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Foreword

The synergy between Logic, Computational Complexity and Programming
Language Theory has gained importance and vigour in recent years, cut-
ting across areas such as Proof Theory, Computation Theory, Applicative
Programming, and Philosophical Logic. Several machine-independent ap-
proaches to computational complexity have been developed, which charac-
terize complexity classes by conceptual measures borrowed primarily from
mathematical logic. Collectively these approaches might be dubbed IM-
PLICIT COMPUTATIONAL COMPLEXITY.

Practically, implicit computational complexity provides a framework for
a streamlined incorporation of computational complexity into areas such as
formal methods in software development, programming language theory.

After previous workshops in Indianapolis (1994), Baltimore (1998), Trento
(1999) and Santa Barbara (2000) the present meeting in Aarhus formed an-
other instalment of a series of workshops on these topics. The broad spectrum
and the quality of submissions shows that the subject has gained maturity
and it is hoped that workshops like this will further contribute to the growth
of the field.

The workshop was open to everyone and no formal refereeing took place;
the present proceedings are intended mainly as a reference for workshop par-
ticipants so as to enable better interaction. It is anticipated that participants
will submit their work to scholarly fora for publication after the workshop.

Many thanks are due to the local organisers Karen Kjær Møller and
Olivier Danvy for all their help; they made my own job a really pleasurable
one. I also would like to thank Neil Jones for offering an invited talk (whose
abstract is included in these proceedings) and the programme committee
consisting of Samson Abramsky, Bruce Kapron, Jean-Yves Marion, Søren
Riis, and Helmut Schwichtenberg for advice and informal quality checks of
submissions.

Martin Hofmann (programme chair)
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Abstract. A typed lambda calculus with recursion in all �nite types is
de�ned such that the �rst order terms exactly characterize the parallel

complexity class NC. This is achieved by use of the appropriate forms of

recursion (concatenation recursion and logarithmic recursion), a rami�ed
type structure and imposing of a linearity constraint.
Keywords: higher types, recursion, parallel computation, NC, lambda

calculus, linear logic, implicit computational complexity

1 Introduction

One of the most prominent complexity classes, other than polynomial time, is
the class NC of functions computable in parallel polylogarithmic time with a
polynomial amount of hardware. This class has several natural characterizations
in terms of circuits, alternating Turing machines or parallel random access ma-
chines, as used in this work. It can be argued that NC is the class of e�ciently
parallalizable problems, just as polynomial time is often viewed as the correct
formalization of feasible sequential computation.
Machine-independent characterizations of computational complexity classes are
not only of theoretical, but recently also of increasing practical interest. Besides

? Supported by the DFG Graduiertenkolleg \Logik in der Informatik"
?? Supported by the DFG Emmy Noether-Programme under grant No. Jo 291/2-1

? ? ? The hospitality of the Mittag-Le�er Institute in the spring of 2001 is gratefully

acknowledged.
y Supported by a Marie Curie fellowship of the European Union under grant no. ERB-
FMBI-CT98-3248
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indicating the robustness and naturality of the classes in question, they also
provide guidance for the development of programming languages [10].

The earliest such characterizations, starting with Cobham's function algebra
for polynomial time [8], used recursions with explicit bounds on the growth of
the de�ned functions. Function algebra characterizations in this style of parallel
complexity classes, among them NC, were given by Clote [7] and Allen [1].

More elegant implicit characterizations, i.e., without any explicitly given bounds,
but instead using logical concepts like rami�cation or tiering, have been given
for many complexity classes, starting with the work of Bellantoni and Cook [4]
and Leivant [13] on polynomial time. In his thesis, Bellantoni [2] gives such a
characterization of NC using a rami�ed variant of Clote's recursion schemes.
A di�erent implicit characterization of NC, using tree recursion, was given by
Leivant [14]. Other parallel complexity classes, viz. parallel logarithmic and poly-
logarithmic time, were given implicit characterizations by Bellantoni [3], Bloch
[6] and Leivant and Marion [15].

In order to apply the approach within the functional programming paradigm,
one has to consider functions of higher type, and thus extend the function alge-
bras by a typed lambda calculus. To really make use of this feature, it is desirable
to allow the de�nition of higher type functions by recursion. Higher type recur-
sion was originally considered by G�odel [9] for the analysis of logical systems.
Systems with recursion in all �nite types characterizing polynomial time were
given by Bellantoni et al. [5] and Hofmann [11], based on the �rst-order system
of Bellantoni and Cook [4].

We de�ne an analogous system that characterizes NC while allowing an appro-
priate form of recursion, viz. logarithmic recursion as used by Bellantoni [2], in
all �nite types. More precisely, our system is a typed lambda calculus which al-
lows two kinds of function types, denoted �( � and ��( � , and two sorts of
variables of the ground type �, the complete ones in addition to the usual ones,
which are called incomplete for emphasis. A function of type �� ( � can only
be applied to complete terms of type �, i.e., terms containing only complete free
variables.

It features two recursion operators LR and CR, the latter corresponding to Clote's
[7] concatenation recursion on notation, which can naturally only be applied to
�rst-order functions. The former is a form of recursion of logarithmic length
characteristic of all function algebra representations of NC, and here can be
applied to functions of all �-free types. The function being iterated as well as
the numerical argument being recurred on have to be complete, i.e., the type of
LR is �( �(��( �( �)(��( � for � �-free.

The crucial restriction, justifying the use of linear logic notation, is a linearity
constraint on variables of higher types: all higher type variables in a term must
occur at most once.

The main new contribution in the analysis of the complexity of the system is a
strict separation between the term, i.e., the program, and the numerical context,
i.e., its input and data. Whereas the runtime may depend polynomially on the
former, it may only depend polylogarithmically on the latter.
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To make use of this conceptual separation, the algorithm that unfolds recursions
computes, given a term and context, a recursion-free term plus a new context . In
particular, it does not substitute numerical parameters, but only uses them for
unfolding; in some cases, including the reduction of CR, it extends the context.
This way, the growth of terms in the elimination of recursions is kept under
control. In earlier systems that comprised at least polynomial time this strict
distinction was not necessary, since the computation time there may depend
on the input superlinearly. Note that any reasonable form of computation will
depend at least linearly on the size of the program.

As opposed to the �rst-order system of Bellantoni [2], the numerical argument
that governs a concatenation recursion must be complete in our system, the
type of CR is (� ( �) ( �� ( �. The reason is that the amount of hardware
required depends exponentially on the number of CR in a term, thus we must not
allow duplications of this constant during the unfolding of LR. The only way to
avoid this is by the more restrictive typing. This weaker form of concatenation
recursion nevertheless su�ces to include all of NC, when the set of base functions
is slightly extended.

A further feature of this work is the usage of a tree data structure to store nu-
merals during the computation. Whereas trees are used as the principal data
structure in other characterizations of parallel complexity classes [14, 15], our
system works with usual binary numerals, and trees are only used in the imple-
mentation.

2 Formal De�nition of the System

We use simple types with two forms of abstraction over a single base type �, i.e.
our types are given by the grammar

�; � ::= � j �( � j ��( �

As the intended semantics for our base type are the binary numerals we have
the constants 0 of type � and s0 and s1 of type � ( �. Moreover we add the

constants half, len of type � ( �, bit, drop of type � ( � ( � and sm of type
�( �( �( � for the corresponding base functions. We allow case-distinction
for arbitrary types, so we have a constant d� of type �( �( �( � for every
type �. Growth is added to the system via the constant #, recursion via the
constant LR and parallelism via the constant CR. Their types are

# : ��( �

CR : (�( �)(��( �

LR� : �( �(��( �( �)( ��( � � �-free

Terms are built from variables and constants via abstraction and typed appli-
cation. We have incomplete variables of every type, denoted by x, y, : : : and
complete variables of ground type, denoted by x, y, : : : . All our variables and

3



terms have a �xed type and we add type superscripts to emphasize the type: x�,
x�, t� . So terms are given by the grammar

s; t; : : : ::= c j x� j x� j (�x�:t� )
�(�

j (�x�:t� )
��(�

j
�
t�(� s�

��
j
�
t��(� s�

��

where in the last case we require s to be complete; a term is called complete if
all its free variables are. It should be noted that, although we cannot form terms
of type ��( � with � 6= � directly via abstraction it is still important to have
that type in order to express, for example, that the �rst argument of LR must
not contain free incomplete variables.
In the following we omit the type subscripts at the constants d� and LR�

if the type is obvious or irrelevant. Moreover we identify �-equal terms. As
usual application associates to the left. A binary numeral is either 0, or of the
form si1(: : : (sik(s10))). The semantics of � as binary numerals (rather than bi-
nary words) is given by the conversion rule s0 0 7! 0. In the following de�ni-
tions we identify binary numerals with the natural number they represent. The
base functions get their usual semantics, i.e. we add conversion rules lenn 7!

dlog2(n+ 1)e =: knk, drop nm 7!
�

n
2kmk

�
, half n 7!

�
n

2dknk=2e

�
, bit n i 7!

�
n
2i

�
mod

2, smwmn 7! 2kmk�knk mod 2kwk. Moreover, we add the conversion rules

d� 0 7! �x� y� : x

d� (sin) 7! �x�0 x
�
1 : xi

#n 7! s0
knk2(s1 0)

CRh 0 7! 0

CRh (si n) 7! d(�(�) (h (sin)) s0 s1 (CRhn)

LR g h 0 7! g

LR g hn 7! hn (LR g h (half n))

Here we always assumed that n,m and si n are binary numerals, and in particular
that the latter does not reduce to 0. In the last rule, n has to be a binary numeral
di�erent from 0.

As usual the reduction relation is the closure of 7! under all term forming opera-
tions and equivalence is the symmetric, re
exive, transitive hull of the reduction
relation. As all reduction rules are correct with respect to the intended semantics
and obviously all closed normal terms of type � are numerals, closed terms t of
type � have a unique normal form that we denote by tnf .
As usual, lists of notations for terms/numbers/ : : : that only di�er in successive
indices are denoted by leaving out the indices and putting an arrow over the
notation. It is usually obvious where to add the missing indices. If not we add a
dot wherever an index is left out. Lists are inserted into formulae \in the natural
way", e.g.,

��!
hm� = hm1; : : : ; hmk and x

�!
t = ((x t1) : : : tk) and jgj +

�!
jsj =

jgj+ js1j+ : : :+ jskj.
As already mentioned, we are not interested in all terms of the system, but only
in those ful�lling a certain linearity condition.
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De�nition 1. A term t is called linear, if every variable of higher type in t

occurs at most once.

3 Soundness

De�nition 2. The length jtj of a term t is inductively de�ned as follows: For a

variable x, jxj = 1, and for any constant c other than d, jcj = 1, whereas jdj = 3.
For complex terms we have the usual clauses jr sj = jrj+ jsj and j�x:rj = jrj+1.

The length of the constant d is motivated by the desire to decrease the length
of a term in the reduction of a d-redex.

De�nition 3. For a list �!n of numerals, de�ne j�!n j := max(
�!
jnj ).

De�nition 4. A context is a list of pairs (x; n) of variables of type � and nu-

merals, where all the variables are distinct. If �!x is a list of distinct variables of

type � and �!n a list of numerals of the same length, then we denote by �!x ;�!n the

context
���!
(x; n) .

De�nition 5. For every symbol c of our language and term t, ]c(t) denotes the
number of occurrences of c in t. For obvious esthetic reasons we abbreviate ]#(t)
by ](t).

De�nition 6. A term t is called simple if t contains none of the constants #,

CR or LR.

By a simple induction on jtj we can show an upper bound for the length of
numerals:

Lemma 1. Let t be a simple, linear term of type � and �!x ;�!n a context, such

that all free variables in t are among �!x . Then for t� := t[�!x := �!n ]
nf

we have

jt�j � jtj+ j�!n j.

Data Structure

We represent terms as parse trees, ful�lling the obvious typing constraints. The
number of edges leaving a particular node is called the out-degree of this node.
There is a distinguished node with in-degree 0, called the root. Each node is
stored in a record consisting of an entry cont indicating its kind, plus some
pointers to its children. We allow the following kinds of nodes with the given
restrictions:

{ Variable nodes representing a variable x. Every variable has a unique name
and an associated register R[x].

{ Abstraction nodes �x representing the binding of the variable x.
{ For each constant c, there are nodes representing the constant c.
{ Application nodes @ representing the application of two terms. The obvious
typing constraints have to be ful�lled.

5



{ Auxiliary nodes �i representing the composition of type one. These nodes
are labeled with a natural number i, and each of those nodes has out-degree
either 2 or 3. They will be used to form 2/3-trees (as e.g. described by
Knuth [12]) representing numerals during the computation. We require that
any node reachable from a ��-node is either a �� node as well or one of the
constants s0 or s1.

{ Auxiliary nodes �0 representing the identi�cation of type-one-terms with
numerals (via \applying" them to 0). The out-degree of such a node, which is
also called a \numeral node", either is zero, in which case the node represents
the term 0, or the out-degree is one and the edge starting from this node
either points to one of the constants s0 or s1 or to a �� node.

{ Finally, there are so-called dummy nodes � of out-degree 1. Dummy nodes
serve to pass on pointers: a node that becomes super
uous during reduction
is made into a dummy node, and any pointer to it will be regarded as if it
pointed to its child.

A tree is called a numeral if the root is a numeral node, all leaves have the same
distance to the root and the label i of every �i node is the number of leaves
reachable from that node. By standard operations on 2/3-trees it is possible in
sequential logarithmic time to

{ split a numeral at a given position i.

{ �nd out the i'th bit of the numeral.

{ concatenate two numerals.

So using �0 and �� nodes is just a way of implementing \nodes" labeled with a
numeral allowing all the standard operations on numerals in logarithmic time.
Note that the length of the label i (coded in binary) of a �i node is bounded by
the logarithm of the number of nodes.

Normalization Algorithms and Their Complexity

Lemma 2. Let t be a simple, linear term of type � and �!x ;�!n a context such that

all free variables in t are among the �!x . Then the normal form of t[�!x := �!n ]
can be computed in time O(jtj � log j�!n j) by O(jtj � j�!n j) processors.

Proof. Explicitly de�ne and analyze an algorithm noting that that linear beta-
redexes can be reduced via alternating pointers and all the relevant copying
operations and computation of the base functions can be performed on our 2/3-
tree representation of numerals in time O(log j�!n j) by O(j�!n j) processors. ut

Let f(n) . g(n) abbreviate f(n) � (1 + o(1))g(n), i.e., lim supn!1
f(n)
g(n) � 1.

Lemma 3. Let t be a linear term of �-free type and �!x ;�!n a context with all free

variables of t[�!x := �!n ] incomplete. Then there are a term simp(t;�!x ;�!n ) and

a context �!y ;�!m such that simp(t;�!x ;�!n )[�!y := �!m ] is simple and equivalent to

6



t[�!x := �!n ], and which can be computed in time . 2]LR(t)�jtj�(2](t)�log j�!n j)]LR(t)+2

by . jtj � j�!n j
2](t)(]CR(t)+]LR(t)+2) processors, such that

jsimp(t;�!x ;�!n )j . jtj �
�
2](t) � log j�!n j

�]LR(t)
and j�!m j . j�!n j

2](t)
:

Proof. By induction on ]LR(t), with a side-induction on jtj show that the follow-
ing algorithm does it:

By pattern matching, determine in time O(jtj) the form of t, and branch accor-
ding to the form.

{ If t is a variable or one of the constants 0 or d, then return t and leave �!x ;�!n
unchanged.

{ If t is c�!s , where c is one of the constants si, drop, bit, len or sm then
recursively simplify �!s , giving

�!
s� and contexts �!yj ;�!mj , and return c

�!
s�

and
�!�!y ;

�!�!m .

{ If t is d r�!s , then simplify r giving r0 and �!y ;�!m . Compute the numeral
r� := r0[�!y := �!m ]

nf
, and reduce the redex d r�, giving t0, and recursively

simplify t0�!s with context �!x ;�!n .
{ If t is # r then simplify r giving r0 and �!y ;�!m . Compute the numeral r� :=

r0[�!y := �!m ]
nf
, and return a new variable y0 and the context y0; 2jr

�j2 .

{ If t is CRh r, then simplify r giving r0 and �!y ;�!m , and compute the numeral
r� := r0[�!y := �!m ]

nf
.

Spawn jr�j many processors, one for each leaf of r�, by moving along the
tree structure of r�. The processor at bit i of r� simpli�es h z in the context
�!x ; z;�!n ;

�
r�=2i

�
, giving a term hi and context �!yi ;�!mi , then he computes

h�i := hi[yi := mi]
nf , retaining only the lowest order bit bi.

The bits
�!
b are collected into a 2/3-tree representation of a numeral m,

which is output in the form of a new variable z and the context z;m.
{ t is LR g hm�!s then simplifym, givingm0 and �!xm ;��!nm . Normalizem0 in the
context �!x ;�!xm ;�!n ;��!nm , giving m�. Form k numerals mi = Halfi(m�) and

sequentially simplify
���!
hm� , giving

�!
h0 . (Of course, more precisely simplify hx

for a new variable x in the context extended by x;mi.) Then form the term

t0 := h00(h
0
1 : : : (h

0
k g))

�!s

and simplify it.
{ If t is of the form �x:r then recursively simplify r.

{ If t is of the form (�x:r) s�!s and x occurs at most once in r then recursively
simplify r[x := s]�!s .

{ If t is of the form (�x:r) s�!s and x occurs several times in r, then simplify
s giving s0 and a context �!y ;�!m . Normalize s0 in this context giving the
numeral s�. Then simplify r�!s in the context �!x ; x;�!n ; s�. ut

Theorem 1. Let t be a linear term of type
�!
�� ( �. Then the function denoted

by t is in NC.
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Proof. Let �!n be an input, given as 2/3-tree representations of numerals, and �!x
complete variables of type �. Using Lemma3, we compute t0 := simp(t�!x ;�!x ;�!n )

and a new context �!y ;�!m with jt0j � (log j�!n j)O(1) and j�!m j � j�!n j
O(1)

in time

(log j�!n j)O(1) by j�!n j
O(1)

many processors.

Then using Lemma 2 we compute the normal form t0[�!y := �!m ]
nf
in time O(jt0j �

log j�!m j) = (log j�!n j)O(1) by O(jt0j j�!m j) = j�!n j
O(1)

many processors.
Hence the function denoted by t is computable in polylogarithmic time by poly-
nomially many processors, and thus is in NC. ut

4 Completeness

Bellantoni [2] de�nes a two-sorted function algebra 2clo characterizing NC,
which is an implicit variant of Clote's function algebra A [7] that characterizes
NC by concatenation recursion and logarithmic recursion with explicit bounds.
2clo is a class of functions of two sorts of arguments, the normal inputs written
to the left of a separating semicolon, and the safe inputs written to the right. It
is de�ned to be the smallest class of functions that contains the constant zero,
projections �m;n

j (x1; : : : ; xm;xm+1; : : : ; xm+n) = xj, successors Si, conditional

D, bit test Bit, binary length Len, smash #0(w; a; b) = 2kak�kbk mod 2kwk
2

and is
closed under the following operations:

{ Safe composition: from g, h and k de�ne f(�!x ;�!y ) := g(
�!
h (�!x ; ) ;

�!
k (�!x ;�!y )).

{ Concatenation recursion: from h de�ne f by

f(�!x ; 0;�!a ) = 0

f(�!x ; Si(; b);�!a ) = Sh(�!x ;b;�!a )mod2(; f(�!x ; b; a)) for Si(; b) > 0

{ Log recursion: from g and h de�ne f by

f(0;�!x ;�!a ) = g(�!x ;�!a )

f(y;�!x ;�!a ) = h(y;�!x ;�!a ; f(Half(; y);�!x ;�!a )) for y > 0

It is proved in Chapter 7 of Bellantoni's thesis [2] that this function algebra
characterizes NC:

Theorem 2 (Bellantoni [2]). A function f(�!x ) is in NC if and only if f(�!x ; ) 2
2clo.

We now de�ne a modi�ed version of the class 2clo, denoted by 2nc, as the
smallest class that contains all the base functions of 2clo and additionally
the functions Half and Drop with Half(; a) =

�
a=2dkak=2e

�
and Drop(; a; b) =�

a=2kbk
�
, and is closed under safe composition and log recursion and the following

variant of concatenation recursion:

f(0;�!x ;�!a ) = 0

f(Si(; y);�!x ;�!a ) = Sh(y;�!x ;�!a )mod2(; f(y;�!x ;�!a )) for Si(; y) > 0 :

where the input that governs the recursion has to be normal.
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Lemma 4. A function f(�!x ) is in NC if and only if f(�!x ; ) 2 2nc.

Proof. We show how to modify the proof of the corresponding proposition for
2clo in [2]. The proof of the \if" direction can be left unchanged, one only has
to observe that the functions Half and Drop are in NC, and that the Bounding
Lemma still holds.
For the \only if" part, one has to show that for every function f(�!x ) in NC there
is a function f 0(w;�!x ) in 2nc and a polynomial pf such that f 0(w;�!x ) = f(�!x )

for all w with kwk � pf (
��!
kxk ). This is proved by induction on the de�nition of

f in Clote's function algebra A. ut

By embedding 2nc in the obvious way we can prove that our term system can
denote all functions in NC.

Theorem 3. For every function f(�!x ;�!y ) in 2nc, there is a closed linear term

tf of type ��!� ( �!� ( � that denotes f .

From Theorems 3 and 1 we immediately get our main result:

Corollary 1. A number-theoretic function f is in NC if and only if it is denoted

by a linear term of our system.
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1 Introduction

We wish to present here a trans�nite hierarchy PAL� (� < �0):

(a) based, at limits, on a constructive and unlimited operator;

(b) using, at successors, a form of predicative or safe recursion;

(c) fast enough to capture the class E� of all functions provably total in Peano Arithmetic;

(d) slow enough to capture classes like DTIMEF(f(n)) for f(n) = nc or f(n) = nc(n);

(e) in a way consistent with the spirit of Implicit Computational Complexity (ICC).

To this purpose, let us consider a computing device R3 with a read-only input register I, a

scratch register S, and a program register P . Unlike von Neumann architecture, no 
ow of

information between S and P is allowed. P decides what has to be carried-out on S, while

changes in P are determined by the, so to say, hardware of R3.

Let B denote the class of all recursion-free Lisp programs in which either argument of each

constructor is a constant. The programs for R3 are the closure of B under iteration for

jIj times. Let PALc+1 denote the programs de�ned by a single iteration of a program

in PAL�c. We have DTIMEF(nc) � PALc � DTIMEF(nc+1). Hence PL := PAL<! is a

syntactic resource-free characterization of poly-time.

If, under certain conditions, R3 is allowed to copy some information from S into P , we obtain

a hierarchy PAL� such that PAL<�0 = E�. Its elements are programs of the form

g ite (g 2 PAL��) if � = � + 1; g � (g 2 PL) if � is the limit �:

Assume that all data y have been associated with an ordinal o[y] < �0, and that codes f �; ��

have been assigned to the programs f and the ordinals �. The behaviour of R3 when an
input x is stored in both I and S, and when the code for a program is in P , is described by

whileP not empty begin

X := head [P ];

if X = g� and g 2 B then S := g[S];

if X = (g ite)
� then P := (g�; : : : ; g�; tail [P ]); (jIj copies of g�)

if head [P ] = �� and o[S] < � then begin P := (tail [S]; tail [P ]); S := head [S] end

end

end

if P is empty then return S else return ill-syntax .
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In other words, for all f 2 PAL� we have (fxg is the program coded by x)

f [x] = fg[x]g[x] for some g 2 PL such that fg[x]g 2 PAL<�: (1)

Subrecursive hierarchies Z� are usually de�ned in two steps, both disagreeing with the ICC

philosophy. A trans�nite sequence of hierarchy generating functions Z� is introduced �rst

in an impredicative and/or unconstructive way. Classes Z� are then de�ned by closure of

Z<� +Z� under limited PR and substitution. At limits, Z� is obtained by a diagonalization

scheme Z�(n) := Z�[n](n), which is an act of mere de�nition; in the sense that the values

Z�[n](n) are not assumed to be generated uniformly in n, and, therefore, existence of an

algorithm for Z� is not implied. At successors, there are four possibilities: outer vs. inner

recursion; and safe vs. full iteration. According to the former distinction we get respectively

O�+1(n) := g(O�(n)); I�+1(n) := I�(g(n));

by safe iteration we obtain B�+1(n) := Bn
�(n), while full iteration gives all variants of the

fast (extended Grzegorczyk) hierarchy E�+1(n) := En
�(n). Let us say that an algebra is local

if, unlike �-calculus or full Lisp, it doesn't access to its whole arguments. If we take as Z0

a local function like the successor or a program in PAL0, O and I give the slow-growing

and the Hardy hierarchies G� and H�. The latter is closer to the fast-hierarchy than to the

slow one, since G�0 grows like H!3 , while E� grows like H!�. By over-rating the in
uence of

adopting, in the outer de�nition of B�+1, a sequence of step-functions B� monotonic in �,

one might guess that B�, if not fast-growing like H�, is at least much faster than G�. So it

is not: we have B�(n) = G!�(n); hence G� is as close to B� as H� is close to E�.

In terms of ICC, one would prefer the outer hierarchies, which are point-wise, in the sense

that the value of O� at n depends on the value at n of some previous O�, not on values at

points m 6= n. However E� is too large for them. Indeed, we have H<�0 = E<�0 = E�, while:
(1) an ordinal lying midway between �0 and Fefermann's �0 is needed for a hierarchy covering

E<! (= PR functions, see [1]); (2) the whole �0 is needed for E!; (3) we get G<H = E� at the

not-countable Howard ordinal H (see remark above on unconstructivity of Z�).

To introduce our hierarchies (in this paper and elsewhere), we reverse the order of the two

steps above. PAL� is de�ned �rst by means of unlimited and constructive operators; the

hierarchy-generating sequences come afterwards, just to have an a posteriori estimate of

complexity and size. In order to achieve our initial goal (d), by ful�lling at the same time

conditions (b) and (e), at limits we need a pointwise operator; but, in this case, demand (a)

and promise (c) appear to be incompatible. A way to speed-up the functions growth at limits,

while keeping them safe at successors is obtained by clause \fg[x]g 2 Z� for some � < � "

in equation (1) above. It replaces the stronger condition fg[x]g 2 Z�[x] previously used in

Caporaso et al. [1, 2001] (by analogy with Z�(n) = Z�[n](n)).

We owe to Weiermann [4, 1999] the idea that one can speed-up an outer hierarchy by

altering the diagonalization scheme. We look forward to the workshop for an opportunity

of comparing our machinery with the beautiful intrinsic characterizations of Poly-time, E3
and E� in Leivant [2, 1995] and [3, 2001].

2
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2 Another characterization of Polytime

Note 1 Lisp data consist of S-expressions, i.e. words u; : : : ; z of the form (y � z), where

y and z are S-expressions or atoms a; b; a1; : : : (symbols from a given �nite alphabet AT,

denoted by sequences of capital letters). All S-expressions of the form (xn �(: : : (x1 �NIL) : : :))

for n � 0 are called lists, and denoted by (xn; : : : ; x1). For n = 0 we have the empty list

( ) which equals the atom NIL . We write Ac for the list (A; : : : ; A) (c times). In particular,

m := Zm is the unary numeral for m. The atom T is used for the truth-value true. The

length jxj of x is the number of its atoms.

We now de�ne a class of programs for the abstract machine R3 outlined in the Introduction.

De�nition 2 The basic programs are the following de/con-structors and test

ca[a] = cd[a] := a; ca[(x � y)] := x; cd[(x � y)] := y

consLy[x] := (y � x); consRy[x] := (x � y); eqa[x] := T i� x = a:

PAL0 is the closure of the basic programs under the constructs

g h sbst e g h cond e; g; h 2 PAL0:

Assume de�ned all PAL��. PAL�+1 is the class of all programs of the form

h g ite sbst (h 2 PAL0; or absent together with sbst; g 2 PAL��):

The class of all Poly-time Lisp programs is given by PL := PAL<!.

Notation 3 By expressions of the form x y z _) u w we mean that a number n of applications

of the productions below take the contents x; y; z of the registers I; S; P of R3 into x; u; w.

For n = 1, we omit the dot.

De�nition 4 The interpretation of PL is given by (z possibly absent, together with the

parentheses, on both sides)

1 x y (f �; z) ) f [y] z f is a basic program

2 x y (g h sbst�; z) y (g�; h�; z)

3:1 x y (e g h cond�; z) y (g�; z) if x y (e�; z) _) T z

3:2 x y (e g h cond�; z) y (h�; z) otherwise

4 x y (g ite�; z) y (g�; : : : ; g�; z) jxj copies of g�.

Notation 5 In principle, f [x] = y means that for all z we have x; x; (f �; z) _) x; y; z. In

practice, we let the context decide whether f [x] denotes the output of program f by input

x, or the function computed by the program f .

To improve readability we often write g[h[x]] instead of g h sbst[x].

f c is the program built-up from f by c� 1 sbst's, and f itec is the one built-up by c ite's.

3
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3 Another characterization of the provable functions

Notation 6 �; �; 
; Æ; �; �; � will denote ordinals below �0; in particular, �; �; � are limits.

We write � =NF � + 
 (we write � =nf 
 + �) when � is the highest (lowest) term of the

Cantor form for �, and 
 � 0 is the sum of the other terms.

Given a function G(X), de�ne G " 0[X] := X;G " n + 1[X] := G[G " n[X]]. We write

G "
�
m[X] = Y when we have G " n[X] = Y for some n � m.

De�nition 7 PAL� is the class obtained by adding to PAL�<� all programs of the form

h g � sbst (h 2 PAL0 or absent; g 2 PL):

De�ne the class of all PA Lisp programs by PAL := PAL�<�0.

De�nition 8 1. The codes f � and �� for the program f and the ordinal � are given by

ca� := (CA); cd� := (CD); eq�y := (Q; y; EQ);

consL=Ry
� := (Q; y; COL=R); g h sbst� := (g�; h�; SB); (g ite)� := (g�; IT );

e g h cond := (e�; g�; h�; CND); (g �)� := (g�; ��)

0� := NIL ; 1� := U ;

(!�)� := ((); ��) for � > 0; �� := (��; 
�) for � =NF � + 
:

Exceptions. f c � is (f �; SBc�1) and f itec � is (f �; IT c) (cf. Note 1 for Ac).

De�ne jf j := jf �j and j�j := j��j.

2. Assign an ordinal o[x] < �0 to every x by

o[NIL] := 0;

o[x] := 1 x is not a list, or its form is (Q; y);

o[(x1; : : : ; xn)] := o[x1] + : : :+ o[xn] xi 6= NIL for all i;

o[(x1; : : : ; xn)] := !o[x1]+:::+o[xn] otherwise:

Note 9 We have o[��] = � and o[f ] < ! for all f 2 PL. Hence o[(f �)�] = �.

De�nition 10 �[x] is the result of dropping the leftmost NIL (if any) occurring in x. �[x;�]

is � " i[x] for i := (min j � 0)(� " j[x] < �).

Transfer of information from S into P is associated with the PAL-programs.

De�nition 11 The interpretation of PAL is given by (z and parentheses like in Def. 4)

5 x y ((g �)�; z) ) y (g�; ��; z)

6 x (u; w) (��; z) u (�[w; �]; z):

4
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Note 12 1. The standard assignment of fundamental sequences �[n], the Hardy and the

Grzegorczyk extended hierarchy-generating functions H�(n) and E�(n) are de�ned by

!�+1[n] := !�n; !�[n] := !�[n]; (�+ !�)[n] := �+ !�[n] if � � !�;

H0(n) := n; H�+1(n) := H�(n+ 1); H�(n) := H�[n](n);

E1(n) := n2 + 2; E�+1(n+ 1) := E�(E�+1(n)); E�(n) := E�[n](n) E�+1(0) := 2:

2. E� (! � �) is the closure of E�<� under substitution and limited PR.

Theorem 13 1. DTIMEF(nc) � PALc � DTIMEF(nc+1) (0 < c < !).

2. DTIMEF(H�(n)) � PAL� � E� (3 � � < �0).

Hence a function F (x) is computable in polynomial time (is provably total in PA) i� it is

computed by a program belonging to PL (belonging to PAL).

Proof. The left inclusions by Lemmas 17 and 18; the right ones by Lemma 21.

Note 14 The spread under part 1 can be eliminated if we replace PAL0 with another

algebra (see [1]); the one under part 2 can be reduced by means of a more accurate analysis.

4 Simulation of TM's

Notation 15 1. We'll reatrict ourselves to many-tapes TM 's M over the alphabet AT+ :=

AT
S
f�; (; )g. M [x1; : : : ; xn] = z [� ] means that M , by input the x's on tapes 1; : : : ; n, writes

its output z in tape n + 1 within � steps, and enters an endless loop over last symbol of z.

Sometimes we omit the part [� ].

2. Given a coding M� of the TM's into the lists, Mu is the TM coded by u (that is, M�

u = u).

Note 16 The following assertions are proved in [1]:

1. If runtime for M [x; y] is in O(nc) (c > 0), then there is Mu whose runtime is in O(nc)

too, and such that Mu[y] =M [u; y] (a variant of the recursion theorem).

2. A coding of the instantaneous descriptions (ID) of any given TM M into the lists can be

de�ned, together with a function nxM [x] 2 PAL0 taking such ID's into the next ones.

Moreover, a quadratic time TM NX can be de�ned, which returns the code for function nxM
uniformly in M�, in the sense that for all x we have NX[x] = nxMx

�.

3. A quadratic time TM FS can be de�ned such that FS[(x; ��)] = (x; �[2jxj]�).

Lemma 17 1. For all f 2 PAL0 we have f itec[x] = f " nc[x] (n := jxj).

2. M [x] = y [knc] implies nxkM itec[x] = y (see Notat. 5 for fk and itec).

3. Hence we have DTIMEF(nc) � PALc.

5
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Proof. 1. Induction on c, using prod. 4 and the I.H. for jxj times.

2. By part 1, with nxkM as the f .

3. If we have M [x] = F (x) [kjxjc] for some F and M , then, by part 2, F can be computed in

PALc. By this same argument, the left inclusion of theorem 13.2 follows by next lemma.

Lemma 18 For all e 2 PAL0 and � there is e� 2 PAL� such that

e�[x] = e "
�
H�(n)[x] (n := jxj � 2):

Construction. 1. Given e, we claim that there is a quadratic time TM M1 such that

a M1[y; (x; l; !
�)] = (x; (e itel+n)�)

b M1[y; (x; l; �+ !�)] = ((x; 2(n+ l); ��); (nxMy
ite2(n+l) �)�)

c M1[y; (x; l; �
�)] = ((x; 2(n+ l); �[2(n+ l)]�); (nxMy

ite2(n+l) �[2(n+ l)])�):

Indeed, in the worst case (line c), M1 has to copy its input by in�xing meanwhile the output

of FS and NX; since the calls to these TM 's are not nested, its time complexity is quadratic.

2. By Note 16.1 there is a quadratic time TM M ! such that M ![z] =M1[M !�; z].

3. Let (c0 + n)2 bound above the time complexity of M !, and de�ne (for c := c0 + j��j)

e�� := ((Q; (c; ��);COR); (nx itec �)�; SB) (nx := nxM !):

Proof. Observe �rst that we have x x e�� _)

A _) x ((consR(c;��))
�; (nx itec �)�) prod. 2, de�nition of e�

B _) (x; c; ��) (nx itec �)� prod. 1:

The result follows since we claim that for all l � c we have

x (x; l; ��) (nx itel �)� _) x "
�
H�(n+ l) NIL: (1)

Induction on �, after observing that runtime for M ![(x; l; ��)] is (n + l + c)2 < nl.

Basis. � = !. We have x (x; l; !�) (nx itel !)� _)

C _) M ![(x; l; !�)] !� prod. 5, def. of nx and c, Lemma 17.2

D _) (x; (e iten+l)�) !� line a

E _) x (e iten+l)� prod. 6, since o[(e iten+l)�] < !:

The claim (1) follows by Lemma 17, since we obviously have nn+l > H!(n) = 2n.

Step. De�ne k := 2(n+l). Case 1. � = �+!. We have x (x; l; �+!�) (nx itel �+!)� _)

C1 _) M ![(x; l; �+ !�)] �+ !� like line C

D1 _) (x; k; ��) (nx itek �)� line b, prod. 6, since � < �:

The claim (1) follows by Lemma 17 and I.H., since it is known that H�+!(n + l) = H�(k).

Case 2. Not � =nf �+ !. We have x (x; l; ��) (nx itel �)� _)

C2 _) M ![(x; l; ��)] �� like line C

D2 _) (x; k; �[k]�) (nx itek �[k])� like D1, after replacing \line b" with \line c":

The claim (1) follows by Lemma 17 and I.H., since H�(m) < H�[2m](m).

6
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5 Simulation by TM's

A k-tapes TM IN (k > 3), can be de�ned, which plays the role of interpreter for PAL�. While

x; y; z are stored in its tapes X; Y; Z, IN simulates the productions carried out by R3 when

the same values x; y; z are stored in registers I; S; P . We write IN : x y w j= u z [� ; �]

(� or � sometimes omitted) to mean that IN replaces y and w by u and z in time � and in

space �.

Lemma 19 1. For all g 2 PAL0 and z we have

IN : x y (g�; z) j= g[y] z [Kjgjjyj; jgj] for a constant K:

2. Assume IN : x y (g�; z) j= g[y] z [Kjgjjyj�(n); jgj�(n)] (n := jxj).

We have IN: x y (f �; z) j= f [y] z [Kmjyj�(n)n; jgj�(n)n] (f = g ite; m := jf j).

3. Hence for all f 2 T P we have IN : x y (f �; z) j= f [y] z [Kjyjnm;nm].

Proof. 1. Induction on the de�nition of g, after noting that parsing y is a linear-time task.

2. IN needs time � Knjgj (for prod. 4) +Knjgjjyj�(n) (for n simulations of g)

� Knjgj(jyj�(n) + 1) � Knmjyj�(n) (since jgj < m).

Similarly for the part about space.

3. Assume f = e itec (e 2 PAL0). By parts 1 and 2 we have jf [x]j � jejnc � njej+c.

Next note prepares the evaluation of the complexity at the trans�nite of IN.

Note 20 1. By induction on � and cases with respect to � =nf � + !
 one proves that

� < � and j�j < nm implies � < �[nm]:

2. From part 1, Lemma 19.3, and clause \g 2 T P" of Def. 7 we obtain for all f 2 PAL�

f [x] = h[x] for some h 2 PAL�[nm] such that jhj � nm (n := jxj; m := jf j):

Lemma 21 PAL� � E� for all � � 3.

Proof. We show by induction on � that for all x; y; z; f 2 PAL� (! � �) we have

IN : x y (f �; z) j= f [y] [KjyjE�(n2(m
2));E�(n2(m

2))] (n := jxj; m := jf j); (1)

where n0(l) := l; nc+1(l) := nnc(l): (The result follows, for y = x and z absent, since

E� (3 � �) is honest with respect to time, and since KnE�(n2(m
2)) � EK+m+4

� (n) 2 E�.)

7
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Basis. � = !. The form of f is g ! with g 2 T P . We have IN : x y (f �; z) j=

j= y (g�; !�; z) [Km; 0] prod. 5

j= g[y] (!�; z) [Kjyjn2(m);n2(m)] Lemma 19.3 and Note 20.2

Step. We may assume that � is the limit � =nf � + !
 (since else the result follows by I.H.

and Lemma 19.2). Hence the form of f is g � with g 2 T P . Case 1. 
 > 1. By prod. 5 and

Lemma 19.3 we have

IN : x y (f �; z) j= g[y] (��; z) [(K + 1)jyjnm;nm]: (2)

By Note 20.2, we have g[y] = (u; w) with w in the form (h �[nm])�. Hence we obtain

IN : x y (f �; z) j= u ((h �[nm])�; z) [(K + 1)jyjnm;nm] (prod. 6 and 5). (3)

By the I.H. (with h �[nm] as f and with �[nm] as �), since n2((n
m)2) = n3(2m), we obtain

IN : x u ((h �[nm])�; z) j= (h �[nm])[u] z [KjujE�[nm](n3(2m));E�[nm](n3(2m))]: (4)

By summing-up the amounts of time (2)-(4) we obtain (since juj � nm)

(K + 1)jyjnm + (K + 1)jyjnm +KnmE�[nm](n3(2m)) � KE�[nm](n3(2m+ 1)): (5)

From (4) we obtain (1) since we have (recall that we have E3(l) > ll and � � !2)

E�[nm](n3(2m+ 1)) � E�[nm](E3(n2(2m+ 1))) � E�[nm+1](n2(2m + 1)) � E�[n2(m2)](n2(m
2)):

Case 2. � = �+ !. We obtain (1) by arguments like under Case 1, after observing that

E�[nm](n3(2m+1)) � E�+nm(E3(n2(2m+1))) � E�+nm+1(n2(2m+1)) � E�[n2(m2)](n2(m
2)).
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The strength of non-size increasing computation

Martin Hofmann
�

Abstract

We study the expressive power non-size increasing recursive de�nitions over lists. This
notion of computation is such that the size of all intermediate results will automatically
be bounded by the size of the input so that the interpretation in a �nite model is sound
with respect to the standard semantics. Many well-known algorithms with this property
such as the usual sorting algorithms are de�nable in the system in the natural way. The
main result is that a characteristic function is de�nable if and only if it is computable in
time O(2p(n)) for some polynomial p.

The method used to establish the lower bound on the expressive power also shows
that the complexity becomes polynomial time if we allow primitive recursion only. This
settles an open question posed in [1, 6].

The key tool for establishing upper bounds on the complexity of derivable functions
is an interpretation in a �nite relational model whose correctness with respect to the
standard interpretation is shown using a semantic technique.

1 Introduction

Consider the following recursive de�nition of a function on lists:

twice(nil) = nil

twice(cons(x; l)) = cons(tt; cons(tt; twice(l)))
(1)

Here nil denotes the empty list, cons(x; l) denotes the list with �rst element x and remaining

elements l. tt; ff are the members of a type T of truth values. We have that twice(l) is a list

of length 2 � jlj where jlj is the length of l. Now consider

exp(nil) = cons(tt; nil)

exp(cons(x; l)) = twice(exp(l))
(2)

We have jexp(l)j = 2jlj and further iteration leads to elementary growth rates.

This shows that innocuous looking recursive de�nitions can lead to enormous growth. In

order to prevent this from happening it has been suggested in [2, 9] to rule out de�nitions

like (2) above, where a recursively de�ned function, here twice, is applied to the result of a

recursive call. Indeed, it has been shown that such discipline restricts the de�nable functions

to the polynomial-time computable ones and moreover every polynomial-time computable

function admits a de�nition in this style.

�Fachbereich Mathematik, TU Darmstadt,Schlossgartenstr. 7, 64289 Darmstadt, Germany,

mhofmann@mathematik.tu-darmstadt.de
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Many naturally occurring algorithms, however, do not �t this scheme. Consider, for

instance, the de�nition of insertion sort:

insert(x; nil) = cons(x; nil)

insert(x; cons(y; l)) = if x � y then cons(x; cons(y; l)) else cons(y; insert(x; l))

sort(nil) = nil

sort(cons(x; l)) = insert(x; sort(l))

(3)

Here just as in (2) above we apply a recursively de�ned function (insert) to the result of a

recursive call (sort), yet no exponential growth arises.

It has been argued in [3] and [6] that the culprit is de�nition (1) because it de�nes a

function that increases the size of its argument and that non size-increasing functions can be

arbitrarily iterated without leading to exponential growth.

In [3] a number of partly semantic criteria were o�ered which allow one to recognise when

a function de�nition is non size-increasing. In [6] we have given syntactic criteria based on

linearity (bound variables are used at most once) and a so-called resource type 3 which counts

constructor symbols such as \cons" on the left hand side of an equation.

This means that cons becomes a ternary function taking one argument of type 3, one

argument of some type A (the head) and a third argument of type L(A), the tail. There

being no closed terms of type 3 the only way to apply cons is within a recursive de�nition;

for instance, we can write

append(nil; l2) = l2

append(cons(d; a; l1); l2) = cons(d; a; append(l1; l2)
(4)

Alternatively, we may write

append(l1; l2) = match l with nil)l2 j cons(d; a; l
0
1
))cons(d; append(l1; l2) (5)

We notice that the following attempted de�nition of twice is illegal as it violates linearity

(the bound variable d is used twice):

twice(nil) = nil

twice(cons(d; x; l)) = cons(d; tt; cons(d; tt; twice(l)))
(6)

The de�nition of insert, on the other hand, is in harmony with linearity provided that

insert gets an extra argument of type 3 and, moreover, we assume that the inequality test

returns its arguments for subsequent use.

The main result of [6] and [1] was that all functions thus de�nable by structural recursion

are polynomial-time computable even when higher-order functions are allowed. In [7] it has

been shown that general-recursive �rst-order de�nitions admit a translation into a fragment

of the programming language C without dynamic memory allocation (\malloc") which on the

one hand allows one to automatically construct imperative implementations of algorithms on

lists which do not require extra space or garbage collection. More precisely, this translation

maps the resource type 3 to the C-type void * of pointers. The cons function is translated

into the C-function which extends a list by a given value using a provided piece of memory.

It is proved that the pointers arising as denotation of terms of type 3 always point to free

memory space which can thus be safely overwritten.

This translation also demonstrates that all de�nable functions are computable on a Turing

machine with linearly bounded work tape and an unbounded stack (to accommodate general

2
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recursion) which by a result of Cook1 [4] equals the complexity class DTIME(2O(n)). It was

also shown in [7] that any such function admits a representation.

In the presence of higher-order functions the translation into C breaks down as C does not

have higher-order functions. Of course, higher-order functions can be simulated as closures,

but this then requires arbitrary amounts of space as closures can grow proportionally to

the runtime. In a system based on structural recursion such as [6] this is not a problem

as the runtime is polynomially bounded there. The hitherto open question of complexity of

general recursion with higher-order functions is settled in this paper and shown to require a

polynomial amount of space only in spite of the unbounded runtime.

We thus demonstrate that a function is representable with general recursion and higher-

order functions i� it is computable in polynomial space and an unbounded stack or equiva-

lently (by Cook's result) in time O(2p(n)) for some polynomial p. The lower bound of this

result also demonstrates that indeed all characteristic functions of problems in P are de�nable

in the structural recursive system. This settles a question left open in [1, 6].

In view of the results presented in this paper, these systems of non size-increasing com-

putation thus provide a very natural connection between complexity theory and functional

programming. There is also a connection to �nite model theory in that|as will be shown

below|programs admit a sound interpretation in a �nite model. This improves upon earlier

combinations of �nite model theory with functional programming [5] where interpretation

in a �nite model was achieved in a brute-force way by changing the meaning of constructor

symbols, e.g. successor of the largest number N was de�ned to be N itself. In those systems it

is the responsibility of the programmer to account for the possibility of cut-o� when reasoning

about the correctness of programs. In the systems studied here linearity and the presence of

the resource types automatically ensure that cuto� never takes place. Formally, it is shown

that the standard semantics in an in�nite model agrees with the interpretation in a certain

�nite model for all well-formed programs.

Another piece of related work is Jones' [8] where the expressive power of cons-free higher-

order programs is studied. It is shown there that �rst-order cons-free programs de�ne polyno-

mial time , whereas second-order programs de�ne EXPTIME. This shows that the presence of

\cons", tamed by linearity and the resource type changes the complexity-theoretic strength.

While loc. cit. also involves Cook's abovementioned result (indeed, this result was brought to

the author's attention by Neil Jones) the other parts of the proof are quite di�erent.

1This result asserts that if L(n) > log(n) then DTIME(2O(L(n))) equals the class of functions computable

by a Turing machine with an L(n)-bounded R/W-tape and an unbounded stack.
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2 Syntax and typing rules

The terms of the languag are given by the following grammar:

e ::= x variable

j f(e1; : : : ; en) function application

j tt; ff boolean constant

j if e then e
0
else e

00 conditional

j e1 
 e2 pairing

j nil empty list

j cons(e1; e2; e3) cons with res. arg.

j match e1 with nil)e2 j cons(d; h; t))e3 list elimination

j match e1 with x
 y)e2 pair elim.

j �x:e linear lambda abstraction

j e1e2 linear function application

The match constructs as well as � bind variables.

The types are given by the following grammar.

A ::= T j 3 j L(A) j A1 
A2 j A1( A2

Here T is the type of truth values, L(A) stands for lists with entries of type A, A1
A2 is the

type of pairs with �rst component of type A1 and second component of type A2. The type

A1 ( A2 is the type of functions from A1 to A2, and �nally 3 is the resource type. The

heap-free types contain T and are closed under 
. Variables of heap-free type may be used

more than once as described by rule Contr below.

In [7] also tree types and disjoint union types were considered. We refrain from doing

so here for the sake of simplicity. However, it has been checked that all the constructions

presented here carry over to this richer setting.

A signature �maps a �nite set of function symbols to expressions of the form (A1; : : : ; An)!B

where A1 : : : An and B are types.

A typing context � is a �nite function from variables to types; if x 62 dom(�) then we

write �; x:A for the extension of � with x 7! A. More generally, if dom(�) \ dom(�) = ;

then we write �;� for the disjoint union of � and �. If such notation appears in the premise

or conclusion of a rule below it is implicitly understood that these disjointness conditions are

met. We write e[x=y] for the term obtained from e by replacing all occurrences of the free

variable y in e by x after suitable renaming of bound variables so as to prevent capture. We

consider terms modulo renaming of bound variables.
Let � be a signature. The typing judgment � `� e : A read \expression e has type A in

typing context � and signature �" is de�ned by the following rules.

x 2 dom(�)

� `� x : �(x)
(Var)

�(f) = (A1; : : : ; An)!B �i `� ei : Ai for i = 1 : : : n

�1; : : : ;�n `� f(e1; : : : ; en) : B
(Sig)

�; x:A; y:A `� e : B A heap-free

�; x:A `� e[x=y] : B
(Contr)

4
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c 2 ftt; ffg

� `� c : T
(Const)

� `� e : T � `� e0 : A � `� e00 : A

�;� `� if e then e0
else e00 : A

(If)

� `� e : A � `� e0 : B

�;� `� e
 e0 : A
B
(Pair)

� `� e : A
B �; x:A; y:B `� e0 : C

�;� `� match e with x
 y)e0 : C
(Split)

� `� nil : L(A) (Nil)

�d `� ed : 3 �h `� eh : A �t `� et : L(A)

�d;�h;�t `� cons(ed; eh; et) : L(A)
(Cons)

� `� e : L(A)
� `� enil : B
�; d:3; h:A; t:L(A) `� econs : B

�;� `� match e with nil)enil j cons(d; h; t))econs : B
(List-Elim)

�; x:A `� e : B

� ` �x:e : A( B
(Lam)

� `� e1 : A( B � ` e2 : A

�;� `� e1e2 : B
(App)

Application of function symbols is linear in the sense that several operands must in gener-

alnot share common free variables. This is because of the implicit side condition on juxtapo-

sition of contexts mentioned above. In view of rule Contr, however, variables of a heap-free

type may be shared and moreover thesame free variable may appear in di�erent branches of a

case distinction as follows e.g. from the form of rule If. It follows by standard type-theoretic

techniques that type checking for this system is decidable in linear time. More precisely, we

have a linear time computable function which given a context �, a term e in normal form2,

and a type A either returns a minimal subcontext � of � such that � ` e : A or returns

\failure" in the case where � ` e : A does not hold. This function can be de�ned by primitive

recursion over e.

A program consists of a signature � and for each symbol f : (A1; : : : ; An)!B contained

in � a term ef such that x1:A1; : : : ; xn:An `� ef : B.

2i.e. one that does not contain instance of match applied to constructors (nil; cons;
) or �-abstractions in

applied position

5

23



3 Denotational semantics

In order to specify the purely functional meaning of programs we introduce a denotational

semantics following [10].

A partially ordered set D = (D;�) is a complete partial order, cpo for short, if each

increasing chain x0 � x1 � : : : has a least upper bound
W
i xi in D. A function from cpo D to

cpo E is continuous if it is monotone and preserves these least upper bounds. Any set forms

a (discrete) cpo. If D is a cpo its lifting D? is formed by freely adjoining a least element ?.

For cpos D and E we have their cartesian product D�E with the component-wise ordering.

We write (x; y) for the pair with components x and y and if p = (x; y) we write p:1 = x and

p:2 = y for the �rst and second projections. We assume that � associates to the right so that

e.g. the second component of p 2 D � E � F is obtained as p:2:1. We have the continuous

function space D ! E consisting of continuous functions from D to E with the point-wise

ordering. Elements of D ! E may be de�ned using �-notation if continuity is ensured. For

instance, if e 2 E the expression �x:e denotes the constant function in D ! E.

The cpo L(D) consists of �nite lists of elements of D with lists of equal length ordered

component-wise and lists of di�erent length being incomparable. We use the notation [] for

the empty list, a :: l for the list with �rst element a and remaining elements l, we write

[a1; : : : ; an] for the list with members a1; : : : ; an and l1 @ l2 for the concatenation of lists l1
and l2. We write jlj for the length of a list l.

We assign a cpo to each type by

[[T]] = ftt; ffg [[3]] = f0g [[L(A)]] = L([[A]])

[[A
B]] = [[A]]� [[B]] [[A( B]] = [[A]]! [[B]]?

To each program P = (�; (ef )f2dom(�)) we can now associate a mapping [[P ]] such that [[P ]](f)

is a continuous map from [[A1]]� � � � � [[An]] to [[B]]? for each f : (A1; : : : ; An)!B.

This meaning is given in the standard fashion as the least �xpoint of an appropriate

compositionally de�ned operator, as follows.

A valuation of a context � is a function � such that �(x) 2 [[�(x)]] for each x 2 dom(�);

a valuation of a signature � is a function � such that �(f) 2 [[A1]] � � � � � [[An]] ! [[B]]?
whenever f 2 dom(�).

To each expression e such that � `� e : A we assign a function mapping a valuation � of �

and a valuation � of � to an element [[e]]�;� 2 [[A]] in the obvious way, i.e. function symbols and

variables are interpreted according to the valuations; basic functions and expression formers

are interpreted by the eponymous set-theoretic operations, ignoring the arguments of type 3

in the case of constructor functions. The formal de�nition of [[�]]�;� is by induction on terms.

6
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Here are a few representative clauses.

[[x]]�;� = �(x)

[[f(e1; : : : ; en)]]�;� = �(f)([[e1]]�;�; : : : ; [[en]]�;�)

[[cons(e1; e2; e3)]]�;� = [[e2]]�;� :: [[e3]]�;�
[[match e with nil)e1 j cons(d; h; t))e2]]�;�
= [[e1]]�;�
when [[e]]�;� = [] and

= [[e2]]�[d7!0;h 7!v
h
;t7!vt];�

when [[e]]�;� = vh :: vt
[[�x:e]]�;�(v) = [[e]]�[x7!v];�

[[e1e2]]�;� = [[e1]]�;�([[e2]]�;�)

A program (�; (ef )f2dom(�)) is interpreted as the least upper bound of the following (point-

wise) increasing sequence of valuations: �0(f)(~v) = ? and

�i+1(f)(v1; : : : ; vn) = [[ef ]]�i;� (7)

where �(xi) = vi, for any f 2 dom(�). Notice that � =
W
i �i satis�es

�(f)(v1; : : : ; vn) = [[ef ]]�;� (8)

and is minimal with this property.

We stress that this order-theoretic semantics does not say anything about computational

complexity. Its only purpose is to pin down the functional denotations of programs so that

we can formally state what it means to implement a function. Accordingly, the resource type

is interpreted as a singleton set, 
 and ( are interpreted as ordinary product and function

space disregarding linearity.

If f is a function symbol in de�ned in a program P that is clear from the surrounding

context then we may abbreviate [[P ]](f) to [[f ]].

3.1 Examples

Reverse:

rev aux : (L(N); L(N))!L(N)

reverse : (L(N))!L(N)

erev aux(l; acc) = match l with nil)acc j cons(d; h; t))rev aux(t; cons(d; h; acc))

ereverse(l) = rev aux(l; nil)

Insertion sort

insert : (3;N; L(N))!L(N)

sort : (L(N))!L(N)

einsert(d; a; l) = match l with

nil)nil

j cons(d0; b; t))if a � b

then cons(d; a; cons(d0; b; t))

else cons(d; b; insert(d0; a; t))

esort(l) = match l with

nil)nil

j cons(d; a; t))insert(d; a; sort(t))

7
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Apply a function to the tail of a list

AppTail : (A( A; L(A))!L(A)

eAppTail(f; a; l) = match l with

nil)nil

j cons(d; b; t))match t with nil)cons(d; f(b); nil)

j cons(d0; b0; t0))AppTail(cons(d0; b0; t0))

Composing all functions in a list

ComposeList : (L((3
A)( A))!A( A

eComposeList(l; a) = match l with

nil)�a:a

j cons(d; f; t))�a:f(d
 ComposeList(t)(a))

Higher-order tail recursion

Contrived : (A;A( A)!A

eContrived(x; f) = if p(x) then f(x)

else if q(x) then Contrived(a(x); �y:g(f(g(x))))

else Contrived(b(x); �y:h(f(h(x))))

In the last example, p; q : (A)!T and a; b; g; h : (A)!A are arbitrary function symbols

de�ned independently or indeed simultaneously with Contrived. The point of the example

is that under a functional evaluation strategy the intermediate term denoting the currently

accumulated function grows arbitrarily. Many more examples are given in [6, 7].

4 Expressivity

In this section we characterise the functions of type (L(T))!L(T) de�nable in the system.

We will say nothing about higher-order functionals de�nable in the system, notice, however,

that a �rst-order function may involve a higher-order functional as part of its de�nition. This

situation is encompassed by our characterisation.

Let us writeW for the type L(T) and T for the set ftt; ffg andW for the set T � = [[L(T)]] =

[[W]]. For a set A we de�ne Ln(A) = fw 2 A
� j jwj = ng as the set of lists of length n over

A. We write Wn = Ln(T ) so that Wn � W . Elements of Wn will be identi�ed with the set

f0; : : : ; 2n � 1g using the binary encoding. E.g. W5 3 [ff; tt; tt; ff; ff] = 12.

If A1; : : : ; An; B are types and f : [[A1]]�� � �� [[An]]! [[B]]? is a function then we say that

f is representable if there exists a program containing a function symbol f : (A1; : : : ; An)!B

such that [[f]] = f . Our aim in this section is to prove the following result.

Theorem 4.1 Let f : W ! W be a function such that jf(w)j � jwj and such that f(x) is

computable in time O(2p(jxj)) for some polynomial p. Then f is representable.

De�nition 4.2 Let s : N ! N be a function with s(n) < 2n and k 2 N be a number. A

(k; s)-storage device is given by the following data:

� a set S = [[S]] for some type S

8
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� a family of subsets Sn � S for n 2 N.

� a representable function (a constant) init :! S, i.e. there is init : ()!S with [[init]] =

init,

� a representable function read : W �W � S ! W �W � T � S, i.e., there is read :

(L(T); L(T); S)!L(T)
 L(T)
 T
 S with [[read]] = read,

� a representable function write : W �W � T � S !W �W � S, i.e., there is : : :

such that for all n 2 N and w;w1; w2; w3 2 Wkn, a; a
0 2 Wn and s 2 Sn the following are

satis�ed:

� init() 2 Sn

� read(w; a; s) = (w0; a0; b; s0) implies w0 2Wkn; a
0 2Wn; s

0 = s

� write(w; a; b; s) = (w0; a0; s0) implies w0 2Wkn; a
0 2Wn; s

0 2 Sn

� read(w1; a;write(w2; a; b; s):2:2) = b provided that a < s(n)

� read(w1; a;write(w2; a
0
; b; s):2:2) = read(w3; a; s) provided that a; a0 < s(n) and a 6= a

0.

�

This means that an element of Sn is capable of holding s(n) bits of information. The call

read(w; a; s) reads the a-th bit contained in s; the call write(w; a; b; s) sets it to b when

a < s(n). Otherwise, the behaviour of these functions is left unspeci�ed.

The �rst argument w plays the role of a \scratch pad"; its contents are unimportant; it

is used as an item of auxiliary space to perform reading and writing. Both read and write

return an equally long list for possible subsequent use as a scratch pad. Similarly, the address

a and (in case of read the store s itself) are being returned as part of the result. In a linear

setting this is crucial as otherwise these arguments would be lost.

Lemma 4.3 Let c 2 N be a constant. There is a (0; �n:c)-storage device.

Proof. For n 2 N we put S = Sn = T
c

We put

init = (tt; : : : ; tt)

read(w; a; s) = (w; a; ba; s), if a < c

read(w; a; s) = (w; a; tt; s), otherwise

write(w; a; b; s) = (w; a; (b0; : : : ; ba�1; b; ba+1; : : : ; bc�1)), if a < c

write(w; a; b; s) = (w; a; s), otherwise

when s = (b0; : : : ; bc�1).

We have S = [[S]] where S = T 
 : : : 
 T) with c factors. Since c is a constant we can

\hardwire" all possible c addresses, i.e., we use a case distinction on a of depth log(c) to

distinguish all possible di�erent values of a. We omit the details. �

9
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The key to larger sizes is the following lemma which shows how to \hide" information

inside a (constant) function:

Lemma 4.4 Let S be any type and put S = [[S]]. There is a representable functional

� : L(S) �! (W!L(S))�W (9)

with the property

�(l) = (f;w)) jwj = jlj ^ 8w
0
:jw

0
j = jlj)f(w0) = l (10)

Proof. The following program represents f :

e�(l) = match l with

nil)(�x:nil)
 nil

cons(d; s; l0))match �(l0) with

f
w)

(�x:match x with

nil)nil

cons(d0; b; w0))cons(d0; s; f(w0)))


cons(d; tt; w)

�

The idea is that if �(l) = (f;w) then f holds all the information contained in l yet the

abstract space (in the form of 3-values) occupied by l is returned as w. Of course, in order

to read the information contained in f we need an argument of size jlj.

Lemma 4.5 If there exists a (k; s)-storage device then there exists a (k+1; �n:n�s(n))-storage

device.

Proof. Suppose the storage device of size s is given by the sets Sn � S and the functions

init; read;write. We de�ne the desired storage device on

S
0 =W ! L(S)? = [[L(T)( L(S)]] (11)

where [[S]] = S and

S
0
n = ff j 8w 2Wn:f(w) 2 Ln(Sn)g � S

0 (12)

We put

init0([]) = []

init0(x :: w) = init() :: init0(w)

so that init0 2 S0.

Notice that we have init0 = [[init']] where

einit0 = �w:match w with nil)nil j cons(d; x; w1))cons(d; init(); init'(w1))
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The de�nition of read0 will be given as a sequence of intermediate results assuming the exis-

tence of certain helper functions whose de�nition we omit.

For read0(w; a; f) we start with w; a 2 W and f 2 S
0. We intend that w 2 W(k+1)n,

a 2Wn, f 2 S
0
n for some n 2 N.

We split w into w1, w2 such that jw1j + jw2j = jwj and jw1j=jw2j = 1=k. If this is

impossible we immediately produce some default result. Notice that if jwj = (k + 1)n as

intended then such decomposition is possible and jw1j = jaj = n; jw2j = kn. We now apply

f to w1 yielding l 2 L(S), actually l 2 Ln(Sn) in case f 2 S
0
n. We decompose l into

l1; l2 2 L(S); s 2 S; d 2 3 where l1@[s]@ l2 = l and s is the (amod jaj)-th entry of l. We let a1
be adiv jaj where ja1j = jaj = n and call read(w2; a1; s). This yields the desired boolean value

b which forms the main result of read0(w2; a; s). The other return values comprise s and a list

w
0
2
with jw0

2
j = kn = jw2j. From s; l1; l2; d we reconstruct l and then|using Lemma 4.4|we

reconstruct f and obtain w0
1
with jw0

1
j = jw1j = n. We return w0

1
@ w

0
2
; a1; b; f .

The de�nition of write0 is analogous. �

Proof of Theorem 4.1 Suppose that f : W ! W is a function such that f(l) is computable

on a Turing machine M in time 2p(jlj). Let k be the degree of p. By Lemmas 4.3 and 4.5

there exists a (k; �n:p(2kn))-storage device S.

This means that in the presence of a list w 2Wn=2 serving as a scratch pad we can store

p(n) bits.

Starting from the input presented as an element l 2 W where n = jlj we �rst construct

by recursion on l an element (w; l0) 2 Wn=2 � Ln=2(T � T ) such that l0 contains the entire

information of l. Notice that this is possible as a diagonal map diag : T ! T � T with

diag(x) = (x; x) is de�nable by ediag(x) = if x then tt
 tt else ff
 ff. Alternatively, we can use

rule Contr.

Thus w can be used as a scratch pad for the storage device to store the required amount

of p(n) bits occurring as work tape inscriptions. Additionally we can simulate an unbounded

stack by general recursion, see [7] for details.

Thus, by Cook's result [4] the function f is representable. �

We will now provide a corresponding upper bound on expressivity:

Theorem 4.6 If f : W ! W is representable then f(l) is computable on a deterministic

Turing machine in time O(2p(jlj)) for some polynomial p.

The proof of this result is based on two intuitions: Firstly, due to the linear typing disci-

pline the size of all intermediate results is a priori bounded by a function of the size of the

input. Second, linear functions can be simulated as argument-result pairs if one allows for

nondeterminism: when constructing a linear function one guesses an argument and stores it

together with the corresponding result. When applying such a linear function, one checks

whether the actual argument agrees with the previously guessed one and in this case returns

the precomputed result. Otherwise, the result is unde�ned.

To make this precise we construct an appropriate �nite relational model for the language

and show that evaluation in that �nite model yields the same result as evaluation in the

oÆcial order-theoretic (in�nite) model.
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Let N 2 N be a �xed parameter. We de�ne �nite sets (jAj) together with functions

j � jA : (jAj)! f0; : : : ; Ng for types A inductively as follows.

(j3j) = f0g j0j3 = 1

(jTj) = ftt; ffg jxjT = 0

(jL(A)j) = fw 2 L((jAj)) j jwjL(A) � Ng j[a1; : : : ; an]jL(A) = n+
Pn

i=1 jaijA

(jA
Bj) = fx 2 (jAj)� (jBj) j jxjA
B � Ng j(a; b)jA
B = jajA + jbjB

(jA( Bj) = (jAj)� (jBj) j(a; b)jA(B = jbjB �
: jajA

For context � we de�ne

(j�j) = f� j 8x2dom(�):�(x) 2 (j�(x)j) ^ j�j� � Ng j�j� =
P

x2dom(�)
j�(x)j�(x)

When we use, e.g., jxjA
B in the de�nition of (jA
Bj) it refers to the de�ning expression for

j � jA
B given afterwards. The \modi�ed di�erence" x�: y is de�ned as x� y if x > y and 0

otherwise. Notice that for nonnegative numbers x; y; z one has x+ y � z i� x � z �: y.

For U � (jAj) we de�ne jU jA = maxa2U jajA.

A relational valuation of a signature � assigns to each f : (A1; : : : ; Ar)!B declared in �

a relation

�(f) � (jA1 
 : : : Arj)
n
� (jBj) (13)

such that (a1; : : : ; an)�(f)b implies jbjB �
Pn

i=1 jaijAi .

Given relational valuation � of � we de�ne a relation

(jej)� � (j�j)� (jAj) (14)
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by induction on a typing derivation � `� e : A as follows:

(j� ` x : �(x)j)� = f(�; v) j v = �(x)g (Var)

(j�1; : : : ;�r ` f(e1; : : : ; er) : Bj)� = f(�; v) j

� = �1 ] � � � ] �r^V
i �i(j�i ` ei : Aij)�vi ^ (v1; : : : ; vr)�(f)vg (Sig)

(j�; x:A ` e : Bj)� = f(�; v) j

� ] [y 7! �(x)](j�; x:A; y:A ` e : Bj)�vg (Contr)

(j� ` c : Tj)� = f(�; v) j � 2 (j�j); v = [[c]]g (Const)

(j�;� ` if e then e
0
else e

00 : Aj)� = f(�; v) j

� = �1 ] �2 ^ (

�1(j� ` e : Tj)�tt ^ �2(j� ` e0 : Aj)�v_

�1(j� ` e : Tj)�ff ^ �2(j� ` e00 : Aj)�v)g (If)

(j� ` nil : L(A)j)� = f(�; []) j � 2 (j�j) (Nil)

(j�d;�h;�t ` cons(ed; eh; et) : L(A)j)
n
� = f(�; vh :: vt) j

� = �d ] �h ] �t^

�d(j�d ` ed : 3j)�0^

�h(j�h ` eh : Aj)�vh^

�t(j�t ` et : L(A)j)�vtg (Cons)

(j�;� ` match e with nil)enil j cons(d; h; t))econs : Bj)
n
� = f(�; v) j

� = �1 ] �2

�1(j� ` e : L(A)j)�[] ^ �2(j� ` enil : Bj)�v _

�1(j� ` e : L(A)j)�vh :: vt^

�2[d7!0; h7!vh; t7!vt](j�; d:3; h:A; t:L(A) ` econs : Aj)�vg (List-Elim)

(j�;� ` e1 
 e2 : A
Bj)n� = f(�; (v1; v2) j

�1(j� ` e1 : Aj)�v1 ^ �2(j� ` e2 : Bj)�v2g (Pair)

(j�;� ` match e1 with x
 y)e2 : Cj)� = f(�; v) j

� = �1 ] �2^

�1(j� ` e1 : A
Bj)�(v1; v2)^

�2[x7!v1; y 7!v2](j�; x:A; y:B ` e2 : Cj)�vg (Split)

(j� ` �x:e : A( Bj)� = f(�; (a; b)) j

�[x7!a](j�; x:A ` e : Bj)�bg (Lam)

(j�;� ` e1e2 : Bj)� = f(�; b) j

� = �1 ] �2

�1(j� ` e1 : A( Bj)(a; b)^

�2(j� ` e2 : Aj)ag (App)

The thus de�ned interpretation of a program is non size-increasing in the following sense.

Lemma 4.7 If � is a relational valuation of � and � `� e : A then whenever �(j� ` e : Aj)�a

one has jajA � j�j�.

Proof. Direct induction on typing derivations. �

For a given program P the mapping which sends � to the relational valuation

f 7! (jx1:A1; : : : ; xn:An ` ef : Bj)� (15)
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is clearly monotone (with respect to inclusion) so that we can de�ne the relational semantics

of a program as the least �xpoint of this functional which in view of the �niteness of the

domains is actually reached after a �nite number of iterations starting from the relational

valuation assigning the empty relation to each function symbol.

We write (jP j)(f) or simply (jf j) for the thus obtained interpretation of a function symbol

f in some program P . Since the empty relation is a relational valuation and by the previous

lemma the semantics maps relational valuations to relational valuations, the thus de�ned

semantics of a program is also a relational valuation, i.e., non size-increasing.

Proposition 4.8 Suppose that P is a program containing some function symbol f : (W)!W

and let l 2 W where jlj � N (recall that N is a �xed parameter). Notice that in this case

l 2 [[L(T)]] as well as l 2 (jL(T)j). Then l(jf j)l0 () [[f ]](l) = l
0 for all l0 2W .

This means in particular that (jf j) is a partial function.

Before we prove this result let us remark that it allows us to evaluate any function

f : (L(T))!L(T) in a �nite amount of time (regardless of its termination behaviour un-

der an evaluation strategy based on rewriting) by computing (jf j) for appropriate parameter

N . We will later estimate the amount of time required for this so as to obtain the desired

characterisation. Let us �rst come to the proof of the proposition, though:

Proof. For each n � N we de�ne inductively a family of simulation relations

�
n
A� [[A]]� fU � (jAj) j U 6= ; ^ jU jA � ng (16)

between elements of [[A]] and nonempty subsets of (jAj) of size � n. Recall that jU jA =

maxx2U jxjA.

To simplify the notation we introduce the following shorthands: if U � (jAj) and V � (jBj)

then U � V := f(a; b) j a 2 U ^ b 2 V g We have U � V � (jA
 Bj) i� jU jA + jV jB � N and

in this case jU � V jA
B = jU jA + jV jB .

If U � (jAj) and V � (jL(A)j) then U ::V := fa :: w j a 2 U ^ w 2 V g We have U ::V �

(jL(A)j) i� jU jA + jV jL(A) + 1 � N and in this case jU :: V jL(A) = jU jA + jV jB + 1.

If U � (jA( Bj) and V � (jAj) then U(V ) := fb j 9a 2 V:(a; b) 2 Ug We have jU(V )jB �

jU jA(B + jV jA.

We formally extend �nA by putting ? �nA ;. Notice that whenever x 2 [[A]] [ f?g and

x �nA U and x 6= ? then U 6= ;.

The de�ning clauses are now given as follows.

tt �nT fttg ff �nT fffg 0 �n+13 f0g [] �n
L(A)

f[]g

(a; b) �nA
B W () 9n1; n2; U; V:n1 + n2 = n

^ a �
n1
A U ^ b �

n2
B V ^W = U � V

f �nA(B U () 8n1; x:n+ n1 � N

^ x �n1 V ) f(x) �n+n1B U(V )

x :: l �n
L(A)

W () 9n1; n2; U; V:n1 + n2 + 1 � n

^ x �
n1
A U ^ l �

n2
L(A)

V ^W = U :: V

Notice that ifm � n � N then x �mA U implies x �nA U . Notice also that if A is heap-free and

x �A U then U has at most one element; exactly one if x 6= ?. We write � �n
�
U for � 2 [[�]]

and U � (j�j) if there exist dom(�)-indexed families (nx)x; (Ux)x such that
P

x2dom(�)
nx � n
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and U =
Q
x2dom(�)

Ux and �(x) �
nx
�(x)

Ux for all x 2 dom(�). If X;Y are sets and f : X ! Y

and U � X we de�ne

f(U) := fy 2 Y j 9x 2 U:y 2 f(x)g (17)

Similarly, if � ` e : A and U � (j�j) we de�ne

(j� ` e : Aj)U;� = fb j 9� 2 U:�(j� ` e : Aj)�bg (18)

Suppose that we are given a domain-theoretic valuation  and a relational valuation �

of a given signature �. We will write  � � to mean that for each function symbol

f : (A1; : : : ; Ar)!B declared in � and whenever n = n1 + � � � + nr � N one has
V
i ui �

ni
Ai

Ui =)  (f)(u1; : : : ; ur) �
n
B �(f)n(U1; : : : ; Ur) We now have the following sublemma :

Sublemma: Suppose that  � �. If � `� e : A and � �n
�
U then [[e]]�; �

n
A (j� ` e : Aj)U;�

Proof of sublemma: By induction on typing derivations. For rule Var we use the fact

that U is nonempty.

Rule Sig follows from the assumption made on  and �.

Rule Contr uses the fact that elements of heap-free type have zero size as well as the

observation that whenever v �A U for heap-free A then U has at most one element which

implies that whenever � ��;x:A;y:A U where Ux = Uy and � 2 U then � = �[y 7! �(x)]. These

are the only two properties of heap-free types used thus allowing for possible extensions. All

other cases are direct.

�

Now let  0 be the valuation de�ned by  0(f)(~x) = ? and �0 be the relational valuation

that assigns the empty relation to each function symbol. Clearly,  0 � �0 and so the sublemma

shows that  m � �m for all m where

 m+1(f)(v1; : : : ; vr) = [[ef ]][x1 7!v1;:::;xr 7!vr]; m

�m+1(f)(v1; : : : ; vr) = (jef j)[x1 7!v1;:::;xr 7!vr];�m

(19)

As already mentioned, in view of the �niteness of the sets (jAj) there exists m0 such that

(jP j)(f) = �m0
(f) for all f 2 dom(�). Therefore, 8m � m0:�m � (jP j).

Now, [[P ]](f) =
W
m �m(f) =

W
m�m0

�m(f). It is readily seen by induction on types that

each relation �nA is continuous in the sense that 8i:xi �
n
A U implies (

W
i xi) �

n
A U assuming

of course that the xi form an ascending chain. We have thus proved that [[P ]] � (jP j) which

yields the desired result when specialised to the type L(T). �

The idea is now to compute for a given N the iterations �m by stepwise updating a big

value table holding the relations �m(f).

To estimate the size of such a value table we must estimate the number of elements of the

sets (jAj). Writing #X for the cardinality of set X we have

log#(jTj) = 1 log#(j3j) = 0 log#(jL(A)j) � N log#(jAj)

log#(jA
Bj) � log#(jAj) + log#(jBj) log#(jA( Bj) � log#(jAj) + log#(jBj)

(20)
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Therefore, for a given program P we can �nd a polynomial p such that log#(jAj) � p(N) for

each type A occurring in P .

The space required to store a relational valuation for P in the relational model is therefore

O(2p(N)) where the hidden constant involves the number and arities of function symbols.

Now, using the de�nition of (j� ` e : Aj) the computation of �m+1 given a value table

for �m and space to hold �m+1 can be performed with O(p(N)) extra space which would be

required e.g. to hold particular elements of (jAj).

In order to compute (jP j) we maintain space for two value tables initialising both with

the empty relational valuation. If at any time one of the two tables holds �m we perform

the necessary computations to achieve that the other one holds �m+1. Thereafter, �m is not

needed anymore so that we can overwrite it with �m+2 and so forth, until no more changes

take place and we have found (jP j).

Since �m � �m+1 the number of iterations is O(2p(N)) as well (in the worst case each

iteration adds one single tuple to �), so that we have given a DTIME(O(2p(N))) algorithm for

computing (jP j) hence [[P ]](f)(l) for f : (L(T))!L(T) when jlj � N .
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This talk brings together ideas from two lines: automatic estimation of program
running times, and implicit computational complexity. It describes ongoing re-
search. Recent work in the two areas has been done by Bellantoni and Cook,
Benzinger, Hofmann, Jones, Crary and Weirich, Leivant, Marion, Schwichten-
berg, and others.

A main goal of implicit computational complexity is to “capture” complexity
classes such as ptimef (polynomial-time computable functions) by computing
formalisms that do not impose explicit bounds on time or space resources. Several
researchers have succeeded in reaching this goal, a well-known example being the
Bellantoni-Cook “safe primitive recursion on notation.”

It must be said, however, that recursion-theoretic formalisms such as primi-
tive recursion are not very close to programming practice. In particular natural
algorithms, as seen in introductory algorithm courses, often do not fall into
existing implicit complexity classes. In some cases this has even been proven im-
possible, e.g., Colson established that primitive recursion alone cannot express
computing the minimum of two numbers by the obvious linear-time algorithm.

In this work we identify a decidable class of algorithms such that all can be
executed within polynomial time (or logarithmic space); and as well, the class
includes many natural algorithms that are used in solving real problems.

For a standard first-order functional language we devise a type system giv-
ing information on the variations of its function parameters in terms of program
inputs, and on run-time bounds for program-defined functions. Every syntacti-
cally correct program is well-typed, i.e., the language has a so-called “soft” type
system.

The type information is extracted by data-flow analysis algorithms that ex-
tend the “size-change” framework of our POPL 2001 paper to account for run-
ning times as well as termination. The analysis allows automatic detection of
programs that are guaranteed to run (or be runnable) in polynomial time.

Theorems are proven that this is indeed the case; and that the class is a
proper generalization of “safe recursion” and some related schemes provided by
other researchers. Several representative natural and efficient algorithms are seen
to fall into the class, providing evidence that the class is “large enough.”
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By the term ‘proof mining’ we denote the activity of transforming a prima facie non-constructive
proof into a new one from which certain computational information can be read off which was
not visible beforehand. That new proof in general will not and need not be fully constructive.
On the contrary, usually only small parts of a given proof need to be considered at all. Proof-
theoretic techniques based on a monotone version of functional interpretation and additional
specially designed proof interpretations allow such extractions of effective data from fairly large
classes of proofs ([3],[4]). Moreover, these proof interpretations show which parts of a given
proof are relevant for its computational content.
The area of analysis (and in particular numerical functional analysis) is of special interest in con-
nection with proof mining since here non-effectivity is due not only to the use of non-constructive
logical reasoning but at the core of many principles (like compactness arguments) which are
used to ensure convergence and which provably rely on the existence of non-computable reals.
In mathematical terms this non-computability often is an obstacle to obtain a quantitative sta-
bility analysis and rates of convergence.
We report on the results of a recent case study of this proof-theoretic approach to computability
and complexity in analysis in the fixed point theory of non-expansive mappings, one of the most
active areas in nonlinear functional analysis.
Our results provide even new qualitative information about the asymptotic regularity of so-called
Krasnoselski-Mann iterations and strengthen classical theorems of Ishikawa ([2]) and Borwein-
Reich-Shafrir ([1]).
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TERMINATION PROOFS AND COMPLEXITY CERTIFICATION

Extended Abstract

March 2001

Daniel Leivant�

Abstract

We show that simple structural conditions on proofs of convergence of functional programs,

in the intrinsic-theories veri�cation framework of [20], correspond to resource bounds on pro-

gram execution. These conditions may be construed as re
ecting �nitistic-predicative reasoning.

The results provide a user-transparent method for certifying the computational complexity of

functional programs. In particular, we de�ne natural notions of data-predicative formulas and

of data-predicative derivations, and show that induction for data-predicative formulas captures

precisely the primitive recursive functions, data-predicative derivations the Kalmar-elementary

functions, and the combination of both the poly-time functions.

1 INTRODUCTION

1.1 Main results

In [20] we put forth, for each sorted inductive algebra A (C) over a set C of generators, a

formalism IT(C) for reasoning about recursive equational programs over A (C). We showed that

the resulting formalisms have the same proof theoretic power as �rst order (Peano) arithmetic.

Here we consider simple structural properties on formulas in derivations, which guarantee that a

program proved terminating in fact runs within certain resource bounds.

We consider two forms of structural restrictions on natural deductions:

1. Induction is restricted to \data-predicative" formulas; these are the formulas where data-

predicates do not occur both positively and negatively; they properly include the �0

1
and �0

1

formulas of PA.

2. There are no data-positive working assumptions, i.e. assumptions that are closed in the deriva-

tion, and where data-predicates occur positively. It su�ce to disallow such assumptions over

the major (i.e. leftmost) premise of induction.

We show that programs whose termination is provable under these restrictions characterize ex-

actly major complexity classes, as listed below: every provable program uses the indicated resources,

and every function in the indicated complexity class is computable by some program provable with

the indicated restrictions:

� Condition (1) yields exactly the primitive recursive functions (Theorem 3).

�Computer Science Department, Indiana University, Bloomington, IN 47405. leivant@cs.indiana.edu. Research

partially supported by NSF grant DMS-9870320
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� (2) yields exactly the (Kalmar-) elementary functions (Theorem 4(1)).

� (1) and (2) combined yield linear space for programs over N , and poly-time for programs over

symbolic data, e.g. f0; 1g� (Theorem 5(2)).

Restrictions (1) and (2) can be construed as re
ecting a certain \�nitistic-predicative" view

of data. In broad strokes, the underlying views can be stated as follows. Take the position that

an inductive data system, say the set N of natural numbers, comes into being through a process,

but cannot be admitted as a completed totality. In particular, determining the elements of N

should not depend on assuming that the full outcome of the generative process for N is already in

hand. To constructively justify an inference by Induction of a formula '[t] one needs then to posit

that the induction formula '[x] is well-de�ned for all values for x, and that the induction eigen-

term t is well-de�ned. A formula in which N occurs only positively, say 9xN(f(x)), asserts that

the process of generating N eeventually yields an element in the range of f ; no invocation of N as

completed totality is needed. This justi�es induction for data-non-negative formulas. For data-non-

positive formulas, the rationale is sensitive to the underlying logic: with the principle of excluded

third available, data-non-positive and data-non-negative induction are equivalent. However, in

constructive logic, data-non-positive formulas are extremely weak; roughly, knowing that an object

x is not obtained by an inductive process yields no computationally useful information.

Consider, in contrast, a non-data-predicative formula, say 8xN(x)!N(f(x)), which classically

is equivalent to 8x:N(x) _N(f(x)). The meaning of such a formula clearly depends on admitting

N as a completed totality.

The consequence of the �nitistic-predicative viewpoint is even more dramatic when it comes

to the eigen-term t of induction (recall that in our framework t may contain arbitrary function

identi�ers). Consider our Data-Elimination (i.e. Induction) rule, say for N ,

N(t) '[0] � � �

'[t]

If we assert the major premise, N(t[x]), on the basis of N(x) as assumption, and x is later quanti�ed

in the derivation, then we implicitly posit that the scope of N is well delineated.

1.2 Motivation and bene�ts

The simple framework of [20] yields surprisingly rich bene�ts. Practically, it enables explicit rea-

soning about functional programs without recourse to numeric codes or a logic of partially-denoting

terms. This includes programs whose termination cannot be proved within the formal theory used.

Conceptually, the framework lends itself to a delineation of various forms of �nitistic and pred-

icative ontologies of data, and to proof theoretic characterizations of computational complexity

classes, as we do here. Such formalisms are quite di�erent from the well developed framework of

Bounded Arithmetic, and o�er an expressively rich and unobtrusive setting for formalizing Feasible

Mathematics, e.g. Poly-time or Poly-space Mathematics.

This novel proof theoretic framework has other promising applications. For instance, it yields a

simple and attractive notion of provable functions of all �nite types, with, as a result, natural notions

of feasibility in higher types. In pure proof theory, intrinsic theories lead to natural de�nitions of

a constructive analogue of Kleene's arithmetical hierarchy. (The hierarchy is in�nite, but relations
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de�ned by prenex formulas are at level 2.) These and related issues will be presented in other

papers, and are mentioned here to illustrate the scope of the method.

1.3 Comparisons

Several connections have been discovered between proof complexity and the computational

complexity of provably-terminating programs. G�odel's famed Dialectica translation [5] can already

be seen as such a connection, showing that the provably recursive functions of �rst-order arithmetic

are precisely the functions de�nable by primitive-recursion in all �nite types.1

More recent connections between the complexity of program-termination proofs and computa-

tional complexity have used a number of paradigms.

1. Restriction on induction formulas. Parson [21] showed that restricting induction to

�0

1
formulas yields precisely the primitive recursive functions, a special case of our Theorem 3

below. Inspired by Cobham's characterization of poly-time by bounded recursion, induction

on bounded formulas was studied by Buss and others, leading to characterizations of several

classes, notable poly-time and poly-space [4].

2. Restricted set existence in second and higher order logic [16].

3. Data ramification. Data rami�cation for functional programming was introduced inde-

pendently in [26, 1, 15], and was subsequently shown to yield functional languages that

characterize precisely major computational complexity classes.

First order theories based on rami�cation were introduced in [18].2 The rami�ed theory with

�rst order induction yields linear space for numeric data, and poly-space for symbolic data.

4. Linear ramified theories. Data rami�cation for functional programs was reformulated by

Hofmann as a type system based on linear logic, notably leading to a type system that allows

recursion in all types without leading out of poly-time [8, 10, 9, 3]. A proof theoretic analogue

of these formalisms were developed in [25, 2]. One the characterizations we give below for

poly-time is also based on structural proof theoretic conditions akin to linear logic (they

are based on ideas developed in [19], predating the papers above and independent of them.)

However, our formalism is dramatically simpler than the ones above. In particular, they do

no involve an extension of �rst order formulas with modal and linear operators. Even if it can

be shown that more algorithms can be proved terminating in the formalisms of [25, 2], the

availability of a much simpler framework with similar properties, is of fundamental interest.

Like the rami�ed formalisms mentioned under (3) above, the research reported here is based

on the framework of intrinsic theories for inductive data [18, 20]. The salient aspects of this

approach are (1) programs are referred to explicitly at the assertion level, not through coding

or modal operations; and (2) there are explicit predicates to convey that terms denote data of

particular sorts. However, contrary to (3) the restriction on proofs considered here are articulated

in terms of restrictions on formulas in crucial positions in a proof, rather than a type-like labeling

system. This approach o�ers a number of advantages, including a generic framework for direct and


exible reasoning about declarative programs (including divergent terms), a novel proof theoretic

1A new proof of this result, in the spirit of the project reported here, can be found in [20].
2A more complete account of this development is in [12].
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treatment of inductive data and of the type hierarchy over such data, and transparent ways of

verifying resource bounds for program execution. Here we report progress on the latter.

1.4 Technical background

In [20] we put forth, for each sorted inductive algebra A (C), over a set C of generators, a

formalism IT(C) for reasoning about recursive equational programs over A (C). We refer the

reader to the de�nitions and discussion there. The simplest non-degenerated inductively generated

algebra is the set N = A (0; s) of natural numbers, generated from the constructors 0 and s (zero

and successor). The intrinsic theory IT(N ) is the �rst order theory over the vocabulary consisting

of 0, s, and a unary relational identi�er N. The axioms are:

1 Generative axioms: N(0) and 8x:N(x)!N(sx);

2 The axiom schema of Induction: A[0] ^ 8x: (A[x]!A[sx]) ! 8x: (N(x)!A[x]).

We also consider an extension IT(N ) of IT(N ), with separation axioms for the constructors of N

(i.e. Peano's third and fourth axioms):

3 8x:: s(x) 0,

4 8x; y: sx sy ! x y.

We shall use Gentzen-style natural deduction calculi for these theories, with the usual inference

rules for equality, and a rendition of the axioms by inference rules:

Data-introduction

N(0) and
N(t)

N(st)

Data-Elimination (i.e., induction)

N(t) '[0]

f'[x]g
....

'[sx]

'[t]

A degenerate form of data-elimination is

N(t) '[0] '[sx]

'[t]

that is, proof by cases on the main constructor.

Separation
st t
? and

st st0

t t0

We shall use freely common concepts and terminology for natural deduction calculi, as presented

e.g. in [28]. We call a derivation of IT(N ) simply-normal if it is induction-free and normal (in the

sense of �rst order logic). If D is a natural deduction derivation, we write jDj for its height.
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We say that an r-ary function f over N is provable in IT(N ) if there is an equational program

(P; f) that computes f , and for which

N(~x) ` N(f(~x))

where N(~x) abbreviates the conjunction N(x1)^� � �^N(xr), and provability is in IT(N )+ �P , where
�P is the universal closure of the conjunction of the equations in P . Function provability in IT(N )

is de�ned analogously.

Analogous theories are de�ned for any inductively generated data-system A (C), where C is the

set of constructors. When referring to a single-sorted data-system, such as N or W = f0; 1g�, we

use D as a generic predicate identi�er for data, in par with our use of N above. Thus, for example,

we have a data introduction rule for each constructor c: if arity (c) = r, then the rule is

D(x1) � � � D(xr)

D(c(x1 : : : xr))

We refer the reader to [20] for detail and examples. We write IT(C) for the intrinsic theory for

A (C), and IT(C) for the extension of that theory with separation axioms.

In [20] we showed that the functions provable in IT(N ), as well as those provable in IT(N ),

are precisely the provably recursive functions of Peano Arithmetic. This remains true if in place

of N we take any non-trivial inductive data-system. The underlying logic can be either classical or

constructive (i.e. intuitionistic).

2 STATEMENT OF THE RESULTS

2.1 Data-predicative induction and primitive recursion

As usual, we say that an occurrence of D in a formula ' is positive (respectively, negative) if it

is in the negative scope of an even (respectively, odd) number of implications and negations. We

call a formula ' in the vocabulary of IT(C)

� data-positive if D has positive occurrences in ',

� data-non-positive if D has no positive occurrences,

� data-non-negative if D has no negative occurrences, and

� data-predicative if it does not have both positive and negative occurrences, i.e. is either data-

non-positive or data-non-negative.

We de�ne IT+(C) to be IT(C) with induction restricted to data-predicative formulas. IT
+

(C)

is de�ned analogously.

For example, formulas of the form 9x ( D(x) ^ E ), E an equation of primitive recursive

arithmetic, are data-non-negative, and so data-predicative. These are precisely the interpretations

in IT(C) of �0

1
formulas of primitive recursive arithmetic. Similarly, all D-free formulas are data-

predicative, as are all formulas of the form Q: (�!D(t) ) where Q is a block of quanti�ers and

� is D-free; these formulas are not interpretations in IT(C) of formulas of �rst order arithmetic.
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The interpretation in IT(N ) of a �0

1
formula 8x:E, E an equation, is 8x: (N(x) ! E ), which

is data-non-positive, and so also data-predicative. However, the interpretation of a �0

2
-formula

8x9y E is 8x (N(x)! 9y N(y) ^E ), which is not data-predicative.

Let A (C) be an inductive data-system. Our results for induction restricted to data-predicative

formulas are as follows.

Proposition 1 Every function de�nable by simultaneous recurrence over A (C) is provable in

IT(C), based on minimal logic, and with induction for conjunctions of atomic formulas.

In particular, all primitive recursive functions are provable in IT(N ) using induction for such

formulas.

Proposition 2 Every function provable in IT(C), based on classical logic, and with induction

for data-predicative formulas, is de�nable by simultaneous recurrence over A (C). In particular, all

provable functions of IT(N ) are primitive recursive.

From Propositions 1 and 2 we conclude

Theorem 3 The provable functions of IT+(N ) (or IT
+

(N )) are precisely the primitive recursive

functions.

More generally, if C is a data-system, then the constructively provable functions of IT+(C) (or

IT
+

(C)) are precisely the functions over the algebra A (C) that are generated from the constructors

by composition and simultaneous recurrence. (These are also the functions that are primitive

recursive modulo a canonical coding of C in N .)

2.2 Data-predicative derivations

The results stated above show that the restriction of Induction to data-predicative formulas

reduces the class of provable functions quite dramatically, from the provably recursive functions

of �rst order arithmetic to the primitive recursive functions. However, from the viewpoint of

feasible computation and computer science, the latter is still a stratospherically large class. In [18]

we de�ned a rami�ed intrinsic theory of data, yielding provable functions that fall precisely into

major complexity classes, notable the poly-time, linear space, and Kalmar-elementary functions,

depending on allowable instances of induction and on the underlying data system. Here we use an

alternative approach, where impredicative references to data in derivations are prohibited explicitly.

Call a natural deduction derivation D of IT(C) data-predicative if no major premise of non-

degenerate data-elimination (i.e. induction) depends on a data-positive assumption closed in D. As

discussed above, this property re
ects a �nitistic-predicative concern.

We have:

Theorem 4 For any data-system A (C), a program P is provable in IT(C) by a data-predicative

derivation i� P is computable in Kalmar-elementary resources.
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For the next result we refer to the generic register machines over a data-system A (C), as de�ned

in [17].

Theorem 5 For any data-system A (C), a program P is provable in IT(C) by a data-predicative

derivation with data-positive induction i� P is computable in poly-time on a register machine over

A (C).

In particular, P is provable in IT(N ) by a data-predicative derivation with data-positive in-

duction i� P is computable in linear space. And for any word algebra A (C), such as f0; 1g�, P is

provable in IT(C) by a data-predicative derivation with data-positive induction i� P is computable

in polynomial time on a Turing machine.

Note the generic character of Theorem 5. Here we get di�erent complexity classes (according

to common separation conjectures) depending on the underlying data. This is because the coding

of one algebra in another exceeds here the computational complexity under consideration, contrary

to broader classes, such as the Kalmar-elementary functions.

2.3 Classical vs. constructive logic

The relations between the constructive and classical versions of the results above are slightly

more complex than in unrestricted intrinsic theories. In [20, x3.6] we exhibited a trivial proof that

a function provable in an intrinsic theory based on classical logic, is already provable in that theory

based on minimal logic. However, that proof uses a formula-substitution that may convert data-

predicative formulas to ones that are no longer data-predicative, and similarly for data-non-positive

formulas. More subtle proofs are therefore needed here. Below we present a rather direct proof of

Proposition 2 for the constructive logic case. However, as of this writing we do not know whether

this proof can be modi�ed to apply also to classical logic; we therefore give a separate proof for the

classical logic case, in Appendix I, using a di�erent technique, and somewhat more complex.

The di�erence between the classical and constructive variants of the theories is manifest with

non-data-positive induction. On the one hand we have:

Proposition 6 Based on classical logic, data-non-positive induction is equivalent to data-non-

negative induction.

The proof here is, for N , similar to the proof that �0

1
-induction is equivalent to �0

1
-induction (see

e.g. [6] or [27]). A bit more work is needed for other data systems. We don't know if Proposition

6 remains true for data-predicative derivations.

In contrast to Proposition 6 we have:

Proposition 7 Every function provable in IT(C), based on constructive logic, and with induction

for data-non-positive formulas, is explicitly de�nable from the constructors of C.

This is a consequence of Theorem 18 below.

2.4 Relativized results
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All results above can be relativized, as follows. If f is an r-ary function-identi�er, we write

Tot[f] �df 8x1 : : : xr:D(x1) ^ � � �D(xr)! D(f(~x))

Suppose A (C) is an inductive data-system, which without loss of generality and to avoid clut-

tered notations we assume single-sorted. Let g1; g2 : : : g be discourse-level parameters ranging over

functions over A (C), and g1;g2 be corresponding formal function-identi�ers (thus arity (gi) =

arity (gi)). The aforementioned results then hold with \primitive recursive" replaced by \primitive

recursive in g1; : : : ", and with \provable" replaced by \provable from Tot[g
1
]; Tot[g

2
]; : : : :"

Relativization of the results is of interest when embedding traditional �rst order theories in

intrinsic theories. For example, embedding Peano's Arithmetic in IT(N ), as in [20], introduces

into IT(N ) addition and multiplication as new primitives. This augmentation is inconsequential

in virtually any application, since addition and multiplication are provable functions in very weak

variants IT(N ). However, not so in IT(N ) with induction restricted to data-non-positive formulas.

The relativized analog of Proposition 7 is then worth independent consideration:

Proposition 8 The functions provable in IT(C), based on constructive logic, and with induction

for data-non-positive formulas, from the statements of totality of functions f1 : : : fk, are precisely

the functions explicitly de�nable from the constructors of C and f1 : : : fk.

In particular, the provably recursive functions of Heyting's Arithmetic with induction restricted

to data-non-negative formulas, are precisely the functions explicitly de�nable from 0; 1;+ and �.

The latter part of Proposition 8 improves one of the results of [29].3

Another illustration of the crucial di�erence between constructive and classical version of the

theories, when induction formulas are structurally restricted, is this:

Theorem 9 The provable functions of constructive IT(N ) with induction restricted to prenex

formulas are (classically, whence constructively) provable using �2-induction.

It is easy to extract from Theorem 18 below a proof outline: prenex formulas are mapped to

types of order 2, and functions de�nable by order-2 primitive recursion are well known to be the

same as the functions provable by �2-induction.
4

3 FROM COMPUTATIONAL COMPLEXITY TO PROVABILITY

We start with the forward implication of Proposition 1.

3The latter states that the provably recursive functions ofHA based on�0
1-induction are bounded by polynomials,

and are the same as the provably recursive functions of HA with induction for formulas in either one of the classes

:�1, ::�1, :�1, or ::�1. It should be noted, though, that induction for formulas with no strictly-positive data

information is useless only when it comes to proving program termination. Indeed, one can prove by induction on

�1-formulas, i.e. of the form 8x N(x)!�, � quanti�er-free, that addition is commutative, a result which cannot

be proved using only �1-induction, even though the latter theory is so much more powerful than the former with

respect to proving program termination.
4This follows, e.g. from G�odel's \Dialectica" interpretation [5]. A consequence of Theorem 9 is that the functions

provably-recursive in HA with prenex induction are provably-recursive in HA with �2 induction, which is the main

theorem of [29].
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Lemma 10 Every function over A (C) de�nable by simultaneous recurrence is provable in IT(C)+;

moreover, the derivation uses induction only for conjunctions of atomic formulas.

In particular, all primitive recursive functions over N are provable in IT(N ) using such restricted

induction.

Proof. See [20, Proposition 6]. a

Lemma 11 Addition and multiplication are provable by data-predicative derivations, with induc-

tion over atomic formulas. Exponentiation is provable by a data-predicative derivation.

Proof. We use the following programs for addition, multiplication, and base-2 exponentiation:

x+ 0 = x

x+ sy = s(x+ y)

x� 0 = 0

x� sy = (x� y) + x

e(0; y) = sy

e(sx; y) = e(x; e(x; y))
exp(x) = e(x;0):

The corresponding proofs are as follows, where for readability we omit uses of the programs'

equations, and use instead double-bars to indicate such uses (via equational rules).

N(y)

N(x)

N(x+ 0)

N(x+ z)

N(s(x+ z))

N(x+ sz)

N(x+ y)

N(y)

N(0)

N(x� 0)

N(x) N(x+ z)
� � �

N((x� z) + x))

N(x� (sz))

N(x� y)

N(x)

N(y)

N(sy)

N(e(0; y))

8y (N(y)!N(e(0; y)))

8y (N(y)!N(e(u; y))

N(e(u; y))!N(e(u; e(u; y)))

8y (N(y)!N(e(u; y))

N(y)!N(e(u; y)) N(y)

N(e(u; y))

N(e(u; e(u; y)))

N(e(su; y))

8y (N(y)!N(e(su; y)))

8y (N(y)!N(e(x; y))

N(e(x;0))

N(exp(x))

Note that here the induction formula has N in both positive and negative positions. a

Building on the construction of Proposition 11, we can prove the forward direction of Theorems

4 and 5.
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Proposition 12 Let A (C) be a data-system, f a function computable by a register machine over

A (C).

1. If the register machine for f terminates in time that is Kalmar-elementary in the height of

the input, then f is provable in IT(C) by a data-predicative derivation, in minimal logic.

2. If the register machine for f terminates in time polynomial in the height of the input, then f

is provable in IT(C) by a data-predicative derivation, using induction on the conjunction of

atomic formulas.

Proof Outline. As in [17, x3.3] we refer to the coding of register-machine con�gurations by tuple

of terms of A (C). Given a deterministic m-register machine M over A (C), there are functions

�0; � 1 : : : ; �m : A m+1!A such that, ifM has a transition rule for state s, then (s; [u1; : : : ; um]) `M
(s0; [u0

1
; : : : ; u0m]) i� � i(#s; u1; : : : ; um) = u0i for i = 1 : : : m, and �0(#s; u1; : : : ; um) = #s0; and if

M has no such transition, then � i(u0 : : : um) = ui. The transition functions � i are provable, in the

strong sense that
V
iD(ui)!D(� i(~u) has a data-predicative derivation, that uses only degenerate

instances of data-elimination.

As in the proof of [17, Lemma 3.4], we replace the successor function in the derivations for

addition, multiplication and exponentiation above, by the tuples h�0 : : : �mi, and conclude the

every computation that terminates with the given bounds are provable with the corresponding

predicativity restrictions. a

4 FROM PROVABILITY TO COMPUTATIONAL COMPLEXITY

By the well known Curry-Howard morphisms, natural deductions can be viewed as �-terms

[24, 11]. In [13, 14] we presented a version of such mapping which yields directly an applicative

program for a function f from a derivation for the provability of f in various formalisms. We

summarize here a similar construction for intrinsic theories.

4.1 Typed lambda calculus with recurrence

We shall map derivations of IT(C) to terms of an applied simply typed �-calculus. We focus

attention �rst on single-sorted data systems C, and write D for the unique sort.

Let 1� be the simply typed lambda calculus with type products, and with pairing and projec-

tions as term-constructs. We let ! associate to the right, and write �
1
; : : : ; �r! � for �

1
!� � �!

�r ! � as well as for �1 � � � � � �r ! � . If all �i's are the same type �, we write �r ! � for the

above. We write ht; t0i for pairing of the terms t; t0, and �0; �1 for the two projection functions. The

computational rules are the usual �-reduction, contracting (�x:t)s to fs=xgt, and pair-reduction,

contracting �iht0; t1i to ti (i = 0; 1).

Let C = fc1 : : : ckg be a single-sorted data-system, with ci of arity ri. The extension 1�(C) of

1� is de�ned as follows. Each ci is admitted as a constant, of type �ri ! �. For each type � , we

also have a constant RC� = R� of type �1[� ]; : : : ; �k[� ]; �! � , where �i[� ] =df �
ri ! � . Aside from

the �-reduction and pair-reduction, 1�(C) has for each type � a rule of recurrence in type � :

R�M1 � � �Mk(ciA1 : : : Ari) ) MiA
0

1
� � �A0

ri
where A0

j =df R�M1 � � �MkAj

A term is normal if no subterm can be reduced.

The Tait-Prawitz method is easily applicable to 1�(C), yielding
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Lemma 13 Every reduction sequence in 1�(C) terminates. a

Note that each element of A (C) is represented in 1�(C) by itself (modulo currying), and that

every closed normal term of type � is an element of A (C). Thus, every expression of type �r! �

represents an r-ary function over A (C). Clearly, the constant R� denotes the operation of recurrence,

i.e. iteration with parameters, over type � , that is, the function hg1 : : : gki 7! f , where f is de�ned

by f(ci(a1 : : : ari)) = gi(f(a1) : : : f(ari)) (i = 1 : : : k). It follows that the functions over A (C)

represented in 1�(C) are precisely the functions generated by explicit de�nitions and recurrence in

�nite types.

Various extensions of this calculus are discussed in [20].

4.2 Natural deduction derivations as applicative programs

Let C be a single-sorted data-system. We map ND derivations of IT(C), based on minimal

logic, to terms of 1�(C), as follows. Our mapping is in the spirit of Curry-Howard's formula-as-

type analogy, but with a twist. In [14] we de�ned a mapping that disregards the �rst order part of

formulas, notably application of predicates to terms, and �rst order universal quanti�cation. Our

present mapping also disregards equality, and is therefore potentially oblivious to large parts of

derivations. In fact, no proper term will correspond to a derivation of an equation. To convey this

approach, we use an auxiliary atomic type ? (for \unde�ned"), as well as an auxiliary atomic term

;, of type ?.

We �rst de�ne recursively a mapping � from formulas to types:

� �(D(~t)) =df D

� �(t t0) =df ?

� �( !�) =df

8<
:

�(�) if �( ) = ?

? if �(�) = ?

� !�� otherwise

� �( ^ �) =df

8<
:

�(�) if �( ) = ?

�( ) if �(�) = ?

� � �� otherwise

� �(8x: ) =df � 

We call a formula ' data-negative if �(') = ?, data-positive otherwise. Thus, ' is data-positive i� it

has a strictly-positive atomic subformulaD(~t ). We call a derivation D data-positive (data-negative)

if its derived formula is data-positive (data-negative, respectively).

We proceed to de�ne recursively a mapping from ND derivations of IT(C), based on minimal

logic and using only the closed-version of C-Induction, to terms of 1�(C). Without danger of

ambiguity we write � also for this mapping. If D is a derivation from labeled open assumptions

 
j1
1
; : : : ;  

jq
q to conclusion ', then �D will be a term of type �', with free variables among xj1 : : : xjq ,

of types � 1 : : : � q, respectively.
5 The type ? and the object ; will be used in the de�nition only

when equality is present.
5We posit a concrete syntax for natural deductions, which assigns a common numeric label to each assumption

class, i.e. the open assumptions that are closed jointly by an inference. Distinct labels are assigned to di�erent

assumption classes.
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The term �D is de�ned by recurrence on D, as follows, using momentarily the convention that

if D is a derivation, then D0;D1; : : : are D's immediate sub-derivations, in that order.

1. If D is data-negative, then �D = ;.

The following cases refer to a data-positive D.

2. If D is a labeled open assumption  j, then �D = x
� 
j (the j-th variable of type � ).

3. If D derives '0 ^ '1 by conjunction introduction, then �D = h�D0; �D1i if both D0 and D1

are data-positive. If only Di is data positive, then �D = �Di.

4. If D derives 'i from '
0
^'

1
(i = 0 or 1), then �D = �i�D0 if both '0

and '
1
are data-positive,

�D = �D0 otherwise.

5. Suppose D derives  !' by implication introduction, closing labeled assumption  j . If  is

data-positive, then �D = �x
� 
j : �D0; otherwise, �D = �D0.

6. Suppose D derives ' by implication elimination, from  !' and  . Since D is data-positive,

the sub-derivation D0 of  ! ' is also data-positive. If  is data-positive as well, then

�D = (�D0)(�D1); otherwise, �D = �D0

7. If the main inference of D is 8-introduction, 8-elimination, or Replacement, then �D = �D0.

8. If D derives D(ci(t1 : : : tri)) by the generative rule for ci, from sub-derivations T 1 : : : T ri , then

�D = ci(�T 1; � � � ; �T ri).
6

9. If D derives '[t ] by the closed-version of C-induction from D(t) and Cl cj [�x'] (j = 1 : : : k),

then �D = R�'(�D1) � � � (�Dk)(�D0). Note that ' here is assumed data-positive, hence all

sub-derivations are data positive.7

Lemma 14 If D is a derivation of ' from labeled open assumptions  
j1
1
; : : : ;  jmm , then �D is a

term of type �', with free variables among xj1 ; : : : ; xjm of types � 1; : : : � m, respectively.

Proof. By a straightforward structural induction on D. a

4.3 Function provability and recurrence in higher type

Lemma 15 For every a 2 A (C) there is a normal deduction T a in IT(C) deriving D(a), such that

�T a = a.

Proof. Trivial induction on a. a

Lemma 16 If D reduces to D0 in IT(C), then either �D = �D0, or �D reduces to �D0 in 1�(C).

6Note that in this case all sub-derivations T i are data-positive.
7This is no longer true for multi-sorted C, where C-Induction may be used to derive a data-positive '

i
[t] with

some other inductive formulas '
j
[x] being data-negative.
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Proof. Straightforward inspection of the reductions. Note that for the case of Replacement

reductions for Induction it is important that we allow non-atomic eigen-formulas in instances of

Replacement.8

Lemma 17 Let P be an equational program. If D is a normal derivation of IT(C), deriving an

atomic formula Di(t) from �P , where t is closed, then �D is a base term and t �D is derived from

P in equational logic.

Proof. By basic properties of normal derivations D is without C-induction, and so every formula

in D is atomic, or of the form 8~x: t t0 for some equation t t0 in P .

We proceed to prove the Lemma by structural induction on D. If D is a singleton derivation,

then it must be Di(c), where c is a 0-ary constructor of C. The Lemma holds trivially.

If D is
D0

Di(t
0)

D1

t0 t

Di(t)

then �D = �D0, where by IH �D0 is a base term, with P `
=
t0 �D0. Also, P `

=
t0 t. Thus, �D is

a base term, and P `
=

t �D.

Finally, if D is
T 1

Dpi1(t1) � � �
T ri

Dpiri
(tri)

Dqi(ci(t1 : : : tri))

then �D = ci(�T 1; : : : ; �T ri). By IH �T j is a base term, where P `
=
tj �T j (j = 1 : : : ri).

Therefore �D = ci(�T 1; : : : ; �T ri) is a base term, and P `
=
ci(t1 : : : tri) �D. a

Theorem 18 [Representation] Let (P; f) be a program computing a function f over A (C). If D is

a deduction of IT(C) deriving D(~x)! D(f(~x)) from �P , then �D represents f in 1�(C).

Proof. Without loss of generality, let f be unary. Given a 2 A (C) let Da be the result of

substituting a for free occurrences of x in D. We have �Da = �D trivially from the de�nition of �.

Let T a be the straightforward derivation of D(a), using the data introduction rules for C. Then,

for

Dfa =df

Da

D(a)!D(f(a))
T a

D(a)

D(fa)

we have �(Dfa) = (�Da)(�T a). By Lemma 13 Dfa reduces to a normal derivation D0

fa, and by

Lemma 17 �(D0

fa) is a base term. We thus have

(�D)(a) = (�Da)(�T a) by Lemma 15

= �Dfa

= �D0

fa by Lemma 16

= f(a)
8Without this stipulation �D would not reduce to �D0, but to a term to which �D0 �-reduces. The gist of our

results would be preserved, but in a less transparent setting. Moreover, we must refer to Replacement reduction over

Induction (data elimination), so using Replacement reduction over logical elimination rules only enhances uniformity

and symmetry.
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Thus �D represents f . a

4.4 Data-positive induction and primitive recursion

An immediate consequence of Theorem 18 is the backward direction of Theorem 3:

Corollary 19 Every function provable in IT+(N ) (or IT
+

(N )) is primitive recursive.

Proof. By Theorem 18 every function provable in IT+(N ) is representable in 1�(N ) by a term

with the recurrence operator used for types of the form Nk (k > 1), i.e. the functions de�ned by

simultaneous primitive recursion at based type. All such functions are primitive recursive (see e.g.

[23].) a

4.5 Data-predicative proofs

Proof outline. In [20] we exhibited proofs for addition, multiplication, and exponentiation. The

derivations there for addition and multiplication are data-predicative and with data-positive in-

duction. The derivation for exponentiation is data-predicative. It is easy to see that the provable

functions (under any one of the paradigms above) are closed under bounded recurrence and compo-

sition. It follows that every function de�ned from addition and multiplication by bounded primitive

recursion, i.e. function in Grzegorczyk's class E2 = linear-space for numeric functions, is provable

by a data-predicative derivation of IT(N ) with data-positive induction. This establishes (3). (1)

and (2) are analogous.

More complex and interesting are the converse implications. We use here the results of [19].

The mapping � of proofs to functions, developed for Theorem 18 above, maps data-predicative

derivations to 1�(C)-terms dubbed input-driven in [19], and shown there to de�ne only functions

computable in elementary resources, completing the proof of (1). Similarly, �maps data-predicative

derivations with data-positive induction to input-driven 1�(C)-terms with recurrence for �rst-order

types only, which by the results of [19] yield (2) and (3). End of Proof Outline.
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5 APPENDIX: THEOREM 3 FOR CLASSICAL LOGIC

Theorem 3 above refers to theories based on constructive logic, since we show that every provable

function is primitive recursive by a Curry-Howard mapping that we are unable as of this writing

to adapt to classical logic. However, the theorem holds for classical logic as well, as we show

in this Appendix using a di�erent method, namely a direct proof-theoretic analysis of IT
+

(N ).

The analysis uses a novel technique that recursively unfolds inductions in data-closed derivations,

without addressing the normalization of IT
+

(N ) in general.

We shall freely use common concepts and terminology for natural deduction calculi, as presented

e.g. in [28]. We call a derivation of IT(N ) simply-normal if it is induction-free and normal (in the

sense of �rst order logic). If D is a natural deduction derivation, we write jDj for its height.

5.1 Converting data-non-negative proofs to induction-free proofs

Suppose D is a (classical logic, Gentzen-style) natural deduction of IT(N ), deriving a formula A

from (open) assumptions B1 : : : Bm. By the normalization theorem for Gentzen's natural deduction

(see e.g. [28]), we may assume that D is normal. If D is in intuitionistic logic, then each formula-

occurrence in it must be a subformula of either A, some Bi, or some eigen-formula of an instance

of the induction rule. If classical logic is used, then we might also have in D negations of formulas

as above; each such negation must be an assumption of D closed by the ?-rule, and the major

premise of Implication-Elimination.

We dub an (open) assumption of a derivation D contradiction-assumption if it is negated and

the major premise of Implication-Elimination.

Now suppose that D is a derivation of IT+(N ) that derives a data-non-negative formula A

from data-non-negative formulas and contradiction-assumptions. As noted above, we may assume

without loss of generality that A and the data-non-negative assumptions, as well as the eigen-

formulas of instances of induction in D, are all in prenex-disjunctive form. Since subformulas of

data-non-negative prenex-disjunctive formulas are also data-non-negative, all formulas in D, with

the possible exception of contradiction-assumptions, are data-non-negative. We call such deriva-

tions data-non-negative. Finally, a data-non-negative derivation is data-closed if all assumptions

are N-free.

The usual normalization procedure for �rst order natural deductions [22, 28] yields:

Lemma 20 There is a primitive recursive mapping that, modulo canonical encoding of syntax,

yields from induction-free derivations of IT(N ) equivalent simply-normal derivations.9 In particular,

there is a primitive recursive function � such that for every induction-free derivation D there is an

equivalent simply-normal D0, with jD0j 6 �(D).

Lemma 21 Suppose D is a simply-normal data-closed derivation of a data-positive formula A.

Then the main inference of D is not an elimination.

In particular, if a simply-normal data-closed D derives an atomic formula N(t), then the main

inference of D must be Substitution or Data-Introduction.

9The procedure is in fact at the fourth level of Grzegorczyk's hierarchy.

March 2001

55



Leivant Termination proofs and complexity 16

Proof. By induction on D. If the main inference of D is an elimination, then that inference's major

premise, call it F , is also data-positive, and derived by a simply-normal data-closed derivation D0.

(Note that F cannot be a contradiction-assumption, because A is data-positive, whence cannot be

?.) Moreover, since D is normal, the main inference of D0 cannot be an introduction; and since F

is not atomic, that inference can only be an elimination, contradicting induction assumption. a

Lemma 22 Suppose that

D =
DN

N(t)
D0

A[0]

fA[x]g
Ds[x]

A[sx]

A[t]

where DN is simply-normal and data-closed, D0 is simply-normal, and where for every simply-

normal and data-closed derivation
E
A[�n] there is a simply-normal and data-closed derivation equiv-

alent to
E
A[�n]

Ds[�n]

A[s�n]

of height 6 �(jEj), where � is primitive recursive and increasing. Let ` be the number of instances

of Successor-Introduction in DN , m the height of DN , and a the number of logical symbols in A.

Then there is a simply-normal and data-closed derivation Do equivalent to D, of height 6 �
[`]
m(jD0j),

where �m(x) =df �(�(x+ 2ma)).10

Proof. By induction on jDN j. By Lemma 21, N(t) can be derived only by Data-Introduction or

Substitution. If the inference is a Zero-Introduction, i.e. DN is the singleton N(0), take Do = D0.

Here n = m = 0, and indeed jD0j = �
[0]

0
(jDj).

Suppose that the main inference of DN is Successor-Introduction,

DN =

DN0

N(t0)

N(st0)

where t is st0. D is then equivalent to

D1 =

D0

A[t0]

Ds[t
0]

A[st0]

where

D0 =
DN0

N(t0)
D0

A[0]

fA[x]g
Ds

A[sx]

A[t0]

By induction assumption, D0 can be mapped to an equivalent simply-normal derivation of height

6 �
[`�1]

m (jD0j), and by the Lemma's assumption about � it follows that D1 can be converted to an

10We write f [q] for the q'th iterate of the unary function f .
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equivalent derivation of height 6 �(�
[n�1]

m (jD0j)), whence an equivalent simply-normal derivation of

height

6 ���`�1

m (jD0j)

6 ���`�1

m (jD0j+ 2ma)

= �`m(jD0j)

Finally, if the main inference of DN is Substitution,

DN =

DN0

N(t0)
D=

t t0

N(t)

then D is equivalent to

D2 =

D0

A[t0]
D=

t t0

A[t]

where D0 is as above. By induction assumption D0 can be mapped to an equivalent simply-normal

derivation D0

1
, of height 6 �

[n]

m�1
(jD0j). Consider

D00 =

D0

1

A[t0]
D=

t t0

A[t]

The derived inference from A[t0] to A[t], using t t0 as an assumption, has height at most 2a, as

can be seen by a trivial induction on a. Thus

jD00j 6 max(jD=j; jD
0

1
j) + 2a

6 max(jD=j;m) + 2a

6 max(�
[n]

m�1
(jD0j);m) + 2a

6 max(�
[n]

m�1
(jD0j+ 2a);m+ 2a)

6 � [n]m (jD0j)

a

Lemma 23 Suppose that

B1[~x] � � � Bq[~x]

D[~x]
A[~x]

is a data-non-negative derivation of formula A, with data-positive assumptions among B1 : : : Bq
(and possibly equational assumptions and contradiction-assumptions), and the free variables in

B1 : : : Bq among ~x = x1 : : : xp. There is a primitive recursive function �D that, modulo canonical

coding of syntax, maps input numbers ~n = n1 : : : np and induction-free data-closed derivations11

C1
B1[~n]

� � �
Cq

Bq[~n]
11Note that the derivations Ci are data-closed, and so the singleton derivation Bi is excluded.
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to a derivation
D�[~n]

A[~n]

which is simply-normal and equivalent to

D0 =

C1
B1[~n] � � �

Cq
Bq[~n]

D[~n]
A[~n]

Proof. We proceed by induction on D. If D is a single formula A, then we have two cases.

1. A is a data-positive formula, we have

D0 =
C

A[~n]

where C is a data-closed induction-free derivation. The code of D0 is trivially primitive

recursive in ~n and C, and applying the function � of Lemma 20 yields D�.

2. A is not data-positive, in which case D� = D0 = A[~n], and the Lemma's statement is trivial.

If the main inference of D is a data-introduction rule, an equational rule, or a logical rule that

does not invlove closing an assumption, then the induction step is straightforward. We consider

two typical cases, for Implication-Elimination and for 8-Introduction. If the rule is Implication-

Elimination,

D[~x] =

B1 � � �Bq
D0

A0!A

B1 � � �Bq
D1

A0

A

then, by induction assumption, we have a primitive recursive function that maps ~n and data-closed

induction-free derivations
C1

B1[~n]
� � �

Cq

Bq[~n]

to simply-normal data-closed derivations D�

0
, equivalent to

D0

0
=

C1
B1[~n] � � �

Cq
Bq[~n]

D0[~n]

A0[~n]!A[~n]

and D�

1
, equivalent to

D0

1
=

C1
B1[~n] � � �

Cq
Bq[~n]

D1[~n]

A0[~n]

Then
D�

0

A0[~n]!A[~n]

D�

1

A0[~n]

A[~n]
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is induction-free and data-closed, and can be normalized by applying �.

If

D[~x] =

B1 � � �Bq
D0

A[v]

8u:A[u]

then, by induction assumption, we have a primitive recursive function that maps ~n and data-

closed induction-free derivations C1 : : : Cq as above to a simply-normal data-closed derivation D�

0
,

equivalent to

D0

0
=

C1
B1[~n] � � �

Cq
Bq[~n]

D0[~n]

A[v]

Note that v cannot be among x1 : : : xp, by the scoping restriction on the 8-Introduction rule, and

so is not a�ected by the substitution of ~n for ~x. Thus

D�

0

A[v]

8u:A[u]

is induction-free and data-closed, and can be normalized by applying �.

We have four logical inferences that close assumptions.

1. Implication introduction:

D =

A0 B1 � � � Bq
D0

A1

A0!A1

Since both A0 and A0!A1 are data-non-negative, it follows that A0 is not data-positive, and

cannot be one of the Bi's. Thus we may proceed as above.

2. Classical falsehood:

D =

:A B1 � � � Bq
D0

?
A

Since we did not include contradiction-assumptions among the assumptions Bi, we may again

proceed as before.

3. Disjunction elimination:

D =

~B
D_

F0 _ F1

F0 ~B
D0

A

F1 ~B
D1

A

A

If F0 _ F1 is not data-positive, then neither are F0 and F1, and are therefore not among the

Bi's. We may thus proceed as in the previous cases.
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Suppose then that F0 _ F1 is data-positive. By induction assumption we obtain primitive-

recursively from input ~n; C1; : : : Cq a simply-normal data-closed derivation

D�

_

F0[~n] _ F1[~n],

equivalent to

D0

_ =

C1
B1 � � �

Cq
Bq

D_[~n]

F0[~n] _ F1[~n]

Consider the derivation

D�

_

F0[~n] _ F1[~n]

F0[~n] ~B[~n]

D0[~n]

A[~n]

F1[~n] ~B[~n]

D1[~n]

A[~n]

A[~n]

By the subformula property of simply-normal derivations, if F0 _ F1 were derived in D�

_ by

an elimination rule, then it would be a positive subformula of an open assumption of D�

_,

contradicting the fact that D�

_ is data-closed. Thus the main inference of D�

_ must be either

a Classical Falsehood or a Disjunction Introduction.

In the former case, we have

D�

_ =

:(F0[~n] _ F1[~n])
D�

_0

?
F0[~n] _ F1[~n]

Then the derivation

D��

_ =

:(F0[~n]

:(F0[~n] _ F1[~n])
D�

_0

?
F0[~n]

is also data-closed and induction-free. Applying induction assumption to D0, and using �D0

we obtain a simply-normal data-closed derivation, equivalent to

D��

_

F0[~n]
C1

B1[~n] � � �

Cq
Bq[~n]

D0[~n]

A[~n]

If the main inference of D�

_ is Disjunction-Introduction, say

D�

_ =

D�

_0

F0[~n]

F0[~n] _ F1[~n]

then we again apply induction assumption to D0, and using �D0
obtain a simply-normal

data-closed derivation, equivalent to

D�

_

F0[~n]
C1

B1[~n] � � �

Cq
Bq[~n]

D0[~n]

A[~n]
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4. The case for Existential-Elimination is similar.

We are left with the case of Data-Elimination (i.e. Induction), with

D =

~B[~x]

DN [~x]

N(t[~x])

~B[~x]

D0[~x]

A[0; ~x]

A[u; ~x] ~B[~x]

Ds[u; ~x]

A[su; ~x]

A[t[~x]; ~x]

By induction assumption, we obtain primitive recursively in ~C as above, a simply-normal data-closed

derivation
D�

N

N(t[~n])

A[t[~n]; ~n]

equivalent to
~C
~B[~n]

DN [~n]

N(t[~n])

A[t[~n; ~n]

as well as a simply-normal data-closed derivation

D�

0

A[0; ~n] equivalent to

~C
~B[~n]
D0

A[0; ~n]

If A is not data-positive, we also get a simply-normal data-clsoed derivation

A[u]

D�

s[u]

A[su; ~n]

equivalent to

A[u]

~C
~B[~n]

Ds[u; ~n]

A[su; ~n]

We then have, by simple normalization of induction-free derivations, a primitive recursive map-

ping from data-closed induction-free derivations
E
A[�n] to a simply-normal data-closed derivation

equivalent to

D�E

s =

E
A[�n0]

~C
~B[~n]

Ds[�n0; ~n]

A[s�n0; ~n]

On the other hand, if A is data-positive, then we have, by induction assumption, primitive

recursively in data-closed induction-free derivations
E

A[�n0] a simply-normal data-closed derivation
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equivalent to D�E

s as above. Note that we may use induction assumption for Ds, because u may be

renamed to be di�erent from all xi's, since no open assumption of Ds may have u free.

In either case, the premise of Lemma 22 is satis�ed, and we obtain primitive-recursively a

simply-normal data-closed derivation equivalent to D0. a

5.2 From induction-free proofs to primitive recursion

Lemma 24 Suppose that D is a normal data-closed induction free proof of N(t) in IT
+

(N ) + �P .

If n is the number of Successor-Introductions in D, then P ` t �n.

Proof. By induction on D. By Lemma 21 the main inference of D is a data introduction or a

substitution. If D is the singleton derivation N(0) (by Zero-Introduction), then the lemma is trivial.

If the main inference is Successor-Introduction,

D =

D0

N(t0)

N(st0)

with t being st0, then we have, by induction assumption, P ` t0 �m, where m is the number of

successor introductions in D0. Thus P ` st0 s �m, i.e. P ` t �n where n = m+1 = the number of

successor introductions in D.

Finally, suppose that the main inference of D is a substitution:

D =

DN

N(t0)
D=

t0 t

N(t)

Since D= is a simply-normal derivation of an equational formula from the equational formulas �P , it

is purely equational, thus establishing P ` t t0. Also, the number n of successor introductions in

D is the same as the number of successor introductions in DN . By induction assumption we have

P ` t0 �n. So we have P ` t �n. a

Proposition 25 If a function f over N is provable in IT
+

(N ), then f is primitive recursive.

Proof. Assume, without loss of generality, that f is unary. By assumption f is computed by some

program (P; f), for which

IT(N ); �P ` N(x)!N(f(x)):

Let D be a normal derivation in IT
+

(N ) of N(f(x)) from assumptions �P and N(x). For each n 2 N ,

let Cn be the direct derivation of N(�n) using the data-introduction rules. By Lemma 23 there is a

primitive recursive function that maps every n and Cn to a simply-normal data-closed derivationD�

n

of N(f(�n)). By Lemma 24 we have P ` f(�n) �m, where m is the number of successor introductions

in D�

n. Thus f is primitive recursive. a

This concludes the proof Theorem 3
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THE BOUNDEDNESS PRINCIPLE

Preliminary Summary
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Daniel Leivant�

1 The boundedness principle and the unity of implicit computa-

tional complexity

1.1 Limiting size versus limiting abstraction

Implicit computational complexity characterizes computational complex-

ity classes through rather di�erent approaches, such as function algebras,

recurrence schemas, typed applicative calculi, descriptive characterizations

in �nite model theory, and provable totality in formal theories. Across this

diversity is a dichotomy: some characterizations use explicit bounds, i.e. lim-

its on data size, and others use limits on conceptual abstraction. Bounding

is central, for instance, to Cobham's bounded recurrence, Buss's Bounded

arithmetic, and the global predicates and global functions of �nite model

theory (more on that below). In contrast, limits on conceptual abstraction

are manifested in data rami�cation (in recurrence or induction), linear logic,

and weak comprehension principles in second order logic.

Most of the recent work has focused on limited abstractions, for both the-

oretical and practical reasons. Conceptually, limiting abstraction is closely

related to foundational issues, such as strong forms of predicativity, whereas

boundedness is really a machine-level measure in disguise. Practically, con-

ceptual abstractions are promising as a methodology for automatic inference

of the computational complexity properties of programs and proofs.

But what is the relation between these two approaches? Can one be

explained in terms of the other? If so, we should expect that the more

concrete of the two, i.e. boundedness, be explained in terms of the more

�Computer Science Department, Indiana University, Bloomington, IN 47405.

leivant@cs.indiana.edu. Research partially supported by NSF grant DMS-9870320
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Leivant The Boundedness Principle 2

foundational, i.e. limited abstraction. For instance, can Cobham's bounded

recurrence be justi�ed directly by rami�ed recurrence, as de�ned in [5]?

Here bounded recurrence for a word algebra A (C) (where C is the set of

constructors) is the de�nitional template

f(c; ~x) = gc(~x) c a constant of C

f(sw; ~x) = gs(~x;w; f(w; ~x)) s a unary function identi�er of C

jf(w; ~x)j 6 jB(w; ~x)j

Put di�erently,

f(c; ~x) = gc(~x)

f(sw; ~x) = gs(~x;w; f(w; ~x)) truncated to length jB(w; ~x)j

Indeed, we'll show momentarily that functions de�ned by rami�ed re-

currence are closed under bounded recurrence. Underlying the proof is the

following observation, which is a simpli�ed form of [5, Lemma 4.1].

Lemma 1 Let A (C) be a word algebra. For each i > j > 0 there is an

upward-reconstruction function Ui;j : A i; A j ! A i, such that Ui;j(u; v) is v

in tier i, whenever juj > jvj.

Lemma 1 can be construed as stating that one need not worry about ram-

i�cation of recurrence if all one's operations are is capped by some bound

u of higher tier. It seems that the phrase Boundedness Principle be�ts this

observation. Interestingly, we have an analogous situation in set theory. The

fundamental antinomies of naive set theories, such as Russell's Paradox, are

manifestly related to circularity, not to size of sets. Yet the most widely

acceptable solution to that problem relies on a doctrine of size: Zermelo

replaced the unrestricted comprehension principle by a Separation Schema

(Aussonderungsaxiom), stating that one need not worry about comprehen-

sion if it is used within an already accepted set.

1.2 Bounded recurrence

We recall some terminology from [6]. The gc's and gs's functions in the

recurrence template above are the recurrence functions. For each function gs
in the template above, the arguments instantiated to f(w; ~x) are the critical

arguments. If f : A j1
; : : : ; A jk

! A `, and d > 0, then the d-shift of f is

the copy of f of type A j1+d; : : : ; A jk+d ! A `+d. Notice that all classes of

functions de�ned by rami�ed recurrence are closed under all d-shifts.

The following observation is trivial.
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Lemma 2 For each i > j > 0 there is a downward-coercion function Di;j :

A i!A j, de�ned by rami�ed recurrence, and mapping a canonical term a in

A i to a in A j.

Lemma 3 Let A be a word algebra. Given a rami�ed function B : A i; A j!

A k+1, there is a rami�ed function B0 : A m; A j ! A k, (m = max(i; k+1)),

de�ned by rami�ed recurrence from B, and such that

1. jB0(sw; x)j > jB0(w; x)j, and

2. jB0(w; x)j > jB(w; x)j

Proof. De�ne

B0(c; x) = B(c; x) for each constant c;

B0(sw; x) = B(sDm;iw; x)�B0(w; x) for each successor s

Here � : A k+1; A k ! A k is a tiered version of the concatenation function,

used in in�x notation. a

Theorem 4 Let F be a set of rami�ed functions over an inductive word

algebra A (C), closed under tier-shifts. If a function f over A (C) is de�ned

from the (un-tiered version of) functions in F by bounded recurrence, then

it is de�nable from F by rami�ed recurrence and composition.

Proof. Let f be de�ned as above, where the recurrence functions and

the bounding function are (un-tiered version of functions) in F . To avoid

cluttered notation, suppose that ~x consists of a single variable x. Since F is

closed under tier-shift, we may assume that the recurrence functions have a

common output tier, t say. Let k be the highest tier of the critical arguments

of the recurrence functions. Using again closure under tier-shifts, we may

assume that B has output-tier k+1. Moreover, by Lemma 3 we may assume

that B is length-increasing with respect to the �rst argument. Let ` be the

largest tier assigned to x in the latest rami�ed versions of the recurrence

functions and of B, and let r0 be the largest tier of w in these rami�ed

functions. Let r =df max(r0; k+1).

De�ne functions g0

c
: A `!A t (c a constant of C)m g0

s
: A `; A r; A k; A k+1!

A t (s a function identi�er of C), by

g0

c
(x) =df gc(D`;i(x)) where i is the tier of x in gc

g0

s
(x;w; z; y) =df gs(D`;i(x);Dr;j(w); Uk+1;k(y; z))) where i; j are the tiers of x and w in gs
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Now de�ne the function f 0 : A r; A `; A k+1 ! A t by the rami�ed recurrence

f 0(c; x; y) = g0

c
(x)

f 0(sw; x; y) = g0

s
(x;w; f 0(w; x; y); y)

Since r = the tier of the recurrence argument is > k = the tier of the critical

arguments, this is a correct rami�ed recurrence. Now de�ne by rami�ed

composition

f(w; x) = f 0(w; x;B(w; x))

By induction on jwj one veri�es that this yields a de�nition of f , using

the facts that j majorizes f and is size-increasing with respect to its �rst

argument. a

1.3 Bounded induction

Analogously to the simulation of bounded recurrence by rami�ed recur-

rence, Rami�ed Intrinsic Theories (as de�ned in [6] justify Bounded Arith-

metic). This can be stated for the proof rules, as well as for the de�nable

functions. For instance, we have

Theorem 5 The schema �b

1-PIND of the system S1
2
of bounded arithmetic

is derivable in the rami�ed intrinsic theory for binary words, with induction

restricted to data-predicative formulas.1

Theorem 6 If a function f over binary words is �b

1 de�nable in Buss's S1
2
,

then f is provable in the rami�ed intrinsic theory above.

More general statements, as well as proofs, are postponed to the full

version of this paper.

1.4 Global predicates of �nite model theory

If C is a class of �nite structures over a common vocabulary, then a global

r-ary predicate over C is a function that assigns to each structure S 2 C an

r-ary relation over the universe jSj of S. A global predicate can be viewed as

1See [6] for the de�nition of the latter. Note that data-predicative formulas are the

intrinsic-theory analogues of the�0

1 formulas of arithmetic. Also, recall that S1

2 is a theory

of binary words disguised as a number theory.
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a query over the structures in C, considered as data-bases. Global predicates

can be de�ned by descriptive devices, such as formulas, or computational

devices, such as programs in an imperative or declarative style. Descriptive

computational complexity, initiated by Immerman, relates such devices to

the complexity of computing the global predicates that they de�ne [4]. In

most all cases the structures considered are assumed given with an order.

Global predicates over ordered �nite structures can also be viewed as

binary-valued functions over binary words. If S is a structure with universe

f0; 1; : : : ; n � 1g, then the given unary relations of S are codi�ed by their

characteristic functions, which are 0-1 words of length n. More generally,

r-ary relations are codi�ed as a words that list the entries of r-dimensional

matrices of size n, e.g. by using auxiliary character to separate dimensions.2

While a direct computation over S yields the truth value of a relation for

given arguments as a single step, the simulation would require a polynomial

number of steps, with the degree of the polynomial being the arity of the

relation. This yields a simulation of Descriptive Complexity Theory by

bounded recurrence over words. We give several concrete examples of this

change of perspective in the full version of this paper.

The simulation of global predicate by version of bounded recursion is the

�nal chapter in the use of the boundedness principle as a unifying thread in

implicit computational complexity.

2 The boundedness principle in use

2.1 Non-size-increasing functions

Much has been said in recent years about the limitation of rami�ed

recurrence to permit common poly-time algorithms. We argue that to a

large degree these shortcomings are related to inessential constraints. In

particular, the behavior of non-size-increasing functions is related to the

boundedness principle.

A typical example is the insertion sort algorithm, for lists over a data

2For instance, a binary relation is coded by its 2 dimensional 0-1 matrix, coded as a

word in f0; 1; $g�, with $ used to separate the listings of rows.
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type A with an order relation <:3

insert(a; []) = [a]

insert(a; b :: l) = if a 6 b

then a :: (b :: l)

else b :: insert(a; l)

sort([]) = []

sort(a :: l) = insert(a; sort(l))

The de�nition of insert can be trivially rami�ed, but with the input-list at

higher tier than the output tier. This blocks the rami�cation of sort. The

algorithm is nonetheless in poly-time, because insert does not increase the

combined size of its input. Hofmann has developed a type system to address

this and similar issues [3]. Among its several innovative features, it deals

with the issue of size-increase by typing the constructors not as functions

from objects to objects, but as functions that also consume a singleton type

�, a \construction permit token" so to speak.

Hofmann's formalism is highly innovative on many counts, and opens

new possibilities for automatic inference of type systems that guarantee

complexity bounds. The complexity of his type system is then relatively

inconsequential, since it is transparent to the programmer. The point we

raise here is that from a purely mathematical viewpoint, non-size-increasing

functions have a straightforward treatment in the framework of rami�ed

recurrence, albeit not one that lends itself to easy type inference. Indeed,

non-size-increasing functions can be de�ned by free use of recurrence, simply

by using the input itself as the bound. In the particular example above, one

might even use simply the list input of insert as a \clock", that is, de�ning

insert : A 0;L0;L1 ! L0, where L is the type of A -lists. The last list

argument is the clock:

insert(a; [];m) = [a]

insert(a; b :: l; c :: m) = if a 6 b

then a :: (b :: l)

else b :: insert(a; l;m)

3We follow [3] in using [] for the empty list, and a :: l for cons(a; l).
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We can now de�ne sort: L1!L0 by rami�ed recurrence:

sort([]) = []

sort(a :: l) = insert(a;D1;0sort(l); l)

A caveat is that the de�nition above of insert is no longer a recurrence,

but rather a recurrence with parameter substitution. However, the substi-

tution is performed exactly once, and it has been known for a while (see e.g.

[1]) that this form of more liberal rami�ed recurrence still preserves poly-

time. The general form for such recurrences is (for a single sorted inductive

algebra A (C))

f(c(x1 : : : xr); ~y; z) = gc(~x; ~y; fc1; : : : fcr)

where

fci = f(xi; ~y; hci(~y; z))

for each constructor c of C, where r = arity (c) > 0

In the rami�ed version we require that the recurrence argument be of tier

higher than the critical arguments. Note that in the parameterizing func-

tions hci the argument z has the same tier as that of the function's output,

so such functions, if de�ned by rami�ed recurrence, are explicitly de�ned

from the algebra constructors.

The rami�ed schema above preserves the function feasibility, in the fol-

lowing sense: if all parameterizing functions are computable in constant

time on a pointer machine for A (C), then f is computable in poly-time on

such machines from the functions gc. If the algebra A (C) has constructors

of arity > 2, then pointer machines over A (C) are not in general simulated

by Turing machine. Thus, we obtain truly poly-time complexity only when

the recurrence argument has only one predecessor.

2.2 Singly-parameterized recurrence in multi-sorted data-

systems

Consider now multi-sorted data-systems, as described in [6]. The general

form of recurrence requires in general simultaneous recurrence for all the

sorts, since those may be generated simultaneously. However, if the sorts are

generated hierarchically, then there is no need for simultaneous recurrence.

For example, in the data system consisting of a sort W of binary words and a

sort L of lists over W , then the generation of W is completed independently of
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L . The list constructor cons, of type W ;L ! L , has therefore one destructor,

and the corresponding clause of the recurrence template takes the form

f(cons(w; l); ~y; z) = gc(w; l; ~y; fc)

where

fc = f(l; ~y; hc(~y; z))

2.3 Rami�ed regression

The starting point of our discussion was the presence of fast algorithms,

stated as equational recurrences, that cannot be rami�ed. But the issue goes

beyond rami�cation. Consider the following algorithm for the di�erence (in

absolute value) of two natural numbers:

di�(0; x) = x

di�(x;0) = x

di�(sx; sy) = di�(x; y):

From Colson's work [2] we know that di� has no primitive recursive de�nition

that runs in time proportional to the smallest of the inputs, a property that

is evident for the de�nition above.

It seems, therefore, that we should be interested not only in rami�ca-

tion/typing systems that admit more de�nition by recurrence, but in new

types of recurrence as well, i.e. in the broader question of rewrite systems,

and their rami�cation. As a modest beginning, let us propose a schema of

rami�ed recurrence that admits all examples above. For clarity, we state

it �rst for word algebras A (C); the generalizations to arbitrary inductive

algebras, and further on to multi-sorted inductive data-systems, is unprob-

lematic.

We call the terms generated from variables and the constructors of C

base terms. For base terms t; t0 we write t 4 t0 if t is a subterm of t,

and t � t0 if it is a strict subterm of t0. For tuples ~t = ht1 : : : tki and
~t0 = ht0

1
: : : t0

k
i we write ~t � ~t0 if ti 4 t0

i
for i = 1 : : : k, and tj � t0

j
for at

least one j.

The schema of singly-parameterized regression allows the de�nition of a

partial function f over A (C) by clauses of the form

f(~t`; z) = g`(~x; z; f`)

where

f` = f(~t0
`
; ~x; h(~x; z))
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Here ~x are the variables in ~t. The latter are dubbed the regression argument

of the clause. The essential requirements are:

1. ~t0 � ~t in each clause.

2. If ~t0 and ~t1 are the regression arguments of two clauses, then they

cannot be uni�ed. This guarantee that the clauses do not generate

multi-valued functions, but we see no reason to exclude the de�nition

of partial functions.

In the rami�ed version of the schema above we require that the tiers of

the regression arguments all exceed the tier of the critical argument f`; i.e.:

if there is a critical argument, then the tiers of the regression arguments all

exceed the output-tier.

Note that Colson's algorithm is a simple case of the template above;

moreover, it is obviously rami�ed.

Theorem 7 If a function f over an inductively generated algebra A (C) is

de�ned by rami�ed singly-parameterized regression, then if is computable in

poly-time on a pointer machine over A (C). In particular, if A (C) is a word

algebra, then f is poly-time.

Theorem 8 If a function f as above is de�ned by an (un-rami�ed) singly-

parameterized regression, with a bounding function j, then f is de�ned from

the regression functions and j by rami�ed singly-parameterized regression.

2.4 Flat versus non-size-increasing functions

Consider again the example above of insertion-sort. We have shown

that the recursive de�nition can be rami�ed, provided we admit singly-

parameterized recurrence. The input list l is used in two ways: as a higher-

tier object to clock the computation, and as lower-tier object that is being

transformed into another list of the same low tier. Put di�erently, the high-

tier copy of l iterates a \
at" function (albeit a function with a high-tier

parameter). The fact that insert is non-size-increasing was a related facet

of the same situation, but not an essential facet.

To see the di�erence consider the following program, which when given a

list of elements as input, produces a sorted list with each element duplicated.
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dupinsert(a; []) = [a; a]

dupinsert(a; b :: l) = if a 6 b

then a :: a :: b :: l

else b :: dupinsert(a; l)

dupsort([]) = []

dupsort(a :: l) = dupinsert(a;dupsort(l))

Here dupsort is not length-preserving, and yet the de�nition can be

rami�ed just like the de�nition of sort above.

References

[1] A. Beckmann and A. Weiermann. A term rewriting characterization

of the polytime functions and related complexity classes. Archive for

Mathematical Logic, 36:11{30, 1996.

[2] Loic Colson. About primitive recursive algorithms. In G. Ausiello,

M. Dezani-Ciancaglini, and S. Ronchi Della Rocca, editors, Proceedings

of the 16th International Colloquium on Automata, Languages and Pro-

gramming, Stresa, Italy, pages 194{206. Springer-Verlag LNCS 372, July

1989.

[3] Martin Hofmann. Linear types and non-size-increasing polynomial time

computation. In Proceedings of LICS'99, pages 464{473. IEEE Computer

Society, 1999.

[4] Neil Immerman. Descriptive Complexity. Springer, Berlin, 1999.

[5] Daniel Leivant. Rami�ed recurrence and computational complexity I:

Word recurrence and poly-time. In Peter Clote and Je�rey Remmel, ed-

itors, Feasible Mathematics II, Perspectives in Computer Science, pages

320{343. Birkhauser-Boston, New York, 1994.

[6] Daniel Leivant. Intrinsic reasoning about functional programs i: �rst

order theories. Annals of Pure and Applied Logic, 2001.

May 2001

74



SUBSTRUCTURAL TERMINATION PROOFS
AND FEASIBILITY CERTIFICATION

Extended Abstract

May 2001

Daniel Leivant�

Abstract

We refer to termination proofs for equational programs, in the framework of [26]

for veri�cation of equational programs, dubbed intrinsic theories. We show that a

natural notion of data rami�cation yields variants of intrinsic theories, whose provably

total functions are precisely poly-time, linear-space, or Kalmar-elementary, depending

on the underlying data and the allowable instances of induction. Using an orthogonal

approach, we showed in [27] that natural structural conditions on the use of induc-

tion lead to restricted intrinsic theories whose provably total functions are precisely

major computational complexity classes: depending on the theories, the classes are

poly-time, linear-space, or primitive recursive. All these theories provide, therefore,

a setting for automatic inference of program complexity, without explicit reference to

implementation, machine models, or data
ow analysis.

In those intrinsic theories above that characterize poly-time, linear-space, or prim-

itive recursion, induction is limited to \data non-negative formulas" (a generalization

of �0
1 formulas). When induction is permissible for all formulas, additional functions

become provable: the formalisms for poly-time and linear-space yield then the Kalmar-

elementary functions, and those for primitive recursion the provably recursive functions

of Peano Arithmetic. Here we also consider these intrinsic theories, with induction

permissible for all formulas in the language, but where the multiplicity of working

assumptions (in a natural deduction) is restricted, at least for non-data-positive for-

mulas. We show that when multiplicity is disallowed, unrestricted induction does not

yield any new provably total functions: we still get poly-time and linear-space, as for

the original intrinsic theories.

Key Words: Implicit computational complexity, proof theory, substructural proofs, intrin-
sic theories, program veri�cation, rami�ed induction, equational programs, program termi-

nation, feasibility, polynomial time, linear space, elementary functions, typed lambda calculi.
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1 INTRODUCTION

1.1 Implicit computational complexity

This paper is a contribution to Implicit Computational Complexity, i.e. the collection

of approaches to computational complexity that have emerged over recent years, which de-

�ne and classify the complexity of computations without direct reference to an underlying

machine model. The motivation is that the complexity of a computation should be visible

from its high level speci�cation, without a machine level examination of resources, such as

time and space. The machine-independent high-level approaches for characterizing com-

putational complexity cover a wide range, including applicative functional programming

languages, linear logic, bounded arithmetic and bounded set theory, database languages in-
terpreted over �nite structures, and structural restrictions on program termination proofs.
Each such approach introduces measures of resources and corresponding notions of com-

plexity, such as complexity of proofs, kinds of set existence principles, numbers and order
of variables, etc. Close correspondences have been unraveled between such approaches and

major computational complexity classes, as well among various approaches. These are testi-
mony to the fundamental and robust nature of the concepts being explored. The hope is that
the conceptual approach to computational complexity being developed will not only enhance

our understanding of di�cult questions in complexity but also, through migration of these
concepts into database theory, functional programming languages, and formal methods in

hardware and software design, aid in the engineering management of complexity.

1.2 Proof theoretic computational complexity: general aims

The proof theoretic approach to implicit computational complexity identi�es major func-
tional complexity classes as consisting precisely of the computable functions that are proved

to be well de�ned (i.e. terminate for all input) in particular formal theories. There are two

broad application areas for this e�ort. From the viewpoint of software engineering, one
would hope to have formal tools for program veri�cation development that would guaran-
tee feasible execution of those programs veri�ed and generated, without direct reference to

the implementation of these programs. On the other hand, from the viewpoint of Feasible

Mathematics the aim is to identify proof methods that are \feasibly safe"; that is, where

theorems proved using only such methods are guaranteed to be true feasibly; e.g., such that
if one proves a formula 8x9y'[x; y] over alphanumeric words, where ' is quanti�er free, then
there is a poly-time functions f such that '[x; f(x)].

A number of characteristics are bene�cial in meeting the two broad aims above. These

might not be all completely achievable or compatible, but they are desiderata worth keeping
in mind.

1. Fit with programming languages. Formal tool for reasoning about programs should
mesh well with the programs themselves.
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2. Data genericity. The natural numbers have been the underlying data of foundational

mathematics, whereas the canonical data of computing theory is words over �nite

alphabets. The two approaches are basically isomorphic within su�ciently powerful

tools, where words are coded by numbers. They are quite disjoint in feasible mathemat-

ics. Our formal methods should therefore address primarily symbolic data, not natural

numbers. Better yet, it might address generically all forms of inductively generated

data, including tree algebras (which are useful for fast data-retrieval in implementations

of databases).

3. Transparency. The formalisms should be compatible with a user friendly formal devel-

opment of mathematics. The fact that the structure of certain proofs guarantee certain

computational properties of the theorems they derive is then to be automatically de-

duced as an afterthought, so to speak. One may then envision a library of formal

mathematics, presented in an un-obstructive style, and where useful computational

complexity bounds automatically ensue from a simple observation of the proofs.

4. Programming generality. Clearly, the programming language one refers to must be gen-
eral: it would make no sense, for instance, to study proof theoretically a programming

language already known to capture poly-time, say Bellantoni-Cook's safe recursion [2].
More interestingly, one wishes to capture not only all functions of complexity class X,

but as many programs/algorithms in X.

1.3 Contributions of this paper

We refer here to the veri�cation methodology for equational programs of [23, 26], dubbed

intrinsic theories. The underlying idea is very simple, yet surprisingly fruitful: for each
inductively-generated data system C we create a skeletal theory IT(C), whose axioms are

merely data-introduction axioms, i.e. the closure of data under the basic constructors, and
data-elimination, i.e. induction axiom-schemas for the data types.

The results reported here are in two directions. First, we de�ne rami�ed intrinsic the-

ories, for reasoning about general equational programs, and we show that they capture

precisely poly-time, linear-space, and Kalmar-elementary, depending on structural restric-
tions on induction. These formalisms were described in broad strokes in [23], but the results

are unpublished. We then investigate options for allowing induction for all formulas, without
spilling out of poly-time. The conditions we obtain can be stated either by structural prop-

erties of proofs, or, more attractively, by substructural logical rules. These rules bear loose

relation to linear logic, but do not invoke modal operators or linear connectives.1 Similar
results hold for the predicative induction of [27], as reported above. These results further

the usefulness of intrinsic theories as a framework for transparently deriving computational
complexity properties of equational programs, as they allow greater 
exibility in permissible

proof methods.

1The relation to Linear Logic is more tenuous than may �rst seem.
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1.4 Comparison with other works

Proof Theory has a long tradition of investigating relations between provable properties

of (computable) functions and their computational complexity. Most signi�cant was G�odel's

discovery that the provably recursive functions of �rst order (Peano) arithmetic are precisely

the functions de�nable by primitive recursion in all �nite types [9]. This approach was

applied by Buss to computational complexity by focusing attention on formulas in which

quanti�ers are suitably bounded [6, 16]. Bounded Arithmetic ties well with traditional proof

theory and its well-developed tools, but has virtually no �t with any programming language

(functions are referred to via codings, as only a few basic functions are explicitly named).

Proof theory for direct, coding-free reasoning about equational programs was introduced

in [19], and related to computational complexity in [21]. These studies focused on second

order formalizations, with feasibility of provable functions being guaranteed via restrictions

on set-existence (i.e., comprehension). First order intrinsic theories were introduced in [23],
with the feasible variant using data rami�cation, a concept considered earlier for function

de�nition by recurrence, and introduced independently in [28], [20], and [2].2

Rami�ed recurrence for higher-type functions leads to functions of exponential growth,
by allowing size-duplication at each cycle of an iteration ([17], revised as [25]). Analogously,

induction for arbitrary formulas has the same e�ect on the provable functions of rami�ed
intrinsic theories. Recent studies have attempted to counteract these computational e�ects
of higher-type recursion and unrestricted induction, by using syntactic restrictions that block

duplications. One variant of this approach simply refers to an applicative calculus for recur-
rence, and simply disallows duplications of certain variables; this idea is basically due to Neil
Jones [14], and re�ned in [24].3 Another variant uses linear types and modalities to achieve

a similar e�ect [5].4

A proof theoretic analog to [5] was developed by Bellantoni [4]. This was greatly stream-

lined in [3], a formalism which does away with the explicit use of linear implication, and

uses the modal 2 to both simulate rami�cation and to permit limited forms of duplications.
This work bears substantial similarities to our Theorem 7 (though not to the rest of the

paper, in particular not Theorem 5, which is of independent interest). However, Theorem

7 is stronger than [5] in at least two important ways. First, we permit multiplicity of as-
sumptions for a much broader class of formulas than [5]. Second, induction in our system

is for all formulas, including references to all tiers, whereas induction in [5] is restricted to
2-free formulas, i.e. to formulas that refer to base tier only. Moreover, our entire treatment

is generic with respect to the underlying data. Finally, our formalism is more transparent, in

the following sense: each of our proofs is a correct proof in the unrestricted intrinsic theory,
with tiering information added. A proof in [5] would typically contain extensive uses of

axioms and inference rules for the 2 operator; this machinery can be eliminated, yielding an

2The use of rami�ed data as a sorted algebra with well-typed composition was introduced in [22].
3This method is combined there not with data rami�cation, but with an alternative method of controlling

unfolding of recurrence.
4A modal type constructor 2 is used there to generate tiers, a method introduced independently in [11]

and [25], where � is used in place of 2. However, it seems that the modality also serves there to prevent

duplication, in combination with the linear implication.
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unrestricted proof, but it is a far trickier feet to recover the original, modal proof, from the

latter \collapse".

2 INTRINSIC REASONING ABOUT EQUATIONAL PROGRAMS

2.1 Intrinsic reasoning about equational programs

In [23, 26] we introduced a veri�cation methodology for equational programs, dubbed

intrinsic theories. For each inductively-generated data system C one uses a skeletal theory

IT(C), whose axioms are merely data-introduction axioms, i.e. the closure of data under the

basic constructors, and data-elimination, i.e. induction axiom-schemas for the data types. We

focus here on a single-sorted set C of constructors, so the functionality of each constructor is

determined by its arity, a natural number > 0. The constructors of arity 0 are the constants.
If C has no constant then there are no C-terms, and if it has no constructor of arity > 0

then the set of terms is �nite. In either case we say that C is trivial. If all constructors in C

have arity 6 1, and at least two constructors have arity 1, then the generated algebra A (C)
is a word algebra. If a non-trivial C has only constants and one constructor of arity 1, then

A (C) is a unary algebra.

The vocabulary of the intrinsic theory A (C) consists of the constructors of C, and one

unary relation identi�er D (or one for each sort, for multi-sorted data system). Suppose C

refers to a single ground type N , and has the constant 0 and the unary constructor s, thus
generating the set N of natural number (in unary notation). Writing N for the unary relation

identi�er D, the axioms of IT(N ) are then the data-introduction axioms, which written as
inference rules read

N(0) and
N(t)

N(st)

and the induction schema (only one for a single-sorted data-system),

N(t) '[0] 8x:'[x]!'[sx]

'[t]

See [26] for the generic rules.

We refer to equational programs over the data-system in hand. Each such program

consists of a �nite set P of equations between terms, where the terms are built from variables,

the constructors (0 and s in the case of N ), and program function-identi�ers. One identi�er, f,
is singled out as the program's principal identi�er. If f is r-ary, and f is an r-ary function over

the data-system, then we say that P computes f when, for all base terms a1 : : : ar; b 2 A (C),

f(a1; : : : ; ar) = b exactly when the formal equation f(a1; : : : ; ar)� b is derived from P in
equational logic. Note that this de�nition allows arbitrary recursion, including simultaneous

recursions.

A program P with principal function identi�er f, say a unary function over N , is said to

be provable, if

IT(C); 8P;N(x) ` N(f(x))
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where 8P is the universal closure of P .

Theorem 1 [23, 26] The provable functions of IT(N ) are precisely the provably-recursive

functions of Peano Arithmetic. More generally, if A (C) is a non-trivial inductive algebra, then

the provable functions of IT(C) are precisely the functions over A (C) whose numerically-

coded counterparts under any of the standard numeric data codings) are provably-recursive

in Peano Arithmetic.

The intrinsic framework is generic with respect to data systems, and it enables explicit

reasoning about functional programs without recourse to numeric codes or a logic of partially-

denoting terms. Among these programs are ones whose termination cannot be proved within

the formal theory used. This makes it possible to freely refer to partial computable functions

whose termination cannot be proved; for example, in a formalism for poly-time we can refer

to Ackermann's Function, though its termination is surely unprovable. Conceptually, the

framework lends itself to a delineation of various forms of �nitistic and predicative ontologies
of data, and to proof theoretic characterizations of computational complexity classes, as we
do here. Such formalisms are quite di�erent from the well developed framework of Bounded

Arithmetic, and o�er an expressively rich and unobtrusive setting for formalizing Feasible
Mathematics, e.g. Poly-time or Poly-space Mathematics. Moreover, the framework can

be adapted to other form of declarative programming, such as logic programs. We refer
the reader to [26] for additional details, motivation, background, and fundamental proof
theoretic results.

2.2 Easy proofs of unfeasible functions

The intrinsic framework makes it clear why certain rapidly growing functions have easy
proofs. For reference in the sequel, let us show that exponentiation over N is provable,

by referring to two de�nitions of exponentiation. First, we have the usual de�nition by

(primitive) recurrence of exponentiation from addition and multiplication.

x + 0 = x

x+ sy = s(x+ y)

x� 0 = 0

x� sy = (x� y) + x

x#0 = s0

x#sy = (x#y)� x

For this program we have the following proof, where for readability we omit uses of the
program, and use instead double-bars to indicate such uses (via equational rules), as well as

other trivial short-cuts.

N(q)

N(0)

N(s0)

N(x#0)

N(x)

N(0)

N((x#p)� 0)

N(x#p)

N((x#p)� z)

N((x#p)� z + 0)

N((x#p)� z + u)

N(s((x#p)� z + u))

N((x#p)� z + su)

N(((x#p)� z) + x#p)

N((x#p)� sz)

N((x#p)� x)
ind

N(x#(sp))

N(x#q)
ind
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Note that here the induction assumption N(x#p) is used as the major premise of a (nested)

induction.

An alternative de�nition of the base-two exponential function exp is

e(0; y) = sy

e(sx; y) = e(x; e(x; y))
exp(x) = e(x; 0):

A natural deduction in IT(C) for this program:

N(x)

N(y)

N(sy)

N(e(0; y))

8y (N(y)!N(e(0; y)))

8y (N(y)!N(e(u; y))

N(e(u; y))!N(e(u; e(u; y)))

8y (N(y)!N(e(u; y))

N(y)!N(e(u; y)) N(y)

N(e(u; y))

N(e(u; e(u; y)))

N(e(su; y))

8y (N(y)!N(e(su; y)))

8y (N(y)!N(e(x; y))
ind

N(e(x; 0))

N(exp(x))

Note that here the induction formula has N in both positive and negative positions. More-

over, the assumption 8y (N(y)!N(e(u; y)) is used twice.

2.3 Intrinsic theories and computational complexity

Intrinsic theories lend themselves to at least four sorts of restrictions: data rami�cation,
structural conditions on induction formulas, structural conditions on working assumptions

of inductions, and conditions on multiplicity of working assumptions.

Structural conditions on induction formulas and assumptions are studied in [27]. Two
sorts of restrictions are considered there: limiting the form of induction formulas, and limiting

the dependence of induction's data (=leftmost) assumption. As usual, say that an occurrence

of N in a formula A is positive (respectively, negative) if it is in the negative scope of an even
(respectively, odd) number of implications and negations. Call a formula' in the vocabulary
of IT(C) data-positive if D has positive occurrences in ', and data-predicative if it does not

have both positive and negative occurrences of D. For example, the renditions of �0

1
and

of �0

1
formulas in IT(N ) are data-predicative. Indeed, a �0

1
formula 9x '

0
, where '

0
is

a quanti�er-free formula of primitive-recursive arithmetic, is rendered by 9x N(x) ^ '0, in
whichN occurs only positively. Similarly, the�0

1
formula 8x '

0
is rendered by 8x N(x)!'

0
,

in which N occurs only negatively. However, the renditions of �0

2
and of �0

2
has N occurring

both positively and negatively, and are therefore not data-predicate. Note, also, that the

induction formula in the proof above for the function exp is not data-predicative.

Call an open assumption of the data (=leftmost) premise of induction in a derivation D

a working induction dependence if it is closed in D. Call a derivation D induction-predicative

if it has no data-positive working induction dependence. Note that this notion refers to the
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derivation as a whole, and not to the instance of induction on its own. The proof above for

the exponential function # is not induction-predicative.

An alternative way of stating predicative induction, without conditions on proofs as a

whole, uses the notion of dual-sequents, i.e. triplets �; �) ', where � and � are multi-sets

of formulas, and ' is a formula. The intent is that � is the set of global assumptions,

which are not closed by inferences. An initial sequent is then of the form �; � ) ' where

' 2 �[�. Other than that, natural deduction inferences leave the set of global assumptions

una�ected. Predicative induction, for N say, takes then the form:

�; �1 ) N(t) �; �2 ) '[0] �; �3;'[z]) '[sz]

�; �1;�2;�3 ) '[t]

under the proviso that no formula in �1 is data-positive (and, as usual, z is not free in the

derived dual-sequent).

Theorem 2 [27]

1. The functions provable in IT(C) with induction restricted to data-predicative formulas

are precisely the functions computable in primitive recursive time.

2. The functions provable by induction-predicative proofs in IT(C) are precisely the

Kalmar-elementary functions.

3. The functions provable in IT(C) under both restrictions above, are precisely the func-

tions computable in poly-time on a register machine over A (C), i.e. the poly-time

functions in case A (C) is a word algebra, and the linear-space functions in case A (C)
is a unary algebra.

3 Rami�ed intrinsic theories

3.1 De�nition of the formalism

As outlined in the Introduction, we consider single-sorted inductively generated algebras.
The simplest non-trivial example is the single-sorted algebra N of the natural numbers,

generated by a zero-ary constructor 0 and a unary constructor s (the successor function).

The single-sorted algebra W of binary words is generated from a zero-ary " (the empty
word) and two unary functions 0 and 1; we identify the words �, 0, 1, 00, : : : over f0; 1g

with the W -terms "; 0"; 1"; 00"; : : : , generated from the constructors. The general case of
a single-sorted system has a �nite set C = fc1 : : : ckg of constructors (i.e. reserved function

identi�ers) of some arities r1 : : : rk > 0 respectively, from which the term algebra A (C) of the

closed terms over c1 : : : ck is generated inductively. We shall not dwell here on multi-sorted
inductive data systems, which are treated in [27].
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The rami�ed intrinsic theory for A (C), RIT(C), is the �rst order theory de�ned as

follows. The vocabulary consists of the constructors in C, and of unary relational identi�ers

D1; D1; D2; : : : , which we dub the tiers. The axioms, which we write as inference rules,

consist of data introduction axioms and a data elimination (induction) schema. The former

state that each Di is closed under the constructors:

Di(t1) � � � Di(tr)

Di(c(t1 : : : tr))
for each constructor c, of arity r > 0, and every i > 0

Thus the intended semantics is that each Di is a copy of A (C).

The data elimination schema has two cases. The main form, rami�ed induction, is

Di(t) ClosedC [']

'[t]

for all formulas ' in which no Dj appear with j > i. Here ClosedC ['] states that �x:'[x]
is closed under the constructors; that is, the conjunction, over the constructors c of C, of

the formulas
8x1 : : : xr:

^

i

'[xi]! '[c(~x)] r = arity (c)

A degenerated form of induction is Reasoning-by-Cases, which for N reads

N(t) '[0] '[sx]

'[t]

and for an arbitrary single-sorted algebra A (c1 : : : ck) reads

D(t) '[c1(x1 : : : xr1)] � � � '[ck(x1 : : : xrk)]

'[t]

For Reasoning-by-Cases our formalism has no rami�cation conditions, that is

Di(t) '[c1(x1 : : : xr1)] � � � '[ck(x1 : : : xrk)]

'[t]

regardless of the tiers occurring in '.

A philosophical rationale for rami�ed formalisms was outlined in [23].

It is also natural to consider separation axioms, which guarantee that the denotation of

all ground terms are distinct; for N these are Peano's third and fourth axioms, 8x sx 6= 0

and 8x; y sx = sy ! x = y. However, these axioms have no e�ect on the provability of

programs, as de�ned below; see [27].
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3.2 Provable functions

An equational program P over A (C), with principal function-identi�er f of arity r, is

provable in RIT(C) if for some i1 : : : ir; j the formula

Di1(x1) ^ � � �Dir(xr)! Dj(f(~x))

is provable in RIT(C) from 8P .5 A function over A (C) is said to be provable in RIT(C) if

it is computed by some program provable in RIT(C).

It is easy to see that Di(x)! Dj(x) is provable whenever i > j. From this it can be

shown that the collection of provable functions is closed under composition.

Our main results about the provable functions of rami�ed intrinsic theories are as follows.

Let A (C) be a non-trivial6 inductively generated algebra.

Theorem 3 A function over A (C) is provable in RIT(C) i� it is computable in elementary

time, i.e. in time of order 2�
�

2
n

for a �xed stack of 2's.

Let RIT+(C) be the sub-formalism of RIT(C) in which induction is restricted to data-

predicative formulas (as de�ned in x3.2 above).

Theorem 4 A function over A (C) is provable inRIT+(C) i� it is computable in polynomial

time on a register machine over A (C), i.e. i� it is poly-time where A (C) is a word algebra,

and linear-space where A (C) is a unary algebra.

In Theorems 4 all functions are in fact provable using D0 and D1 only, albeit with more
complex proofs.

3.3 Provability of functions

We outline �rst a proof of the backward implications of Theorems 3 and 4, showing that

functions in the given complexity classes are provable in the corresponding intrinsic theories.

Refer �rst to N and to the standard de�nitions by recurrence of + and �. It is easy to

prove by induction, in RIT+(N ), that Ni+1(x) ^Ni(y)! Ni(x + y), from which Ni+1(x) ^

Ni+1(y)! Ni(x� y). Moreover, our proof above for the function exp is in RIT(N ), where
we rewrite N(x) as N1(x), and rewrite N(� � � ) as N0(� � � ) elsewhere. Since the provable

functions (of any of the formalisms considered) are closed under composition, these results

show that all polynomials are provable in RIT+(C) provided A (C) is non-trivial,7 and all

elementary functions are provable in RIT(C), provided A (C) is not trivial.

5It can be shown that other natural de�nitions are equivalent to this. For instance, one may require

i1 = � � � = ir and/or i` > j without changing the collection of provable functions.
6Recall that A (C) is non-trivial i� it is in�nite.
7Considerable more work is needed to show that all polynomial are provable using only two data levels;

see [22] for an analogous proof for function de�nition by rami�ed recurrence.
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In our generic setting, the natural machine model is also generic, namely register machines

over A (C), as de�ned e.g. in [22]. There it is also shown that the transition functions of

con�gurations over register machine are de�nable by simultaneous rami�ed recurrence in base

type. It is easy to see that such de�nitions preserve provability inRIT+(C). Combined with

the availability of elementary-time clocks in RIT(C), it follows that all function computable

in elementary time are provable in RIT(C). Since polynomial time clocks are available

in RIT+(C), and Turing machines are trivially simulated by register machines over word

algebras, it also follows that all poly-time functions are provable in RIT+(C) for any word

algebra A (C). Finally, all linear-space functions over N (and other unary algebras) are

computable in poly-time by a register machine over N (see [22], the proof idea is due to

Gurevich), from which the backward direction of Theorem 4 follows.

3.4 Complexity of provable functions

We now tackle the converse implications in Theorems 3 and 4, showing that provable

functions are in the corresponding complexity classes. For proofs in constructive (i.e. intu-
itionistic) logic, we can use the collapsing Curry-Howard morphism � of [26], as follows.

Suppose P is a program with principal function-identi�er f, computing a function f over

A (C). Let D be a derivation of Di(~x)!Dj(f(~x)) from P . First, we may assume without
loss of generality that D is in fact in minimal logic, as shown in [26]. The homomorphism

� then maps D to a term �D that de�nes f . If D is in RIT(C) then �D is a term in an
applied �-calculus with the constructors of C as constants, and with rami�ed recurrence
operators for all rami�ed types, as de�ned in [25]. It is shown there that all such functions

are computable in elementary time.

If D is in RIT+(C), then �D is as above, but with rami�ed recurrence operators of types
that are products of the base type.8 Such �-recurrence-terms are simply function de�nitions

by rami�ed recurrence, de�ned in [22], and shown there to be computable in poly-time by
register machines over A (C). For word algebras these are precisely the poly-time functions,
and for unary algebras the linear-space functions.

For provability over classical logic, we are uncertain as of this writing whether the method

above can be adapted. While it is easy to map a classical convergence proof to an intuition-
istic one (as shown in [26]), the restriction of induction to data-predicative formulas may

be violated in the process. An alternative method which does yield the result, albeit at
considerably greater e�ort, is a direct analysis of the complexity of normalization of natural

deduction derivations, as developed in [27] for an analogous (un-rami�ed) result.

8In sorted data-systems there may be several base types.
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4 Solitary intrinsic theories

4.1 Origins and motivation of solitary deductions

It has been known for long that allowing resources to be invoked only once is related

to poly-time computation. For instance, linear logic leads to poly-time [8, 7], second-order

existential database queries are poly-time if the matrix is Horn [18, 10], monotone inductive

de�nitions (where each object is inserted only once) de�ne exactly the poly-time queries

over �nite structures, rami�ed recurrence with parameters does not lead out of poly-time if

only one parameter is used [1], Turing machines operating in poly-space accepts exactly the

poly-time languages if non-blank tape-cells cannot be reused, etc.

Continuing in this vein, Martin Hofmann [12] developed a linear-types rami�ed functional

calculus that de�nes exactly the poly-time non-size-increasing functions, even if recurrence
is used at all �nite types. Independently, and building on ideas of Jones [14], we showed [24]
that allowing abstracted higher order functions to be used only once in �-recurrence terms,

yield exactly poly-time. Here we demonstrate an analogous result for program provability:
the provable functions of IT(C) are exactly the poly-time functions if we allow closing of an
assumption (in a natural deduction system) only if it is used once.

Proof theoretic characterizations of poly-time that build on linearity have already ap-

peared, among others in [3]. The main advantage of our present result is that it does not
require an overlay of syntactic machinery on the formulas; the proofs we consider are all
proofs in intrinsic theories (whose syntax is extremely simple), and the structural properties

that they satisfy can be automatically checked.9 This yields a transparent machinery for

certifying program feasibility.

Since poly-time has rather simple proof-theoretic characterizations (e.g. [27] and The-
orem 4 above), the main motivation of restricted-multiplicity conditions is the attempt to

permit induction for all formulas, thereby providing the user of the formalism (human or

automated) with a larger arsenal of methods. Consequently, it is self-defeating to abandon
in the process other methods, notably if the latter are important and natural. For instance,

taken in isolation, restricted multiplicity disallows a direct and simple proof of the squaring
function! Indeed, one would wish to combine the advantages of various approaches, rather

than piling up the hurdles of using them. We show below that one can use di�erent restric-

tions on formulas, depending on whether they correspond under Curry-Howard to �rst-order
or higher-order types. If we restrict the former as in [27], and the latter by the multiplicity

condition above, then we add a proof method to our arsenal without losing any.

4.2 A sequential formalization of solitary derivations

Rather than imposing explicit restriction on closing of assumptions in derivations, we can
formalize solitary derivability using a substructural calculus. Consider the following natural

9Note that we do not make this claim for rami�ed intrinsic theories.
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deduction inference rules for the logical operators, exhibited in a sequential style. A sequent

here is a pair �) ' where � is a multi-set of formulas, and ' is a formula. We write ' for

f'g, and �;� for � [�. As usual for multi-sets, the multiplicity in � [� of a formula  

is the sum of its multiplicities in � and in �.

') '

�) ' �)  

�;�) ' ^  
^I

�) '0 ^ '1

�) 'i

^Ei

�;')  

�) '! 
! I

�) '! �) '

�;�)  
! E

�) '[z]

�) 8x'[x]
8I

�) 8x '[x]

�) '[t]
8E

�) '[t]

�) 9x'[x]
9I

�) 9x '[x] �;'[z]) '

�;�) '
9E

Note that the rule above for conjunction introduction is the linear logic rule for mul-
tiplicative conjunction, whereas the rule of conjunction elimination is the rule for additive

conjunction. It seems that strengthening the latter to the multiplicative rule for conjunction
elimination,

�)  0 ^  1 �; 0; 1 ) '

�;�) '

makes no di�erence as to the set of provable programs, and we could have adopted it instead.

However, our approach here is not based on distilling a fragment of linear logic. Indeed, we
do not re-interpret the logical connectives as conveying limited use of resources, but limit
instead the use of assumptions as logical resources, at the level of the derivation rather than

that of the formulas.

4.3 Solitary deductions and poly-time

Theorem 5 A function f over A (C) is provable by a solitary and induction-predicative

derivation of IT(C) i� f is computed in poly-time on a register machine over A (C), i.e. i�

f is poly-time where A (C) is a word algebra, or f is linear-space where A (C) is a unary

algebra.

Proof Outline. To see that every poly-time function is provable, �rst observe that the
derivation above for multiplication is solitary and predicative. Note that we insist here on

using a formulation of function provability as 8P; D(~x) ` D(f(~x)), which for solitary deriva-

tions is a more liberal condition than D(~x) ` D(f(~x)): in the former the open assumptions
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D(~x) and 8P may be used any number of times. This allows iteration of multiplication,

whence the provability of polynomial \clock" functions. The con�guration-transition func-

tions for register machines, de�ned in [22], are trivially provable by solitary predicative

derivations, completing the backward direction of the proof.

To prove the converse, assume that f is a function over A (C), provable by a solitary

predicative derivation of IT(C). The proof of [26, Corollary 11] transforms a solitary pred-

icative derivation of IT(C) based on classical logic to a solitary derivation of RIT(C) based

on minimal logic. The latter is mapped, under the homomorphism � de�ned in [27, x3], to

a solitary input-driven term in the rami�ed �-recurrence-calculus of A (C), de�ned in [24],

which de�nes f . As proved there, all functions de�nable in that calculus are poly-time. a

Theorem 6 A function f over A (C) is provable by a solitary derivation of RIT(C) i� f is

computed in poly-time on a register machine over A (C), i.e. i� f is poly-time where A (C)

is a word algebra, or f is linear-space where A (C) is a unary algebra.

Proof Outline. The backward direction is similar to the analogous direction for Theorem
5 above. It is essential here that we have available the un-rami�ed form of Reasoning-by-

Cases, in showing that the con�guration-transition functions are provable as tier-preserving
(i.e. D0(x)!D0(f(x)), so that that the iterate is provable, by Induction.

To prove the converse, assume that f is a function over A (C), provable by a solitary

derivation of RIT(C). We proceed as in the proof of Theorem 5 above, to obtain a solitary
term in the rami�ed version of the �-recurrence calculus for A (C). Here we need an extension

of the result of [24], where recurrence need not be input-driven, but instead is rami�ed. A
straightforward induction on the tier of the Rami�ed Induction concludes the proof. (The
proof in [24] gives the induction step of the meta-proof.) a

4.4 Combining rami�cation and non-multiplicity

In Theorems 5 and 6 we showed that we can trade the restriction of induction to positive

formulas for a prohibition of assumption multiplicity. The class of provable functions is
poly-time in either case. While this result is potentially bene�cial in some cases, it seems
that multiple invocation of assumptions is, in fact, used and needed in actual proofs far more

frequently than induction over non-positive formulas.10 Fortunately, the two restriction are

orthogonal, and we can relax the multiplicity restriction to non-data-negative formulas.

Theorem 7 Let T be either predicative IT(C) or RIT(C). Let T0 be T, where multiple

assumptions are closed only for data-non-negative formulas. Then the provable functions of

T are precisely the functions computable in poly-time on a register machine over A (C).

10We may trivially permit in RIT+(C) induction also on formulas with only negative occurrences of D,

which include the renditions of �0

1 formulas.
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The proof that all provable functions are poly-time follows the pattern in the proofs above,

with a signi�cant elaboration of the �-recurrence calculi considered. We omit the detail, and

just point out the essential feature of the situation: when closing multiple occurrence of

an assumption is prohibited for non-data-negative formulas, inductions must either be for

non-data-negative formulas, or else have solitary proofs for the premises.

4.5 Extensions and future research

Our work in progress focuses on two directions in the use of intrinsic theories. Of par-

ticular interest is the development of intrinsic theories for analysis, i.e. the second order

theories of inductive data systems in general, and word algebras and N in particular. In

[21] we showed that second order logic with comprehension (i.e. set existence) restricted to

relations de�nable by positive existential formulas, yields poly-time in an appropriate sense.

We believe that second order variants of intrinsic theories for poly-time, with similarly re-
stricted existence principles for functions and relations, also yield only poly-time provable

functions. Such developments would have several bene�ts. At the meta-logic level, such
theories provide a framework for de�ning and studying feasibility of higher-type functionals,

extensively studied recently (see e.g. [15, 13]). Also, there is broad potential for formalizing
mathematical analysis in such theories, with a twofold bene�t: the computational feasibil-
ity of certain constructions would fall out automatically as a result, and, more importantly

yet, the methodology would automatically extract feasible programs from proofs in intrinsic
theories.

Another thread in progress is the development of intrinsic theories that correspond to

poly-space. The method is to slightly relax the condition of solitary derivations, and to
permit assumption multiplicity at least across the cases of degenerate induction (deduction
by cases), and perhaps across all minor premises of induction in general as well as conjunction.

Interestingly, such substructural formalisms have no simple correspondence to linear logic,
albeit they are based on \non-reused" resources.
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System Presentation:

An Analyser of rewriting systems complexity

J.-Y. Moyen �

May 10, 2001

Abstract

This paper brie
y describes ICAR, a program which analyses the im-

plicit complexity of �rst order functionnal programs. ICAR is based on

two previous characterisation of Ptime and Pspace by mean of term

rewriting termination orderings and polynomial quasi-interpretations.

1 The analyser ICAR

We shall consider term rewriting systems build over three distinct sets: function
symbols (de�ned symbols), constructors and variables. The function symbols
are ordered by a precedence �

F
and constructors are considered as the smaller

elements of the precedence. A program is a set of rewriting rules.
ICAR (Implicit Complexity AnalyseR) �rst checks the termination of the

given rewriting system and then tries to �nd a bound on its complexity. This
work is based on [3, 4, 1] for complexity analysis. Program transformation by
the mean of memoization is based on Jones work [2].

� Termination is check using termination ordering, either the Multiset
Path Ordering or the Lexicographic Path Ordering.

� Complexity may then be determined by combining the termination or-
dering used and quasi-interpretations. ICAR may be able to tell that the
computed function is in Ptime or Pspace.

� One of the main interest of our approach is that this analysis gives an upper
bound on the complexity of the function computed rather than on the
complexity of the program. This kind of complexity analysis was dubbed
implicit. So ICAR also gives a way (i.e. a new operationnal semantics) to
e�ectively achieve this bound.

One may then run the program using di�erent operationnal semantics and verify
experimentally the theoretical bound previously obtained.

�Loria, Calligramme project, B.P. 239, 54506 Vand�uvre-l�es-Nancy Cedex, France,

moyen@loria.fr
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s �mpo ti
f 2 F

S
C

s �mpo f(: : : ; ti; : : : )

si �mpo g(t1; � � � ; tn) f �
F
g

g 2 F ; f 2 F
S
C

f(s1; � � � ; sm) �mpo g(t1; � � � ; tn)

fs1; � � � ; sng �
m
mpo ft1; � � � ; tng f �

F
g
f; g 2 F

g(s1; � � � ; sn) �mpo f(t1; � � � ; tn)

Figure 1: Multiset Path Ordering

2 Termination ordering and Quasi-interpretations

2.1 Termination orderings

De�nition 1. Let � be an ordering over terms. The multiset extension �m of
� is de�ned as follow:
M = fm1; � � � ;mkg �

m fn1; � � � ; nkg = N if and only if M 6= N and there
exists a permutation� such that:

� There exists j such that mj � n�(j)

� For all i, mi � n�(i)

De�nition 2. The Multiset Path Ordering (MPO) is de�ned in the rules of

Figure 1.
A MPO-program is a program such that for each rule l ! r, r �mpo l.

De�nition 3. Let � be an ordering over terms. The lexicographic extension

�l of � is recursively de�ned as follow:

(t1; � � � ; tn) �
l (s1; � � � ; sm) if and only if t1 � s1 or t1 = s1 and (t2; : : : ; tn) �

l

(s2; : : : ; sm).

De�nition 4. The Lexicographic Path Ordering (LPO) is de�ned in the rules
of Figure 2.

A LPO-program is a program such that for each rule l! r, r �lpo l.
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s �lpo ti

s �lpo f(: : : ; ti; : : : )

si �lpo f(t1; � � � ; tn) g �
F
f

g(s1; � � � ; sm) �lpo f(t1; � � � ; tn)

(s1; � � � ; sn) �
l
lpo (t1; � � � ; tn) f �

F
g sj �lpo f(t1; � � � ; tn)

g(s1; � � � ; sn) �lpo f(t1; � � � ; tn)

Figure 2: Lexicographic Path Ordering

2.2 Quasi-interpretation

De�nition 5. A quasi-interpretation of a symbol f is a function LfM such that:

� LfM is bounded by a polynomial

� LfM is (non strictly) increasing

� LfM(X1; � � � ; Xn) � Xi for all i � n.

� LcM(X1; � � � ; Xn) =
Pn

i=1Xi + 
 for all constructors c where 
 > 0 is a
constant.

Quasi-interpretations are extended to terms as usual:

Lf(t1; � � � ; tn)M = LfM(Lt1M; : : : ; LtnM)

A program admits a quasi-interpretation if for each rule l ! r, LrM � LlM.
This is clearly not suÆcient for termination.

2.3 Theorems

Theorem 6. The set of functions computable by MPO-programs admiting quasi-

interpretations is exactly Ptime, the set of functions computable in polynomial

time.

Proof. See [4].

Theorem 7. The set of functions computable by LPO-programs admiting quasi-

interpretations is exactly Pspace, the set of functions computable in polynomial

space.
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Proof. See [1]

3 Implementation

There are two things to implement. First, determining whether the program
terminates by MPO or LPO and second determining if it admits a quasi-
interpretation.

The termination using the orderings is a well-known problem. It is known
to be Ptime computable if the precedence is given and NP-complete if the
precedence has to be found. Fortunatly ICAR uses a restriction of the usual
orderings: a constructor always has a precedence smaller than any function
symbol.

Claim 8. With this restriction, the precedence can be found in polynomial time.

So termination by either MPO or LPO can be checked in time 2c�k where k is

the maximal arity of a function symbol and c is a constant.

Proof. See section 4

The main diÆculty lies in the second part. Indeed, one doesn't know if
quasi-interpretations are decidable. The similar problem with strict inegalities
(i.e. �nding polynomial interpretations) seems to be undecidable. Fortunatly,
quasi-interpretations are quite easy to �nd because an upper bound on the
program denotation turns to be a good candidate. So, even if �nding one is a
hard task for a computer, its an easy job for the programmer. The idea is to
provide a potential quasi-interpretation together with the rewriting rules, and
the program just has to check it.

Of course, there exists programs able to deal with symbolic computation.
So the obvious way to check quasi-interpretations is to deleguate this job to
such a program. Currently, ICAR uses Maple as a quasi-interpretation checker.
Maple may be unable to check some inequality (especially those using a lot of
maxs. As far as I know, there isn't any software able to treat them properly,
but one is under devellopement by Fabrice Rouiller at LIP6 (Paris) and should
be available by the end of the year.

Until this moment, ICAR returns the quasi-interpretations that Maple was
unable to solve and hopes that the user will be less clumsy.

Example 9.

1. the following program computes the addition and the multiplication of
two unary numbers.

add(0; y)! y

add(S(x); y)! S(add(x; y))

mult(0; y)! 0

mult(S(x); y)! add(y; mult(x; y))
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It terminates either by MPO or LPO by putting add �
F
mult and admits

a quasi-interpretation: LaddM(X;Y ) = X + Y , LmultM(X;Y ) = X � Y ,
L0M = 1, LSM(X) = X + 1. Let's verify the quasi-interpretaion for the last
rule:

Lmult(S(x); y)M = LmultM(LS(x)M; Y ) = (X + 1)� Y

Ladd(y; mult(x; y))M = Y + Lmult(x; y)M = Y +X � Y

2. one may computes the length of the longest common subsequence of two
string as follow:

max(n;0)! n

max(0;m)! m

max(S(n);S(m))! S(max(n;m))

lcs(x; �)! 0

lcs(�; y)! 0

lcs(a(x); a(y))! S(lcs(x; y))

lcs(b(x);b(y))! S(lcs(x; y))

lcs(a(x);b(y))! max(lcs(x;b(y)); lcs(a(x); y))

lcs(b(x); a(y))! max(lcs(x; a(y)); lcs(b(x); y))

By putting max �
F

lcs, this is a MPO program. It admits a quasi-
interpretation: L0M = L�M = 1, LSM(X) = LiM(X) = LjM(X) = X + 1,
LmaxM(X;Y ) = LlcsM(X;Y ) = max(X;Y ).

So the program computes a function in Ptime. Note that the explicit
complexity of the program is exponential. The polynomial bound is ob-
tained by the mean of memoization: the operational semantics is modi�ed
as shown in Figure 3. Every time a function call is computed, its result
is stored in a cache and will be reused directly if the same call is needed
another time.

ICAR is able to compute the value of a term with or without using the
cache. It keeps a trace of the time and space used by the computation (i.e.
the number of reduction steps and the maximum size of the cache and the
environnement). The results for computing lcs(an(�);bn(�)) are:

n Call-by-value Memoization

time space time space

0 4 1 4 1
1 17 2 17 5
2 63 2 48 10
3 219 2 97 17
4 771 2 164 26
5 2775 2 249 37
6 10169 2 352 50
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�(x) = v

E ; � ` hC; xi ! hC; vi

c 2 C E ; � ` hCi�1; tii ! hCi; vii

E ; � ` hC0; c(t1; � � � ; tn)i ! hCn; c(v1; � � � ; vn)i

f 2 F E ; � ` hCi�1; tii ! hCi; vii (f(v1; � � � ; vn); v) 2 Cn

E ; � ` hC0; f(t1; � � � ; tn)i ! hCn; vi

E ; � ` hCi�1; tii ! hCi; vii f(~p)! r 2 E pi�
0 = vi E ; �

0 ` hCn; ri ! hC; vi

E ; � ` hC0; f(t1; � � � ; tn)i ! hC [ (f(v1; � � � ; vn); v); vi

Figure 3: Call by Value interpreter with cache

4 Finding the precedence

This section describes the implementation of the two main diÆculties of ICAR:
�nding the precedence for the termination orderings and �nding the permutation
for MPO. Both can be solved in polynomial time thanks to the restriction done
upon the precedence.

Lemma 10. Let t = f(u1; � � � ; un) and s = g(v1; � � � ; vn) be two terms. If

g �
F
f implies s �mpo t then g �

F
f implies s �mpo t.

Proof. If t and s are ordered when g �
F
f then for all i; 1 � i � n, there exist a

j; 1 � j � n such that vi �mpo uj (by de�nition of MPO). So for all i, vi �mpo t,
so the two terms are ordered if g �

F
f.

Lemma 11. Let t = f(u1; � � � ; un) and s = g(v1; � � � ; vn) be two terms. If

g �
F
f implies s �lpo t then g �

F
f implies s �lpo t.

Proof. By de�nition of LPO, the hypothesis implies vi �lpo t.

Lemma 12. Let t = f(u1; � � � ; un) and s = g(v1; � � � ; vn) be two terms. If

s �mpo t or s �lpo t, no symbol (function or constructor) in s may have a

precedence greater than the greatest symbol in t.

Proof. Obvious since the symbol with the greatest precedence will lead to the
greatest term.

Lemma 13. Let l ! r be a rewriting rule such that r �mpo l or r �lpo l. No

symbol in r may have a precedence greater than the head symbol of l.
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Proof. As l is the left-hand-side of a rewriting rule, l = f(p1; � � � ; pn) where pi
are patterns, that is terms build only over variables and constructors. Since
constructors have a precedence smaller than any function symbol, f has the
maximal precedence of l. So by previous lemma, it must also have the maximal
precedence of r.

Corollary 14. Finding the precedence is performed in polynomial time.

Proof. By examining rewriting rules and by lemma 13, we obtain a set of con-
straints of the form f �

F
g. Then, graph-reachability between any two symbol

tells weather f �
F
g or not. If there is both f �

F
g and g �

F
f, then there

must be f �
F

g. If there is only g �
F

f, then lemma 10 and 11 tell that
one won't looze anything by choosing g �

F
f. So the precedence is found in

polynomial time.
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On the computational complexity of stack programs

Lars Kristiansen� Karl-Heinz Niggly

Abstract

A restricted imperative stack programming language L over an arbitrary but �xed

alphabet � is considered. The paper presents a purely syntactical method for analysing

the impact of nesting loops in L-programs on computational complexity. This gives rise

to a measure � on L-programs, i.e. a function that assigns to each L-program P a natural

number �(P) computable from the syntax of P. It is shown that a function over �� is

computable by a Turing machine in polynomial time if and only if it is L-computable

with �-measure 0. More generally, it is shown that a Turing machine runs in time b(n)

(where n is the size of the input) for some function b in Grzegorczyk class En+2 if and

only if it can be simulated by an L-program with �-measure n.

1 Introduction

We study a restricted imperative stack programming language L over an arbitrary but �xed

alphabet �. Programs in L contain variables X, Y, Z, say, which serve as stacks, each holding

an arbitrary word over � which can be manipulated by running a program in L. Programs in

L are built from primitive instructions push(a,X) for a 2 �, pop(X), nil(X) by sequencing

P1; P2, conditional statements if top(X) � a [Q] and loop statements foreach X [Q].

The operational semantics of L-programs is fairly standard, except possibly that of loop

statements. Here we follow a call-by-value semantics that allows one to inspect every symbol

on the control stack X while preserving its contents.

We are interested in analysing the impact of nesting loops on computational complexity.

Obviously, some nesting of loops cause no blow up in computational complexity while others

do. So the point in question is: Can one extract information out of the syntax of L-programs

so as to separate programs which run in polynomial time (in the size of the input) from

programs which do not? And if \Yes", is there a general rationale behind, and how far does

it go?

In this paper we propose a purely syntactical method we call �-measure that assigns to each

L-program P a natural number �(P) computable from the syntax of P. Answering the �rst

question above, we show that the functions over �� computable by a Turing machine in

polynomial time are precisely the functions computable by an L program with �-measure

0. This is an instance of a more general result that answers the second question above: A

�Oslo University College, Faculty of Engineering, Norway, e-mail: larskri@iu.hio.no.
yTechnische Universit�at Ilmenau, Institut f�ur Theoretische und Technische Informatik, PF 100565,

98684 Ilmenau, Germany, email: niggl@theoinf.tu-ilmenau.de, tel: +49 3677-691444, fax: +49

3677-691237.
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Turing machine M runs in time b(n) for some function b in Grzegorczyk class En+2 if and

only if M can be simulated by an L-program with �-measure n.

To exemplify the main ideas behind the measure �, we �rst need to explain in more detail

the operational semantics of the loop concept in L. For loop statements foreach X [P] we

require that P has no occurrence of imperatives push(a,X), pop(X) or nil(X). Thus, the

control stack X can not be altered during an execution of the loop. However, in order to

provide access to each symbol on the control stack X during an execution of the loop, the

operational semantics of foreach X [P] is that of the sequence

U := X; P; pop(X); : : : ; P; pop(X); X := U

with jwj occurrences of P; pop(X) whenever w is stored in X before the execution of the

loop, where U is some reserved variable that is not allowed to occur elsewhere.

It is obvious that we have to nest loops to a certain depth in order to obtain programs of

a certain high computational complexity. It is also obvious that some programs with \high

loop nesting depth" like e.g.

P1 :� foreach X [foreach X [foreach X [foreach X [foreach X [push(a,Y)]]]]]]

(a 2 �) run in polynomial time. So \high loop nesting depth" is a necessary condition for

high computational complexity, but it is not a suÆcient condition. In this paper we give

syntactical criteria that separate loops which cause a blow up in computational complexity

from those which do not. To outline the main ideas, consider the following two programs:

P2 :� nil(Y); push(a,Y); nil(Z); push(a,Z);

foreach X [nil(Z); foreach Y [push(a,Z); push(a,Z)];

nil(Y); foreach Z [push(a,Y)]]

P3 :� nil(Y); push(a,Y); nil(Z);

foreach X [foreach Y [push(a,Z); push(a,Z)]; push(a,Y)]

Observe that both P2 and P3 have nesting depth 2, and they look quite similar. However,

P2 runs in exponential time while P3 runs in polynomial time, for if w is initially stored

in X, then the word a2
jwj

is stored in Z after P2 is executed, while a
jwj�(jwj+1) is stored in Z

after P3 is executed. The gist of the matter lies in a (control) circle contained inside the

outermost loop in P2: Inside the loop controlled by X, �rst Y controls Z in that Z is updated

via push(a,Z) inside a loop controlled by Y, and then Z controls Y in the same sense. In

contrast, there is no such circle in P3. In fact, it will turn out that the Turing machines with

polynomial running time correspond exactly to those programs in L which do not contain a

loop foreach X [Q1; : : : ; Ql] where the body Q1; : : : ; Ql (l � 2) contains a circle. All these

programs will receive �-measure 0.

These ideas generalise uniformly to all levels of computational complexity as given in the

Grzegorczyk hierarchy. We just focus on the critical case where P is a loop foreach X [Q]

and assume that we have already determined �(Q). Suppose that Q is a sequence Q1; : : : ; Ql,

in which case �(Q) is maxf�(Q1); : : : ; �(Ql)g. Then we obtain a blow up in computational

complexity if Q has a top circle, that is, Q has a circle with respect to a control variable Y of

some component Qi with maximal �-measure �(Q). In this case, we de�ne �(P) := 1+�(Q).
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In all other cases for Q we de�ne �(P) := �(Q), for as we show, these loops do not cause a

blow up in computational complexity.

Adding that imperatives have �-measure 0, one easily veri�es for the examples above that

�(P1) = �(P3) = 0 while �(P2) = 1.

The measure � is convenient for various reasons: Firstly, it operates on an imperative stack

programming language L which is very close to restricted Turing machine programming,

however, supporting a clear control structure. Secondly, it can be easily extended to ex-

tensions of L providing features supported by many high level programming languages.

Thirdly, the measure � is conceptually simple and it characterises computationally relevant

complexity classes, thus it can help to ground the concepts of computational complexity by

providing a reference point other than the original resource-based concepts. Finally, one

can argue that the measure � is likely to give the minimal complexity for a great deal of

natural algorithms, and furthermore, it admits signi�cantly more algorithms in each com-

plexity class than any other known complexity measure on loop programs like \counting

nesting depth".

Nonetheless, there are, as we show, limitations to any such purely syntactical method like

�: There will always be programs with polynomial running time but with a measure > 0.

This paper builds on recent work on rami�ed analysis of recursion by Bellantoni and Niggl

[6], and Niggl [18]. There a purely syntactical method for analysing the impact of nesting

(unrestricted) recursions on computational complexity has been proposed, in the context of

ordinary schemata-based de�nitions in [6], in the context of lambda terms over ground-type

variables in [18]. Rami�ed analysis of recursion characterises uniformly the Grzegorczyk

hierarchy at and above the linear-space level when based on primitive recursion. One obtains

the same hierarchy of classes except with the polynomial-time computable functions at the

�rst level when primitive recursion is replaced with recursion on notation.

Various rami�cation concepts as initialised by Simmons [23], Leivant [11, 12, 13], Bellantoni

and Cook [1] have led to resource-free, purely functional characterisations of many complex-

ity classes, such as the polynomial-time computable functions [1, 15, 14], the linear-space

computable functions [2, 13, 19], NC1 and polylog space [5], NP and the poly-time hierar-

chy [3], the Kalm�ar-elementary functions [20], and the exponential time functions of linear

growth [8], among many others.

Rami�cation concepts have also proved fruitful in characterising complexity classes by

higher type recursion, such as the Kalm�ar-elementary functions [16], poly-space [17], and

recently the polynomial-time computable functions [4, 10].

2 Preliminaries

We assume only basic knowledge about subrecursion theory, in particular with the Grze-

gorczyk hierarchy. Readers unfamiliar with these subjects are referred to Grzegorczyk [9],

Rose [22] and Clote [7]. We summarise some basic de�nitions and facts from Rose.

For unary functions f , fk denotes kth iterate of f , i.e. f0(x) = x and fk+1(x) = f(fk(x)).

The sequence of principal functions E1; E2; E3; : : : de�ned by E1(x) = x2+2 and En+2(x) =

Ex
n+1

(2), enjoys the following monotonicity properties: En+1(x) � x + 1, En+1(x + 1) �

En+1(x), En+2(x) � En+1(x) and Et
n+1

(x) � En+2(x+ t) for all n; x; t.
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A function f is de�ned by bounded (limited) recursion from functions g; h; b if f(~x; 0) = g(~x),

f(~x; y + 1) = h(~x; y; f(~x)), and f(~x; y) � b(~x; y) for all ~x; y.

The nth Grzegorczyk class En, for n � 2, is de�ned as the least class containing the initial

functions zero, the successor function, the projection functions and En�1, and closed under

composition and bounded recursion.

By Ritchie [21] the class E2 characterises the class flinspace of functions computable by a

Turing machine in linear space. The class E3 characterises the Kalm�ar-elementary functions.

Every f 2 En satis�es f(~x) � Em
n�1

(max(~x)) for a constant m. Thus, every function in E2

is bounded by a polynomial, and En 62 E
n, showing that each En is a proper subset of En+1.

The union of all these classes characterises the primitive recursive functions.

3 The programming language L

In this section we presuppose an arbitrary but �xed alphabet � := fa1; : : : ; alg. We will

de�ne a programming language L over � where programs are built from primitive instruc-

tions push(a,X) for a2�, pop(X), nil(X) by sequencing, conditional statements and loop

statements. We assume an in�nite supply of variables X, Y, Z, O, U, V, possibly with sub-

scripts. Intuitively, variables serve as stacks, each holding an arbitrary word over � which

can be manipulated by running a program in L.

De�nition 3.1 (L-programs). L-programs P are inductively de�ned as follows:

� Every imperative push(a,X), pop(X), nil(X) is an L-program.

� If P1; P2 are L-programs, then so is the sequence statement P1; P2.

� If P is an L program, then so is every conditional statement if top(X)�a [P].

� If P is an L-program with no occurrence of push(a,X), pop(X) or nil(X), then so is

the loop statement foreach X [P].

We use V(P) to denote the set of variables occurring in P.

Note 3.2. Every L-program can be written uniquely in the form P1; : : : ; Pk such that each

component Pi is either a loop or an imperative, or else a conditional, and where k = 1

whenever P is an imperative or a loop or a conditional.

We will use informal Hoare-like sentences to specify or reason about L-programs, that is,

we will use the notation fAg P fBg, the meaning being that if the condition given by the

sentence A is ful�lled before P is executed, then the condition given by the sentence B is

ful�lled after the execution of P. For example, f~X = ~wg P f~X = ~w0g reads as if the words ~w are

stored in the stacks ~X, respectively, before the execution of P, then ~w0 are stored in ~X after

the execution of P. Another typical example is f~X = ~wg P fjX1j � f1(j~wj); : : : ; jXnj � fn(j~wj)g

meaning that if the words ~w are stored in the stacks ~X, respectively, before the execution

of P, then each word stored in Xi after the execution of P has a length bounded by fi(j~wj).

Here fi is any function over N , and j~wj abbreviates as usual the list jw1j; : : : ; jwnj.

4

104



De�nition 3.3 (Operational semantics of L-programs). The operational semantics

of L-programs is de�ned inductively as follows, where X is an arbitrary variable, w denotes

an arbitrary word over �, a an arbitrary letter in �, and " the empty word.

� fX = wg push(a,X) fX = wag.

� fX = wag pop(X) fX = wg and fX = "g pop(X) fX = "g.

� fX = wg nil(X) fX = "g.

� Conditionals C :� if top(X)�a [P] are executed if the top symbol on X is a, that is,

fX;~Y = va; ~wg C fX;~X = v0; ~w0g whenever fX;~Y = va; ~wg P fX;~X = v0; ~w0g. Otherwise if

a 6� b, then fX;~Y = vb; ~wg C fX;~X = vb; ~wg.

� Sequences are executed from the left to the right, that is, if f~X = ~wg P1 f~X = ~w0g and

f~X = ~w0g P2 f~X = ~w00g, then f~X = ~wg P1; P2 f~X = ~w00g.

� Reading U := X as copy X to U, the operational semantics of a loop foreach X [P] is

that of the sequence U := X; P; pop(X); : : : ; P; pop(X); X := U with jwj occurrences

of P; pop(X) whenever w is stored in X before the execution of the loop, where U is

some reserved variable that is not allowed to occur elsewhere.

The operational semantics of loop statements follows a call-by-value semantics where the

contents of the control stack X is saved while providing access to each symbol on X.

We say that an L-program P computes a function f : (��)n ! �� if P has an output variable

O and input variables Xi1 ; : : : ; Xil among stacks X1; : : : ; Xm such that for all w1; : : : ; wn 2 ��,

fXi1 = wi1 ; : : : ; Xil = wilg P fO = f(w1; : : : ; wn)g

often abbreviated by f~X = ~wg P fO = f(~w)g. Note that O may occur among Xi1 ; : : : ; Xil .

4 The measure � for L-programs

In the analysis of the computational complexity of L-programs P, the interplay of two kinds

of variables will play a major role: the sets U(P) and C(P). Intuitively, a variable X is in

U(P) if it occurs as push(a,X) in P and thus might be updated in a run of P, while X is in

C(P) if it controls a loop statement in P. Of course, by the presence of sequence statements

these two sets need not be disjoint.

De�nition 4.1. The sets U(P) and C(P) are inductively de�ned as follows:

� U(imp) := C(imp) := ; for each imperative imp, except for U(push(a,X)) := fXg.

� U(P1; P2) := U(P1) [ U(P2) and C(P1; P2) := C(P1) [ C(P2).

� U(if top(X)�a [P]) := U(P) and C(if top(X)�a [P]) := C(P).

� U(foreach X [P]) := U(P) and

C(foreach X [P]) :=

�
C(P) [ fXg if U(P) 6= ;

C(P) else.
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De�nition 4.2 (Control). Let P be an L-program. The relation control in P, denoted
P
!,

is de�ned as the transitive closure of the following binary relation �P on V(P):

X �P Y :, P has a subprogram foreach X [Q] such that Y 2 U(Q):

We say that X controls Y in P if X
P
! Y, i.e. there exist variables X � X1; X2; : : : ; Xl � Y such

that X1 �P X2 �P : : : �P Xl�1 �P Xl.

For sets of variables V;W we say that W depends on V in P if some variable X 2 V controls

some variable Y 2 W in P. Accordingly, W is independent of V in P if no variable in W is

controlled (in P) by a variable in V .

De�nition 4.3 (The �-measure of L-programs). The �-measure of L-programs P,

denoted by �(P), is inductively de�ned as follows:

� �(imp) := 0 for every imperative imp.

� �(if top(X)�a [P]) := �(P).

� If P is a sequence P1; : : : ; Pn, then �(P) := maxf�(P1); : : : ; �(Pn)g.

� If P is of the form foreach X [Q], then we consider two cases:

{ If Q is not a sequence, then �(P) := �(Q).

{ If Q is a sequence Q1; : : : ; Qn (n � 2) with k := �(Q), then

�(P) :=

8<
:

k if each C(Qi) with �(Qi) = k

is independent of U(Qi) in Q�i

k + 1 else

where Q�i denotes the L-program Q1; : : : ; Qi�1; Qi+1; : : : ; Qn.

We say that an L-program P has �-measure n if �(P) = n.

De�nition 4.4. A sequence P :� P1; : : : ; Pn has a top circle if there exists a component Pi
with �(Pi) = �(P) such that C(Pi) depends on U(Pi) in P�i :� P1; : : : ; Pi�1; Pi+1; : : : ; Pn.

By de�nition 4.4 one can restate the critical case in the de�nition of the measure � as:

�(foreach X [P]) =

�
�(P) + 1 if P is a sequence with a top circle

�(P) else.

Accordingly, we will show that the polynomial-time computable functions coincide with the

functions computable by an L-program where each body of a loop is circle free, that is, it

has no top circle.

Note that conditionals if X�" [Q] and if X 6�" [Q] with �-measure �(Q) can de�ned by

if X�" [Q] :� nil(U); push(a,U); foreach X [pop(U)]; if top(U)�a [Q]

if X 6�" [Q] :� if top(X)�a1 [Q]; : : : ; if top(X)�al [Q]

where U is some new variable, and a is an arbitrary letter in � := fa1; : : : ; alg.
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5 The Bounding Theorem

In this section we will show that for every function f computed by an L-program with �-

measure n one can �nd a length bound b 2 En+2, that is, jf(~w)j � b(j~wj) for all ~w. It suÆces

to show this Bounding Theorem for a subclass of programs in L, called core programs. The

latter comprise those stack manipulations which do contribute to computational complexity

of L-programs. The base case is treated separately, showing that every function computed

by a core program with �-measure 0 has a polynomial length bound. To prove the general

case, we show that every core program P with �-measure n+ 1 has a length bound P0 with

�-measure n+1. The structure of P0 we call 
attened out will be such that a straightforward

inductive argument shows that every function computed by P0 has a length bound in En+2.

De�nition 5.1 (Core programs). Core programs are L-programs built from imperatives

push(a,X) by sequencing and loop statements.

Note 5.2. The chosen call-by-value semantics of loops ensures that core programs are

length-monotonic, i.e. if P is a core program with variables ~X, and if f~X = ~wg P f~X = ~ug

and f~X = ~w0g P f~X = ~u0g where j~wj � j~w0j (component-wise), then j~uj � j~u0j. Hence every

function computed by a core program is length-monotonic, too.

Lemma 5.3. For every core program P :� foreach X [Q] with �(P) = 0,
P
! is irre
exive.

Proof. By induction on the structure of core programs P :� foreach X [Q] with �-measure 0.

The statement is obvious if Q is an imperative push(a,X). If Q is of the form foreach Y [R],

the statement follows from the induction hypothesis on Q and X =2 U(Q). Finally, if Q is a

sequence Q1; : : : ; Qn, then by the induction hypothesis on each component Qi, no Y controls

Y in Qi. Therefore, if some Y controlled Y in Q, then Y would control some Z 6� Y in some Qj ,

and Z would control Y in the context Q�j :� Q1; : : : ; Qj�1; Qj+1; : : : ; Qn. Hence Q would

have a top circle, contradicting the hypothesis �(P) = 0.

Lemma 5.4. Let P be a core program with irre
exive
P
!. Let P have variables among

~X := X1; : : : ; Xn, and for i = 1; : : : ; n, let V i denote the list of those variables Xj which control

Xi in P. Then there are polynomials p1(V
1); : : : ; pn(V

n) such that for all ~w := w1; : : : ; wn,

f~X = ~wg P fjX1j � jw1j+ p1(j~w
1j); : : : ; jXnj � jwnj+ pn(j~w

nj)g

where ~wi results from ~w by selecting those wj for which Xj is in V i.

Proof. By induction on the structure of core programs P with irre
exive
P
!. In the base

case P � push(a,X1), we know V 1 = ; and hence p1 := 1 will do. As for the step case, P is

either of the form foreach Xj [Q] or P is a sequence Q1; : : : ; Ql (l � 2).

Case P � foreach Xj [Q]. The I.H. on Q yields polynomials p1(V
1); : : : ; pn(V

n) satisfying

(1) f~X = ~wg Q fjX1j � jw1j+ p1(j~w
1j); : : : ; jXnj � jwnj+ pn(j~w

nj)g:

As
P
! is irre
exive, then so is

Q
!, implying that the relation X v Y :, X

Q
! Y or X � Y

de�nes a partial order on ~X. Therefore, we can proceed by induction on v showing that for

every i = 1; : : : ; n there is a polynomial qi(m;V
i) such that for all m; ~w,

(2) f~X = ~wg Qm fjXij � jwij+ qi(m; j~w
ij)g
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where Qm denotes the sequence Q; : : : ; Q (m times Q). Note that (2) implies the statement

of the lemma for the current case P � foreach Xj [Q]. To see this, if Xi =2 U(Q) then V
i = ;

and the execution of Q does not alter the contents of Xi, hence pi := 0 will do. Otherwise if

Xi 2 U(Q), then Xj 2 V i and (2) gives f~X = ~wg P fjXij � jwij+ qi(jwjj; j~w
ij)g where wj 2 ~wi.

As for the proof of (2), if V i = ; then pi in (1) is a constant, implying f~X = ~wg Qm fjXij �

jwij+m �pig. So consider the case where V
i 6= ;. The induction hypothesis for each variable

in V i := Xi1 ; : : : ; Xil provides polynomials pi1(m;V
i1); : : : ; pil(m;V

il) such that for all m; ~w,

(3) f~X = ~wg Qm fjXij j � jwij j+ pij (m; j~w
ij j)g for j = 1; : : : ; l:

Here V ij denotes the variables which control Xij in Q. As
Q
! is irre
exive, we conclude

(4) Xij =2 V ij for j = 1; : : : ; l; and Xi =2 V i1 [ : : : [ V il � V i:

Hence for a proof of (2) it suÆces to show by induction on m that for all m; ~w,

(5) f~X = ~wg Qm fjXij � jwij+m � pi(jwi1 j+ pi1(m; j~w
i1j); : : : ; jwil j+ pil(m; j~w

il j))g:

The base case m = 0 is obviously true. As for the step case m ! m + 1, given any ~w, let

ui1 ; : : : ; uil be the stack contents obtained from (3) such that for j = 1; : : : l,

(6) f~X = ~wg Qm fXij = uijg and juij j � jwij j+ pij (j~w
ij j)

and let vi be the stack contents obtained from the side induction hypothesis satisfying

(7) f~X = ~wg Qm fXi = vig and jvij � jwij+m � pi(jui1 j; : : : ; juil j):

Whatever the contents of the remaining stacks, by (1) a further execution of Q gives

fXi1 = ui1 ; : : : ; Xil = uil ; Xi = vig Q fjXij � jvij+ pi(jui1 j; : : : ; juil j)g:

This together with (6), (7) and monotonicity of polynomials gives the required estimation

jXij � jwij+(m+1) � pi(jwi1 j+ pi1(m+1; j~wi1j); : : : ; jwil j+ pil(m+1; j~wilj)), concluding the

proof for the case P � foreach Xj [Q].

Case P � Q1; : : : ; Ql with l � 2. Since
P
! is irre
exive, then so is

Qi
! for i = 1; : : : ; l. Hence

the induction hypothesis for each Qi provides polynomials p
i
1
(V 1); : : : ; pin(V

n) satisfying

(8) f~X = ~wg Qi fjX1j � jw1j+ pi1(j~w
1j); : : : ; jXnj � jwnj+ pin(j~w

nj)g:

Due to a situation similar to (4), after at most n �(l�1) compositions we obtain polynomials

p1(V
1); : : : ; pn(V

n) satisfying f~X = ~wg P fjX1j � jw1j+ p1(j~w
1j); : : : ; jXnj � jwnj+ pn(j~w

nj)g:

This completes the proof of the lemma.

Corollary 5.5 (Base Bounding). For every core program P with �(P) = 0 and variables
~X := X1; : : : ; Xn one can �nd polynomials p1(~X); : : : ; pn(~X) such that for all ~w := w1; : : : ; wn,

f~X = ~wg P fjX1j � p1(j~wj); : : : ; jXnj � pn(j~wj)g:

In particular, if P computes a function f , then f has a polynomial length bound, that is, a

polynomial p satisfying jf(~w)j � p(j~wj).
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Proof. The statement of the corollary follows from Lemma 5.4, Lemma 5.3, Note 3.2, and

the fact that the polynomials are closed under composition.

We are now going to treat the general case in the proof of the Bounding Theorem mentioned

above. For this purpose, we �rst de�ne what we mean by saying that one core program is

a length bound on another, and how 
attened out core programs look like.

De�nition 5.6. Let P, Q be core programs such that V(P) := fX1; : : : ; Xkg is a subset of

V(Q) := fX1; : : : ; Xk; Y1; : : : ; Ylg. We say that Q is a length bound on P, denoted P� Q, if

f~X = ~wg P f~X = ~vg and f~X = ~w;~Y = ~ug Q f~X = ~v0g implies j~vj � j~v0j:

De�nition 5.7. We say that a loop foreach X [Q] with �-measure n+1 is simple if Q has

�-measure n. A core program P :� P1; : : : ; Pk with �-measure n+ 1 is called 
attened out

if each component Pi is either a simple loop or else �(Pi) � n.

Given a core program P with �-measure n + 1, we want to construct a 
attened out core

program P0 of �-measure n+1 such that P0 is a length bound on P. To succeed in that goal,

it suÆces to transform, step by step, certain occurrences of non-simple loops in P. That

motivates the next de�nition where we make use of the standard notion of nesting depth

nd(P) for core programs P, that is, nd(nil(X)) := 0, nd(P1; P2) := maxfnd(P1);nd(P2)g,

and nd(foreach X [Q]) := 1 + nd(Q).

De�nition 5.8. The degree of a core program P, denoted deg(P), is inductively de�ned by:

� deg(push(a,X)) := 0 for every letter a 2 � and variable X.

� deg(P1; P2) := maxfdeg(P1);deg(P2)g.

� If P is a loop foreach X [Q], then

deg(P) :=

8>><
>>:

0 P is a simple loop or �(P) = 0

1 + deg(Q) Q is a loop with �(Q) = n+ 1

1 +
P

i�k nd(Qi) Q is a sequence Q0; : : : ; Qk without top circle

and �(Q) = n+1 = �(P):

Lemma 5.9 (Degree zero). Every core program P with �-measure n+ 1 and degree 0 is


attened out.

Proof. By induction on the structure of core programs P with �-measure n+ 1 and degree

0. If P is a sequence P1; P2 then both components Pi have degree 0 but at least one has �-

measure n+1. Hence the claim follows from the induction hypothesis on those components

with �-measure n + 1. If P is a loop with �-measure n + 1 and degree 0, then this loop is

simple by de�nition, hence P is 
attened out.

Lemma 5.10 (Degree reduction). For every core program P :� foreach X [Q] with

�(P)=n+1 and degree > 0 one can �nd a core program P0 satisfying P� P0, �(P0) = n+ 1

and deg(P0) < deg(P).

9

109



Proof. Let P :� foreach X [Q] be an arbitrary core program with �-measure n + 1 and

degree > 0. According to de�nition 5.8 and Note 3.2, we distinguish two cases on Q.

Case Q is a loop foreach Y [R] with �(P) = �(Q) = n+ 1. In this case we de�ne P0 by

P
0 :� foreach X [foreach Y [push(a,Z)]]; foreach Z [R]

for some new variable Z and arbitrary letter a. Obviously, �(P0) = �(P) and P� P0. As for

deg(P0)<deg(P), �rst observe that deg(P) = 1 + deg(Q) and deg(P0) = deg(foreach Z [R]).

Thus, deg(P) > deg(Q) = deg(foreach Y [R]) = deg(foreach Z [R]) = deg(P0) as required.

Case Q is a sequence Q0; : : : ; Qk without top circle, each component is either an imperative

or a loop, and there is a component Qi :� foreach Y [R] with �(Qi)=�(Q)=n+1. In this

case we de�ne P0 :� foreach X [P1]; foreach Z [P2] where

P1 :� Q0; : : : ; Qi�1; foreach Y [push(a,Z)]; Qi+1; : : : ; Qk

P2 :� Q0; : : : ; Qi�1; R; Qi+1; : : : ; Qk

for some new variable Z and arbitrary letter a 2 �. As for P� P0, let #R denote the number

of times R is executed in a run of P. Since Q has no top circle, Y is independent of U(R)

in Q�i :� Q0; : : : ; Qi�1; Qi+1; : : : ; Qk. Therefore we obtain f~X = ~w; Z = vg P1 fjZj � #Rg,

implying P� P0 by monotonicity of core programs.

It remains to show �(P0) = n+ 1 and deg(P0)<deg(P). First observe that P1 is a sequence

without top circle such that each component has a �-measure � n+1. Furthermore, observe

that R contains a loop, as Qi has �-measure n+ 1. We distinguish two subcases.

Subcase Qi is a simple loop, that is, �(Qi) = 1+�(R) and R is a sequence with a top circle. If

Qi is the only component of Q with �-measure n+1, then P2 is a sequence with a top circle,

implying �(P0) = �(foreach Z [P2]) = n + 1 and deg(P0) = deg(foreach X [P1]). As P1

is a sequence without top circle and nd(Qi) � 2, we obtain deg(foreach X [P1]) < deg(P).

Otherwise if Q has a further component with �-measure n + 1, then both P1 and P2 are

sequences without top circle, implying �(P0) = �(foreach Z [P2]) = n+1 and, as R contains

a loop, deg(P0) = deg(foreach X [P2]). As nd(Qi)>nd(R), we obtain deg(foreach X [P2])<

deg(P) as required, concluding the current subcase.

Subcase Qi is a not a simple loop, hence �(Qi) = �(R) and R is either a loop or a sequence with-

out top circle. In either case, P2 has no top circle, implying �(P
0)=�(foreach Z [P2])=n+1.

Furthermore, as R contains a loop, we obtain nd(Qi) > nd(R) � nd(foreach Y [push(a,Z)])

and thus deg(P0)<deg(P), concluding the proof of the lemma.

Lemma 5.11 (Flattening). For every core program P with �-measure n+1 one can �nd

a 
attened out core program P0 satisfying P� P0 and �(P0) = n+ 1.

Proof. The statement follows from Note 3.2, Lemma 5.10 and Lemma 5.9.

As pointed out above, the Flattening Lemma establishes the following Bounding Theorem.

Theorem 5.12 (Bounding). Every function f computed by an L-program with �-measure

n has a length bound b 2 En+2 satisfying jf(~w)j � b(j~wj).
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Proof. It suÆces to prove the statement of the theorem for core programs only, since every

L-program P has a core program P0 such that �(P) = �(P0) and Q� P0 for every subprogram

Q of P. Just let P0 result from P by simultaneously replacing all occurrences of imperatives

nil(X) or pop(X) with foreach X [push(b,V)], and all conditionals if top(X)� a [Q]

with foreach X [push(b,V)]; Q, for some new variable V and some letter b 2 �.

We proceed by induction on n showing the statement of the theorem for core programs. The

base case n = 0 has been shown in Corollary 5.5. As for the step case n! n+ 1, let P be

an arbitrary core program with �-measure n+ 1. We apply the Flattening Lemma 5.11 to

obtain a core program P0 of the form P1; : : : ; Pk where each component Pi is either a simple

loop or else �(Pi) � n, and such that P � P0 and �(P0) = n + 1. Thus, by the induction

hypothesis and by closure of En+3 under composition, it suÆces to show that every function

computable by a simple loop has a length bound in En+3.

So consider an arbitrary simple loop P :� foreach X [Q]. Hence �(Q) = n and by the

induction hypothesis each function hi computed by Q has a length bound bi 2 En+2. We

choose a number c > 0 such that bi(~x) � Ec
n+1

(max(~x)) for each bound bi. Now consider

an arbitrary function f1 computed by P. Then f1, possibly together with other functions

f2; : : : ; fm computed by P, can be de�ned by simultaneous string recursion from functions

computed by Q, that is,

fi("; ~w) = wij

fi(va; ~w) = hi(v; ~w; f1(v; ~w); : : : ; fm(v; ~w)) for i = 1; : : :m:

It follows by induction on jvj that jfi(v; ~w)j � E
c�jvj
n+1

(max(jv; ~wj)). As Et
n+1

(x) � En+2(x+t)

and max;+ 2 E2, we therefore obtain a length bound on f1 in E
n+3.

6 The Characterisation Theorem

Given any alphabet �, a function over �� is any k-ary function f : ��� : : :��� ! ��. This

section is concerned with showing that the functions over �� computable by an L-program

with �-measure n coincide with the functions computable by a Turing machine in time

b(j~wj) for some time bound b 2 En+2. Thus, the polynomial-time computable functions

over �� are characterised as those functions f which can be computed by an L-program

with �-measure 0.

De�nition 6.1. For n � 0 let Ln denote the class of all functions f over �� (for some

alphabet �) which can be computed by an L-program with �-measure n.

De�nition 6.2. For n � 0 let Gn denote the class of all functions f over �� (for some

alphabet �) which can be computed by a Turing machine in time b(j~wj) for some b 2 En.

Observe that G0 is the class fp of polynomial-time computable functions (over some ��).

Lemma 6.3 (En+1-Computation). For every n � 0 one can �nd an L-program LEn+1

with �-measure n satisfying fY = wg LEn+1 fjYj = En+1(jwj)g.

Proof. By induction on n, where the base case for E1(x) = x2 + 2 is obvious. As for

the step case, �rst recall that En+2(x) = En+1(: : : En+1(2) : : :) with x occurrences of En+1.
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Using the induction hypothesis on n, we de�ne LEn+2 by:

LEn+2 :� nil(U); foreach Y [push(a,U)];

nil(Y); push(a,Y); push(a,Y); foreach U [LEn+1]:

Theorem 6.4 (Main Characterisation). For n � 0 : Ln = Gn+2.

Proof. First we prove the inclusion \�". Let P be an arbitrary L-program with �-measure n.

Then let timeP(~w) denote the number of steps in a run of P on input ~w, where a step is the

execution of an arbitrary imperative imp(X). Observe that there is a polynomial qtime(n)

such that each step imp(X) can be simulated on a Turing machine in time qtime(jXj). Now let

V be any new variable, a2� any letter, and let P� result from P by replacing each imperative

imp with imp; push(a,V). Then the program TIME(P) :� nil(V); P� has �-measure n and

satis�es f~X = ~wg TIME(P) fjVj = timeP(~w)g. We apply the Bounding Theorem to obtain a

length bound b 2 En+2 satisfying

f~X = ~wg TIME(P) fjVj � b(j~wj)g:

Hence there is a Turing machine which simulates P on input ~w in time qtime(b(j~wj)) � b(j~wj),

concluding the proof of the inclusion \�".

As for \�", let M := (Q;�;�; q0; Æ) be an arbitrary one-tape Turing machine running in

time b(jwj) on input w, for some b 2 En+2. We show that the function fM computed by M

can be computed by an L-program P over � := Q[�[ fL;N;Rg with �-measure n, where

� := fa1; : : : ; akg. Assume that Æ consists of moves move1; : : : ;movel where

movei := (qi; ai; q
0
i; a

0
i;Di)

with Di 2 fL;N;Rg, and we may assume that M does not visit cells left to the input. In

simulating M by an L-program, we use the following stacks X; Y; Z; L; R such that for each

con�guration �(q; a)� in a run of M on w,

(�) [[L]] = �; reverse([[R]]) = a�; [[Z]] = q

where [[U]] denotes the word stored in stack U. The L-program P with �-measure n satisfying

fX = wg P fR = fM (w)g will then have the following form:

P :� COMPUTE-TIME-BOUND(Y); (* with �-measure n *)

INITIALISE(L,Z,R); (* with �-measure 0 *)

foreach Y [SIMULATE-MOVES]; (* with �-measure 0 *)

OUTPUT(R;O) (* with �-measure 0 *)

Recall that there is a constant c satisfying b(x) � Ec
n+1

(x), and by Lemma 6.3 there is an

L-program of �-measure n satisfying fY = wg LEn+1 fjYj = En+1(jwj)g. Thus, we obtain

fX = wg COMPUTE-TIME-BOUND(Y) fX = w; jYj = Ec
n+1

(jwj)g for the following L-program:

COMPUTE-TIME-BOUND(Y) :� nil(Y); foreach X [push(a,Y)]; LEn+1; : : : ; LEn+1

with c occurrences of LEn+1. According to (*), we initialise L; Z; R as follows:

INITIALISE(L,Z,R) :� nil(L); nil(Z); push(q
0
,Z); REVERSE(X;R)
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where REVERSE is an L-program satisfying fX = wg REVERSE(X;R) fX = w; R = reverse(w)g.

SIMULATE-MOVES is of the form MOVE1; : : : ; MOVEk where MOVEi simulates movei. For legi-

bility, we use set(U,a) for nil(U); push(a,U), settop(U,a) for pop(U); push(a,U), and

push(top(L),R) for if top(L) � a1 [push(a1,R)]; : : : ; if top(L) � ak [push(ak,R)].

According to Di = R;L;N in movei=(qi; ai; q
0
i; a

0
i;Di), there are three cases for MOVEi:

(R) if top(Z)�qi [if top(R)�ai [push(a
0
i,L); set(Z,q0i);

if R�" [push(B,R)]; if R 6�" [pop(R)]]].

(L) if top(Z)�qi [if top(R)�ai [settop(R,a
0
i); set(Z,q0i);

if L�" [push(B,R)];

if L 6�" [push(top(L),R); pop(L)]]].

(N) settop(R,a0i); set(Z,q0i)

The program OUTPUT(R;O) reads out of [[R]] the result O = fM (w), i.e. the maximal initial

segment of reverse([[R]]) being a word over �. Using obvious implementations of conditionals

if top(R)2� [Q] and if top(R)2�n� [Q] with �-measure �(Q), we obtain:

OUTPUT(R;O) :� nil(O); set(Z,a);

foreach R [if top(R)2�n� [nil(Z)];

if top(R)2� [if top(Z)�a [push(top(R),O)]]]

This completes the proof of the Characterisation Theorem.

Note that the proof of Ln � Gn+2 does not refer to the functions computed an L-program.

Furthermore, recalling property (*) in the proof of Gn+2 � Ln, we obtain for each Turing

machine with running time in En+2 a stack program simulation with �-measure n by can-

celing the subprogram OUTPUT(R;O). This gives the main result as stated in the abstract.

Corollary 6.5 (Main). A Turing machine runs in time b(n) for some function b 2 En+2

if and only if it can be simulated by an L-program with �-measure n.

7 Sound, adequate and complete measures

We have presented a purely syntactical method for analysing the impact of nesting loops

in L-programs on computational complexity. In particular, the method separates programs

running in polynomial time (in the size of the input) from programs running in exponential

time. More generally, the method separates uniformly programs with running time in En+2

from programs with running time in En+3.

One might ask how successful this project can be, that is for example, does every L-program

with polynomial running time receive �-measure 0? In this section we will shed some light

upon the limitations of any such method, however, bring out that the results we have

achieved are about as good as one can hope for.

De�nition 7.1. Assume an arbitrary imperative programming language L and an arbitrary

program P in L. P is feasible if every function computed by P is in fp. P is honestly feasible

if every subprogram of P is feasible. P is dishonestly feasible, or dishonest for short, if P is

feasible, but not honestly feasible.
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Note that if a function is computable by a feasible program, then it is also computable by

an honestly feasible program.

For honestly feasible programs, every subprogram can be simulated by a Turing machine

running in polynomial time. Dishonest programs fall into two groups. One group consists of

those programs which only compute functions in fp, but without polynomial running time.

The other group consists of programs which run in polynomial time, but some subprograms

have non-polynomial running time if executed separately. Typical of the latter group are

programs of the form R; if <test> [Q] where R is a program which runs in polynomial

time, <test> is a test that always fails, and Q is an arbitrary program without polynomial

running time.

Dishonest programs somewhat lie about their own computational complexity: They contain

computationally redundant code the computational complexity of which dominates that of

the whole program. Obviously, we cannot expect to separate (by purely syntactical means)

the feasible programs from the non-feasible ones if we take into account dishonest programs.

Thus, it seems reasonable to restrict our discussion to the honestly feasible programs, and

after all, it is the computational complexity inherent in the code we want to analyze and

recognize. But even then, our project is bound to fail.

De�nition 7.2. Given any stack programming language L, a measure on L is a computable

function �:L-programs! N .

De�nition 7.3. Let L be an arbitrary (reasonable) stack programming language containing

the core language de�ned in section 5, and let � be a measure on L. The pair (�; L) is called

� sound if every L-program with �-measure 0 is feasible,

� complete if every honestly feasible L-program has �-measure 0, and

� adequate if every function in fp is L-computable with �-measure 0.

As seen above, core programs are the backbones of more general stack programs and they

comprise those stack manipulations which do contribute to computational complexity. Let

C denote the set of core programs de�ned in section 5, and let � be the measure on core

programs as de�ned in section 4. The next theorem is good news.

Theorem 7.4. The pair (�;C) is sound and complete.

Proof. Soundness follows directly from Corollary 6.5. As for completeness, assume that P

were an honestly feasible core program with �(P)>0. Hence P would contain a subprogram

foreach X [Q] where Q is a sequence with a top circle. This implies that each time Q is

executed at least one stack in Q doubles the length of its contents. Thus, P would contain

a non-feasible subprogram, contradicting the assumption that P is honestly feasible.

The pair (�;C) is obviously not adequate. As core programs are length-monotonic, there

are plenty of functions in fp which are not C-computable, let alone C-computable with

�-measure 0. However, wouldn't it be nice if we could extend (�;C) to an adequate pair

and still preserve both soundness and completeness? Well, it is not possible.
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Theorem 7.5. Let (�; L) be a sound and adequate pair. Then (�; L) is incomplete, that is,

there exists an honestly feasible program P 2 L such that �(P) > 0.

Proof. Assume an e�ective enumeration f�igi2! of the Turing machines with alphabet

f0; 1g. Let n be a �xed natural number. It is well-known that there is a function fn 2 fp

satisfying fn(x) = 1 if �n (on the empty input) halts within jxj steps, and fn(x) = 0 else.

It is also well-known that it is undecidable whether �i halts. Since (�; L) is adequate and

sound, there is an honestly feasible program Q 2 L with �-measure 0 such that

fY = yg Q fif �n does not halt within jyj steps then Z = " else Z = 1g

Moreover, such a program Q can be e�ectively constructed from n, that is, there exists an

algorithm for constructing Q from n. Since L contains the core language, the program

P :� foreach X [Q; foreach Z [foreach V [push(1,W)]];

foreach W [push(1,V)]]

is also in L, where X; V; W are new stacks. Now, if �n never halts then foreach V [push(1,W)]

will never be executed, whatever the inputs to P. Thus, if �n never halts, then P is honestly

feasible. In contrast, if �n halts after s steps, say, then part foreach V [push(1,W)] and

part foreach W [push(1,V)] will be executed each time the body of the outermost loop is

executed whenever Y = y with jyj � s. Each such execution implies that the height of stack

V is at least doubled. Thus, if �n eventually halts, then P is not feasible. In other words, P

is honestly feasible if and only if �n never halts. As P is e�ectively constructible from n, we

conclude that (�; L) cannot be complete. For if (�; L) were complete, then �n would never

halt if and only if �(P)=0. This would yield an algorithm which decides whether �n halts:

Construct P from n and then check whether �(P)>0. Such an algorithm does not exist.

Notably, Theorem 7.5 relates to G�odel's First Incompleteness Theorem. The latter implies

that if a �rst order language is expressive enough, then there is no algorithm which can

identify the true statements of the language. Theorem 7.5 says that when a programming

language is suÆciently expressive, then there is no algorithm which can identify the honestly

feasible programs of the language.
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(Extended Abstract)

1 Introduction

We report on the extraction (presented in [KO01]) of the first effective uniform modulus
of uniqueness (this notion is defined in section 2) for best polynomial L1-approximation
of continuous functions from the ineffective proof of uniqueness due to Cheney. The
extraction of the modulus is based on the technique of monotone functional interpretation
(developed in [Koh96]) and is an instance of the following meta-theorem,1

Theorem 1.1 ([Koh93a], theorem 4.1) Let X,K be PAω-definable Polish spaces, K
compact and consider a sentence which can be written (when formalized in the language
of PAω) in the form

A := ∀n ∈ N;x ∈ X; y ∈ K ∃k ∈ N A1(n, x, y, k),

where A1 is a purely existential. Then the following rule holds:


PAω + AC1,0
qf + WKL ` ∀n ∈ N;x ∈ X; y ∈ K ∃k ∈ N A1(n, x, y, k)

then one can extract a primitive recursive (in the sense of [Göd58]) term Φ s.t.

HAω ` ∀n ∈ N;x ∈ X; y ∈ K∃k ≤ Φ(n, x)A1(n, x, y, k).

A crucial feature of the functional Φ above is that it does not depend on the element
y ∈ K. It should also be noted that Φ depends on the representation of x as an element of
X. In the present case X is the space of continuous functions on the unit interval (denoted
by C[0, 1]), and according to the representation of C[0, 1] 2 the elements f ∈ C[0, 1] are
given together with a modulus of uniform continuity, ωf ,

∀x, y ∈ [0, 1]∀ε ∈ Q∗+(|x− y| < ωf (ε)→ |f(x)− f(y)| < ε),
∗Basic Research in Computer Science, funded by the Danish National Research Foundation.
1PAω denotes Peano Arithmetic (with extensionality) in all finite types and HAω its intuitionistic

variant.
2We have to represent C[0, 1] w.r.t. the uniform norm ‖ · ‖∞ (although we below consider the L1-norm)

since C[0, 1] is a Polish space only with respect to the former.
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which means that the extracted uniform modulus of uniqueness will depend a priori on
such a modulus of uniform continuity of f .

In the theorem above, WKL denotes the non-computational principle “binary (‘weak’)
König’s lemma” and AC1,0

qf the axiom of choice for quantifier free formulas,

AC1,0
qf : ∀f1∃x0Aqf (f, x)→ ∃F 2∀f1Aqf (f, F (f)).

We show below that the uniqueness theorem for L1-approximation (expressed as a
sentence B) can be written in the form A (of meta-theorem 1.1), and the functional
Φ guaranteed by the meta-theorem is exactly the uniform modulus of uniqueness. In
order to apply theorem 1.1 we just have to show that B can be proved in the system
A := PAω + AC1,0

qf + WKL which can be achieved by showing that Cheney’s proof of B
can be formalized in A. The latter fact was shown in [Koh90].

Note that our case study is twofold: we test a technique of proof mining (monotone
functional interpretation in the present case) with respect to its applicability and feasibil-
ity, and at the same time we obtain new results in analysis.

In the next section we introduce some notions from L1-approximation theory and
present the uniform modulus of uniqueness Φ. In section 3 we show how Φ can be used
to compute the best L1-approximation of a given function f ∈ C[0, 1] by polynomials of
degree ≤ n.

2 The uniform modulus of uniqueness

For any given continuous function f on the interval [0, 1] (we write f ∈ C[0, 1]) the L1-
norm of f is defined as,

||f ||1 :=
∫ 1

0
|f(x)| dx.

Given a function f ∈ C[0, 1] we define the L1-distance of f from some subspace
H ⊂ C[0, 1] by,

dist1(f,H) := inf
p∈H
‖f − p‖1.

By ‘the problem of L1-approximation from H’ we mean the problem of finding, for a
given f ∈ C[0, 1], an element p ∈ H such that ‖f−p‖1 = dist1(f,H). L1-approximation (or
‘approximation in the mean’) has been extensively studied in numerical mathematics since
1859 when was first considered by Chebycheff (see [Pin89] for a comprehensive survey).
The space of polynomials up to degree n (including n) is denoted by Pn. In 1921, Jackson
[Jac21] proved that the problem of L1-approximation from Pn has a unique solution, i.e.
for any given function f ∈ C[0, 1] and for a fixed n ∈ N there exists a unique polynomial
pn ∈ Pn such that

‖f − pn‖1 = dist1(f, Pn).

In 1965, Cheney (cf. [Che65], [Che66]) simplified (in the sense that he eliminated
the use of measure theory) and generalized Jackson’s uniqueness proof to arbitrary Haar
subspaces3 of C[0, 1]. This is the proof we analyze in [KO01].

3H is a n-dimensional Haar subspace of C[0, 1] if 0 is the only element with n roots. Note that Pn is a
Haar subspace of C[0, 1] of dimension n + 1.
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The uniqueness of the best L1-approximation from the space Pn can be written as,

∀f ∈ C[0, 1];n ∈ N; p1, p2 ∈ Pn(
2∧

i=1

(‖f − pi‖1 =R dist1(f, Pn))→ p1 = p2).

which is equivalent in the system A to,4

(∗) ∀f ∈ C[0, 1];n ∈ N; p1, p2 ∈ Pn; k ∈ N∃d ∈ N

(
∧2

i=1(‖f − pi‖1 − dist1(f, Pn) ≤ 2−d)→ ‖p1 − p2‖1 ≤ 2−k).

It is important to note that the best L1-approximation of any given continuous func-
tion f ∈ C[0, 1] from Pn lives in a compact subspace of C[0, 1], for instance Kf,n := {p ∈
Pn : ‖p‖1 ≤ 2‖f‖1}, i.e. for a fixed f ∈ C[0, 1] its best L1-approximation pn must belong
to Kf,n for if not we would have ‖pn‖1 > 2‖f‖1 which, by the triangle inequality for
the L1-norm, implies ‖f − pn‖1 > ‖f‖1, and 0 would be better approximant than pn, a
contradiction. Therefore, (∗) can be written as,

∀f ∈ C[0, 1];n ∈ N; p1, p2 ∈ Kf,n; k ∈ N∃d ∈ N

(
∧2

i=1(‖f − pi‖1 − dist1(f, Pn) ≤ 2−d)→ ‖p1 − p2‖1 < 2−k),

which has the exact form of the formula A from theorem 1.1. Now, since Cheney’s unique-
ness proof can be formalized in A, metatheorem 1.1 guarantees the existence of a functional
Φ realizing ∃d depending only on f, n and k, i.e. independent of p1 and p2,

(∗∗) ∀f ∈ C[0, 1];n ∈ N; p1, p2 ∈ Kf,n; k ∈ N

(
∧2

i=1(‖f − pi‖1 − dist1(f, Pn) ≤ 2−Φ(f,n,k))→ ‖p1 − p2‖1 < 2−k).

In fact, Φ can be easily extended to a modulus on the whole space Pn. In [Koh93a]
and [Koh93b], such functionals were called uniform modulus of uniqueness.5

Notice that, although the first proof of uniqueness of best L1-approximation was given
already in 1921, no effective uniform modulus of uniqueness had ever been presented before.
In [Bjö75] (see also [Bjö79]) Björnestal proved that a uniform modulus of uniqueness having
the form (k+c)+ωf (k+c) exists, for some constant c depending at most on f and n. Kroo
([Kro78] and [Kro81]) improved this result by showing that c needed only to depend on
the modulus of uniform continuity of f (but not on any particular value of f). Moreover,
he showed that the k-dependency, i.e. k + ωf (k), is optimal. Note, however, that neither
Björnestal nor Kroo presented the constant c, which means that only the ε-dependency
of the uniform modulus of uniqueness was known before.

By applying the techniques of monotone functional interpretation to Cheney’s ineffec-
tive uniqueness proof we obtained the following explicit uniform modulus of uniqueness
(with ε ∈ Q∗+ instead of 2−k),

4It is worth noticing that, according to the representation of real numbers by Cauchy sequences with
fixed rate of convergence, in this way, equality between real numbers is expressed by a ∀-statement.

5Special cases of such moduli have been studied extensively in approximation theory under the heading
of “strong uniqueness” (see [BL95]).
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Theorem 2.1 Let

Φ(ω, n, ε) := min{ cnε
3n+2(n+1)n+1 , cnε

2 ωn( cnε
2 )}, where

cn := bn/2c!dn/2e!
2n+33n2+2n(n+1)n2+2n+1

and

ωn(ε) := min{ω( ε
4 ), ε

40(n+1)4d 1
ω(1)
e}.

The functional Φ is a uniform modulus of uniqueness for the best L1-approximation of any
function f in C[0, 1] (having modulus of uniform continuity ω) from Pn, i.e.

∀n ∈ N; p1, p2 ∈ Pn; ε ∈ Q∗+(
2∧

i=1

(‖f − pi‖1 − dist1(f, Pn) < Φ(ω, n, ε))→ ‖p1 − p2‖1 ≤ ε).

Let P(f, n) denote the projection operator which assigns to any given function f ∈
C[0, 1] and any n ∈ N the best L1-approximation of f ∈ C[0, 1] from Pn, i.e,

P(f, n) := pn, such that ‖f − pn‖1 = dist1(f, Pn).

As a corollary of proposition 5.4 from [Koh93a] and theorem 2.1 above we get,

Theorem 2.2 Let ΦP (ω, n, k) := Φ(ω,n,k)
2 , Φ as defined in Theorem 2.1. Then, ΦP is a

modulus of pointwise continuity for the operator P(f, n) for all f ∈ C[0, 1] with modulus
of uniform continuity ω, i.e.,

∀f̃ ∈ C[0, 1];n ∈ N; q ∈ Q∗+(‖f − f̃‖1 < ΦP (ω, n, ε)→ ‖P(f, n)− P(f̃ , n)‖1 ≤ ε).

3 Computing the best L1-approximation

Now we present one of the applications of the uniform modulus of uniqueness. First we
define another norm. Let a := (a0, a1, . . . , an) be an (n + 1)-dimensional tuple of real
numbers. The max-norm of a is defined as,

‖a‖max := max{|a0|, . . . , |an|}.

Since the polynomials of Pn can be viewed as a (n + 1)-tuples of real numbers (taking the
coefficients as the elements of the tuple) it makes sense to speak about the max-norm of
p ∈ Pn. In the same way we treat (n + 1)-tuples of rational numbers as elements of Pn.

Definition 3.1 An operator Bf : N × N → Qn+1 computes the sequence of unique best
L1-approximations, (pn)n∈N, of a function f ∈ C[0, 1] from Pn if for any given n, k ∈ N it
generates an (n + 1)-tuple of rationals Bf (n, k) (which can be viewed as a polynomial with
rational coefficients in Pn) such that ‖pn −Bf (n, k)‖max < 2−k.
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Let f ∈ C[0, 1] be fixed and assume pn is the best L1-approximation of f from Pn.
Taking p2 to be pn in (∗∗) we have,

(1) ∀f ∈ C[0, 1];n ∈ N; p ∈ Pn; k ∈ N

(‖f − p‖1 − dist1(f, Pn) ≤ 2−Φ(f,n,k) → ‖p− pn‖1 < 2−k).

In order to define Bf we need, besides the uniform modulus of uniqueness Φ, a func-
tional Ψ(f, n, k) such that,

(2) ∀f ∈ C[0, 1];n, k ∈ N(Ψ(f, n, k) ∈ Qn+1 ∧ ‖f −Ψ(f, n, k)‖1 < dist1(f, Pn) + 2−k),

and a function Θ(n, k) satisfying,

(3) ∀n ∈ N; p ∈ Pn; k ∈ N(‖p‖1 < 2−Θ(n,k) → ‖p‖max < 2−k).

It is clear now, by (1), (2) and (3), that the functional defined by

Bf (k, n) := Ψ(f, n,Φ(f, n,Θ(n, k)))

generates the double sequence (pn,k)n,k∈N. Note that, if the modulus of uniqueness Φ
depended on p1 and p2, the functional Bf (k, n) could not be defined, since in order to get
(1) we would need to have pn already.

It is only left to show how the functionals Ψ and Θ can be defined. We sketch here
only the definition of Ψ(f, n, k): For f ∈ C[0, 1] and n, k ∈ N fixed, we show how to
find a polynomial p ∈ Pn such that ‖f − p‖1 < dist1(f, Pn) + 2−k. As it was pointed
out above, such p lives in the compact space Kf,n. The idea is to build a finite net of
elements containing some elements of Kf,n (called k-net) such that at least one of them
(say p′) is (k + 1)-close to pn, i.e. ‖pn − p′‖1 ≤ 2−k−1, which by triangle inequality
(‖f − p′‖1 ≤ ‖f − pn‖1 + ‖pn − p′‖1) yields (∗) ‖f − p′‖1 ≤ dist1(f, Pn) + 2−k−1. Once we
have the k-net we compute ‖f−p‖1 for any element p in the net with (k+1)-precision and
we take a p̃ which gives the minimum value (e.g. the one with smallest code). Since the L1-
norm was computed with (k +1)-precision, by (∗), we have, ‖f − p̃‖1 ≤ dist1(f, Pn)+2−k.

This important application of moduli of uniqueness for the computation of unique
solutions of existence statements was first investigated and used in [Koh93a]. The com-
putational complexity (in the sense of [Ko86]) of generating the best L1-approximation of
a given f ∈ C[0, 1] from Pn will be analyzed in [Oli].
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On Type-2 Complexity Classes

Preliminary Report

Chung-Chih Li∗ James S. Royer∗

15 March 2001

Abstract

There are now a number of things called “higher-type complexity
classes.” The most promenade of these is the class of basic feasible
functionals [CU93, CK90], a fairly conservative higher-type analogue the
(type-1) polynomial-time computable functions. There is however cur-
rently no satisfactory general notion of what a higher-type complexity
class should be. In this paper we propose one such notion for type-2
functionals and begin an investigation of its properties. The most strik-
ing difference between our type-2 complexity classes and their type-1
counterparts is that, because of topological constrains, the type-2 classes
have a much more ridged structure. Example: It follows from McCreight
and Meyer’s Union Theorem [MM69] that the (type-1) polynomial-time
computable functions form a complexity class (in the strict sense of Def-
inition 1 below). The analogous result fails for the class of type-2 basic
feasible functionals.

§1. Introduction

Constable [Con73] was one of the first to study the computational complexity
of higher-type functionals. In that 1973 paper, he raised two good questions:

1. What is the type-2 analogue of the polynomial-time computable func-
tions?

2. What is the computational complexity theory of the type-2 effectively
continuous functionals?

In the years since there has been a fair amount of attention given to addressing
the first question, but hardly any to the second. We think that after nearly
three decades the man deserves an answer. Herein we make a start at providing
one.
∗Dept. of Elec. Eng. & Computer Science; Syracuse University; Syracuse, NY 13244 USA.

Research supported in part by NSF grant CCR-9522987.
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Type-2 Complexity Classes 2

Professor Constable will have to wait a bit longer for a full answer to
his question because what he seems to have had in mind in 1973 and what
we study below are different in a couple of respects. First, Constable was
interested in effectively continuous functionals [Odi89] of the general type
(N ⇀ N)m × Nn ⇀ N.1 We instead focus on partial recursive functionals
[Odi89] of type (N → N) × N ⇀ N — a much more tractable setting. Sec-
ond, Constable wanted an extension of Blum’s complexity measure axioms
[Blu67, Odi99] to type-2 and included an interesting proposal along those
lines. At present type-2 computational complexity is at so poorly understood
that we believe that concrete, worked-out examples are what is needed. So
instead of trying to develop an axiomatic treatment, we follow an approach
similar to that of Hartmanis and Stearns [HS65] in studying the complex-
ity properties of a simple, standard model of computation. In our case, the
model is the deterministic, multi-tape, oracle Turing machine with Kapron
and Cook’s answer-length cost convention (more on this shortly).

Outline. The next section sketches a few facts about type-1 complexity
theory and explains our focus on complexity classes. Section 3 introduces our
model of type-2 computation and some associated notions. Section 4 considers
the nature of type-2 time bounds and Section 5 concerns what it means for
a type-2 time bound to hold almost everywhere. Section 6 introduces our
definition of a type-2 complexity class and presents few elementary results
about these classes. Unions of complexity classes and whether these unions
are themselves complexity classes are considered in Section 7. Section 8 studies
the problem of whether there is a uniformly way to expand a given complexity
class to a strictly larger class. Finally, Section 9 contains our conclusions and
suggestions for future work.

§2. A glance at type-1 computational complexity

Our study of type-2 computational complexity proceeds by rough analogy with
the type-1 theory. Thus before considering the situation at type-2, we start
by recalling a few basic facts about the type-1 theory.

Our model of computation. Following hoary complexity-theoretic tradition,
we take deterministic, multi-tape Turing machines (TMs) as our default model
of type-1 computation. Each step of a TM has unit cost. To simplify matters
a bit, we also follow the common convention of requiring that each TM must
read its entire input string. This forces a TM to have distinct computations
on distinct inputs. (We will return to this point later.)

Strings and numbers. Each x ∈ N is identified with its dyadic representa-
tion over {0,1 }. Thus, 0 ≡ ε, 1 ≡ 0, 2 ≡ 1, 3 ≡ 00, etc. For each x ∈ N,

1Notation: N denotes the set of natural numbers and A ⇀ B (respectively, A → B)

denotes the collection of all partial (respectively, total) set-theoretic functions from A to B.
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Type-2 Complexity Classes 3

|x| denotes the length of its dyadic representation. We will freely pun between
x ∈ N as a number and a 0-1-string. TMs are thought of computing partial
functions over N (∼= {0,1 }∗).

The standard indexing and complexity measure. PR and R respectively
denote the partial recursive and total recursive functions over N. Let 〈ϕi〉i∈N

be an acceptable indexing [Rog67] of PR based on TMs. We call i a ϕ-program
for ϕi. For each i and x, let Φi(x) denote the run time of the TM encoded by
i on input x. Note that 〈Φi〉i∈N satisfies Blum’s complexity measure axioms:
(i) { (i, x) ϕi(x)↓ } = { (i, x) Φi(x)↓ } and (ii) { (i, x, n) Φi(x) ≤ n } is
decidable. Also note that it follows from our requirement that a TM must
read all of its input that |x|+ 1 ≤ Φi(x) for each i and x.

Ordering on functions and almost everywhere relations. For f, g : A→ B,
f ≤ g means that for all x ∈ A, f(x) ≤ g(x); f < g, and so on, are defined
analogously. For f, g : N → N, f =∗ g means that {x f(x) = g(x) } is
co-finite; f <∗ g, and so on, are defined analogously.

Definition 1 (Type-1 complexity classes). For each t ∈ R:

C(t) =def {ϕi ∈ R i ∈ N & Φi ≤∗ t }. (1)

We call C(t) the complexity class named by t. 3

Equation (1) is the standard definition of a complexity class relative to an
arbitrary complexity measure Φ. By using special properties of our particular
choice of Φ, we could replace the ≤∗ in (1) with ≤ and definite essentially
the same notion. However, we retain the ≤∗ as a pedagogical reminder that
membership in a complexity class depends on the asymptotic behavior of wit-
nessing programs. For example, under many models of type-1 computation
one can effectively patch programs so that on some specified finite set of ar-
guments, the complexity is essentially anything you choose and off that finite
set of arguments, the complexity is unchanged from the original. Thus, the
“inherent complexity” of a program is only revealed in its asymptotic behav-
ior.2 One consequence of (1) is that to establish f /∈ C(t) for given f and t,
one must prove that any program for f must have complexity that is infinitely
often greater than t. Here is a sample argument along these lines.

Theorem 2 (Rabin [Rab60]). Suppose t ∈ R. Then there is an 0–1-valued

element f ∈ R such that f /∈ C(t).

Proof Sketch. The proof uses a standard cancellation constructions. In the
program for f given in Figure 1, Cw = programs cancelled on inputs < w and

2Another reason stems from recursive relatedness [Blu67, Odi99]; when you abstract away

from a particular model of computation, the almost everywhere bounds are a necessary part

of most theorems in the general theory.
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Type-2 Complexity Classes 4

Input x.

C0 ← ∅.
For w ← 0 to x do:

Sw ← { k ≤ w k /∈ Cw & Φk(w) ≤ t(w) }.
If Sw 6= ∅ then Cw+1 ← Cw ∪ {min(Sw) } else Cw+1 ← Cw.

If Sx = ∅ then return 0 else return 1 .− ϕe(x), where e = min(Sx).

Figure 1: The program for f

Sw = the candidates for cancellation on input w. A program i is cancelled
on input w if and only if i ∈ Cw+1 − Cw, in which case the construction will
guarantee that Φi(w) ≤ t(w), f(w) 6= ϕi(w), and i will never be cancelled
again.

It is clear from the program that cancellation works as advertised and f is
a 0-1 element of R. It remains to show f /∈ C(t). Suppose that i is such that
Φi ≤∗ t. Choose w0 ≥ i so that (a) Φi(w0) ≤ t(w0) and (b) for each k < i that
is ever cancelled, k has been cancelled before input w0. Hence, either i has
been cancelled on a w < w0 or the construction must cancel i on input w0. In
either case ϕi 6= f . Therefore, f /∈ C(t).

Honesty. Note that Definition 1 says nothing about the complexity of
computing t itself. This is an important issue that is usually dealt with through
the notions of honesty and time constructibility.

Definition 3. Suppose f, g : N→ N.
(a) We say that f is g-honest if and only if for some i, a ϕ-program for f ,

Φi ≤ g ◦ f .
(b) We say that f is honest if and only if f is g-honest for some g ∈ R.
(c) We say that f is time constructible if and only if f = Φi for some i

with ϕi ∈ R. 3

Intuitively, f is honest provided there is a way of computing f such that the
size of each output is roughly commensurate with the time it takes to produce
that output. The construction for Rabin’s Theorem produces highly dishonest
functions. On the other hand, a time constructible function is as honest as it is
possible to be. Roughly, honest functions provide good names for complexity
classes, whereas complexity classes named by dishonest functions can be quite
pathological (see Theorems 23 and 24 below). In this paper we will not deal
directly with type-2 analogues of honesty and time constructibility. However,
they will be important background concerns, and we will see that there is some
amount of honesty built into our notion of type-2 time bound.
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Type-2 Complexity Classes 5

Why are complexity classes of interest? One of the central obsessions of
computation complexity theory is the attempt to draw sharp boundaries be-
tween the computationally feasible and infeasible, where the notions of feasible
and infeasible vary with context. Given an arbitrary t ∈ R, C(t) is unlikely to
represent anyone’s notion of feasibility. However, C(t) is a very simple and el-
egant way of representing a complexity-theoretic boundary. Thus, if you want
to understand computational complexity, one of the first things you want to
study is the nature of these boundaries.

This is enough about the type-1 theory for the moment. Our goal in the
next few sections is to introduce a sensible type-2 analogue of Definition 1.

§3. Type-2 computations and their costs

For our default model of type-2 computation we take deterministic, multi-tape
oracle Turing machines (OTMs). Under our setup OTMs are TMs that are
augmented with two special tapes: a query tape and a reply tape, and one
special instruction: query. To make a query of an oracle f : N→ N, an OTM
writes a 0-1 string (interpreted as the dyadic representation of an x ∈ N) on
the query tape and goes into its query state, whereupon the contents of the
query tape are erased and the contents of the reply tape become the dyadic
representation of f(x). We also require that each OTM must read all of its
type-0 input before halting, and additionally, that immediately after making
the query, an OTM must read all of the answer to said query. Each step of an
OTM has unit cost, but our requirement that OTMs read all of each oracle
response makes our cost model equivalent to Kapron and Cook’s answer-length
cost model [KC96].

Why OTMs? No one outside of complexity theory cares much for TMs or
OTMs as models of computation. So our use of OTMs is a poor marketing
choice. In their favor, OTMs are a simple, conservative model of computation
with a simple, conservation notion of cost. Hence, reasoning about their com-
plexity is straightforward (or as straightforward as reasoning about complexity
can ever be) and this just what we want from our model of computation in our
initial foray into this territory. Extending our results to other basic models of
computation should not be that hard, but we need to know the general shape
of the results first.

The unit cost model for OTMs. If we drop the requirement that each OTM
must read the entire answer to each query, then we obtain the unit cost model
for OTMs. Working with this model is more difficult than the answer-length
cost model and the results tend to be weaker. This unit cost model is studied
in [Li01], but we shall not discuss it further in this paper.

Finite functions. Let F denote the collection of finite functions over N, i.e.,
each σ : N ⇀ N is defined on only finitely many arguments. In the following σ
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and τ (with or without decorations) range over F . We identify each σ with its
graph: { (x, σ(x)) σ(x)↓ }. We shall assume some canonical representation of
the elements of F and typically treat them as type-0 arguments to functions.
For each σ, define σ : N→ N by:

σ(x) =

{
σ(x), if σ(x)↓;
0, otherwise.

The standard indexing and complexity measure. The class of functionals
computed the OTMs sketched above are called the partial recursive functionals
(of type (N → N) × N ⇀ N) in Odifreddi [Odi89]. We denote this class by
PRF and the total members of this class byRF . Let 〈ϕi〉i∈N be an acceptable
indexing of PRF based on OTMs. We call i a ϕ-program for ϕi. For each i,
f , and x, let Φi(f, x) denote the run time of the OTM encoded by i on input
(f, x). Note that it follows from our requirement that an OTM must read all
of its input that |x|+1 ≤ Φi(f, x) for each i, f , and x. For each i, f , x, and n,
define Qi(f, x, n) = the set of queries issued in the first min(n,Φi(f, x)) steps
of the computation of ϕ-program i on input (f, x), Qi(f, x) = ∪nQi(f, x, n),
Usei(f, x, n) = { (x, f(x)) : x ∈ Qi(f, x, n) }, and Usei(f, x) = ∪nUsei(f, x, n).
Also, for each i, σ, and x, we define

Φi(σ, x) =




Φi(σ, x), if Qi(σ, x) ⊆ { y σ(y)↓ };
n, otherwise, where n is the number of steps

taken up to the issuance of the first query
“σ(y) =?” where σ(y)↑.

§4. Type-2 time bounds

Our current goal is to lift Definition 1 to type-level 2 in a reasonable way.
The key issue in this is what should be the type-2 translation of the inequality
Φi ≤∗ t of (1). In place of Φi we clearly should use Φi, but there are two
harder questions:

1. What should stand in place of ≤∗?
2. What should stand in place of t?

We examine the first question in the next section. Here we shall consider how
to sensibly express time bounds on type-2 computations.

What we don’t do, and why. One way to proceed is to use arbitrary el-
ements of RF as time bounds. That is, given T ∈ RF , we could say that
ϕ-program i has complexity everywhere bounded by T if and only if Φi ≤ T

(i.e., for all f and x, Φi(f, x) ≤ T (f, x)). Something of this sort is briefly
considered by Kapron [Kap91] and Seth [Set94]. This sort of bound has the
following troublesome feature.
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Proposition 4. Suppose that Φi ≤ T and that b is some ϕ-program b for T .

Then, for all f and x, Qi(f, x) ⊆ Qb(f, x).

Proof. Suppose by way of contradiction that y ∈ (Qi(f, x) − Qb(f, x)) for
some particular f and x. Let f ′ be such that f ′(z) = f(z) for z 6= y and
f ′(y) = 21+T (f,x). Then T (f ′, x) = T (f, x) since ϕ-program b fails to query
f on y. Moreover, Φi(f ′, x) > T (f, x) since ϕ-program i on input (f ′, x) will
query f ′ on y and the cost of this query is greater than T (f, x). Therefore,
Φi(f ′, x) > T (f, x) = T (f ′, x), a contradiction.

Thus, for Φi ≤ T to hold it must be the case that for any ϕ-program b for
T and any input (f, x), the ϕ-program b must anticipate all of the possible
questions the computation of i on (f, x) might ask and ask them itself. This
seems like an odd thing for a humble bound to do. In particular, if T is honest
and small (in some reasonable senses), then {ϕi ∈ RF i ∈ N & Φi ≤ T }
must be very restricted since the set of queries a ϕi in this collection will be
quite circumscribed.

Our approach. To avoid having our bounding functionals issue queries, we
make them a particular sort of enumeration operator [Rog67, Odi89]. That
is, the bounding functionals can be thought of as passive observers of the
computations they are set to bound; at any point of the computation, the
bounding functional will have “bounding value” based on what the functional
has seen of the input and the queries. This scheme is directly inspired by
the standard clocking scheme for second-order polynomially bounded OTMs
[KC96, Set92]. We proceed formally as follows.

Definition 5. Suppose β : F ×N→ N is total computable.
(a) We say that β determines a weak type-2 time bound if and only if it

satisfies the following three conditions, for all f , σ, and x,
Nontriviality: β(σ, x) ≥ |x|+ 1.
Convergence: limτ→f β(τ, x)↓ <∞.
Boundedness: supτ⊂f β(τ, x) = limτ→f β(τ, x).

Let WB be the collection of all such β’s.

(b) We say that β determines a strong type-2 time bound if and only if
β satisfies the nontriviality and convergence conditions as above as well as
satisfying, for all σ, σ′, and x:

Monotonicity: σ ⊆ σ′ implies β(σ, x) ≤ β(σ′, x).
Let SB be the collection of all such β’s. 3

Clearly, if SB ⊂ WB. Unless we say otherwise, β will denote an element
of WB in the following.
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Definition 6.

(a) We say that the run time of ϕ-program i on input (f, x) is bounded by
β (written ϕi,β(f, x)⇓) if and only if, for each n, Φ(i, σn, x) ≤ β(σn, x), where
σn = Usei(f, x, n).

(b) We say that the computation of ϕ-program i on input (f, x) is clipped
by β (written ϕi,β(f, x)⇑) if and only if not ϕi,β(f, x)⇓.

(c) Define Ei,β = { (f, x) ϕi,β(f, x)⇑ }; we call Ei,β the exception set for
i and β.

(d) We say that the run time of ϕ-program i is everywhere bounded by β

if and only if Ei,β is empty. 3

Example 7.

(a) Suppose ϕi ∈ RF and, for each σ and x, let β(σ, x) = Φi(σ, x). Then
β ∈ SB and it is no surprise that the run time of ϕ-program i is everywhere
bounded by β.

(b) For each a, k, d, x, and σ, define βa,k,0(σ, x) = a · (|x| + 1)k and
also βa,k,d+1(σ, x) = a · (|w| + |x| + 1)k, where w = max({σ(y) |y| ≤
βa,k,d(σ, x) & σ(y)↓ }). Then each βa,k,d ∈ SB and the class of BFFs of
type (N→ N)×N→ N is exactly

⋃
a,k,d {ϕi the run time of ϕ-program i is

everywhere bounded by βa,k,d } [Set92, IKR01]. 3

§5. Type-2 almost everywhere bounds

We want to speak of the run time of ϕ-program i being almost everywhere
bounded by β. Intuitively, this should mean that in some appropriate sense
Ei,β is finite. In the realm of function spaces, “finite” usually corresponds
to compact in some topology. So the question of almost everywhere bounds
comes down to a choice of topology.

What we don’t do, and why. Our OTMs compute over (N→ N)×N. That
space is isomorphic to NN which has a well-known topology due to Baire. Let
B denote this topology on (N → N) × N. For B, it suffices to take { ((σ, x))
σ ∈ F , x ∈ N } as the collection of basic open sets, where for each σ and x,

((σ, x)) =def { (f, x) f ⊃ σ }.
The problem with B is that the compact sets are all too small for our purposes.
This is shown by:

Proposition 8. If an Ei,β is B-compact, then this Ei,β is empty.

Proof. It follows from Definitions 5(a) and 6(c) that Ei,β is open in B. But
the only open compact set in this topology is ∅.

Roughly, the more open sets one has in a topology, the more restricted
are its compact sets. B and “large” topologies in general thus fail to provide
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sufficiently large compact sets so as to obtain nontrivial almost everywhere
relations.

Our approach. To address the problem of what topology to use, we shift
our attention from the set of possible inputs of an OTM to the set of possible
computations of an OTM. To motivate this shift, let us first consider a par-
ticular ordinary TM M that ignores the convention about reading its entire
input. This M acts as follows:

Upon staring, M examines the first symbol on the input tape. If
this is a 0, M immediately halts with output 0; otherwise, M reads
the rest of the input and then halts with output 1.

Clearly there are infinitely many inputs on which M halts with output 0.
However, there is only one computation of M that produces output 0: on
an input of the form 0{0,1 }∗ the machine never looks beyond the initial 0,
hence all such inputs produce the same computation. Therefore if we want to
say that such an M does something for all but finitely many cases, we must
specify whether cases in question are inputs or computations — each choice
has its own faults and merits.

Now, any halting computation of an OTM has 2ℵ0 -many inputs which pro-
duce that computation. So if we want to say that OTM does something for
all but finitely many cases, we again must choose between these cases corre-
sponding to inputs or computations. B roughly corresponds to the “inputs”
choice. No single topology corresponds to the “computations” choice, but we
need not be restricted to a single topology. The next two definitions introduce
several topologies we need to consider.

Definition 9. Suppose F : (N→ N)×N ⇀ N is B-continuous.
(a) A locking segment for F is a (σ, x) for which there is a y ∈ N such that

for all f with (f, x) ∈ ((σ, x)), F (f, x) = y.
(b) A minimal locking segment for F is a locking segment (σ, x) for F such

that for each τ ⊂ σ, (τ, x) fails to be a locking segment.
(c) The induced topology for F (denoted I(F )) is the topology determined

by the subbasis: { ((σ, x)) (σ, x) is a minimal locking segment for F }. 3

Definition 10. The induced topology for the ϕ-program i (denoted Ii) is
the topology determined by the subbasis: { ((Usei(f, x), x)) f : (N → N) →
N, x ∈ N }. 3

It is easily seen, for each i with ϕi ∈ RF , that I(ϕi) is a subtopology of Ii
which in turn is a subtopology of B and that I(ϕi) is the smallest subtopology
of B such that ϕi is continuous.
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Now we have a decision to make. We can take “the run time of ϕ-program i

is almost everywhere bounded by β” as meaning either (a) Ei,β is Ii-compact or
(b) Ei,β is I(ϕi)-compact. Choice (a) exactly matches our talk about counting
computations. But working with choice (a) turns out to be tricky. Part of
the problem is that under choice (a) it is very hard to compare computations
of programs for the same functional — ϕi = ϕj does not imply that Ii and
Ij have much to do with one another. So for reason simplicity, in this paper
we make choice (b). There are prices to be paid for this choice, but they are
generally tolerable. Thus we officially introduce:

Definition 11. We say that the run time of ϕ-program i is almost everywhere
bounded by β if and only if Ei,β is I(ϕi)-compact. 3

Note: Since I(ϕi) is a subtopology of Ii, any Ii-compact set is also I(ϕi)-
compact. We shall use this frequently in the following.

As a first check that Definition 11 is reasonable, we note:

Proposition 12. Suppose i is such that ϕi ∈ RF and c ∈ N. Then { (f, x)
Φi(f, x) ≤ c } is I(ϕi)-compact.

Proof. Suppose that Φi(f, x) ≤ c. It follows from our restrictions on OTMs
that |x|, |max(Qi(f, x))|, and |max{Usei(f, x)(y) y ∈ Qi(f, x) }| are all no
greater than c. Clearly then, there are only finitely-many computations of ϕ-
program i with Φi(f, x) ≤ c. Therefore, { (f, x) Φi(f, x) ≤ c } is Ii-compact,
and hence, I(ϕi)-compact.

§6. Type-2 complexity classes

Now that all the pieces are in place, we can state:

Definition 13. For each β ∈WB:

C(β) =def {ϕi ∈ RF i ∈ N & Ei,β is I(ϕi)-compact } . (2)

We call C(β) the complexity class named by β. 3

This notion of complexity class is similar its type-1 cousin in many ways.
Here is a first illustration.

Proposition 14. Suppose F ∈ C(β). Then there is a ϕ-program i for F and

a c ∈ N such that Ei,c·β = ∅.
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Proof Sketch. Let p be such that ϕp = F and Ep,β is I(F )-compact. Let
M be the OTM coded by p and let C be a finite I(F )-cover of Ep,β. If C = ∅,
then we are done. Suppose C 6= ∅ and let {x0, . . . , xk } = {x ((σ, x)) ∈ C }.
One can argue that, for each i ≤ k, there is a finite decision tree Ti as follows.

Each node n of Ti is labeled a yn ∈ N. If n is an interior node, this will
correspond to the oracle query “f(yn) =?”. If n is a terminal node, this will
correspond to the output being yn. Each edge leaving an interior node is
labeled a z ∈ N; this corresponds to z being the answer to the interior node’s
query. For each node n of Ti, let σn be the finite function that corresponds to
the set of queries and answers on the path leading to n. We require that (i) if n

is a terminal node, then (σn, xi) a locking segment for ϕp and ϕi(σn, xi) = yn;
(ii) if n is an interior node, then for all f ⊃ σn, M on (f, xi) queries f on yn,
and (iii) { ((σn, xi)) n is a terminal node of Ti and i ≤ k } covers Ep,β.

Given these Ti’s, let M′ be the OTM that, on input (f, x), checks if x = xi

for some i ≤ k. If not, then M′ acts like M. If so, then M′ follows the decision
tree Ti until either (i) it reaches an terminal node n, in which case is outputs
yn and halts or else (ii) M′ reaches an interior node n, and f(yn) is not the
label of any edge leaving n, in which case, M′ acts like M on input (f, x).

Clearly, M′ computes ϕp. The extra cost of running M′ on (f, x) over
running M is the cost of following the decision tree Ti when x = xi for some
i ≤ k. Since in following the decision tree Ti simply involves making queries
that M on input (f, x) will have to make anyhow. Hence, with a little careful
programming, there is a c ∈ N such that c ·β everywhere bounds the run time
of M′.

Note: In general it is false that if Ei,β is I(ϕi)-compact, then there is a c

such that Ei,β+c = ∅ — this is part of the price of using the I(ϕi) topology.
As a second illustration of the similarity between type-1 and type-2 com-

plexity classes, we show that a straightforward lift of the proof of Rabin’s
Theorem (Theorem 2) suffices to obtain a type-2 version of that result.

Theorem 15. Suppose β ∈ WB. Then there is an 0–1-valued element F ∈
RF such that F /∈ C(β).

Proof Sketch. The argument is a direct lift of the one given for Theorem 2
above. In the program for F given in Figure 2, Cf,w = programs cancelled
on inputs (f,w′) with w′ < w and Sf,w = the candidates for cancellation
on input (f,w). A program i is cancelled on input (f,w) if and only if i ∈
Cf,w+1−Cf,w, in which case the construction will guarantee that ϕi,β(f,w)⇓,
F (f,w) 6= ϕi(f,w), and i will never be cancelled again on an input of the form
(f, x) with x > w.

It is clear from the program that cancellation works as advertised and F

is a 0-1 element of RF . To show F /∈ C(β) consider an i such that Ei,β is
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Input (f, x).

Cf,0 ← ∅.
For w ← 0 to x do:

Sf,w ← { k ≤ w k /∈ Cf,w & ϕk,β(f,w)⇓ }.
If Sf,w 6= ∅ then Cf,w+1 ← Cf,w ∪ {min(Sf,w) } else Cf.w+1 ← Cf,w.

If Sf,x = ∅ then return 0 else return 1 .− ϕe(f, x), where e = min(Sf,x).

Figure 2: The program for F

I(F )-compact. Fix f : N→ N and choose w0 ≥ i so that (a) Φi,β(f,w0)⇓ and
(b) for all k < i that are ever cancelled on an input of the form (f, x) have
been cancelled by input w0. Hence, either i has been cancelled on a (f,w)
with w < w0 or the construction must cancel i on input (f,w0). In either case
ϕi 6= F . Therefore, F /∈ C(β).

So much for similarities, the next two sections demonstrate some marked
differences between type-1 and type-2 complexity classes. To keep this paper a
reasonable size we shall omit proofs in these next two sections, but the proofs
can be found in [Li01].3

§7. Unions of complexity classes

The type-1 situation. The class of type-1 polynomial-time computable func-
tions is commonly referred to as a complexity class, but it is far from obvious
that there is a tP ∈ R that names exactly that class. That there is such a
tP follows from the following quite difficult result, which holds when Φ is an
arbitrary complexity measure.

Theorem 16 (The Union Theorem, McCreight and Meyer [MM69,

Odi99]). Suppose that t : N2 → N is computable and nondecreasing in its

first argument. Then there is a computable g : N → N such that C(g) =⋃
i C(λx t(i, x)).

This theorem is barely true in the sense that you want the g of the theorem
to have any nice properties (e.g., honesty), then you find the result breaks.

The type-2 situation. Since the Union Theorem is fairly delicate, it is no
surprise that it is fails to hold in its full strength at type-2. However, the
failure is spectacular. Here is an important example of this.

Theorem 17 (Li [Li01]). The class of type-2 basic feasible functionals fails

to be a type-2 complexity class.

3A late draft of this is available as: ftp://ftp.cis.syr.edu/users/royer/CCLthesis.ps.
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To obtain some measure of how bad this failure is and to obtain some suf-
ficient conditions on a weak version the union theorem at type-2, we introduce
some conditions on type-2 complexity bounds. To keep this paper a reasonable
length, we shall not explain these notions beyond their definitions.

Definition 18.

(a) We say that (σ, x) is a locking fragment of β (denoted β(σ, x)↓) if and
only if for all τ ⊇ σ, β(τ, x) = β(σ, x).

(b) We say that ` : F ×N→ { 0, 1 } is a locking detector for β if and only
if (i) ` is computable, (ii) for each f and x, limσ→f `(σ, x) = 1, and (iii) for
each σ and x, `(σ, x) = 1 implies that β(σ, x)↓.

(c) A minimal locking fragment of β is a locking fragment of β such that,
for all for all τ ⊆ σ, (τ, x) fails to be a locking fragment of β.

(d) We say that β is useful if and only if for every (σ, x), minimal locking
fragment of β, we have that, for each τ ⊆ σ, β(τ, x) ≥ ‖τ‖+ |x|+ 2.4 3

Definition 19. Let 〈βi〉i∈N be a sequence of elements of WB such that the
function λi, σ, x βi(σ, x) is computable. We say that:

(a) 〈βi〉i∈N is ascending if and only if, for all i, βi ≤ βi+1.
(b) 〈βi〉i∈N is useful if and only if each βi is useful.
(c) 〈βi〉i∈N is convergent if and only if, for each f and x, there is a σf,x ⊂ f

such that for all i, βi(σf,x, x)↓.
(d) 〈βi〉i∈N uniformly convergent if and only if, for all i, x, and σ, if

βi(σ, x)↓, then for all j, βj(σ, x)↓.
(e) 〈βi〉i∈N strongly convergent if and only if 〈βi〉i∈N is uniformly convergent

and there is a locking detector for β0. 3

Theorem 20 (Li [Li01]). There is a ascending, useful, convergent 〈βi〉i∈N

such that
⋃

i C(βi) is not a complexity class.

This is a fairly strong non-union result. We conjecture that convergent
can be strengthened to uniformly convergent in the previous theorem. By
strengthening the hypotheses on the βi’s even more, we can obtain the follow-
ing weak union theorem. We conjecture that this theorem fails if we require
all the complexity bounds to be elements of SB.

Theorem 21 (The Weak Type-2 Union Theorem, Li [Li01]). Suppose

that 〈βi〉i∈N is ascending, useful, and strongly convergent. Then there is a

β ∈WB such that C(β) =
⋃

i C(βi).

4There is a different definition of useful in [Li01] that is more understandable, but requires

a bit of back-story.
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One nice consequence of this theorem is that type-2 big-O classes are com-
plexity classes. We conjecture, however, that the SB version of the following
is false.

Corollary 22. Suppose β ∈ WB. Let O(β) =
⋃

a,b∈N C(a · β + b). Then

O(β) is a complexity class.

§8. Gaps and compressions

The type-1 situation. We know by Rabin’s Theorem that for each t ∈ R, there
is a t′ ∈ R such that C(t) ( C(t′). However, effectively constructing such a
t′ from a given t turns out to be impossible as shown by the following two
theorems. (N.B. Constructing such a t′ from a program for t is easy, but that
is not the issue here.)

Theorem 23 (The Gap Theorem, Borodin [Bor72]). For each r ∈ R,

there is an increasing t ∈ R such that C(t) = C(r ◦ t), in fact, there is no i

with t ≤∗ Φi ≤∗ r ◦ t.

Theorem 24 (The Operator Gap Theorem, Constable [Con72] and

Young [You73]). For each recursive operator Θ: (N → N) → (N → N),
there is an increasing t ∈ R such that C(t) = C(Θ(t)), in fact, there is no i

with t ≤∗ Φi ≤∗ Θ(t).

In both of these theorems, the reason for the gap in which no Φi lives is that
the t’s in question are pathologically dishonest. If we restrict our attention
to more sensible names for complexity classes, we obtain the following result
that matches our intuitions a bit better.

Theorem 25 (The Compression Theorem, Blum [Blu67]). There is a

computable r : N2 → N such that for all i with ϕi ∈ R, we have C(Φi) (

C(λx r(x,Φi(x))).

The type-2 situation. The fact that the β’s are tied to queries imposes a
sort of honesty on our time bounds. We thus loose the gap phenomenon at
type-2 as shown by:

Theorem 26 (The WB Inflation Theorem, Li [Li01]). There is a re-

cursive operator Θ such that, for each β ∈ WB, Θ(β) ∈ WB and C(β) (

C(Θ(β)).

We do obtain a gap theorem for unions. But given the wiggly nature of
unions, this is not surprising nor is it particularly hard to show.

Theorem 27 (The Union-Gap Theorem, Li [Li01]). For each recursive

operator Θ such that for each β ∈ WB, Θ(β) ∈ WB, there is an ascending

〈βi〉i∈N such that
⋃

i C(βi) =
⋃

i C(Θ(βi)).
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§9. Conclusion

General type-2 complexity theory is almost completely unknown territory. In
this paper we have blazed one path into this territory. This path is obviously
not the only such and it likely is not the best, but we feel that it represents a
creditable bit of exploration. In particular we suspect that the failure of the
union and gap theorems will be features of any reasonable complexity theory
for type-2.

There are obviously many open questions: What happens with the speedup
theorems? What happens if we restrict all the β’s to SB? What if we change
to the unit cost model for OTMs? If we are stuck with naming large classes
(e.g., the type-2 basic feasible functions) through unions, what are the general
properties of these union classes. (Li [Li01] addresses many of these questions.)
Going a little farther, one can ask: How can one extend our work to cover the
effectively continuous type-2 functionals? (This requires a careful treatment
of computation over partial (e.g., N ⇀ N) arguments.) How can we extend
this work beyond type-2? (Our notion of complexity bound seems amenable
to realizer-based definitions of higher-type classes.)
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1 Introduction

As is well known, unbounded minimization allows the generation of the computable functions
from the primitive recursive ones. If one restricts to bounded minimization then the latter
class is closed under this operation. By relaxing the minimization condition in such a way
that no longer the smallest zero of a given function is asked for, but the smallest argument
that is mapped onto an even result, Bellantoni [1, 2] could derive a machine-independent
characterization of the class ¤p of functions computable in deterministic polynomial time
by querying oracles in the polynomial-time hierarchy. The result is in the style of Cobham’s
classical characterization of the polytime functions [4]. Bellantoni showed that the class ¤p

is the smallest class of functions containing certain basic functions and being closed under
substitution, limited recursion on notation and his weakened minimization operator.

Surprisingly, the characterization remains true in a tiered (safe) framework [6, 7, 3],
where, in addition to safe composition and safe (predicative) recursion on notation, an un-
bounded version of relaxed minimization is used that only allows to minimize safe arguments.

The result shows that even in its relaxed form minimization (bounded or unbounded) is
still a powerful operation. In a recent paper Danner and Pollett [5] weakened Bellantoni’s
safe minimization operation again by ¯rst limiting the veri¯cation that a computed function
argument c is minimal to only those numbers d that are less than the length of c and
then prescribing which bits of c a further computation may have access to. This operation,
called limited safe weak minimization, is necessarily multi-valued. They showed that the
smallest class of multifunctions generated from certain initial functions by safe composition,
safe recursion on notation and this new operation is exactly the class NPMV of partial
multifunctions computable in nondeterministic polynomial time.

As already stated by the authors, the de¯nition of limited safe weak minimization is rem-
iniscent of limited minimization, thus not in the spirit of implicit computational complexity.
In this paper we propose a modi¯ed version of safe weak minimization which remedies this
problem. Moreover, we show that the above mentioned characterization of NPMV holds
true when the new version of safe weak minimization is used.

2 Basic definitions and facts

Inputs to functions are categorized as normal or safe, the normal ones being written to the
left of a semicolon and the safes ones to the right. The variables x, y, z are usually used
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in normal position, and a, b, c are usually used in safe position. For a function class B the
subclass consisting of the functions with only normal arguments is denoted by Norm(B).

Write |x| for the binary length dlog2(x + 1)e of integer x; the terms “predecessor”, “suc-
cessor” refer to binary notation. If x̄ is a vector of n integers, then write |x̄| for the vector
|x1|, . . . , |xn| and write f̄(x̄) for f1(x̄), . . . , fm(x̄).

De¯nition 2.1 Let B0 consist of the functions (1)-(5) below:

1. (Constant) 0 (a zero-ary function).

2. (Projections) πn,m
j (x1, . . . , xn;xn+1, . . . , xn+m) = xj , for 1 · j · n + m.

3. (Successors) s0(; a) = 2a and s1(; a) = 2a+1. Write “ai” for si(; a), where i ∈ {0, 1}.
4. (Predecessor) p such that p(; 0) = 0 and p(; a0) = p(; a1) = a.

5. (Conditional)

cond(; a, b, c) =

{
b if amod 2 = 0,
c otherwise.

De¯nition 2.2 [B0; SC,SRN] denotes the smallest class of functions containing B0 and
closed under the operations (1) and (2):

1. (Safe Composition) Given h, r̄ and t̄ de¯ne f by

f(x̄; ā) = h(r̄(x̄; ); t̄(x̄; ā)).

2. (Safe Recursion on Notation) Given g and h0, h1 de¯ne f by, for i ∈ {0, 1},

f(0, x̄; ā) = g(x̄; ā)
f(yi, x̄; ā) = hi(y, x̄; ā, f(y, x̄; ā)) for yi 6= 0.

Let FP be the class of all polytime functions. The following result is due to Bellantoni
and Cook [1, 3].

Theorem 2.3 FP = Norm([B0; SC,SRN]).

This theorem gives strong reasons to consider the polytime functions as the complexity-
theoretic analog of the primitive recursive functions. So the question comes up what is the
complexity-theoretic analog of the partial recursive functions and can the functions in this
class be generated from the polytime functions by applying a suitable minimization operator.
This question was the starting point for recent investigations by Danner and Pollett [5].

In his dissertation [1, 2] Bellantoni introduced a safe minimization operator.

De¯nition 2.4 (Safe Minimization) Given h, de¯ne f by

f(x̄; ā) =

{
s1(;µb. h(x̄; ā, b) mod 2 = 0) if there is such a b,
0 otherwise.
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Moreover, he showed that the functions computable on a polynomial-time bounded oracle
Turing machine with an oracle in the polynomial-time hierarchy are exactly the functions in
[B0; SC,SRN,SM] that have only normal arguments.

This class is far beyond of what could be considered as a complexity-theoretic analog
of the partial recursive functions. In their paper [5] Danner and Pollett introduced two
weakenings of safe minimization: safe weak minimization and limited safe weak minimization,
and by using the latter operator instead of safe minimization they showed that the collection
of functions in the resulting class that have only normal arguments is exactly the class
NPMV of all partial multifunctions computable in nondeterministic polynomial time, thus
answering the above posed question.

A partial multifunction is a map f : Nk ⇀ Pfin(N) for some k, where Pfin(N) is the collec-
tion of all ¯nite subsets of the natural numbers. Alternatively, f can be viewed as a relation
on Nk+1 satisfying the constraint that for all x̄, { y | (x̄, y) ∈ f } is ¯nite. We write f(x̄) 7→ y
when y is a (possible) outcome of f .

De¯nition 2.5 (Safe Weak Minimization) Given a partial multifunction g, f is de¯ned
by

f(x̄; ā) 7→ b⇔ g(x̄; ā, b) mod 2 7→ 0 ∧ (∀c < |b|)g(x̄; ā, c) mod 2 7→ 1.

If f is de¯ned by safe weak minimization from g we write f(x̄; ā) = µwb. g(x̄; ā, b) mod 2 =
0.

As is shown in the next example, if f is de¯ned from g by safe weak minimization then
for any inputs x̄ and ā, f(x̄; ā) may have superexponentially many outputs, even if g is
single-valued.

Example 2.6 Set g(x; a) = cond(;P (x; b), 1, 0), where the function P is de¯ned by, for
i ∈ {0, 1},

P (0; b) = b, P (xi; b) = p(;P (x; b)).

P (x; b) takes |x| predecessors of b.
It follows that g(x; b) has value 0, if the (|x|+ 1)-st low-order bit of b is 1, otherwise its

value is 1. Now, let

f(x; ) = µwb. g(x; b) mod 2 = 0.

Then f(x; ) 7→ b, for all numbers b such that

• |b| · 2|x| and

• the (|x|+ 1)-st low-order bit of b is 1.

By de¯nition, if the (|x|+1)-st low-order bit of b is 0 then g(x; b) = 1 and hence f(x; ) 67→ b.
Now, suppose that |b| > 2|x| and g(x; b) mod 2 = 0. As g(x; 2|x|) mod 2 = 0, it follows that
f(x; ) 67→ b. On the other hand, if |b| · 2|x| so that the (|x| + 1)-st low-order bit of b is 1
then f(x; ) 7→ b, since for d with d < |b| one has that |d| · |x| and hence that the (|x|+1)-st
low-order bit of b is 0, which means that g(x; d) = 1.

Thus, the cardinality of { b | f(x; ) 7→ b } is equal to the cardinality of the set of binary
sequences of length 2|x| ¡ 1, ie.

‖ { b | f(x; ) 7→ b } ‖= 22|x|¡1.
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Since for any function h ∈ NPMV one has that ‖ { z | h(x̄) 7→ z } ‖· 2p(|x̄|), for some
polynomial p, it follows that the class NPMV is not closed under safe weak minimization,
which means that this operation is still too strong.

De¯ne the function amod v = amod 2|v|. Then amod v is the number given by the |v|
low-order bits of a. For a sequence ā = a1, . . . , ak, write āmod v for a1 mod v, . . . , ak mod v.

De¯nition 2.7 (Limited Safe Weak Minimization) Given partial multifunctions g and
h, f is de¯ned by

f(x̄; ā) = (µwb. g(x̄; ā, b) mod 2 = 0) modh(x̄; ).

Theorem 2.8 NPMV = Norm([B0; SC,SRN,LSWM]).

Here, safe composition and safe recursion on notation have been transferred to the partial
multifunction setting in the obvious way.

If f is de¯ned by limited safe weak minimization from g and h then the application of
mod cuts the possibly superexponentially many outputs b of µwb. g(x̄; ā, b) mod 2 = 0 down
to those with |b| · |z|, for some z with h(x̄;) 7→ z, thus to exponentially many. Limited safe
weak minimization is reminiscent of limited minimization. As Danner and Pollett remark,
by using this operation one enters the “gray area” of implicit computational complexity.

3 Safe minimization on notation

In this section we present a modi¯cation of safe weak minimization which follows the ideas
of implicit computational complexity and show that an analog of Theorem 2.8 holds.1 The
idea is to minimize with respect to the pre¯x order on binary representations.

For numbers a and b, respectively, let an . . . a0 and bm . . . b0 be their binary represen-
tations. De¯ne a v b if n · m and ai = bi, for all i · n. Write a @ b if a v b and
a 6= b.

De¯nition 3.1 A partial multifunction f(x̄; ā) is consistent if not both f(x̄; ā) mod 2 7→ 0
and f(x̄; ā) mod 2 7→ 1.

De¯nition 3.2 (Safe Minimization on Notation) Given a consistent partial multifunc-
tion g, f is de¯ned by

f(x̄; ā) 7→ b⇔ g(x̄; ā, b) mod 2 7→ 0 ∧ (∀c @ b)g(x̄; ā, c) mod 2 7→ 1

Write f(x̄; ā) = µnb. g(x̄; ā, b) mod 2 = 0, if f is de¯ned by safe minimization on notation
from g.

Example 3.3 In order to see the e®ect of the modi¯ed quanti¯cation in the second condi-
tion, consider Example 2.6 again. As has been shown,

{ b | f(x; ) 7→ b } = { b | |x|+ 1 · |b| · 2|x| } = { b | 2|x| · b < 22|x| }.
Since the function g is single-valued, it is consistent. De¯ne

f ′(x; ) = µnb. g(x; b) mod 2 = 0.
1This research has been motivated by an earlier version of Danner and Pollett’s paper in which only safe

weak minimization was studied. It should be noted that the de¯nitions and results in this section have been
obtained independently of what the authors presented in their revised version.
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Then { b | f ′(x; ) 7→ b } is the set of all numbers of minimal length such that the (|x|+ 1)-st
bit is 1, which means that it is the set of all numbers of exactly length |x|+ 1. Hence

{ b | f ′(x; ) 7→ b } = { b | 2|x| · b < 2|x|+1 }.

For numbers a and b let a ¹ b if |a| · |b|. Then ¹ is a preorder. Write a ≺ b if a ¹ b
and a 6= b.

Obviously, a @ b exactly if a = b mod d, for some number d with |d| = |a|. Therefore we
have the following lemma which is useful in the derivation of our main result below.

Lemma 3.4 Let f and g be partial multifunctions and let g be consistent. Then f is obtained
by safe minimization on notation from g if and only if for any x̄, ā and b,

f(x̄; ā) 7→ b⇔ g(x̄; ā, b) mod 2 7→ 0 ∧ (∀c ≺ b)g(x̄; ā, bmod c) 7→ 1.

Theorem 3.5 NPMV = Norm([B0; SC,SRN,SMN]).

The theorem follows from the following propositions.

Proposition 3.6 Let f ∈ NPMV. Then there are functions T (z; ā, c), res(z; a) and
bnd(x̄; ) in [B0; SC,SRN] such that for all inputs x̄

f(x̄) = res(bnd(x̄; );µnb. T (bnd(x̄; ); x̄, b) mod 2 = 0).

The proposition follows in the usual way by an appropriate coding of Turing machine
computations. Note that for any accepting computation there is a smallest accepting sub-
computation with the same result.

Corollary 3.7 Let f(x̄) ∈ NPMV. Then f(x̄; ) ∈ [B0; SC,SRN,SMN].

The proof of the converse implication uses a technique of Bellantoni.

De¯nition 3.8 Let f be a partial multifunction (note that we do not separate the arguments
into normal and safe here) and let q be a polynomial.

1. Function f(x̄, ā) is a polynomial checking function on x̄ with threshold q if for all x̄, ā,
w and v satisfying |v| ¸ q(|x̄|) + |w|,

f(x̄; ā) modw = f(x̄; āmod v) modw.

2. Function f(x̄, ā) is polymax bounded by q on x̄ if for all x̄, ā and y with f(x̄, ā) 7→ y,
|y| · q(|x̄|) + maxi |ai|.

Note that the equation in De¯nition 3.8(1) has to be understood as an equation between
sets.

Proposition 3.9 If f(x̄; ā) is in [B0; SC,SRN,SMN], then f is a polymax-bounded polyno-
mial checking function on x̄.

Corollary 3.10 Let f(x̄; ā) be a partial multifunction in [B0; SC,SRN,SMN]. Then f(x̄, ā)
is computable in nondeterministic polynomial time.
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The proof proceeds by induction on the derivation of f in [B0; SC,SRN,SMN]. By the
preceding proposition the length of any output of f is bounded by a polynomial in the length
of the input. This can be used to design polynomial-time algorithms for the computation of f
in case that f is obtained by an application of safe recursion on notation or safe minimization
on notation, respectively.

Note that the consistency requirement in De¯nition 3.2 is needed in the proof of Proposi-
tion 3.9. As can be seen from the following example, without this condition the class NPMV
would not be closed under safe minimization on notation, which means that Theorem 3.5
and hence Proposition 3.9 would be false.

Example 3.11 Let g(x, b) 7→ 0, 1, for all x, b ∈ N. Then g ∈ NPMV, but g is not consis-
tent. Now, de¯ne f by

f(x) 7→ b⇔ g(x, b) mod 2 7→ 0 ∧ (∀c @ b)g(x, c) mod 2 7→ 1.

Then it is readily veri¯ed that f(x) 7→ z, for all z ∈ N. Thus, f 6∈ NPMV, since otherwise
there exist some polynomial p such that ‖ { z | f(x) 7→ z } ‖· 2p(|x|).
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