synchronization, whereas the actual performance is

represented by timed actions. Therefore we do not want a process to engage
in an in�nite sequence of synchronizations where only �nitely many timed

actions would be carried out. This motivates the following de�nition, taken
from [2].

De�nition 3.1 An in�nite execution sequence (trace) of actions is called
Zeno if it consists solely of instantaneous events. An ACSR process is non-
Zeno if its LTS does not contain any in�nite Zeno trace.

As we mentioned before, searching a potentially in�nite LTS for a Zeno trace

may result in a non-terminating algorithm. However, if we closely examine all
processes that may appear in an in�nite run, we will see that they are built
out of only a �nite number of basic process terms by the operator of parallel

composition (for the processes described by our �xed syntax). As an example,

consider the process P
df
= recX: �:X2. There is only one in�nite run of this

process, described below:

recX: �:X2 �
�! [recX: �:X2]2

�
�! : : : [recX: �:X2]i

�
�! : : :

The reachable states of this process are all powers of one term, and that

is the process itself. It is (usually) only one component (or two, in case of

synchronization) in a parallel composition of more terms that can perform a
transition, and so if we construct all these basic processes and the transitions

that they can carry out, we have all the information necessary to detect what

types of actions are taken in any execution sequence of the original process.

For this purpose, we will introduce the notion of a prime w.r.t. parallel

composition, called here only prime for brevity. A prime of a process P is any

process reachable from P that cannot be expressed as parallel composition of

two or more processes.

114

St�r��brn�a and Lee

De�nition 3.2 The set of primes Pr of a process is de�ned recursively, fol-

lowing the syntactical structure of the process:

(i) Pr(NIL) = fNILg

(ii) Pr(X) = fXg

(iii) Pr(A : P) = fA : Pg [Pr(P)

(iv) Pr(e:P) = fe:Pg [Pr(P)

(v) Pr(P +Q) = fP +Qg [Pr(P) [Pr(Q)

(vi) Pr(PkQ) = Pr(P) [Pr(Q)

(vii) Pr(recX:P) = frecX:Pg [fQ[recX:P=X] j Q 2 Pr(P)g

The purpose of the set of primes is to describe all reachable processes in a com-

pact way. It will be used to reduce a potentially in�nite semantic description

by means of labeled transition system into a �nite graph, that will preserve

the properties that we are interested in. The signi�cance of this notion is

stated in the lemma that follows.

Lemma 3.3 Every reachable state Q of a process P can be expressed as par-

allel composition of primes from Pr(P).

We will prove Lemma 3.3 indirectly, by combining the following propositions.

Proposition 3.4 Every process P can be expressed as parallel composition of

primes from Pr(P), i.e. P = P1kP2k : : : kPk, where P1; : : : ; Pk 2 Pr(P).

Proposition 3.5 For a process P , a prime Pi 2 Pr(P), and a process R

reachable from Pi in one transition step, R can be expressed as parallel com-

position of primes of P .

The correctness of Proposition 3.4 can be easily veri�ed directly from the
de�nition of primes. Throughout the paper, we will refer to this form as

maximal decomposition of P . The proof of Proposition 3.5 follows here:

Proof. We will prove the claim by induction on the structure of P .

(i) Case NIL - obvious.

(ii) Case X - obvious.

(iii) Case A : P
The primes of A : P are A : P and the primes of P , and we assume

as induction hypothesis that the statement holds for Pr(P). The only

reachable state of A : P is P , which can clearly be expressed in the
required form.

(iv) Case e:P - proved analogously to Case (iii).

(v) Case P +Q

The primes of P +Q are P +Q itself, together with Pr(P) and Pr(Q).

Induction hypothesis covers primes from Pr(P) and Pr(Q), and so only

115

St�r��brn�a and Lee

the case of P + Q remains to be checked. All processes reachable from

P+Q are derivatives of either P , or Q, to which the induction hypothesis

applies.

(vi) Case PkQ

The primes of PkQ are the union of Pr(P) and Pr(Q), and so the

verity of the statement can be concluded from induction hypothesis for

the two sets.

(vii) Case recX: Q

If P = rec X:Q then we will assume that for every Qi 2 Pr(Q), for

every Qi
�
�! R, R can be expressed as composition of primes of Q.

What we need to verify is that for every prime Pi of P and every process

R reachable from Pi in one step, R can be expressed as composition of

primes of P .

By de�nition, Pr(P) = frec X:Qg[fQi[P=X] jQi 2 Pr(Q)gTherefore

we will consider two cases:

(a) Pi = rec X:Q

(b) Pi = Qi[P=X], for some Qi 2 Pr(Q)
Regarding (a), we need to use the semantic rule for recursively de�ned

processes, which says that

rec X:Q
�
�! R () Q[rec X:Q=X]

�
�! R:

From that, we can deduce that

Q[rec X:Q=X]
�
�! R () 9R0: Q

�
�! R0 ^ R = R0[rec X:Q=X]:

The induction hypothesis holds that R0 = Q1k : : : kQk, where these Qi

are primes of Q, and so R = (Q1k : : : kQk)[rec X:Q=X]. Clearly, this

expression is equivalent to Q1[rec X:Q=X]k : : : kQk[rec X:Q=X], which
then is the desired composition of primes from Pr(P).
To validate the latter, we assume that we have Pi

�
�! R, and Pi =

Qi[rec X:Q=X], for some Qi 2 Pr(Q). For a particular prime Qi, we
again have that,

Qi[rec X:Q=X]
�
�! R () 9R0: Qi

�
�! R0 ^ R = R0[rec X:Q=X];

whereR0 = Q1k : : :kQk. As above, R can be expressed asQ1[rec X:Q=X]k

: : : kQk[rec X:Q=X], which is the form we sought.

2

Now we can combine Propositions 3.4 and 3.5 to justify Lemma 3.3. For a

�xed process P , P itself can be expressed as parallel composition of its primes.

Every other process R reachable from P is derived after m transition steps, for
some m. If m = 1 then Proposition 3.5 guarantees that R is of the required

shape. Every R derived in m+1 steps will be an immediate successor of some

Q derived in m steps, which can be written as P1k : : : kPk, Pi 2 Pr(P), and

R will be obtained by taking one (or two, in case of synchronization) prime

Pj and replacing it by one-step expansion, i.e. R = P1k : : : kP
0k : : : kPk, where

Pj
�
�! P 0. By Proposition 3.5, P 0 is itself a composition of primes, and so the

116

St�r��brn�a and Lee

resulting derivative R will be parallel composition of primes from Pr(P).

Example 3.6 An example of primes construction is demonstrated on a simple

process Ex
df
= recX: e:(XkX) that will be used throughout the paper.

(i) Pr(recX: e:(XkX)) = frecX: e:(XkX)g [fQ[recX: e:(XkX)=X] j Q 2

Pr(e:(XkX))g, following rule (vii);

(ii) Pr(e:(XkX)) = fe:(XkX)g [Pr((XkX)), by rule (iv);

(iii) Pr(XkX) = Pr(X) [Pr(X), by rule (v);

(iv) Pr(X) = fXg, by rule (ii).

By applying the recursive de�nition we obtain

(iv) Pr(X) = fXg;

(iii) Pr(XkX) = fXg;

(ii) Pr(e:(XkX)) = fe:(XkX); Xg;

(i) Pr(recX: e:(XkX)) = frecX: e:(XkX); e:[recX: e:(XkX)]2g.

3.1 Finite representation graph

Now we can de�ne the �nite representation graph GP of a process P to be a

labeled directed graph (VP ; EP), where

� the set of vertices VP is the set of reachable primes of P , i.e. VP = fP 0 2
Pr(P) j 9Q: P

w
�! P 0kQg;

� the set of edges EP is de�ned as EP = fP1

�
�! P2 j 9Q: P1

�
�!P P2kQg,

where
�
�!P is the transition relation generated by P .

We have de�ned the graph so that all its vertices can be reached from P in the
context of parallel composition, and every edge in the graph can be generated

by SOS rules from the description of P . In Section 4, we will provide an
algorithm to construct the graph G.

De�nition 3.7 A (directed) cycle in a graph G is called Zeno if all edges
alongside the cycle are labeled by events.

We will demonstrate this idea on process Ex. The corresponding LTS and

the (desired) �nite graph are shown in Figure 2. We can see that process Ex

produces an in�nite LTS, with a Zeno trace (
e
�!)!. That trace is captured

by the
e
�! Zeno loop in the respective �nite graph.

Note that the set of primes may contain an expression not reachable from

the original process. In this case, e:[recX: e:(XkX)]2 cannot be reached from

recX: e:(XkX), and so it is eliminated in the graph de�nition.

3.2 Main result

117

St�r��brn�a and Lee

recX: e:(XkX)

e

��

recX: e:(XkX)

e

GG

[recX: e:(XkX)]2

e

��
[recX: e:(XkX)]3

��

Fig. 2. Labeled transition system and �nite graph of process Ex

Theorem 3.8 Let P be a process de�ned by the syntax above. If there is a

Zeno cycle in the graph GP , then P is Zeno.

Proof. We assume that in the graph GP , there is a Zeno cycle P1

e1�! P2

e2�!

: : : Pk

ek�! P1. The vertices of GP only contain primes that are reachable from

P , therefore there must be an action sequence w and a process Q such that
P

w
�! P1kQ. Now we can construct a Zeno trace of the form w(e1e2 : : : ek)

!

in this way:

P
w
�! P1kQ

e1�! P2kR1kQ
e2�! P3kR2kR1kQ : : :

ek�! P1kRk : : : kR1kQ
e1�! : : :

where Pi
ei�! Pi+1kRi is some transition that gave rise to the directed edge

Pi
ei�! Pi+1.

2

4 Testing for Zeno Property Algorithmically

An algorithm that will detect a Zeno behavior of a given process consists of
two parts. First part constructs a �nite graph according to the de�nition in

Subsection 3.1, and the second half searches that graph for Zeno cycles.

4.1 Graph Construction

The graph G (set of vertices and set of directed edges) is created recursively,

following the de�nition of primes of a process. The construction is sketched

in the procedure below, where the expression Pi
a
�!G Pj denotes a directed

edge from Pi to Pj, labeled by �, in the graph G.

(i) Case NIL

The set of vertices is VG = fNILg, and there are no edges in the graph

induced by this vertex, i.e. EG = ;.

(ii) Case X
The set of vertices is VG = fXg, and there are no edges in the graph

induced by this vertex, i.e. EG = ;.

118

St�r��brn�a and Lee

(iii) Case A : P

Assuming that we already have the complete graph GP for P , we will

add to it the vertex A : P with edges A : P
A
�!G Pi, where P1k : : : kPk is

the maximal decomposition of P .

(iv) Case e:P

Analogously to (iii), we will add to the graph de�ned by P the vertex

e:P with edges e:P
e
�!G Pi, where P1k : : : kPk is the maximal decompo-

sition of P .

(v) Case P +Q

Assuming that GP , resp. GQ, are the graphs determined by P , resp.

Q, the graph G for P +Q is created as the union of GP and GQ, where a

new vertex P +Q is added. The vertices P and Q are removed together

with all outgoing edges (under the condition that there are no incoming

edges to P or Q). A new edge P +Q�GPi will be added to G, if and only

if there is a corresponding edge P
�
�! Pi in GP , or Q

�
�! Pi in GQ.

(vi) Case PkQ

The graph G for the process PkQ is taken to be the union of GP and
GQ, the respective graphs for P and Q. No new vertices or edges are

added.

(vii) Case recX: P
We assume that GP = (VP ; EP) is the graph for P . We will construct

G for the process recX: P in two steps:
(a) we construct G1 by taking the set fQ[recX: P=X] j Q 2 VPg as

vertices, with an edge Pi[recX: P=X]
�
�! Pj[recX:P=X], if there

was an edge Pi
�
�! Pj in GP ;

(b) we construct the �nal graph GrecX: P by adding an edge recX: P
�
�!

Pi whenever there was an edge P [recX: P=X]
�
�! Pi in G1. After

adding all such edges, we remove the vertex P [recX: P=X].

We will illustrate this algorithm on process Ex, by following the steps (iv) to

(i) from Example 3.6, that describe its recursive decomposition:

(iv) Subprocess X

VX = fXg, EX = ;.

(iii) Subprocess XkX
VXkX = fXg, EXkX = ;.

(ii) Subprocess e:(XkX)

Ve:(XkX) = fe:(XkX); Xg, Ee:(XkX) = fe:(XkX)
e
�! Xg.

(i) The original process Ex = recX: e:(XkX)

(a) V1 = frecX: e:(XkX); e:[recX: e:(XkX)]2g, E1 = fe:[recX: e:(XkX)]2
e
�!

recX: e:(XkX)g;
(b) we add the edge recX: e:(XkX)

e
�! recX: e:(XkX), and remove vertex

e:[recX: e:(XkX)]2; the end result is VrecX: e:(XkX) = frecX: e:(XkX)g,

119

St�r��brn�a and Lee

ErecX: e:(XkX) = frecX: e:(XkX)
e
�! recX: e:(XkX)g. In this way, we

obtain a one-vertex graph with a Zeno loop, as pictured in Figure 2.

4.2 Algorithm Correctness

The correctness of the procedure follows from the two lemmas below, which

state that the construction outlined above complies with the de�nition in

Subsection 3.1.

Lemma 4.1 For a process P , all vertices in GP are reachable primes of P ,

i.e. for any Pi 2 VP , Pi 2 Pr(P) and there exists Q and w so that P
w
�! PikQ.

Proof. By induction on structure of P , we will show that all vertices in GP

are reachable primes of P . From the construction it is clear that VP only

contains primes of P , and therefore, it only remains to be checked that these

primes are reachable from P .

(i) Case NIL - obviously true.

(ii) Case X - obviously true.

(iii) Case A : P

If Q is a vertex in GP then by induction hypothesis (IH), P
w
�! Q for

some word w. Clearly, A : P
A
�! P , therefore also A : P

A
�! P

w
�! Q.

(iv) Case e:P is proved as Case (iii).

(v) Case P +Q

Pi is a vertex in GP+Q if it is equal to P + Q, or it is a vertex from
GP (other than P), or it is a vertex in GQ (other than Q); if Pi = P +Q

then it is trivially reachable from itself, and so we need to examine the

other two possibilities.
If Pi belongs to GP , then either Pi 6= P , and then by IH, P

w
�! Pi

which implies that P + Q
w
�! Pi, or Pi = P and there is an incoming

edge to P in the graph GP . Since all vertices in GP are reachable from
P , it means that also P is reachable from itself, and so P

w
�! P = Pi

and therefore P +Q
w
�! Pi. We would use a similar argument for Q.

(vi) Case PkQ

Pi is a vertex in GPkQ if and only if Pi belongs to GP or GQ. By IH it

follows that either P
w
�! Pi or Q

w
�! Pi, hence either PkQ

w
�! PikQ,

or PkQ
w
�! PkPi.

(vii) Case recX: P

Pi is a vertex in GrecX: P if there exists a Q 2 Pr(P), Q 6= P , so that

Pi = Q[recX: P=X]. By IH, such Q would be reachable from P , i.e.
P

w
�! Q, which induces derivation P [recX: P=X]

w
�! Q[recX: P=X].

From the second step in the construction of GrecX: P , we may conclude
that recX: P

w
�! Q[recX: P=X] = Pi, and so Pi is reachable from the

original process recX: P .

120

St�r��brn�a and Lee

2

Lemma 4.2 There is an edge Pi
�
�! Pj in GP if and only if Pi

�
�!P PjkQ,

for some process Q.

Proof. This statement is again proved by induction on the structure.

(i) Case NIL is straightforward as there are no edges in the respective graph.

(ii) Case X is straightforward as there are no edges in the respective graph.

(iii) Case A : P

New edges in the graph GA:P are of the form A : P
A
�! Pi, where

P1k : : :kPk is the maximal decomposition of P into primes. The semantic

rule for action pre�x dictates that A : P
A
�!, and so clearly, A : P

A
�!

PikQ, with Q = P1k : : : kPi�1kPi+1k : : : kPk.

(iv) Case e:P is proved analogously to Case (iii).

(v) Case P +Q

Any new edge in the graph GP+Q is P + Q
�
�! Pi, which is induced

either by P
�
�! Pi in GP , or Q

�
�! Pi in GQ. Since induction hypothesis

holds for both, we can assume existence of a transition P
�
�! PikR, or

analogously starting from Q. By the semantic rule for Choice, we can
conclude that in either case, P +Q

�
�! PikR.

(vi) Case PkQ is straightforward as there are no new edges in the graph GPkQ.

(vii) Case recX: P
We will start from the assumption that P

�
�! Q in GP if and only if

there exists a transition P
�
�! QkR generated by de�nition of recX: P .

Now, an edge recX: P
�
�! Q[recX: P=X] in GrecX: P relates back to

the edge P
�
�! Q in GP , and an auxiliary edge P [recX: P=X]

�
�!

Q[recX: P=X] in the intermediate graph. From the induction hypothe-
sis, we have that P [recX: P=X]

�
�! Q[recX: P=X]kR[recX: P=X] is a

transition generated by recX: P , and from the operational rule for recur-
sion we can conclude that recX: P

�
�! Q[recX: P=X]kR[recX: P=X].

2

Now we have validated that a Zeno cycle in a graph constructed in the above

way represents a Zeno trace that can be derived from the original process (see

Theorem 3.8).

4.3 Algorithm Complexity

The overall complexity of the algorithm depends on its two parts: graph

construction and Zeno-cycle search. We will express it as a function of process
size, which will be determined by the sum of the number of all operator and

variable occurrences.

121

St�r��brn�a and Lee

For a process of size n, the number of vertices in the completed graph is

at most n: in each recursive step we add at most one vertex, and the number

of steps corresponds to the number of operators and variable occurrences.

Clearly, we can then bound the number of edges by n2, even though a more

subtle analysis would probably yield a considerably smaller result. Even if we

consider the worst case, i.e. the complete graph on n vertices, the construction

will be quadratic in n.

In order to search a graph GP of process P for Zeno cycles, we will em-

ploy the depth-�rst-search technique ([5]). Several searches of the graph will

be carried out, with initial vertices being all primes Pi in the decomposition

of P . The running time of depth-�rst search is linear in size of the graph,

expressed as the sum of number of vertices and edges, which is O(n2) here.

From these observations we can conclude that the total complexity of the pro-

posed algorithm, comprising both graph construction and Zeno-cycle search,

is O(n2).

5 Adding Restriction

In this section, we will add the restriction operator PnF , where F is a �nite
set of events, and modify the graph construction so that we can identify some
Zeno behavior as previously. The transition rule for restriction is described

below:

(Res)
P

e
�! P 0; e; �e =2 F

PnF
e
�! P 0nF

If we want to be able to decompose the initial process into primes as before,
we need to �nd a way to handle the restriction operator. The approach that

we have chosen is to keep restrictions as extra information, and work with
pairs (Q, F), where Q is a prime of some initial process P that occurs in
the de�nition of P within restriction context F . The graph construction is

modi�ed to re
ect this fact, and works as follows:

(i) Case (NIL; F)

The set of vertices is VG = f(NIL; F)g, and there are no edges in the

graph induced by this vertex, i.e. EG = ;.

(ii) Case (X;F)

The set of vertices is VG = f(X;F)g, and there are no edges in the

graph induced by this vertex, i.e. EG = ;.

(iii) Case (A : P; F)

Assuming that we already have computed the graph for (P; F), we will

add to it the vertex (A : P; F) with edges (A : P; F)
A
�! (Pi; F), where

P1k : : :kPk is the maximal decomposition of P into subprocesses w.r.t.

parallel composition.

122

St�r��brn�a and Lee

(iv) Case (e:P; F)

Analogously to (iii), we will add to the graph de�ned by (P; F) the ver-

tex (e:P; F) with edges (e:P; F)
e
�!G (Pi; F), if e; �e =2 F and P1k : : : kPk

is the maximal decomposition of P into subprocesses w.r.t. parallel com-

position.

(v) Case (P +Q;F)

Assuming that GP , resp. GQ, are the graphs determined by (P; F),

resp. (Q;F), the graph G for (P +Q;F) is created as a union of GP and

GQ, where a new vertex (P + Q;F) is added, and vertices (P; F) and

(Q;F) removed together with all outgoing edges (under the condition

that there are no incoming edges to (P; F) or (Q;F)). There will be a

new edge (P + Q;F)
�
�! (Pi; E) in G, if and only if there is an edge

(P; F)
�
�! (Pi; E) in GP , or (Q;F)

�
�! (Pi; E) in GQ.

(vi) Case (PkQ;F)

The graph G for the process (PkQ;F) is taken to be a union of GP

and GQ, the respective graphs for (P; F) and (Q;F); no new vertices or

edges are added.

(vii) Case (recX: P; F)

We assume that GP = (VP ; EP) is the graph for (P; F); we will con-
struct G for the pair (recX: P; F) in two steps:
(a) construct G1 by taking the set f(Q[recX: P=X]; F 0) j (Q;F 0) 2 VPg

as vertices, with an edge (Pi[recX: P=X]; Fi)
�
�! (Pj[recX:P=X]; Pj),

if there was an edge (Pi; Fi)
�
�! (Pj; Fj) in GP ;

(b) construct the �nal graphG(recX: P;F) by adding an edge (recX: P; F)
�
�!

(Pi; Fi) whenever there was an edge (P [recX: P=X]; F)
�
�! (Pi; Fi) in

G1, and after adding all such edges, remove the vertex (P [recX: P=X]; F);

(viii) Case (PnE; F)

The graph for (PnE; F) is taken to be the graph for (P;E [F).

We will always initialize the construction with F = ;. We will explain the

algorithm on a process P de�ned as P
df
= recX: (e:Xkf:X)nfeg. The cor-

responding LTS and the constructed graph representation are presented in

Figure 3. For conciseness we will write Q for (e:Xkf:X)nfeg. The algorithm

is initialized with the pair (recX: (e:Xkf:X)nfeg; ;). Then we decompose the

process according to the current top-level operator, and �nally, after having

reached the base case, we go back up, constructing the graph along the way.

(i) We call the algorithm with ((e:Xkf:X)nfeg; ;).

(ii) We make a recursive call to (e:Xkf:X; feg).

(iii) We make two procedure calls for (e:X; feg) and (f:X; feg).

(iv) From (e:X; feg) we call (X; feg); likewise for (f:X; feg).

(v) The base case (X; feg) returns the graph with vertex set V = f(X; feg)g

123

St�r��brn�a and Lee

and edge set E = ;, to both calls.

(iv) For (e:X; feg), the call returns graph with V1 = f(e:X; feg); (X; feg)g

and E1 = ;; for (f:X; feg), we get V2 = f(f:X; feg); (X; feg)g and E2 =

f(f:X; feg)
f
�! (X; feg)g.

(iii) The graph of (e:Xkf:X; feg) is a union of the already constructed graphs:

V = f(e:X; feg); (X; feg); (f:X; feg); (X; feg)g and E = f(f:X; feg)
f
�!

(X; feg)g.

(ii) We keep the graph and pass it to the higher level.

(i) We perform substitution �rst, and obtain these vertices (recX: Q; feg),

(e:recX: Q; feg), (f:recX: Q; feg); then we add the edge (recX: Q; feg)
f
�!

(recX: Q; feg).

recX: Q

f

��

(recX: Q; feg)

f

GG

[e:recX: QkrecX: Q]nfeg

f

��
[e:recX: Qk[e:recX: QkrecX: Q]nfeg]nfeg

��

Fig. 3. Labeled transition system and �nite graph of process P

The resulting graph contains an f loop from and to the initial state, therefore

it will be discovered by DFS. It can be easily observed that this loop indeed
corresponds to an in�nite Zeno trace of the process P .

5.1 Algorithm Correctness and Complexity

For a given process P , we perform a depth-�rst search on the graph G con-

structed for (P; ;). The initial vertices for Zeno cycle search will be all pairs

(Pi; Fi) satisfying the condition that Pi is contained in the maximal decompo-

sition P into subprocesses w.r.t. parallel composition, and there is no vertex

(Pi; Ei) in G with Fi � Ei.

We will utilize a couple of lemmas analogous to the previous section that
will validate the correctness of our procedure. Firstly, we will spell out an

analog of Lemma 4.2.

Lemma 5.1 For a process P and restriction set F , every edge (Pi; Fi)
�
�!

(Pj; Fj) in G(P;F) corresponds to some transition Pi
�
�!P PjkQ, where � =2 Fi

and Fi � Fj.

124

St�r��brn�a and Lee

Proof. The notation (Q;F) captures the fact that Q occurs in P within

restriction context F , and therefore Q
e
�!P R, only if e and �e do not belong

to F . We will prove the claim by structural induction.

(i) Case (NIL; F) is trivial as there is no transition in the corresponding

graph.

(ii) Case (X;F) is trivial as there is no transition in the corresponding graph.

(iii) Case (A : P; F)

We assume that the statement is valid for (P; F). A new edge must be

one of (A : P; F)
A
�! (Pi; F), with Pi contained in the maximal decom-

position P into subprocesses w.r.t. k. Timed actions are not e�ected by

restriction, therefore clearly A : P
A
�! PikQ, where Q is the remaining

part of P . Additionally, A =2 F and F � F .

(iv) Case (e:P; F)

We assume that the statement is valid for (P; F). A new edge must

be one of (e:P; F)
e
�! (Pi; F), with Pi being of the proper form, and

e; �e =2 F . This implies that the transition is possible also in the context
of P , i.e. e:P

e
�! PikQ, and again, F � F .

(v) Case (P +Q;F)
The semantic rule for Choice dictates that any transition of P + Q is

induced by P orQ. The restriction set remains the same, which concludes

this case.

(vi) Case (PkQ;F)
There are no new edges added for this operator, therefore this case is

valid by application of induction hypothesis to (P; F) and (Q;F).

(vii) Case (recX: P; F)
Since the the restriction set remains the same, this case would be proved

analogously to Case (vii) of Lemma 4.2.

(viii) Case (PnE; F)

An edge (Pi; Fi)
�
�! (Pj; Fj) in the graph for (PnE; F) corresponds to

an edge (Pi; F
0
i)

�
�! (Pj; F

0
j) in the graph for (P;E [F). Therefore, by

IH, � =2 F 0
i and F 0

i � F 0
j. Additionally, F 0

i = E [Fi and F 0
j = E [Fj

which in turn implies that � =2 Fi and Fi � Fj.

2

In the graph construction, we may now obtain vertices that are not reachable

from the initial process. However, our algorithm is still correct because the

depth-�rst search only visits those graph vertices that correspond to reachable

subterms of the initial process. That is summed up in the lemma below:

Lemma 5.2 If (P 0; F 0) is a vertex visited in the DFS of graph G for (P; ;)

then there exist Q, E and w so that P
w
�! (P 0kQ)nE, where E � F 0.

This lemma is basically a corollary of the previous Lemma 5.1. Now we can

125

St�r��brn�a and Lee

put these two claims together to obtain the �nal correctness theorem.

Theorem 5.3 Let P be a process de�ned by the syntax above. If the depth-

�rst search algorithm of the graph G(P;;) �nds a Zeno cycle, then P is Zeno.

Proof. A Zeno cycle (P1; F1)
e1
�! (P2; F2)

e2
�! : : : (Pk; Fk)

ek�! (P1; F1) has

the property that F1 � F2 � : : : Fk � F1, i.e. all these sets are equal. We can

relate the graph cycle to a Zeno trace using Lemma 5.2 and 5.1:

(i) there exists a sequence w and Q such that P
w
�! (P1kQ)nE, where

E � F1;

(ii) each edge (Pi; Fi)
ei
�! (Pi+1; Fi+1) in the Zeno cycle translates back to a

transition Pi
ei
�!P Pi+1kQi, where ei =2 Fi.

The initial segment of the Zeno trace that we thus obtain is speci�ed below:

P
w
�! (P1kQ)nE

e1�! (P2kQ1kQ)nE
e2�! (P3kQ2kQ1kQ)nE : : :

ek�!

(P1kQk : : : kQ1kQ)nE
e1�! : : : 2

The overall complexity of this procedure can be estimated as in Subsection

4.3. If we now include the size of restriction sets in the size of an input process
P , then we can again limit the time complexity of graph construction by n,

the size of P , as each recursive step adds at most one vertex and there may
only be n steps.

If we use the worst case scenario and assume our graph to be complete,
then as before, the Zeno-cycle search will be performed in O(n2), which limits
the total complexity.

6 Conclusion

The method presented in this paper enables us to identify some cases of Zeno

processes, by constructing a �nite representation for a limited subclass of
ACSR processes that preserves Zeno property. The algorithm creates a �nite

graph out of a syntactic de�nition of a process and then searches for Zeno

cycles within the graph. If such a cycle is found then the given process can

engage in Zeno behavior.

The condition so far only works one way. We would like to extend it to an

i� characterization by showing that every Zeno trace a process can perform
manifest itself in the respective graph. We believe that this will certainly hold
for the class of processes speci�ed in Section 3. However, it seems that when

synchronization together with restriction (hiding) on events is present, it may

no longer be possible to obtain an i� condition.

Another issue is synchronization of timed actions, that is one of the main

features of ACSR. It seems that a straightforward application of the graph

construction is not feasible, the problem being that whenever timed action

126

St�r��brn�a and Lee

synchronization is performed, all processes within a parallel composition must

carry out a timed action. However, we may have derivations with ever growing

number of parallel components, and clearly this may not be captured within

the �nite graph. Since timed actions are not of much interest in the Zeno

property, we have chosen to ignore the synchronization mechanism, however

this will be a topic of future interest. Other possible themes of future work

might be to examine if a similar method may work for other enriched classes

of processes, such as parametric processes or process algebras with dense time.

References

[1] Alur R. and Dill D.L.: A theory of timed automata. In TCS, 126:183{235, 1994.

[2] Ben-Abdallah H., Choi J.-Y., Clarke D., Kim Y., Lee I., and Xie H.-L.: A Process

Algebraic Approach to the Schedulability Analysis of Real-Time Systems. In

Real-time Systems 15, Kluwer Academic Publishers, 189{219, 1998.

[3] Bornot S., G�ossler G., and Sifakis J.: On the Construction of Live Timed Systems.

In Proceedings of TACAS'00, LNCS 1785, Springer-Verlag, 2000.

[4] Br�emond-Gr�egoire P.: A Process Algebra of Communicating Shared

Resources with Dense Times and Priorities. PhD Thesis, Department of

Computer and Information Science, University of Pennsylvania. Tech. Report

MS-CIS-94-24, 1994.

[5] Cormen T.H., Leiserson C.E., and Rivest R.L.: Introduction to Algorithms.

The MIT Press, McGraw-Hill Book Company, 1990.

[6] Lee I., Br�emond-Gr�egoire P., and Gerber R.: A Process Algebraic Approach

to the Speci�cation and Analysis of Resource-Bound Real-Time Systems. In

Proceedings of the IEEE, 82(1):158{171, 1994.

127

Recent BRICS Notes Series Publications

NS-01-5 Flavio Corradini and Walter Vogler, editors. Preliminary Pro-
ceedings of the 2nd International Workshop on Models for Time-
Critical Systems, MTCS ’01,(Aalborg, Denmark, August 25,
2001), August 2001. vi+ 127pp.

NS-01-4 Ed Brinksma and Jan Tretmans, editors. Proceedings of
the Workshop on Formal Approaches to Testing of Software,
FATES ’01, (Aalborg, Denmark, August 25, 2001), August
2001. viii+156 pp.

NS-01-3 Martin Hofmann, editor. Proceedings of the 3rd International
Workshop on Implicit Computational Complexity, ICC ’01,
(Aarhus, Denmark, May 20–21, 2001), May 2001. vi+144 pp.

NS-01-2 Stephen Brookes and Michael Mislove, editors.Preliminary
Proceedings of the 17th Annual Conference on Mathematical
Foundations of Programming Semantics, MFPS ’01,(Aarhus,
Denmark, May 24–27, 2001), May 2001. viii+279 pp.

NS-01-1 Nils Klarlund and Anders Møller. MONA Version 1.4 — User
Manual. January 2001. 83 pp.

NS-00-8 Anders Møller and Michael I. Schwartzbach.The XML Revo-
lution. December 2000. 149 pp.

NS-00-7 Nils Klarlund, Anders Møller, and Michael I. Schwartzbach.
Document Structure Description 1.0. December 2000. 40 pp.

NS-00-6 Peter D. Mosses and Hermano Perrelli de Moura, editors.Pro-
ceedings of the Third International Workshop on Action Seman-
tics, AS 2000,(Recife, Brazil, May 15–16, 2000), August 2000.
viii+148 pp.

NS-00-5 Claus Brabrand. <bigwig> Version 1.3 — Tutorial. Septem-
ber 2000. ii+92 pp.

NS-00-4 Claus Brabrand.<bigwig> Version 1.3 — Reference Manual.
September 2000. ii+56 pp.

NS-00-3 Patrick Cousot, Eric Goubault, Jeremy Gunawardena, Mau-
rice Herlihy, Martin Raussen, and Vladimiro Sassone, edi-
tors. Preliminary Proceedings of the Workshop on Geometry
and Topology in Concurrency Theory, GETCO ’00,(State Col-
lege, USA, August 21, 2000), August 2000. vi+116 pp.

	BRICS-NS-01-5-err.pdf
	Table of Contents
	Foreword
	Timed Process Algebras
	Petri Nets with Discrete Phase Type Timing: A Bridge Between Stochastic and Functional Analysis
	Extending Timed Automata for Compositional Modeling Healthy Timed Systems
	Non-determinism in Probabilistic Timed Systems with General Distributions
	Towards a Process Algebra for Shared Processors
	Privacy in Real-Time Systems
	Characterizing Non-Zenoness on Real-Time Processes

