
B
R

IC
S

N
S

-00-5
C

.B
rabrand:<

b
ig

w
ig

>
Version

1.3
—

Tutorial

BRICS
Basic Research in Computer Science

<bigwig> Version 1.3
Tutorial

Claus Brabrand

BRICS Notes Series NS-00-5

ISSN 0909-3206 September 2000

Copyright c© 2000, Claus Brabrand.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Notes Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory NS/00/5/

<bigwig> Version 1.3

Tutorial

Claus Brabrand
brabrand@brics.dk

September 2000

<Tutorial>

The tutorial is based on a number of example programs illustrating the features of the <bigwig>
language.

Introduction [page 2]

This section briefly introduces the individual aspects of the <bigwig> language.

Getting Started [page 5]

This section explains the session-based runtime model, which constitutes the foundation of
<bigwig>.

Dynamic Documents [page 15]

Dynamic Documents allow easy and efficient creation of HTML documents. Document
templates are treated as first-class values which can be combined using a "plug" operator
and shown to the client with the "show-receive" statement.

PowerForms [page 34]

PowerForms is the <bigwig> solution to client-side form input validation.

Database [page 43]

This section describes <bigwig>'s relational database. <bigwig> contains a simple
internal database; in a future version, external databases (e.g. MySQL) will be integrated.

Concurrency Control [page 56]

With many session threads running concurrently, there is a strong need for concurrency
control on the server-side. The <bigwig> approach allows the programmer to specify
concurrency constraints in a high-level logic notation.

Macros [page 65]

The syntax-based macro mechanism provides a method for constructing language
abstractions in all the sublanguages of <bigwig>. For instance, complicated concurrency
constraints can be wrapped into user-friendly syntax using macros. Macro Library Tutorials:

The Standard Macro Library Tutorial: std.wigmac [page 82]●

The SQL Macro Library Tutorial: sql.wigmac [page 86]●

<bigwig> tutorial

http://www.brics.dk/bigwig/Tutorial/ [16/11/2000 15:47:17]

1

http://www.brics.dk/bigwig/macro/std.wigmac
http://www.brics.dk/bigwig/macro/sql.wigmac

<Introduction>
[Introduction | Runtime System | Dynamic Documents | Power Forms | Database | Concurrency
Control | Security | Macro Mechanism | Availability]

Introduction

<bigwig> is a high-level programming language for developing interactive web services.
Complete specifications are compiled into a conglomerate of lower-level technologies such
as CGI-scripts, HTML, JavaScript, and the HTTP Authentication Protocol all running on
top of a runtime system. <bigwig> is an intellectual descendant of the MAWL project but
is a completely new design and implementation with vastly expanded ambitions.

The <bigwig> language is really a collection of tiny domain-specific languages focusing
on different aspects of interactive web services. To minimize the syntactic burdens, these
contributing languages are held together by a C-like skeleton language. Thus, <bigwig>
has the look and feel of C-programs but with special data- and control-structures.

Paper: "<bigwig> - a Language for Developing Interactive Web Services" (submitted for
publication...).
Runtime System

A <bigwig> service executes as a standalone process, communicating with the
HTTP/CGI server is through a dedicated runtime system. This scheme overcomes the
statelessness of the CGI-protocol in that the local state is present in the session thread for
the duration of the service. Consequently, no local state image is ever required to be saved
or restored. This is reminiscent of FastCGI, but with additional benefits, some of which are
mentioned in the following. A service interaction can be bookmarked, paused, and resumed
later. The browser's "back" button will function appropriately and not contain a sequence of
obsolete html documents resulting from previous session interactions. Finally, the client is
guaranteed response within 8 seconds. If the awaited html response page is not yet ready, a
reason explaining the delay can be given. Also, concurrency control through a controller
process (see Concurrency Control below).

See also the homepage for the Runtime System stand-alone package.

Paper: "A Runtime System for Interactive Web Services" (WWW8, Toronto, 1999)

<bigwig> introduction

http://www.brics.dk/bigwig/Introduction/ (1 of 3) [16/11/2000 15:47:23]

2

http://www.bell-labs.com/project/MAWL/mawl.html
http://www.brics.dk/bigwig/research/publications/#bigwig
http://www.brics.dk/bigwig/runwig/
http://www.brics.dk/bigwig/runwig/
http://www.brics.dk/bigwig/runwig/
http://www.brics.dk/bigwig/research/publications/#runwig

Dynamic Documents

HTML documents are first-class values that may be computed and stored in variables. A
document may contain named gaps that are placeholders for either HTML fragments or
attributes in tags. Such gaps may at runtime be plugged with concrete values. Since those
values may themselves contain further gaps, this is a highly dynamic mechanism for
building documents. The documents are represented in a very compressed format, and the
plug operations takes constant time only. A flow-sensitive type checker ensures that
documents are used in a consistent manner.

Paper: "A Type System for Dynamic Web Documents" (POPL'00, Boston, 2000)

Power Forms

The <bigwig> language has explicit support for form field validation. Regular
expressions may be defined and associated with form input fields. These regular
expressions are then compiled to efficient JavaScript (DFAs), exploiting only the subset of
JavaScript that is known to run on all (normal) browsers. The result is that the input fields
are validated incrementally on the client-side. An html page is only allowed to be submitted
when all its input fields comply with their associated regular expressions.

See also the homepage for the PowerForms stand-alone package.

Paper: "PowerForms: Declarative Client-side Form Field Validation" (To appear in
"World Wide Web Journal", 2000)

Database

The familiar struct and array datastructures are replaced with tuples and relations which
allow for a simple construction of small relational databases. These are efficiently
implemented and should be sufficient for databases no bigger than a few MBs (of which
there are quite a lot). A relation may be declared to be external, which will automatically
handle the connection to some external server. An external relation is accessed with (a
subset of) the syntax for internal relations, which is then translated into SQL.

Concurrency Control

A <bigwig> service executes a dynamically varying number of threads. To provide a
means of controlling the concurrent behavior, a thread may synchronize with a central
controller that enforces the global behavior to conform to a regular language accepted by a
finite-state automaton. That is, the 'control logic' in <bigwig> consists of finite-state
automata. The controlling automaton is not given directly, but is computed (by the MONA
system) from a collection of individual concurrency constraints phrased in first-order logic.
Extensions with counters and negated alphabet symbols add expressiveness beyond regular
languages.

Paper: "Distributed Safety Controllers for Web Services" (ETAPS/FASE'98, Lisbon, 1998)

<bigwig> introduction

http://www.brics.dk/bigwig/Introduction/ (2 of 3) [16/11/2000 15:47:23]

3

http://www.brics.dk/bigwig/refman/dyndoc/
http://www.brics.dk/bigwig/refman/dyndoc/
http://www.brics.dk/bigwig/research/publications/#dyndoc
http://www.brics.dk/bigwig/refman/formats/#powerforms
http://www.brics.dk/bigwig/refman/formats/#powerforms
http://www.brics.dk/bigwig/powerforms/
http://www.brics.dk/bigwig/research/publications/#powerforms
http://manta.cs.vt.edu/www/
http://www.brics.dk/bigwig/refman/database/
http://www.brics.dk/bigwig/refman/database/
http://www.brics.dk/bigwig/refman/concurrency/
http://www.brics.dk/bigwig/refman/concurrency/
http://www.brics.dk/mona/
http://www.brics.dk/bigwig/research/publications/#distsafe

Macro Mechanism

An important mechanism for gluing these components together is a fully general hygienic
macro mechanism that allows <bigwig> programmers to extend the language by adding
arbitrary new productions to its grammar. All nonterminals are potential arguments and
result types for such macros that, unlike C-front macros, are soundly implemented with full
alpha-conversions. Also, error messages remain sensible, since they are threaded back
through macro expansion. This allows the definition of Very Domain-Specific Languages
that contain specialized constructions for building chat rooms, shopping centers, and much
more. Macros are also used to wrap concurrency constraints and other primitives in layers
of user-friendly syntax.

Paper: "Growing Languages with Metamorphic Syntax Macros" (Submitted for
publication..., 2000)
Availability

Version 1.3 is available as binary or source for UNIX/LINUX.

An overview of the <bigwig> language is presented in the paper "<bigwig> - a Language for
Developing Interactive Web Services" (submitted for publication...).

<bigwig> introduction

http://www.brics.dk/bigwig/Introduction/ (3 of 3) [16/11/2000 15:47:23]

4

http://www.brics.dk/bigwig/refman/macro/
http://www.brics.dk/bigwig/refman/macro/
http://www.brics.dk/bigwig/research/publications/#macro
http://www.brics.dk/bigwig/download/
http://www.brics.dk/bigwig/download/
http://www.brics.dk/bigwig/research/publications/#bigwig
http://www.brics.dk/bigwig/research/publications/#bigwig

<Getting Started Tutorial>

[Basics | Intermediate | Advanced]

<bigwig> is a high-level programming language for developing interactive Web services. Complete
specifications are compiled into a conglomerate of lower-level standard technologies such as
CGI-scripts, HTML, JavaScript, and HTTP Authentication.

The aim of <bigwig> is to allow simple and inexpensive construction of advanced Web services.
We are only concerned with specifying the behavior of the service; the graphical layout of the pages is
left to other tools.

<bigwig> is committed to run on the lowest common denominator of the Web, that is, no special
software is required for the browser or the server. Consequently, our services are CGI-based, use plain
HTML for communication, and exploit only the subset of JavaScript that is common to the standard
browsers.

The <bigwig> language is really a collection of individual domain-specific languages focusing on
different aspects of interactive Web services. To minimize the syntactic burdens, these contributing
languages are held together by a C-like skeleton language. Thus, <bigwig> has the look and feel of
C-programs with special data- and control-structures.

This tutorial will introduce the underlying runtime model, which in a sense constitutes the conceptual
foundation of <bigwig>. This model builds upon a session concept, which allows sequential
sessions with multiple interactions with the browser to be specified in ordinary programming notation.

Basics

Service structure

service {
 session S() {
 /* no statements */
 }
}

A <bigwig> program (a.k.a. service) starts with the keyword service, followed by the service
specification enclosed in "{ ... }" braces. Sessions are the entry points to the service, much like the
main routine in a C or Java program. However, unlike a C or Java program, a <bigwig>
program may have more than one session. All sessions have associated URLs that when referenced
(by a browser) cause an instance of the session to run, executing the code specified within the
session's brackets. This service has one session named "S" with no statements in its body. When
referenced, an instance of this session will immediately ``falls off the end'' of the code, produces a

<bigwig> intro tutorial

http://www.brics.dk/bigwig/Tutorial/intro/ (1 of 10) [16/11/2000 15:47:27]

5

Javascript:jumpInfo('service', KEYWORD_INFO)
Javascript:jumpInfo('session', KEYWORD_INFO)
Javascript:jumpInfo('service', KEYWORD_INFO)
Javascript:jumpInfo('session', KEYWORD_INFO)
Javascript:jumpInfo('session', KEYWORD_INFO)
Javascript:jumpInfo('session', KEYWORD_INFO)
Javascript:jumpInfo('session', KEYWORD_INFO)

default termination message onto the client's browser, and terminate.

Shortest Hello World

service {
 session Hello() {
 exit <html>Hello World!</html>;
 }
}

This service has one session named "Hello" that when run executes a single exit statement, that sends
an html document containing the text "Hello World!" onto the client's browser and terminates. A
session thread is invoked by a client issuing a "GET" or "POST" CGI request using the URL
mentioned in the getting started compiler page.

Local declarations

service {
 session Add1() {
 int n; // int's are pr. default initially zero

 /* n has the value 0 */
 n++;
 /* n has the value 1 */
 exit (html) n;
 }
}

The session Add1 has a (local) variable integer called n. By local (as opposed to shared) we mean that
a session thread will (at runtime) have its own local (or private) variable accessible and visible to this
session thread only. Variables in <bigwig> are automatically initialized (integers are initially zero).
See the Initial Values section in the reference manual for more information. The first statement in this
example increases the variable to the value one and the second (and last) statement exits this value
onto the clients browser. Here, the information is exited by casting the value held in the variable n to
an html expression. We shall see in the dynamic document tutorial how to present information to the
client in a much nicer way. But to avoid getting into these details in this part of the tutorial, we shall
for now present all information to the client in this way.

Shared declarations

<bigwig> intro tutorial

http://www.brics.dk/bigwig/Tutorial/intro/ (2 of 10) [16/11/2000 15:47:27]

6

Javascript:jumpInfo('exit',KEYWORD_INFO)
http://www.brics.dk/bigwig/compiler/getting_started/
http://www.brics.dk/bigwig/refman/types/#Conversion
http://www.brics.dk/bigwig/refman/types/#InitVal

service {
 session Counter() {
 shared int n;

 /* n has some value */
 n++;
 /* n has a higher value */
 exit (html) n;
 }
}

This service is reminiscent of the previous one but with one important difference. The variable n
declared in this example is prefixed with the type modifier shared. Shared variables are shared among
all session threads. Thus, when one session thread updates it, subsequent reads in other sessions will
get this latest written value. All <bigwig> services have their own (internal) database where shared
variables are stored. (We are currently looking into integrating external databases).

Two independent sessions

service {
 session Counter() {
 shared int n;

 n++;
 exit (html) n;
 }

 session Hello() {
 exit <html>Hello World!</html>;
 }
}

This service has not one but two sessions, Counter and Hello. These two sessions are completely
unrelated and could as well have been two entirely different services. Sessions are different starting
points or ways of interacting with a service. A <bigwig> service can have any number of sessions.
Typically a service has one or more sessions for the users and one for the administrators.

Two collaborating sessions

<bigwig> intro tutorial

http://www.brics.dk/bigwig/Tutorial/intro/ (3 of 10) [16/11/2000 15:47:27]

7

Javascript:jumpInfo('shared',KEYWORD_INFO)

service {
 shared int n;

 session Counter() {
 n++;
 exit (html) n;
 }

 session Reset() {
 n = 0;
 exit <html>Reset!</html>;
 }
}

This service also has two sessions. These two sessions, however, are clearly related. They both
manipulate the same shared integer variable n. The session Counter increases it by one and displays
its value when run while the session Reset not surprisingly resets its value to zero when run. One can
say that the two sessions communicate through the shared variable.

Two-pass scope rules

service {
 session Counter() {
 n++;
 exit (html) n;
 }

 shared int n;
}

The scoping rules in <bigwig> are two-pass meaning that variables are available at the same scope
level even before the lexical point at which they were declared. However, the scope rules for variables
declared in compound statements are one-pass (as in C and Java).

Show (local state preserved)

service {
 session Show42() {
 int n = 42;
 show (html) n;
 /* execution continues here after show
 with the entire local state as it was
 (`n' has the value 42) */
 exit (html) n;
 }
}

Instead of exiting a document to the client, one can instead show a document to the client. The

<bigwig> intro tutorial

http://www.brics.dk/bigwig/Tutorial/intro/ (4 of 10) [16/11/2000 15:47:27]

8

Javascript:jumpInfo('show', KEYWORD_INFO)

semantics is that the page will be shown to the client (in the browser) and execution will resume (with
the local state preserved) after the show statement when the client submits the page. If the show
document does not contain a "submit" button (as is the case with the document here), a default
continue submit button will automatically be provided. When execution resumes after the show
statement in the example, n will (still) have the value 42. Thus, the document exited in the final
statement of the session will contain "42". This show construct plays a central role in the session
concept, providing a means for interaction with the client.

Show/Receive (interaction)

service {
 session Interact() {
 int n;
 html Input = <html>
 Enter a number:
 <input type="text" name="number">
 </html>;

 show Input receive [n = number];
 /* Client's number is assigned to 'n'. */
 exit (html) n;
 }
}

The statement show-receive is fundamental in <bigwig> and provides the client-service interaction.
The general pattern of a <bigwig> service (in fact, any interactive Web service) is to show a
document to the client, receive some input, do something, show a reply page, receive some more data,
do something, and so on). The service in this example will show a document prompting the client for
a number which is received into a local variable n upon page submission. Hereafter, this entered value
is exited onto the client's browser.

Session calls

service {
 shared int yes, no;

 html VoteDoc = <html>
 Do you think P=NP?
 Yes
 <input type="radio" name="answer" value="true">
 / No
 <input type="radio" name="answer" value="false">
 </html>;

 session Status() {
 exit (html) "yes: " + yes + ", no: " + no;
 }

<bigwig> intro tutorial

http://www.brics.dk/bigwig/Tutorial/intro/ (5 of 10) [16/11/2000 15:47:27]

9

Javascript:jumpInfo('continue', KEYWORD_INFO)
Javascript:jumpInfo('show', KEYWORD_INFO)
Javascript:jumpInfo('show',KEYWORD_INFO)
Javascript:jumpInfo('receive',KEYWORD_INFO)

 session Vote() {
 bool answer;

 show VoteDoc receive [answer = answer];
 if (answer) yes++;
 else no++;
 Status(); // Call session `Status'
 }
}

This vote service has two sessions Status and Vote, the second of which ends with a call to the first.
The Status session can thus either be `run' initiated by a request to it on its own or through the Vote
session.

Session arguments

service {
 int fac(int n) {
 if (n==0) return 1;
 else return n * fac(n-1);
 }

 session Factorial(int n) { // Session argument.
 if (n<0) exit <html>Negative number!</html>;
 exit (html) fac(n);
 }
}

As previously mentioned, a session is invoked through a CGI "GET" or "POST" request. A session
can parameterized to take (CGI) arguments as in the example above. The argument names are
explicit. If `http://url_to_session' designates the url to start this session, then
`http://url_to_session&n=7' starts this session with argument n equal to 7. If argument n is
missing it is assumed to have the initial value (which is zero for integers).

Interacting with other services (get/post)

service {
 session TalkToGoogle() {
 string s;

 s = post("http://www.google.com/")[q = "bigwig"];
 exit (html) s;
 }
}

For interaction with other services (<bigwig> or non-<bigwig> services), <bigwig> provides
the functions get and post. They make a CGI request using respectively the "GET" and "POST"
request method, to the URL specified in parentheses and with the list of arguments enclosed in square

<bigwig> intro tutorial

http://www.brics.dk/bigwig/Tutorial/intro/ (6 of 10) [16/11/2000 15:47:27]

10

Javascript:jumpInfo('get',KEYWORD_INFO)
Javascript:jumpInfo('post',KEYWORD_INFO)

brackets. This example will make a "POST" request to "www.google.com" with argument "q" (query
string) equal to "bigwig" and assign the result to the string variable s. Finally, the service will exit this
string (cast to an html document) onto the client's browser. As one can see, it is easy to construct
``services talking to services''.

Security

ssl service { // All communication is encrypted.
 session S() {
 ...;
 }
}

A default <bigwig> service executes at a standard security level with protection against the most
naive attacks. Tighter security levels of operation can be specified in <bigwig> by prepending the
service or session keywords with the security modifier ssl. This modifier will cause all
communication between the client and the server to be subject to the SSL cryptographic protocol.
However, it is required that the web server supports SSL. Check out the security reference manual
page for other security modifiers.

Directory structure and garbage collection

service {
 session S() {
 file f;
 string filename = "foo.html";
 html H = ...;

 s = (string) H;
 f = open(dir + filename, "w");
 print(f, s);
 close(f);
 /* URL to the file: `url + filename'. */
 ...;
 }
}

When the session is started, it will have the BASEDIR appended with the service's name as its
"current-directory". All files are opened relative to this directory. Each session thread is when started
assigned a unique private directory that is automatically garbage collected when the session thread
expires. The lifespan of a session (SPANDEFAULT) is set (in seconds) in the <bigwig>
configuration file ".bigwig" (default is 48 hrs). This value can also be overridden at service, session,
or individual show-level throgh the span modifier. This directory can be used to creates files of
temporary nature that are automatically deleted when the session thread is expired. The expression,
dir, designates a string file-system path to this directory (the expression, url, also designates this
directory but as a URL).

<bigwig> intro tutorial

http://www.brics.dk/bigwig/Tutorial/intro/ (7 of 10) [16/11/2000 15:47:27]

11

Javascript:jumpInfo('ssl',KEYWORD_INFO)
http://www.brics.dk/bigwig/refman/security/
http://www.brics.dk/bigwig/compiler/configuration/
Javascript:jumpInfo('span',KEYWORD_INFO)
Javascript:jumpInfo('dir',KEYWORD_INFO)
Javascript:jumpInfo('url',KEYWORD_INFO)

Intermediate

Show/Receive/Timeout: (timeout clean-up)

service {
 shared bool locked; // initial value "false".

 session ExclusiveAccess() {
 string s;
 html H = ...;

 if (locked) exit (html) "Sorry, session in use!";
 locked = true;
 ...;
 show H receive [s = blah] timeout locked = false;
 ...;
 locked = false;
 }
}

A common problem with Web services in general is that a client may for some reason decide to
abandon it in the middle of a show statement (that is, not submit the page). In <bigwig>, the session
thread process will thus sleep on the server until it expires. When this happens, a timeout-statement
can be executed as in the example. The example shows how to ensure that only one session thread is
executing a certain region. When the timeout statement finishes, the session thread terminates.

Note however that the above does not guarantee that only one thread is in the region at a time as two
sessions may evaluate the condition in the if-statement at precisely the same time. We shall in the
concurrency control tutorial see how <bigwig>'s concurrency control language can be used to
ensure that such a requirement will never be violated.

Calling external (C-) functions from <bigwig>

---foo.wig---

service {
 session EscapeToC() {
 string s;
 string my(int n); // function prototype

 ...
 s = my(87);
 ...
 }
}

---bar.c---

<bigwig> intro tutorial

http://www.brics.dk/bigwig/Tutorial/intro/ (8 of 10) [16/11/2000 15:47:27]

12

#include <stdio.h>
#include <stdlib.h>
#include <strings.h>

char *my(int n) {
 return strdup("test");
}

---shell---

%> gcc -c bar.c
%> bigwig bar.o foo
%> foo.install

If you specify a function prototype (a function declaration with no body), the <bigwig> compiler
will assume that the implementation of the function will be linked with the <bigwig> C output
when compiled to binary code.

Note: Make sure only to return (non-NULL) structures that are allocated on the heap as <bigwig>
will free (garbage collect) the structure when it is no longer needed. This is currently possible for the
following types:

Language Type
<bigwig> bool int float char string file time
corresponding C type int int double char char* FILE* time_t

Another possibility of interacting with non-<bigwig> code is to use the built in system function.

Advanced

Flash (impatience handling)

service {
 session LongComputation() {
 html PleaseWait = <html>
 <h1>Factorizing large numbers</h1>
 This may take a while, please wait...
 </html>;

 flash PleaseWait;
 ...; // Factorize large numbers...
 exit (html) s;
 }
}

The statement flash is available for communicating information to the client when the session thread

<bigwig> intro tutorial

http://www.brics.dk/bigwig/Tutorial/intro/ (9 of 10) [16/11/2000 15:47:27]

13

Javascript:jumpInfo('flash',KEYWORD_INFO)

takes a long time to answer. As previously explained, each session thread is when it is started assigned
a unique and private directory. This directory will contain a special file named "index.html" onto
which all pages shown to the client by the session will go. If a show-statement is not executed within
eight seconds after the client has submitted a request (on start-up or continuing a session), the client is
automatically redirected to this page by a "connector" process. This page is automatically overwritten
with a default excuse: "reply not ready yet, please wait...". The flash statement simply grants the
service the possibility of asynchronously (with the connector) overriding this "index.html" reply file
with a more informative excuse. Such an excuse page is always wrapped with some JavaScript
causing it to reload every five seconds (the frequency is redefinable: refresh) until the ``real'' answer is
produced by the service, overriding this flash'ed page. If the service produces an answer within the
eight seconds, the client never sees the flashed page. The technique itself is often referred to as
``client pull''.

<bigwig> intro tutorial

http://www.brics.dk/bigwig/Tutorial/intro/ (10 of 10) [16/11/2000 15:47:27]

14

Javascript:jumpInfo('flash',KEYWORD_INFO)
Javascript:jumpInfo('refresh',KEYWORD_INFO)

<Dynamic Documents Tutorial>

[Basics | Intermediate | Advanced]

Basics
Below are several different ways of writing the ubiquitous Hello-World service. These examples
should provide basic insight on how html documents are constructed, combined, and shown to the
client.

Shortest Hello World

service {
 session Hello() {
 exit <html>Hello World!</html>;
 }
}

Result:

Hello World!

This is the shortest possible hello-world service. It has one session named Hello that when run simply
exits a html document constant only containing the text "Hello World!" onto the client's browser after
which the session terminates.

Introducing an `html' variable

service {
 session Hello() {
 html D;

 D = <html>Hello World!</html>;
 exit D;
 }
}

Result:

Hello World!

Here, a variable D of type html is introduced. The first statement assigns to this variable an html
document constant. The next (and last) statement of the session exits this document.

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (1 of 19) [16/11/2000 15:47:35]

15

Initialization of `html' variables

service {
 session Hello() {
 html D = <html>Hello World!</html>;

 exit D;
 }
}

Result:

Hello World!

The same as in the previous example, except the variable D is initialized to contain the hello-world
document.

Gaps and String plugging

service {
 session Hello() {
 html D, H;

 D = <html>Hello <[gap]>!</html>;
 /* string `World' is plugged into D
 and assigned to H. */
 H = D <[gap = "World"];
 exit H;
 }
}

Result:

Hello World!

In the first statement, we assign to D an html document containing a gap called "gap". The second
statement plugs the constant string "World" into the document D, producing an entirely new document
containing not surprisingly the text "Hello World!" which is subsequently assigned to H. Note that the
expression D <[gap = "World"] does not side-effect D, but simply evaluates to a document value.
The final statement exits H to the client.

Gaps and Document plugging

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (2 of 19) [16/11/2000 15:47:35]

16

http://www.brics.dk/bigwig/refman/dyndoc/#plug
http://www.brics.dk/bigwig/refman/dyndoc/#values
http://www.brics.dk/bigwig/refman/dyndoc/#plug

service {
 session Hello() {
 html D = <html>Hello <[gap]>!</html>;
 html H;
 html W = <html>World</html>;

 /* html document W is plugged into D
 and assigned to H. */
 H = D <[gap = W];
 exit H;
 }
}

Result:

Hello World!

Instead of plugging a constant string "World", another document containing the text "World" in bold
face is plugged into the document D. In this way, documents can be gradually composed and in a
highly dynamic fashion (whence the name "Dynamic Documents" or "DynDoc"). Also, the
programmer is no longer forced to do a linear construction from the first <html> to the last </html>
tag.

Plug evaluates to a document value

service {
 session Hello() {
 html D = <html>Hello <[gap]>!</html>;
 html W = <html>World</html>;

 /* the expression D <[gap = W] evaluates
 to a document that is exited to the
 client */
 exit D <[gap = W];
 }
}

Result:

Hello World!

This example emphasizes the fact that D <[gap = W] is (just) an expression that evaluates to a
document value (which is exited to the client).

Plug: Implicit coercion

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (3 of 19) [16/11/2000 15:47:35]

17

http://www.brics.dk/bigwig/refman/dyndoc/#plug

service {
 session Hello() {
 int n = 42;
 html D = <html>Hello <[gap]>!</html>;

 exit D <[gap = n];
 }
}

Result:

Hello 42!

The plug expression will in fact implicitly coerce any type to `html' documents. For instance, the
integer value 42 is converted to a string "42" immediately before being plugged. The same thing goes
for bool, floats, chars, and time.

Plug: Character escaping

service {
 session Hello() {
 string s = "World";
 html D = <html>Hello <[gap]>!</html>;

 exit D <[gap = s];
 }
}

Result:

Hello World!

All strings plugged into `html' documents are properly escaped (The markup characters "<" and ">"
are escaped to "<" and ">"). The reason for this is two-fold: to guarantee the safety of the
analysis and for security reasons. Imagine what happens if a malicious client's input (say,
"<script>location.replace("http://.../")</script>") gets propagated onto a document shown.

Plug: Bypassing character escaping

service {
 session Hello() {
 string s = "World";
 html D = <html>Hello <[gap]>!</html>;

 exit D <[gap = rawhtml(s)]; // caution!
 }
}

Result:

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (4 of 19) [16/11/2000 15:47:36]

18

http://www.brics.dk/bigwig/refman/types/#Conversion

Hello World!

The predefined function rawhtml converts strings to html documents verbatim, leaving markup
characters unchanged. Be cautious when using this function as it may introduce security breaches.
Also, the analysis can no longer give all its static guarantees. When using this function it is the
programmers responsability to make sure no unintended character sequences are introduced. Clearly,
gaps cannot be dynamically plugged into documents this way, since the analysis is performed at
compile-time.

Attribute gaps (vs. html gaps)

service {
 session Hello() {
 html D = <html>
 Hello World!
 </html>;

 /* the `col' gap cannot be plugged
 with documents */
 D = D <[col = "blue"];
 exit D;
 }
}

Result:

Hello World!

All the gaps we have seen so far have been the so called ``html gaps'' where the syntax is <[id]>
(where `id' is the name of the gap). The col gap is an example of another kind of gap, namely an
``attribute gap'' - it is written within an html attribute (here "font"). Attribute gaps cannot like ``html
gaps'' be plugged with documents, only strings (or ints, floats, ...).

Show: Local state preserved

service {
 session Hello() {
 html D = <html>Hello <[gap]>!</html>;
 html H = <html>World</html>;

 D = D <[gap = H];
 show <html>Click continue</html>;
 /* execution continues here after show
 with entire local state as it was
 (`D' has a bold-faced `World' in it!) */
 exit D;
 }
}

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (5 of 19) [16/11/2000 15:47:36]

19

Javascript:jumpInfo('rawhtml', KEYWORD_INFO)

Result:

Click continue ; Hello World!

Instead of exiting a document to the client, one can instead show a document to the client. The
semantics is that the page will be shown and execution will resume (with the local state preserved)
after the show statement when the client submits the page. If the page does not contain a submit
button, a default continue submit button will automatically be provided. Note that this default
continue button is not shown in the "result" above. Thus, the document D exited in the final statement
of the session, is the one constructed in the first statement.

Input fields and Show-receive

service {
 session EnterName() {
 string s;
 html Input = <html>
 Name?: <input type="text" name="name">
 </html>;
 html Output = <html>Hi <[name]>!</html>;

 show Input receive [s = name];
 exit Output <[name = s];
 }
}

Result:

Name?: ; Hi foo!

...assuming "foo" was entered.

Here the document Input contains an input field of type "text". When such a document is shown, its
values must be received. Conversely, when fields are received, they are required to be in the
document shown. The identifier immediately following the equal character (`='), names an input field
in the document shown. The identifier immediately preceding the equal character (`='), names an
lvalue in the service. This lvalue can be of any type (the text entered by the client will be
appropriately coerced).

Checkboxes

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (6 of 19) [16/11/2000 15:47:36]

20

Javascript:jumpInfo('show', KEYWORD_INFO)
http://www.brics.dk/bigwig/refman/dyndoc/#show_receive
Javascript:jumpInfo('receive', KEYWORD_INFO)

service {
 session Checkbox() {
 vector string v;
 html Input = <html>
 x? <input type="checkbox" name="c" value="x">
 /
 y? <input type="checkbox" name="c" value="y">
 </html>;

 show Input receive [v = c];
 ...;
 }
}

Result:

x? / y? ; ...

When a document contains more than one checkbox (as inferred by the analysis), such an input field
group must be received into a vector (or a relation). A single checkbox can be received in a basic type.
The same thing goes for select (multiple) fields. There are a number of requirements on the different
field kinds, but most of them behave roughly as the "text" field in the previous example. See the form
input table for more information.

Shorthand: ``Plug, then assign''

service {
 session Hello() {
 html D = <html>Hello <[gap]>!</html>;
 html H = <html>World</html>;

 D =<[gap = H]; // plug, then assign (to D)
 exit D;
 }
}

Result:

Hello World!

The assignment expression D = D <[gap = H], can be abbreviated to D =<[gap = H], using the
side-effecting ``plug, then assign''-operator "=<[". Note the three characters "=", "<", and "[" form one
lexical token (that is, they cannot be separated by whitespaces). The syntax is reminiscent of the `+='
(add, then assign) operator from C/Java/<bigwig>.

Iteration and `html' documents

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (7 of 19) [16/11/2000 15:47:37]

21

Javascript:jumpInfo('checkbox', KEYWORD_INFO)
http://www.brics.dk/bigwig/refman/types/#BasicTypes
Javascript:jumpInfo('select', KEYWORD_INFO)
http://www.brics.dk/bigwig/refman/input/
http://www.brics.dk/bigwig/refman/input/

service {
 session IterateList() {
 int i;
 html H = <html><[more]></html>;
 html Item = <html><[no]><[more]></html>;

 for (i=3; i>0; i--) {
 H =<[more = Item <[no = i]];
 }
 exit H;
 }
}

Result:

● 3

● 2

● 1

Documents can easily be iteratively constructed. This will often happen when presenting data from a
vector to the client. Notice that initially the document H contains a gap "more". This is important
since all documents (expressions) in the program must have the same set of gaps for all program flows
[see the example on "implicit closing of gaps" below for the exact details]. The program would be
rejected by the compiler if H did not initially (in the for loop) contain the gap "more".

Code Gaps: Code Expressions

service {
 int x = 21;
 session CodeExp() {
 html H = <html>res = <[(x*2)]></html>;

 exit H;
 }
}

Result:

res = 42

Just before document H is exited, the code expression, <[(x*2)]> is evaluated, yielding "42" which
is implicitly coerced to a string and inserted into the document which is shown to the client.

Code Gaps: Code Statements

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (8 of 19) [16/11/2000 15:47:37]

22

http://www.brics.dk/bigwig/refman/dyndoc/#codegaps
http://www.brics.dk/bigwig/refman/dyndoc/#codegaps

service {
 int x = 5;
 session CodeExp() {
 html H = <html>
 res = <[{int r = x+1; r*7;}]>
 </html>;

 exit H;
 }
}

Result:

res = 42

The same thing happens here, the only difference being that the code gap is not a code expression but
a code statement. The last statement in a code statement is required to be a statement-expression (here
"r*7;") whose result is the result of the code statements.

Code Gaps: Scope Restrictions

service {
 html D;

 session CodeExp() {
 int x = 21;
 html H = <html>res = <[(x*2)]></html>;

 D = H; // `x' passed ``out of scope'' to D.
 exit H;
 }

 session SomeOtherSession() {
 ...;
 exit D; // `x' ``out of scope''!
 }
}

Result: N/A, Illegal service.

The scope for variables in code expressions and code statements is the toplevel scope outside the
sessions. Otherwise it would be possible to pass variables out of scope as happens with the x usage in
the code gap in the example.

Separating designer/programmer tasks by lexical inclusion

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (9 of 19) [16/11/2000 15:47:37]

23

http://www.brics.dk/bigwig/refman/dyndoc/#codegaps
http://www.brics.dk/bigwig/refman/dyndoc/#codegaps
http://www.brics.dk/bigwig/refman/dyndoc/#codegaps
http://www.brics.dk/bigwig/refman/dyndoc/#codegaps

service {
 session Hello() {
 html H = #include "../docs/hello.html";

 exit H;
 }
}

Result:

HELLO WORLD

Notice how the designer and programmer's tasks have been separated in the code. This division can, in
fact, be made even more explicit by lexically including the documents required by the service:

Now, the designer is free to design the html page in for instance FrontPage or some other html page
design tool. The document is automatically included in the service by the lexical analyser during
service compilation.

Intermediate
Rapid prototyping

service {
 session Hello() {
 html P = <html>
 Name: <input type="text" name="N">

 Age: <input type="text" name="A">
 <[more]>
 </html> @ ".../docs/person.html";

 exit P;
 }
}

Result: ...if the file "../docs/person.html" does not (yet) exist.

Name:

Age:

When the file designated in the <html>...</html> @ "URL" construction does not exist, the constant
in-lined document is used.

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (10 of 19) [16/11/2000 15:47:38]

24

http://www.brics.dk/bigwig/refman/lex/#include

---../docs/person.html---

<html>
 Please enter the following information:
 <table>
 <tr>
 <td>Name:</td>
 <td><input type="text" name="N"></td>
 </tr>
 <tr>
 <td>Age:</td>
 <td><input type="text" name="A"></td>
 </tr>
 </table>
 <[more]>
</html>

Result: ...if the file "../docs/person.html" does exist.

Please enter the following information:

Name:

Age:

Whereas, when the document does exist (the file is non-empty) it is the one used. The two html
documents are required to have the same flow types (i.e. same gaps and fields). This is verified by the
compiler at compile-time.

The idea behind this construct is to provide a means for rapid prototyping and to aid collaboration
between the programmer and the designer of a Web service. The programmer rapidly makes some
prototype html documents, with focus on the functionality (the fields and gaps) and not on the
graphical layout of the document. Then, as the designer finishes the ``real'' documents, they replace
the prototype ones.

Auto-wrapped tags

service {
 session Hello() {
 html H = <html>
 <head><title>foo</title></head>
 <body bgcolor=[col]>
 Hello World!
 </body>
 </html>

 exit H <[col = "yellow"];
 }
}

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (11 of 19) [16/11/2000 15:47:38]

25

Result:

Hello World!

The tags "<html>" and "</html>" are in fact just delimiters saying that whatever comes in between is
an html document template. They are not themselves part of the html document template. However,
when an html document template...
<html>...</html>

...is shown, it is wrapped with an html, a head, a (default) title, a body, and a form tag with an
appropriate continue "action" url, yielding:
<html>
 <head>
 <title><bigwig> service: hello</title>
 </head>
 <body>
 <form action="continue url">
 ...
 </form>
 </body>
</html>

Note that the <form> tag pair is not added when a page is flashed or exited.

In order to be able to add information the placement of which is required before the <form> tag,
<bigwig> intercepts an optional <body> tag and uses it, overwriting the default one (placing it
immediately preceding the autogenerated <form> tag). As can be seen in the example, such a <body>
tag can contain attributes (for instance, a bgcolor attribute as in the example). Everything written
outside this <body> tag, gets placed outside the autogenerated <form> tag. Thus, the title of the
document shown will be "foo". Being able to insert information outside the form (and body) is
particularly useful when a page is to contain JavaScript code. Note that <body> tags along with the
information preceeding them in documents plugged into other documents is discarded.

Gaps are unordered

service {
 session Address() {
 int n = 42;
 string s = "Somewhere street";
 html H;
 html UK = <html><[number]>, <[street]></html>
 html DK = <html><[street]> <[number]></html>

 if (...) H = UK;
 else H = DK;
 exit H <[number = n, street = s];
 }
}

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (12 of 19) [16/11/2000 15:47:38]

26

http://www.brics.dk/bigwig/refman/dyndoc/#plug

Result:

42, Somewhere street , when `...' evaluates to true

Somewhere street 42 , when `...' evaluates to false

The plug operator can perform multiple pluggings in one go, as is evident in the plug expression H
<[number = n, street = s] above. Each document in <bigwig> has a set of unordered gaps (i.e. not a
sequence of gaps). The fact that the order of gaps is inconsequential, can be exploited to customize
information presentation. For instance, in Denmark addresses are written street name followed by
house number, whereas in the United Kingdom they are the house number followed by a comma and
the name of the street. The plug operation will plug n and s into the gaps number and street regardless
of their respective placements in the document H in which we plug.

Implicit closing of gaps

service {
 session ImplicitClose() {
 html H = <html>Hello <[what]>!</html>

 if (...) H = H <[what = "World"];
 /* Here, H no longer has the what gap */
 exit H;
 }
}

Result:

Hello World!

After the if-statement, document H no longer has the what gap. The reason is that its presence is not
guaranteed (if, for instance, the expression `...' evaluates to true). Consequently, the what gap is
implicitly closed in the ``else branch'' of the if. Implicit closing happens automatically so that the
service will obey the flow join requirements dictated by the dynamic document analysis. Attempts to
plug in H's what gap after the if-statement will be denied by the compiler, yielding a compile-time
error.

A gap may not occur twice in the same document

service {
 session NoMultGaps() {
 html B;
 html D = <html>Hello <[what]><[g]></html>;
 html H = <html>World <[what]></html>;

 B = D <[g = H]; // Illegal document!
 exit B;
 }
}

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (13 of 19) [16/11/2000 15:47:39]

27

http://www.brics.dk/bigwig/refman/dyndoc/#flow

Result: N/A, Illegal service.

Our analysis and implementation prohibits a gap from being present twice in a document.
Consequently, the document produced by the plug operation (with two gaps by the name of what)
above is illegal and the service will be rejected by the compiler, yielding a compile-time error.

Analysis inference (track)

service {
 session OrderDrink() {
 string order;
 html D;
 html H = <html>
 Name? <input type="text" name="name">

 <[choices]>
 </html>;
 html Coffee = <html>Coffee?
 <input type="radio" name="drink"
 value="coffee">
 <[alts]>
 </html>;
 html Tea = <html>
Tea?
 <input type="radio" name="drink"
 value="tea">
 <[alts]>
 </html>;

 H = H <[choices = Coffee <[alts = Tea]];
 /* Here, track(H) would report:
 gaps = { ("col", attrGap),
 ("alts", htmlGap) }
 fields = { ("name", textField),
 ("drink", radioField) } */
 D = H <[col = "blue"];
 show D receive [order = drink];
 }
}

Result:

Name?
Coffee?
Tea?

Clearly, the programmer needs to be aware of how gaps and fields propagate in the service. To help
the programmer, we have added a keyword "track" which is a predefined function that is the identity
on expressions of type html except for one fact: It will report, at compile-time, the flow-type of its

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (14 of 19) [16/11/2000 15:47:39]

28

html argument (as inferred by the flow analysis). A document's flow-type is its set of gaps and their
kinds (attribute or html) and its set of fields and their kinds (text, radio, checkbox, ...). The function is
really not part of the <bigwig> language, but is considered a helpful compiler feature.

Functions and `html' documents

service {
 session Hello() {
 html H = <html>Hello <[gap]>!</html>;

 html f(bool in_bold, string s) {
 html B = <html><[content]></html>;

 if (in_bold) return B <[content = s];
 else return (html) s;
 }

 exit H <[gap = f(true, "World")];
 }
}

Result:

Hello World!

Here we have defined a function f that takes a boolean in_bold and a string s as arguments and
produces an html document. The document produced is s as an html document, and with the text in
bold face if the first argument is true. The function contains a type-conversion expression (html) s
(that casts s to an html document).

Recursive functions and `html' documents

service {
 session RecList() {
 html list(int n) {
 html Item = <html>
 <[no]><[more]>
 </html>;

 if (n==0) return <html></html>;
 return Item <[no = n, more = list(n-1)];
 }

 exit list(3);
 }
}

Result:

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (15 of 19) [16/11/2000 15:47:39]

29

http://www.brics.dk/bigwig/refman/types/#Conversion

● 3

● 2

● 1

Needless to say, html documents work with recursion. This example is equivalent to the iterative
example previously mentioned.

Matching `html' documents

service {
 session Dilbert() {
 html OutDoc = <html>
 <h1>Today's Dilbert</h1>

 </html>;
 string data = get("http://www.dilbert.com/");
 string src_str;
 match(data,<html><[]>

 <[]></html>)[src_str = src];
 exit OutDoc <[src=
 "http://www.dilbert.com"+src_str];
 }
}

Result: Today's Dilbert image without any adds.

For now, the second html argument to match must be a constant html document. The constant
document contains two unnamed gaps "<[]>". Whatever such gaps match in a match operation is
discarded. Note that in order to work properly, the return character and the spaces after the first and
before the second unnamed gap should be removed.

Advanced
Unfortunately, due to the undecidable nature of the analysis, there are many services that are unfairly
rejected by the compiler. Such examples can be found below:

Attribute and html gaps (continued)

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (16 of 19) [16/11/2000 15:47:40]

30

service {
 session Hello() {
 html D;
 html A = <html>
 Hello World!
 html>;
 html H = <html>Hello <[gap]>!</html>;

 if (...) D = A;
 else D = H;
 /* gap "gap" in D is an attribute gap
 (i.e. D can no longer be plugged with
 an html document). */
 exit D <[gap = "blue"];
 }
}

Result:

Hello World! , when `...' evaluates to true

Hello blue! , when `...' evaluates to false

After the if-else statement, when the flows of the statements from the if-branch and the else-branch
meet, the gap named "gap" in document D becomes an attribute gap regardless of which of the two
branches is taken at runtime. Thus, D can no longer be plugged with documents (otherwise there
could be problems if the expression ... evaluated to true). [In formal analysis terminology:
least-upper-bound of an attribute gap and an html gap is an attribute gap].

Tuple fields

service {
 schema PersonSchema {
 bool married;
 string name;
 }

 html f(int n) {
 int i;
 html T = <html><tuple name=person>
 Name?: <input type="text" name="name">
 <input type="checkbox" name="married"
 value="true">
 </tuple><[more]></html>;
 html H = T;

 for (i=0; i<n-1; i++) {
 H =<[more = T];
 }

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (17 of 19) [16/11/2000 15:47:40]

31

 return H;
 }

 session Tuples() {
 vector PersonSchema p;
 html D;

 D = f(random(10));
 show D receive [p = person];
 ...;
 }
}

Result: Not shown!

Note: This example assumes knowledge of schemas.
The fact that one has to explicitly receive every single field, is incompatible with creating a dynamic
number of input fields for the client to fill in. This is what the <tuple> tag was added for. The <tuple>
tag is internal to <bigwig> and never actually shown to the client.

Analysis shortcomings (undecidability)

service {
 session Checkboxes() {
 int n;
 string choice;
 html D = <html><[gap1]><[gap2]></html>
 html H = <html>
 <input type="checkbox" name="c"
 value="...">
 </html>;

 n = ...;
 if (n%2==0) D =<[gap1 = H];
 /* Here, it is assumed that D has a
 checkbox group `c' with one
 element. */
 if (n%2==1) D =<[gap2 = H];
 /* Here, it is assumed that D has a
 checkbox group `c' with more than
 one element. */
 show D receive [choice = c];
 }
}

Result: N/A, Illegal program!

After the first if-statement, the two possible flows (the then-branch and the non-existant or empty
else-branch) cause the analysis to assume that there is a checkbox group named c with one checkbox.

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (18 of 19) [16/11/2000 15:47:40]

32

Javascript:jumpInfo('tuple', KEYWORD_INFO)
Javascript:jumpInfo('tuple', KEYWORD_INFO)

This is a fair assumption because a non-checked and a non-existant checkbox submit the same
(non-existant) information upon submission. After the second if-statement the same thing happens
again, forcing the analysis to safely assume that there could possibly be several checkboxes in the
group named c. Consequently, when the document D is shown, it is assumed to potentially return
several (more-than-one) units of information and is thus required to be received in a vector (or
relation). This is why the above program will fail. It can be deduced that independent of the value of
n, D could never hold two checkboxes. However, this deduction is due to a very complex
inter-relationship between the two expressions n%2==0 and n%2==1 that a compiler could never
hope to generally uncover. Precisely this example could be made detectable, but due to the
undecidable nature of the problem itself, there would still be infinitely many similar undecidable
problems, regardless of how sophisticated we make our analysis.

Analysis shortcomings (monovariance)

service {
 session Id() {
 html H = <html>Hello <[gap]>!</html>;

 html id(html H) {
 return H;
 }

 H = id(H);
 H = H <[gap = "World"];
 H = id(H); // Illegal call!
 exit H;
 }
}

Result: N/A, Illegal program!

Since the interprocedural data-flow analysis on dynamic documents is monovariant (as opposed to
poly-variant), there are some restrictions regarding the use of functions. It is required that the set of
gaps and their kinds (attribute/html) and the set of fields and their kinds of all html arguments are the
same for all calls to a function. The same thing goes for any html values returned. The first call to the
id function dictates that from now on the argument (and result) given to id must be a document that
has exactly one gap named "gap" of kind `html'. Consequently, the second call to id with a document
without any gaps is denied by the compiler, yielding a compile-time error. This example would
benefit from making the analysis poly-variant which it may be in the future.

<bigwig> dyndoc tutorial

http://www.brics.dk/bigwig/Tutorial/dyndoc/ (19 of 19) [16/11/2000 15:47:40]

33

<PowerForms Tutorial>

[Basics | Intermediate | Advanced]

Note: This tutorial assumes basic knowledge on:
Dynamic Documents●

Basics
This is the PowerForms tutorial that will explain how to automatically ensure that all input fields are
appropriately filled in by the client prior to page submission. Related benefits include file scanning
and string matching and will also be presented. As is evident below, our solution is based on regular
expressions:

Formats: Client-side input validation

service {
 session EnterDigit() {
 format Digit = range('0', '9');
 /* Format declaration */

 int n;
 html H = <html>
 Enter your favorite digit:
 <input type="text" name="d"
 format="Digit">
 </html>;

 show H receive [n = d];
 ...;
 }
}

Formats are declared using the keyword format followed by an identifier that will henceforth refer to
the format. A format is really a regular expression (regexp) specified in an elaborate syntax. The
format Digit in the example is declared to match the ten characters in the range from '0' to '9'
(including both end points). The format is subsequently bound to the text input field named "d" in the
document H through the format="Digit" attribute. When run, the EnterDigit session will ask the client
for his favorite digit and incrementally verify that the text entered in the text input field matches the
regular expression (i.e. that the client enters a digit). The document can only be submitted when the
input is matched by the regexp.

The validation status will be shown in the browser's status bar and by status icons placed next to the

<bigwig> powerforms tutorial

http://www.brics.dk/bigwig/Tutorial/powerforms/ (1 of 9) [16/11/2000 15:47:44]

34

Javascript:jumpInfo('format', KEYWORD_INFO)
Javascript:jumpInfo('range',KEYWORD_INFO)

input field. By default these icons show traffic lights with the colors red, yellow, and green, signalling
respectively that the format is invalid (not in the language defined by the regexp), on the way of
becoming valid (in the prefix of the regexp), and valid (in the regexp).

Perl style

service {
 session EnterDigit() {
 format Digit = regexp("[0-9]");
 /* Perl style format declaration */

 int n;
 html H = <html>
 Enter your favorite digit:
 <input type="text" name="d"
 format="Digit">
 </html>;

 show H receive [n = d];
 ...;
 }
}

This service is equivalent to the one above, but with Perl style regexps instead.

Defining formats

service {
 session EnterAge() {
 int n;
 format Digit = range('0', '9');
 format Age = concat(Digit, star(Digit));
 html H = <html>
 Enter your favorite age:
 <input type="text" name="a"
 format="Age">
 </html>;

 show H receive [n = a];
 ...;
 }
}

Formats are not surprisingly allowed to be defined in terms of each other. Here the Digit format from
the previous example is used in the definition of another format Age that will match any non-zero
number of digits. Concat takes any number of regexps and is the concatenation of these. Star (a.k.a.
Kleene's star) takes one regexp and is any number of repetitions (even zero) of this regexp. This
format is bound to the text input field named "a" in the document H. When this document is shown,

<bigwig> powerforms tutorial

http://www.brics.dk/bigwig/Tutorial/powerforms/ (2 of 9) [16/11/2000 15:47:44]

35

Javascript:jumpInfo('concat', KEYWORD_INFO)
Javascript:jumpInfo('star', KEYWORD_INFO)

the client must and can only enter a valid age (a positive integer).

Perl style

service {
 session EnterAge() {
 int n;
 format Digit = regexp("[0-9]");
 format Age = regexp("{Digit}{Digit}*");
 html H = <html>
 Enter your favorite age:
 <input type="text" name="a"
 format="Age">
 </html>;

 show H receive [n = a];
 ...;
 }
}

This service is equivalent to the one above, but with Perl style regexps instead. The syntax {id}
designates another format named id.

No circularly defined formats

service {
 session Enter() {
 format RecF = concat(star("foo"), RecF);
 /* Error: Circular format! */

 ...;
 }
}

Note: This is an illegal service!

As with all other toplevel declarations, formats have two pass scope rules (they are visible on the
same scope level even before their lexical definition point). However, formats cannot be circularly or
recursively defined.

Email format

<bigwig> powerforms tutorial

http://www.brics.dk/bigwig/Tutorial/powerforms/ (3 of 9) [16/11/2000 15:47:44]

36

require <std.wigmac>

service {
 session EnterEmail() {
 string s;
 format Digit = range('0', '9');
 format Alpha = range('a', 'z');
 format Word = plus(union(Digit, Alpha));
 format Email = concat(Word, "@", Word,
 star(concat(".", Word)));
 html H = <html>
 Enter your email:
 <input type="text" name="e"
 format="Email">
 </html>;

 show H receive [s = e];
 ...;
 }
}

This service defines four formats. The first is the Digit format we have already seen. The second,
Alpha, is defined to be any lower case alphanumeric character. The third is any (non-zero) number of
repetitions of the either a digit or a lower alphanumeric case character. The plus construct is really a
regexp macro being invoked. The macro takes one regexp argument and is the concatenation of the
argument with star of the argument. We shall see in the macro tutorial how this macro is defined.

Escaping validation: ignoreformats

service {
 session EnterEmail() {
 string s;
 format Email = ...;
 html H = <html>
 Enter your email:
 <input type="text" name="e"
 format="Email">
 <input type="submit" value="Cancel"
 ignoreformats>
 </html>;

 show H receive [s = e];
 ...;
 }
}

Normally, one cannot submit a page while the input fields are not all correctly filled in. Sometimes,
however, it is nice to be able to disable this functionality which is exactly what the attribute

<bigwig> powerforms tutorial

http://www.brics.dk/bigwig/Tutorial/powerforms/ (4 of 9) [16/11/2000 15:47:44]

37

Javascript:jumpInfo('plus', KEYWORD_INFO)
Javascript:jumpInfo('plus',KEYWORD_INFO)

ignoreformats does. The attribute is applicable to all input fields that causes the document to be
submitted (that is, submit, continue, and image fields). The example will show a document prompting
the client for his email, but the client has the possibility of pressing the cancel button (even if the
email field is not correctly filled in).

Customizing errors and warnings

service {
 session CustomErrors() {
 int n;
 format Digit = range('0', '9');
 format Number = plus(Digit);
 html H = <html>
 Enter your email:
 <input type="text" name="n"
 format="Number"
 red="Not a number!">
 yellow="Enter a valid number"
 </html>;

 show H receive [n = n];
 ...;
 }
}

As previously explained, the incremental validation status is shown in the browser's staus bar while
the client is entering data. The status bar will feature standard default messages corresponding to the
three states red, yellow, and green (mentioned in the first example). These messages can easily be
redefined by assigning the corresponding attributes "red" and "yellow". The "red" and "yellow"
messages are also the ones shown when the client attempts to submit a document containing data that
violate formats.

Changing the status icons

service {
 session EnterDigit() {
 int n;
 format Digit = range('0', '9');
 html H = <html>
 Enter your favorite digit:
 <input type="text" name="d"
 format="Digit">
 </html>;

 show H receive [n = d];
 ...;
 }
}

<bigwig> powerforms tutorial

http://www.brics.dk/bigwig/Tutorial/powerforms/ (5 of 9) [16/11/2000 15:47:44]

38

Javascript:jumpInfo('ignoreformats',KEYWORD_INFO)
Javascript:jumpInfo('submit',KEYWORD_INFO)
Javascript:jumpInfo('continue',KEYWORD_INFO)
Javascript:jumpInfo('image',KEYWORD_INFO)

You can change the status icons to your own images reflecting the particular style and look-and-feel
you want your service to have. This is done outside the service by placing four images
"../powerforms/red.gif", "../powerforms/yellow.gif", "../powerforms/green.gif", and
"../powerforms/na.gif" in your RGYIMAGEDIR (set in your ".bigwig" configuration file). If the
changes are only relevant to the service at hand, you may want to consider having a local ".bigwig"
configuration file in the service's directory (in which you compile). If you do not want any status
icons, (for now) you have to make 1-pixel transparent images [sorry].

Formats: String matching

service {
 session MatchString() {
 int n;
 string s;
 format Digit = range('0', '9');
 format Number = plus(Digit);

 s = ...;
 if (match(s,Number)[]) {
 /* if `s' matched `Number' */
 n = (string) s;
 ...;
 } else {
 n = -1; // `s' was not a number
 ...;
 }
 }
}

As in Perl, strings in <bigwig> can (at runtime) be matched against regexp formats. In the example,
the string s is matched against the format Number (the empty square brackets are explained below).
The match construction returns a boolean stating whether or not the string is in the language defined
by the regular expression.

String recording

<bigwig> powerforms tutorial

http://www.brics.dk/bigwig/Tutorial/powerforms/ (6 of 9) [16/11/2000 15:47:44]

39

http://www.brics.dk/bigwig/compiler/configuration/
http://www.brics.dk/bigwig/compiler/configuration/
Javascript:jumpInfo('match', KEYWORD_INFO)

service {
 session RecordString() {
 string d;
 string e = "bigwig@brics.dk";
 format Word = ...;
 format Email = concat(Word, "@",
 [domain = // format recording
 concat(Word,star(concat(".", Word)))]
);

 if (match(e,Email)[d = domain]) {
 /* Here, `d' is "brics.dk". */
 ...;
 }
 }
}

The format Email in this example contains a ``recording'' regexp named "domain". A recording
regexp will record the string its regexp argument matches when used in a match contruction. Since the
string e is matched by the regexp format Email, match evaluates to true and d is assigned the value
"brics.dk". If a string is not matchable (match returns false), all recordings are assigned initial values
(0 for integers, "" for strings, etc.). This format recording mechanism is reminiscent of parentheses in
Perl regexps.

Formats: File-scanning

service {
 session FileScan() {
 int n;
 file f;
 format Digit = range('0', '9');
 format Number = plus(Digit);

 f = open("hello.txt", "r");
 n = scan(f, Number);
 close(f);
 ...;
 }
}

A final application of regexp formats is file scanning. The construction scan takes a file handle
followed by a regexp format and scan as much of the file from the current file position that is in the
regular language defined by the format and advance the file pointer accordingly. Note that the file
must be in read mode.

Caution: Not all formats are suitable for use with this construction. Imagine applying the format
concat("a",anything,"b") to a very large file. Due to the greedy nature of the scan construct, it will not
know when to quit until it has read (into memory!) the entire file (maybe the very last character is a

<bigwig> powerforms tutorial

http://www.brics.dk/bigwig/Tutorial/powerforms/ (7 of 9) [16/11/2000 15:47:44]

40

http://www.brics.dk/bigwig/refman/format/#record
Javascript:jumpInfo('match', KEYWORD_INFO)
Javascript:jumpInfo('match', KEYWORD_INFO)
Javascript:jumpInfo('scan',KEYWORD_INFO)

"b").

Intermediate
Complex format

service {
 session EnterPassword() {
 string s;
 format Alpha = union(range('a', 'z'),
 range('A', 'Z'));
 format Char3x = concat(anychar,anychar,anychar);
 format AtLeast3x = concat(Char3x, anything);
 format HasNonAlpha = complement(star(Alpha));
 format PW = intersection(AtLeast3x, HasNonAlpha);

 html H = <html>
 Enter your password:
 <input type="password" name="p" format="PW">
 </html>;

 show H receive [s = p];
 ...;
 }
}

This service has five formats Alpha, Char3x, AtLeast3x, HasNonAlpha, and PW the goals of which is
to define a valid (and restrictive) password. Valid passwords must be at least three characters and
contain at least one non-alphanumeric character. The definitions almost speak for themselves. Alpha
is defined to be any lower or upper case alphanumeric character; Char3x to be the concatenation of
any three characters; AtLeast3x to be at least three characters; HasNonAlpha to be any string that has a
non alphanumeric character; and finally PW to be any string at least three characters long that has a
non-alphanumeric character. This format is subsequently bound to a password input field causing the
usual incremental validation behavior.

Advanced
Match: Strange special cases...

<bigwig> powerforms tutorial

http://www.brics.dk/bigwig/Tutorial/powerforms/ (8 of 9) [16/11/2000 15:47:44]

41

service {
 session S() {
 string w = "whatever";
 format Strange = concat([R = anything],
 [S = anything]);

 if (match(w, Strange)[r = R, s = S]) {
 /* Both `r' and `s' are "whatever". */
 ...;
 }
 }
}

Due to an overlap in the two formats in the concatenation (that is, the regexp
concat(anything,anything) is equivalent to anything) and the fact that we minimize the deterministic
finite-state automata (DFAs) produced from the regular expressions, both R and S match the string
"whatever" in the example. Consequently, both r and s hold the value "whatever" in the then-branch
of the if. Also, recordings inside complement constructions may have unpredictable outcomes.
[Technically, this is caused by the merging of states in the compositionally produced automata
(annotated with alphabet symbols and sets of recording symbols)].

<bigwig> powerforms tutorial

http://www.brics.dk/bigwig/Tutorial/powerforms/ (9 of 9) [16/11/2000 15:47:44]

42

Javascript:jumpInfo('complement',KEYWORD_INFO)

<Database Tutorial>

[Basics | Intermediate | Advanced]

<bigwig> is equipped with an internal lightweight database capable of storing all of <bigwig>'s
native values. In this way, external shared variables are accessed and manipulated as local ones,
presenting the programmer with one uniform concept of data manipulation. A variable is made
"shared" (a.k.a. persistent/global/static) by prepending its declaration with the type modifier shared. A
shared variable is shared among all session threads. Among the native values are composite values of
type tuple, relation, and vector.

For the moment, our solution is based on a very general iteration operator called factor, but we are
currently integrating an external database with a subset of SQL into <bigwig>. As can be seen in the
"SQL macro tutorial", <bigwig>'s syntactic macro abstraction mechanism can be used to clothe our
solution as standard SQL queries.

Basics

A shared declaration

service { // A Page Counter
 session Counter() {
 shared int n;
 /* initially zero by default */

 n++; // increase visible to all session threads
 exit (html) n;
 }
}

The variable n declared in this example is prefixed with the type modifier shared. Shared variables are
shared among all session threads. Thus, when one session thread updates it, subsequent reads in other
sessions will get this latest written value. All <bigwig> services have a their own dedicated
(internal) database where shared variables are stored.

Time

<bigwig> database tutorial

http://www.brics.dk/bigwig/Tutorial/database/ (1 of 13) [16/11/2000 15:47:50]

43

Javascript:jumpInfo('shared',KEYWORD_INFO)
Javascript:jumpInfo('tuple',KEYWORD_INFO)
Javascript:jumpInfo('relation',KEYWORD_INFO)
Javascript:jumpInfo('vector',KEYWORD_INFO)
Javascript:jumpInfo('factor',KEYWORD_INFO)
Javascript:jumpInfo('shared',KEYWORD_INFO)

service {
 session LastAccess() {
 shared time last; // initially `notime'
 time t; // initially `notime'

 t = last;
 last = now();
 if (t==notime) t = now;
 exit (html) t;
 }
}

This example just serves to underline that all of <bigwig>'s types (except file handles) can be made
shared, even time. The shared variable last will hold the date and time the session was last accessed
and exit this value onto the client's browser. Here, the time value is output by casting it to an html
value yielding a default formatting as specified in the type conversion section in the reference manual.
Various getX functions (where X is {"Year", "Month", "Day", "Hour", "Minute", "Second",
"Weekday"}) exist for referencing the components of a time value. These can be used to format time
values more appropriately.

Vectors

service {
 html makeGuestBook(vector string w) {
 int i;
 html H = <html><[guests]></html>;
 html GuestDoc = <html>
 <[guest]>
 <[guests]>
 </html>;

 for (i=0; i<|w|; i++) {
 /* |w| is the length of vector w */
 H = H <[guests = GuestDoc <[guest = w[i]]];
 }
 return H;
 }

 session Sign() {
 shared vector string v;
 html SignDoc = <html>
 Please sign the guest book:

 <input type="text" name="guest">
 </html>;
 string s;

 show SignDoc receive [s = guest];
 v = v + vector { s }; // vector constant

<bigwig> database tutorial

http://www.brics.dk/bigwig/Tutorial/database/ (2 of 13) [16/11/2000 15:47:50]

44

Javascript:jumpInfo('time',KEYWORD_INFO)
http://www.brics.dk/bigwig/refman/types#Conversion
Javascript:jumpInfo('getYear',KEYWORD_INFO)

 exit makeGuestBook(v); // call-by-value
 }
}

This guestbook service has a shared vector v intended to hold the names of all the people who have
signed the guestbook. The Sign session initially outputs a document prompting the client for his name.
This name is subsequently added to the end of the guestbook list (v). The expression "vector { s }" is a
constant string vector of length one. Finally, a document showing all the names of the people who
have signed the guestbook is constructed by a call to a function makeGuestBook and exited to the
client. The call to the function makeGuestBook causes the vector argument to be copied
(call-by-value) and the function will thus operate on this copy (referred to as w). The function will
iterate through the vector and build a document by plugging the names into document templates
producing a document holding the list of the names.

Notes on efficiency!

service {
 shared vector int v;

 session InefficientSum() {
 int i, sum;

 /* highly inefficient!!! */
 for (i=0; i<|v|; i++) { // database lookup (v)
 sum += v[i]; // database lookup (v)
 }
 exit (html) sum;
 }

 session EfficientSum() {
 int i, sum;
 vector int local_v;

 local_v = v; // only one database lookup (v)
 /* highly efficient! */
 for (i=0; i<|local_v|; i++) { // mem. (local_v)
 sum += local_v[i]; // memory lookup (local_v)
 }
 exit (html) sum;
 }
}

This service has two sessions both calculating the sum of the integer values in the shared vector v
(assumed to hold some numbers to be summed). The first session InefficientSum shows how not to do
this, calculating the sum in a highly inefficient way. The second session EfficientSum, however, does
the same thing, only efficiently. The InefficientSum session iterates through the shared vector using a
for statement. Notice the reference to v (written in red font) in the condition expression and in the
statement body of the for statement. These two references both cause the shared vector v to be read

<bigwig> database tutorial

http://www.brics.dk/bigwig/Tutorial/database/ (3 of 13) [16/11/2000 15:47:51]

45

from the database (disk), regardless of whether it has just been read (it could have been modified in
between). Consequently, the for statement will produce two database lookups for every iteration,
yielding a very inefficient calculation. The session EfficientSum, however, looks up v (in the database)
and assigns (by value) this vector to a local integer vector variable called local_v and performs the
sum calculation on this local copy avoiding the many database lookups and yielding a much more
efficient calculation. Thus, whenever it is required to iterate through a shared vector structure, it is
preferable to ``work on a local copy''.

Schemas and tuples

service {
 session S() {
 schema Person { // Declare a "Person" schema
 bool is_male;
 int age;
 string name;
 }
 tuple Person p; // Declare p as a Person-tuple
 /* t = tuple {is_male=false, age=0, name=""} */

 p = tuple { is_male=true, age=42, name="John" };
 /* p = tuple {is_male=true,age=42,name="John"} */
 p.age++;
 /* p = tuple {is_male=true,age=43,name="John"} */

 ...;
 }
}

This service defines a schema called Person which has three components, namely a boolean is_male,
an integer age, and a string name. This schema is subsequently used to define a tuple p. Tuples
correspond to structs in C and their components initially hold the initial values corresponding to their
type. In this example, the variable p will initially have is_male to false, age to zero, and name to ""
(the empty string). The first statement assigns to p a constant tuple expression with a schema that is
compatible to that of Person. The next statement increases the age component of p by one (from 42 to
43).

Tuples are unordered

<bigwig> database tutorial

http://www.brics.dk/bigwig/Tutorial/database/ (4 of 13) [16/11/2000 15:47:51]

46

Javascript:jumpInfo('schema',KEYWORD_INFO)
Javascript:jumpInfo('tuple',KEYWORD_INFO)
Javascript:jumpInfo('tuple',KEYWORD_INFO)
Javascript:jumpInfo('tuple',KEYWORD_INFO)

service {
 session S() {
 schema Person {
 bool is_male;
 int age;
 string name;
 }
 tuple Person p1, p2;

 p1 = tuple { is_male=true, age=42, name="John" };
 p2 = tuple { name="John", is_male=true, age=42 };
 if (p1 == p2) {
 /* They are equal (i.e. exec. proceeds here) */
 ...;
 }
 }
}

The purpose of this example is to illustrate that tuples are unordered, meaning that the if statement's
condition expression will evaluate to true as the values held in p1 and in p2 are identical.

Tuple manipulation

service {
 session S() {
 schema A {
 int n;
 int m;
 float f;
 }
 schema B {
 int n;
 string s;
 }
 schema C {
 int n, m;
 float f;
 string s;
 }
 tuple A a;
 tuple B b;
 tuple C c;

 a = tuple { n=42, f=3.14, m=7 };
 b = tuple { s="foo", n=87 };
 c = a << b; // tuple left-overwrite
 /* c = tuple { n=87, f=3.14, m=7, s="foo"} */
 c.s = "bar";

<bigwig> database tutorial

http://www.brics.dk/bigwig/Tutorial/database/ (5 of 13) [16/11/2000 15:47:52]

47

 /* c = tuple { n=87, f=3.14, m=7, s="bar"} */
 b = c \+ (n, s); // tuple project
 /* b = tuple { n=87, s="bar"} */
 ...;
 }
}

This example is not useful as a service but merely meant to illustrate the functionality of the two tuple
operators "<<" (">>") and "\+" ("\-"). Three schemas A, B, and C are defined and used to declare three
tuple variables a, b, and c. The first and second statement, assign tuple constants to a and b. The third
statement assigns to c the ``tuple left overwrite'' of a and b. This operation yields a tuple with a
schema that is the union of the schemas of the two arguments. All components with the same names
are required to have the same types. The result will contain all the union of the components of the two
arguments picking the right one whenever both are present in the two arguments. This operator also
has a dual, ">>" that instead picks the component from the left argument in case they are present in
both arguments. Thus, c will after this operation have 87 as its n component. The fourth statement
assigns to the s component of c the constant string "bar". The fifth and final statement assigns to b, c
projected onto the two components; n and s. A dual tuple operation "\-" exist that instead of naming
the components to keep, names the ones to ``throw away''.

Vectors of tuples

service {
 session S() {
 int i, age_sum;
 schema Person {
 bool is_male;
 int age;
 string name;
 }
 vector Person v;

 v = vector {
 tuple { is_male=true, age=43, name="John" },
 tuple { is_male=false, age=42, name="Jane" }
 };
 for (i=0; i<|v|; i++) {
 age_sum += v[i].age;
 }
 /* Here, age_sum = 85 */
 ...;
 }
}

Schemas and vectors can also be used to define ``tuple vectors'', which are vectors with tuples as
entries. This service defines a Person-vector variable v and assigns to it a constant vector holding two
tuples. The for statement will subsequently iterate through this vector and calculate the sum of the
age components in the vector in age_sum (producing 85).

<bigwig> database tutorial

http://www.brics.dk/bigwig/Tutorial/database/ (6 of 13) [16/11/2000 15:47:52]

48

Relations (no doubles)

service {
 session S() {
 int n;
 schema Person {
 bool is_male;
 int age;
 string name;
 }
 relation Person r;

 r = relation {
 tuple { is_male=true,age=43,name="John" },
 tuple { is_male=false,age=42,name="Jane" },
 tuple { is_male=false,age=42,name="Jane" }
 };
 n = |r|; // n is 2 (not 3)
 }
}

This service again defines the schema Person used in the previous examples. This time, this schema
is used to define a relation r (of Persons). Relations differ from vectors in that there is no ordering on
the (tuple) elements. Thus, the constant relation assigned to r in the first statement will immediately
``reduce'' to a relation of ``length'' 2, ignoring the multiplicity of the tuple mentioned twice in the
constant relation. Consequently, the expression |r| evaluates to 2 and not 3. Relations can be seen as a
set of tuples. The primary operation on relations is called factor and is discussed below.

Intermediate

Factor (and `#')

service {
 session S() {
 int age_sum;
 schema Person {
 bool is_male;
 int age;
 string name;
 }
 relation Person r;

 r = relation {
 tuple { is_male=true, age=38, name="Homer" },

<bigwig> database tutorial

http://www.brics.dk/bigwig/Tutorial/database/ (7 of 13) [16/11/2000 15:47:52]

49

Javascript:jumpInfo('relation',KEYWORD_INFO)
Javascript:jumpInfo('relation',KEYWORD_INFO)
Javascript:jumpInfo('relation',KEYWORD_INFO)
Javascript:jumpInfo('relation',KEYWORD_INFO)
Javascript:jumpInfo('relation',KEYWORD_INFO)
Javascript:jumpInfo('relation',KEYWORD_INFO)

 tuple { is_male=false, age=34, name="Marge" },
 tuple { is_male=true, age=10, name="Bart" }
 tuple { is_male=false, age=8, name="Lisa" }
 tuple { is_male=false, age=1, name="Maggie" }
 };
 factor (r) {
 age_sum += #.age;
 }; // Note: semi-colon required
 /* Here, age_sum is (38+34+10+8+1 =) 91 */
 ...;
 }
}

The simplest factor expression takes one argument which must be a relation (here r). The (statement)
body of the factor expression will be executed precisely once for each tuple in the relation given as
argument. In each iteration the special (read-only) variable ``#'' will be set to the value of the current
tuple. Thus the above example will calculate the sum of the ages of the persons in the relation r.

Factor (and return)

service {
 session S() {
 int age_sum;
 schema Person {
 bool is_male;
 int age;
 string name;
 }
 relation Person r, s;

 r = relation {
 tuple { is_male=true, age=38, name="Homer" },
 tuple { is_male=false, age=34, name="Marge" },
 tuple { is_male=true, age=10, name="Bart" }
 tuple { is_male=false, age=8, name="Lisa" }
 tuple { is_male=false, age=1, name="Maggie" }
 };
 s = factor (r) {
 if (#.is_male) {
 return #; // Add current tuple to result.
 }
 };
 /* Here, s contains `homer' and `bart'. */
 ...;
 }
}

A factor expression evaluates to a relation. In the previous example this resulting value was ignored.
Here, however, we will assign this value to the relation (Person) variable s. In the (statement) body of

<bigwig> database tutorial

http://www.brics.dk/bigwig/Tutorial/database/ (8 of 13) [16/11/2000 15:47:53]

50

a factor expression return statements are permitted. The value resulting from execution of a factor
expression will be the union of all the tuples (or relations) returned in its body. Consequently, the
value of s in the example will be all the tuples for which the is_male field is true (that is, `homer' and
`bart'). The type of the tuples (or relations) returned are not required to be the same as ``#'', but they
are required to all be of the same schema which will be the type of the factor expression as a whole.

Factor (and identifier arguments)

service {
 session S() {
 int n;
 schema Person {
 bool is_male;
 int age;
 string name, hair;
 }
 relation Person r;

 r = relation {
 tuple { is_male=true, age=38,
 name="Homer", hair="none" },
 tuple { is_male=false, age=34,
 name="Marge", hair="blue" },
 tuple { is_male=true, age=10,
 name="Bart", hair="yellow" },
 tuple { is_male=false, age=8,
 name="Lisa", hair="yellow" },
 tuple { is_male=false, age=1,
 name="Maggie", hair="yellow" }
 };
 factor (r; is_male, hair) {
 n++;
 };
 /* Here, n = 4. */
 ...;
 }
}

A variant of the factor expression takes a comma separated list of identifiers after a semi-colon
following the first (relation) argument. The relation resulting from the evaluation of the expression
argument is projected onto these attributes (which must name attributes in the relational argument)
forming a new relation for which any duplicates are removed. The statement will then be executed
once per tuple in this relation, setting "#" to the value of the current tuple. Thus, the factor expression
will iterate through the relation:
relation {
 tuple {is_male = true, hair = "none"},
 tuple {is_male = false, hair = "blue"},
 tuple {is_male = true, hair = "yellow"},

<bigwig> database tutorial

http://www.brics.dk/bigwig/Tutorial/database/ (9 of 13) [16/11/2000 15:47:53]

51

 tuple {is_male = false, hair = "yellow"}
}

The first three tuple are derived from `Homer', `Marge', and `Bart', respectively, whereas the last
tuple comes from both `Lisa' and `Maggie' since they are indistinguishable with respect to gender and
hair colour (recall that speaking of the first and fourth tuple really does not make sense since tuples of
relations are unordered). The body of the factor expression in the example simply increases an integer
variable n in each iteration of the four tuples, leaving n with a final value of 4 after execution of the
factor expression.

Advanced

Factor (and `@')

service {
 session S() {
 schema Person {
 bool is_male;
 int age;
 string name, hair;
 }
 relation Person r;

 schema AgeName {
 int age;
 string name;
 }
 relation AgeName a;

 r = relation {
 tuple { is_male=true, age=38,
 name="Homer", hair="none" },
 tuple { is_male=false, age=34,
 name="Marge", hair="blue" },
 tuple { is_male=true, age=10,
 name="Bart", hair="yellow" },
 tuple { is_male=false, age=8,
 name="Lisa", hair="yellow" },
 tuple { is_male=false, age=1,
 name="Maggie", hair="yellow" }
 };
 a = factor (r; is_male, hair) {
 if (|@|==2) return @;
 };
 ...;
 }

<bigwig> database tutorial

http://www.brics.dk/bigwig/Tutorial/database/ (10 of 13) [16/11/2000 15:47:54]

52

}

Inside the (statement) body of a factor expression, the special (read-only) variable ``@'' is available.
It will for each tuple in the iteration contain a relation with a schema that is the attributes of the
relation given to the factor expression as argument (here, is_male, age, name, and hair), but without
the ones names in the identifier list (here is_male and hair). Thus, in this example, the type of ``@'' is
a relation with schema age (int) and name (string). The value of ``@'' will in each iteration contain a
relation with the contributions (with the attributes named in the identifier list projected away) of the
tuples of the current tuple processed. The tuples `Homer', `Marge', and `Bart', all give rise to a ``@''
relation of size 1 containing these tuples' ages and names. The tuple derived from `Lisa' and `Maggie'
will give rise to a ``@'' relation of size 2 (which is returned from the factor expression). Thus, after
the factor expression, a will contain the following relation:
relation {
 tuple { age = 8, name = "Lisa" },
 tuple { age = 1, name = "Maggie" }
}

Factor (and mutiple relation arguments)

service {
 session S() {
 schema Person {
 int age;
 string name;
 }
 relation Person m, f, all;

 m = relation {
 tuple { age=38, name="Homer" },
 tuple { age=10, name="Bart" }
 };
 f = relation {
 tuple { age=34, name="Marge" },
 tuple { age=8, name="Lisa" },
 tuple { age=1, name="Maggie" }
 };
 all = factor (m, f) {
 return #;
 };
 ...;
 }
}

The factor expression can also take multiple (relation) arguments with the effect that the iteration
will be performed on the intersection of the relations. The schema of this relation is thus the
intersection of the two schemas (which in this case is Person since both arguments are of schema
Person). Thus, the variable all will after the factor expression be:
relation {

<bigwig> database tutorial

http://www.brics.dk/bigwig/Tutorial/database/ (11 of 13) [16/11/2000 15:47:54]

53

 tuple { age=38, name="Homer" },
 tuple { age=34, name="Marge" },
 tuple { age=10, name="Bart" },
 tuple { age=8, name="Lisa" },
 tuple { age=1, name="Maggie" }
}

Factor (and `@n')

service {
 session S() {
 schema Person {
 int age;
 string name;
 }
 relation Person p;

 schema Account {
 int amount;
 string name;
 }
 relation Account a;

 schema PersonAccount {
 int age, amount;
 string name;
 }
 relation Person pa;

 p = relation {
 tuple { age=38, name="Homer" },
 tuple { age=34, name="Marge" },
 tuple { age=10, name="Bart" },
 tuple { age=8, name="Lisa" },
 tuple { age=1, name="Maggie" }
 };
 a = relation {
 tuple { name="Homer", amount=87 },
 tuple { name="Marge", amount=42 },
 tuple { name="Bart", amount=1 },
 tuple { name="Lisa", amount=304 }
 };
 pa = factor (p, a) {
 return cart(relation {#}, cart(@1, @2));
 };
 ...;
 }
}

<bigwig> database tutorial

http://www.brics.dk/bigwig/Tutorial/database/ (12 of 13) [16/11/2000 15:47:55]

54

This example exhibits a factor expression with two (relation) arguments. The iteration will thus be
performed on the intersection of the relations. The iteration will thus in this example have a schema
that is name (string). The special (read-only) variables ``@1'' and ``@2'' will for each iteration
contain the rest relations compared to the first and second arguments of the factor expression.
Consequently, for the iteration where `#' is equal to tuple { name="Homer" }, @1 and @2
will respectively be the relations:
relation { tuple { age=38 } }

relation { tuple { amount=87 } }

Thus, the variable pa will after the factor expression be:
relation {
 tuple { name="Homer", age=38, amount=87 },
 tuple { name="Marge", age=34, amount=42 },
 tuple { name="Bart", age=10, amount=0 },
 tuple { name="Lisa", age=8, amount=304 }
}

<bigwig> database tutorial

http://www.brics.dk/bigwig/Tutorial/database/ (13 of 13) [16/11/2000 15:47:55]

55

<Concurrency Control Tutorial>

[Basics | Intermediate | Advanced]

This tutorial will present how concurrency control is handled in <bigwig>.

Understanding the details of <bigwig>'s concurrency control language is not essential for writing
<bigwig> services. Most commonly used concurrency control abstractions (such as mutual
exclusion regions, reader/writer accessible resources and reader/writer protected shared variables) are
provided in the "standard macro library" (std.wigmac) because of <bigwig>'s syntactic macro
language. You can get very far using only these macros.

<bigwig> allows the programmer to specify labeled checkpoints (called "wait" statements) in the
service code. The order in which session threads pass these checkpoints may be constrained by shared
service requirements (called "constraints"). All constraints are written in a logic language which is
compiled into a centralized safety controller (process). Each time a session thread wants to pass a
checkpoint (a "wait" statement) it asks the safety controller for permission to do so. The controller
only grants permission when the entire service is in a state where this is a safe thing to do (that is,
when passing a checkpoint does not cause violation of the safety requirements).

Below, you will be shown how to specify constraints, however, most of the time you will simply use
the high-level concurrency abstractions provided in the "standard macro library" (std.wigmac).

Basics

Wait and constraints

service {
 constraint {
 label A; // Declare label `A'.
 /* Safety requirements are specified here.
 Specify when it is safe to pass label
 `A' in service code */
 }

 session S() {
 ...;
 wait A; /* ask controller for permission
 to pass this point. */
 ...;
 }
}

<bigwig> concurrency tutorial

http://www.brics.dk/bigwig/Tutorial/concurrency/ (1 of 9) [16/11/2000 15:47:59]

56

http://www.brics.dk/macro/std.wigmac
http://www.brics.dk/macro/std.wigmac

This service declares one label (checkpoint) A written in a ``constraint { ... }'' region. Since there, in
this example, are no formulas restricting the A label, session threads are at runtime always allowed to
pass the wait statement in the session S. Each time a session thread passes the wait statement in the
session S, the controller is asked for permission. Again, since there are no formulas restricting the
passing of A labels, permission will always (immediately) be given.

Formulas

service {
 constraint {
 label A;
 all t: !A(t); /* never grant permission to
 pass `A' */
 }

 session S() {
 ...;
 wait A; // permission is never given!
 ...;
 }
}

This service is almost identical to the previous one but with one addition: a safety requirement
formula: (all t: !A(t);). As one can see the formulas are specified in a logic (monadic first-order logic
on strings "M1L-Str" to be exact). The formula states that forall [all] possible points [t] in time (where
some label has been passed) it is not [!] the case that [A(t)] A was passed at time t. Consequently, it is
never allowed to pass A labels and the session S will hang indefinitely when it executes the wait (A)
statement. This is not a useful service but it illustrates the basics of defining formulas and how they
are used to restrict passing of labels. Usually, a service will have several labels the passing of some
will disallow the passing of others until other labels still are passed.

Intermediate

Mutex

<bigwig> concurrency tutorial

http://www.brics.dk/bigwig/Tutorial/concurrency/ (2 of 9) [16/11/2000 15:47:59]

57

Javascript:jumpInfo('constraint',KEYWORD_INFO)
Javascript:jumpInfo('wait', KEYWORD_INFO)
Javascript:jumpInfo('wait', KEYWORD_INFO)
http://www.brics.dk/bigwig/refman/concurrency/#formulas
Javascript:jumpInfo('all', KEYWORD_INFO)

service {
 constraint {
 label A, B;
 /* Everytime we pass two (different) A's,
 we must have passed a B in between. */
 all t0: all t2: A(t0) && A(t2) && t0<t2 =>

 is t1: t0<t1 && t1<t2 && B(t1);

 }

 session ExclusiveAccess() {
 wait A;
 /* exclusive access */
 wait B;
 }
}

This is a more realistic and useful service example. Two labels A and B are declared and both
restricted by one safety requirement formula. The formula states that in between two different
passings of an A label, there must be a passing of a B label. Consequently, no one is allowed to pass
the wait (A) statement in the session ExclusiveAccess when someone has passed the wait (A)
statement and not subsequently passed the wait (B) statement. Otherwise, the formula would be
violated. This yields exclusive access to the statements between the two wait statements. The formula
yielding mutual exclusion between A and B, can be defined as a macro so that the programmer does
not have to define it every time mutual exclusion is required. In fact, even more powerful abstractions
exist that abstracts away from the defining of the labels and the insertion of the wait statements
around the statements requiring exclusive access. These macros can be found in the standard macro
library tutorial: "std.wigmac".

Mutex (using forbid macro)

require <std.wigmac>

service {
 constraint {
 label A, B;
 /* Everytime we pass two (different) A's,
 we must have passed a B in between. */
 forbid A when is t: A(t) &&
 all tt: t<tt => !B(tt);
 }

 session ExclusiveAccess() {
 wait A;
 /* exclusive access */
 wait B;
 }
}

<bigwig> concurrency tutorial

http://www.brics.dk/bigwig/Tutorial/concurrency/ (3 of 9) [16/11/2000 15:47:59]

58

http://www.brics.dk/bigwig/macro/std.wigmac
http://www.brics.dk/bigwig/refman/keywords/?forbid
http://www.brics.dk/bigwig/refman/keywords/?forbid

The mutual exclusion formula can also be defined using the forbid-when macros from the standard
macro library: "std.wigmac". They enable us to write (a little more directly) that the passing of an A is
forbidden [forbid] when [when] there is [is] someone that has passed an A (at time some point in time
[t]) and no one has since [t<tt] has passed a B. This formula can be proved semantically equivalent to
the one in the previous example.

Mutex (using mutex macro)

require <std.wigmac>

service {
 constraint {
 label A, B;
 mutex(A, B);
 }

 session ExclusiveAccess() {
 wait A;
 /* exclusive access */
 wait B;
 }
}

Same example as the previous one, but made by invoking the mutex macro from standard macro
library: "std.wigmac".

Region/Exclusive (using region/exclusive macro)

require <std.wigmac>

service {
 region R;

 session ExclusiveAccess() {
 exclusive (R) {
 /* exclusive access */
 }
 }
}

Semantically equivalent to the previous example, but made by invoking the region and exclusive
macros from standard macro library: "std.wigmac".

A bad idea!

<bigwig> concurrency tutorial

http://www.brics.dk/bigwig/Tutorial/concurrency/ (4 of 9) [16/11/2000 15:47:59]

59

http://www.brics.dk/bigwig/refman/keywords/?forbid
http://www.brics.dk/bigwig/refman/keywords/?forbid
http://www.brics.dk/bigwig/macro/std.wigmac
http://www.brics.dk/bigwig/refman/keywords/?forbid
http://www.brics.dk/bigwig/refman/keywords/?forbid
http://www.brics.dk/bigwig/refman/keywords/?mutex
http://www.brics.dk/bigwig/refman/keywords/?mutex
http://www.brics.dk/bigwig/macro/std.wigmac
http://www.brics.dk/bigwig/refman/keywords/?region
http://www.brics.dk/bigwig/refman/keywords/?exclusive
http://www.brics.dk/bigwig/refman/keywords/?region
http://www.brics.dk/bigwig/refman/keywords/?exclusive
http://www.brics.dk/bigwig/macro/std.wigmac

require <std.wigmac>

service {
 html H = ...;
 region R;

 session ExclusiveAccess() {
 exclusive (R) {
 show H; // A bad idea!!!
 }
 }
}

One should clearly avoid placing exit statements in mutual exclusion regions for the obvious reason,
that the exclusive access will never be ``released'', causing permanent blocking of the service. Note
that the same thing applies for show statements, as clients may for some reason decide to not
complete the service and walk away in the middle of service execution, leaving the service ``blocked''.

This can be partially amended by placing a wait (exit-label) statement in the timeout of the show
statement (but the region will be held until the show statement times out [See span and
SPANDEFAULT] - default is 48 hours).

Initialization example

service {
 shared vector int v;

 constraint {
 label Init, Run;
 /* Everytime we pass `Run', we must have passed
 an `Init' before. */
 all t1: Run(t1) => is t0: t0<t1 && Init(t0);

 }

 session Initialize() {
 v = vector { 42, 87 }; // initialize.
 wait Init; /* Pass `Init' which enables `Run'
 passes. */
 }

 session Ses() {
 wait Run; /* Only pass if someone has passed
 `Init'. */
 ...; // run...
 }
}

Often a service has some data the initialization of which is required for the service to behave

<bigwig> concurrency tutorial

http://www.brics.dk/bigwig/Tutorial/concurrency/ (5 of 9) [16/11/2000 15:47:59]

60

http://www.brics.dk/bigwig/refman/keywords/?region
http://www.brics.dk/bigwig/refman/keywords/?exclusive
Javascript:jumpInfo('span', KEYWORD_INFO)
http://www.brics.dk/bigwig/compiler/configuration/#SPANDEFAULT

correctly. This service has a vector v which is assumed to hold reasonable data in the session Ses. This
requirement can easily be specified using <bigwig>'s concurrency control. Two labels Init and Run
are declared and restricted appropriately by a formula. This formula states that forall [all] Run labels
passed (at some point in time [t1]), it must be the case that there is [is] someone that has before
(t0<t1) that passed (at time t0) an Init label. Consequently, no one can pass the wait (Run) statement
in the session Ses), unless someone has run an Initialize session (passed the Init label). Although the
service has the right intension, it has a very serious problem. Lots of sessions will hang at the wait
(Run) statement (probably very long time) waiting for someone to pass the Init label. In some cases
this would indeed be interesting (e.g. if the session thread emailed the client when it was eventually
allowed to proceed), but in many cases one would probably like to exit execution with an appropriate
(error) message. We shall see how this is done in the next example:

Wait-branch (timeout)

service {
 shared vector int v;

 constraint {
 label Init, Run;
 all t1: Run(t1) => is t0: t0<t1 && Init(t0);

 }

 session Initialize() {
 v = vector { 42, 87 }; // initialize.
 wait Init; /* Pass `Init' which enables
 `Run' passes. */
 }

 session Ses() {
 wait {
 case Run:
 exit (html) "Service not initialized!";
 break;
 timeout 0:
 /* execution proceeds here if permission
 is not granted to pass checkpoint
 within zero seconds */
 ...; // run...
 break;
 }
 }
}

The problem with the previous example that lots of sessions will hang at the wait (Run) statement,
waiting for someone to pass the Init label can easily be solved by adding a timeout case in the wait
statement. The wait statement we have seen thus far is in fact a special case of a more general wait
statement with a switch-like syntax. A wait statement is allowed to contain a number of cases (of
labels) plus one timeout case. The semantics of the construction is that the session thread waits for

<bigwig> concurrency tutorial

http://www.brics.dk/bigwig/Tutorial/concurrency/ (6 of 9) [16/11/2000 15:47:59]

61

permission (from the controller) to pass any one of the listed labels. When permission is given,
execution resumes at the statements corresponding to the label passed. If several labels are passable,
the controller will non-deterministically select one of them. If permission is not given within a certain
number of seconds (here zero), the waiting is aborted and execution resumes at the statements
specified at the timeout (wait-)branch. Thus, Ses sessions started without the service having been
initialized, will immediately exit with the html (error) message reading "Service not initialized!".
Consequently, no services will hang at the wait statement in the Ses session.

Advanced

All formulas get prefix closed

service {
 constraint {
 label A;
 is t: A(t); // formula gets prefix closed
 }
}

All formulas get prefix closed, since it does not make sense to restrict the execution of a service by a
formula that is not prefix closed. Hence, the formula is t: A(t) has no effect whatsoever, since it will
be prefix closed and thus valid on all runs.

Beyond regularity (triggers)

require <std.wigmac>

service {
 shared int n;
 constraint { // Reader/Writer protocol:
 label EnterR, ExitR, EnterW, ExitW;

 mutex(EnterW, ExitW);
 trigger noR when #EnterR == #ExitR;
 allow EnterW when never(EnterR) ||
 (is t: noR(t) &&
 (all tt: t<tt => !EnterR(tt)));
 forbid EnterR when (is t: EnterW(t)) &&
 (all tt: t<tt => !ExitW(tt));
 }

 session S() {
 int x;

 wait EnterR;

<bigwig> concurrency tutorial

http://www.brics.dk/bigwig/Tutorial/concurrency/ (7 of 9) [16/11/2000 15:47:59]

62

 x = n; // read `n'
 wait ExitR;
 ...;
 wait EnterW;
 n = x+1; // write `n'
 wait ExitW;
 }
}

Consider the reader/writer protocol bounded by the following constraints:
At any given time there must be at most one thread writing.●

While there are threads reading there must not be any threads writing.●

While there are threads writing there must not be any threads reading.●

Unfortunately, this cannot be expressed in "M2L-Str" since we would have to somehow remember the
(unbounded!) number of readers at any given moment. The positions at which there are no readers in
progress are exacltly those where the number of EnterR and Exit_R labels occuring before that
position are the same. This of course corresponds to the language {anbn | n >= 0} which is
non-regular and therefore cannot be expressed in "M2L-Str". We can of course constrain the problem
to any fixed maximum number of readers (N) corresponding to {anbn | N >= n >= 0} which indeed is
a regular language (for one thing it is finite) and hence expressible in "M2L-Str".

In order to overcome this hurdle, we have invented a notion of triggers. Triggers are constructs that
need to be explicitly declared. The declaration...

trigger noR when #EnterR == #ExitR;

...will give us a special label (in this case noR [no active readers]) that will be passed by the controller
once each time the equation becomes true (goes from being false to being true). In this example noR
will be passed each time the number of EnterR and ExitR labels become equal.

Again, all of this can transparently be made into a high-level abstraction by <bigwig>'s syntax
macro language. Two macros, resource and protected, are available in th standard macro library
tutorial: "std.wigmac", implementing the reader/writer protocol.

Protected/Reader/Writer macros

<bigwig> concurrency tutorial

http://www.brics.dk/bigwig/Tutorial/concurrency/ (8 of 9) [16/11/2000 15:47:59]

63

Javascript:jumpInfo('trigger', KEYWORD_INFO)
http://www.brics.dk/bigwig/refman/keywords/?resource
http://www.brics.dk/bigwig/refman/keywords/?protected
http://www.brics.dk/bigwig/macro/std.wigmac

require <std.wigmac>

service {
 protected shared int n;

 session S() {
 int x;

 reader (n) x = n; // read `n'
 ...;
 writer (n) n = x+1; // write `n'
 }
}

Semantically equivalent to the previous example, but made by invoking the protected and reader /
writer macros from standard macro library: "std.wigmac".

<bigwig> concurrency tutorial

http://www.brics.dk/bigwig/Tutorial/concurrency/ (9 of 9) [16/11/2000 15:47:59]

64

http://www.brics.dk/bigwig/refman/keywords/?protected
http://www.brics.dk/bigwig/refman/keywords/?reader
http://www.brics.dk/bigwig/refman/keywords/?writer
http://www.brics.dk/bigwig/refman/keywords/?protected
http://www.brics.dk/bigwig/refman/keywords/?reader
http://www.brics.dk/bigwig/refman/keywords/?writer
http://www.brics.dk/bigwig/macro/std.wigmac

<Macro Tutorial>

[Basics | Intermediate | Advanced]

All macros in <bigwig> must be placed in packages (that is, files) and required by the service in
order to be available for usage in the service program.

Basics

A very simple macro: Pi

---pi.wigmac---

syntax <floatconst> pi ::= {
 3.1415926
}

require "pi.wigmac"

service {
 session S() {
 float f;

 f = pi;
 ...;
 }
}

One of the simplest macros one could write, would be a macro that does not take any arguments as is
the case for the macro pi in the example. When declared it will appear to the programmer as if the
floatconst syntactic category had been extended with a production pi. This is different from a lexical
macro in that the macro invocation of pi is only allowed in places where a floatconst would be. Also,
the body of the macro is parsed and thus syntax checked to see if it complies with the declared return
type (here floatconst) at definition time (not expansion time). This ensures that no parse errors are
produced as a consequence of invoking the macro, regardless of invocation context.

A macro with an argument: Maybe

<bigwig> macro tutorial

http://www.brics.dk/bigwig/Tutorial/macro/ (1 of 17) [16/11/2000 15:48:05]

65

Javascript:jumpInfo('pi', KEYWORD_INFO)
Javascript:jumpInfo('pi', KEYWORD_INFO)
Javascript:jumpInfo('pi', KEYWORD_INFO)
Javascript:jumpInfo('pi', KEYWORD_INFO)

---maybe.wigmac---

syntax <stm> maybe <stm S> ::= {
 if(random(2)==1) <S>
}

require "maybe.wigmac"

service {
 session S() {
 html H = ...;

 maybe show H;
 ...;
 }
}

This example defines a new construct, maybe, that takes an argument, namely a statement and
executes it with 50% probability. The argument taken (S) refer to a syntax tree (of kind statement)
produced from parsing a statement and is in the body of the macro referred to as a normal identifier in
angled brackets (<S>).

A macro definition with token separators: Plus

---plus.wigmac---

syntax <regexp> plus (<regexp R>) ::= {
 concat(<R>, star(<R>))
}

require "plus.wigmac"

service {
 session S() {
 format Digit = range('0', '9');
 format Number = plus(Digit);

 ...;
 }
}

In the <bigwig> grammar, one can see that there is something called star for Kleene's star on
regular languages, signaling zero-or-more. However, there is nothing called "plus" for one-or-more.
Such a construct could easily be defined by a macro. This is a nice example of a macro that uses token
separators to enforce a particular syntax. The macro definition contains two tokens, namely the two
parentheses. The compiler will thus automatically enforce that invocations of the macro plus contain
the two parentheses in the sense that it would be a syntactic error to omit them. In this way the macro

<bigwig> macro tutorial

http://www.brics.dk/bigwig/Tutorial/macro/ (2 of 17) [16/11/2000 15:48:05]

66

Javascript:jumpInfo('maybe', KEYWORD_INFO)
Javascript:jumpInfo('maybe', KEYWORD_INFO)
Javascript:jumpInfo('plus', KEYWORD_INFO)
http://www.brics.dk/bigwig/refman/syntax/#regexp
Javascript:jumpInfo('star',KEYWORD_INFO)
Javascript:jumpInfo('plus', KEYWORD_INFO)

author can tailor the macros to have the desired look-and-feel.

Caution: this extreme flexibility could be abused to write macros that expected horrific syntax with,
for instance, unbalanced parentheses of varying kinds. So the macro programmer should take some
care when designing a macro's invocation syntax.

A macro with an identifier delimiter: Repeat-until

---repeat_until.wigmac---

syntax <stm> repeat <stm S> until (<exp E>) ; ::= {
 {
 <S>
 while (!<E>) <S>
 }
}

require "repeat_until.wigmac"

service {
 session S() {
 int x, y, z;

 ...;
 repeat {
 x = x * y;
 y--;
 } until (y==0);
 ...;
 }
}

This macro, repeat-until will take two arguments, S and E, delimited not only by tokens but also by an
identifier "until". The repeat-until construct is transparent in the sense that it appears to the
programmer as if it really was in the language.

Caution: The statement argument S is used twice in the body of the macro and because arguments are
copied (for good reason), the repeat-until macro may cause an explosion in the size of the parse tree
produced when the construct is nested. We shall see later how to define the repeat-until macro
without potential parse tree explosion.

A macro in terms of another: Forever

<bigwig> macro tutorial

http://www.brics.dk/bigwig/Tutorial/macro/ (3 of 17) [16/11/2000 15:48:06]

67

Javascript:jumpInfo('repeat', KEYWORD_INFO)
Javascript:jumpInfo('repeat',KEYWORD_INFO)
Javascript:jumpInfo('repeat', KEYWORD_INFO)
Javascript:jumpInfo('repeat',KEYWORD_INFO)
Javascript:jumpInfo('repeat', KEYWORD_INFO)

---forever.wigmac---

syntax <stm> repeat <stm S> until (<exp E>) ; ::= {
 {
 <S>
 while (!<E>) <S>
 }
}

syntax <stm> forever <stm S> ::= {
 repeat <S> until (false);
}

require "forever.wigmac"

service {
 session S() {
 html H = ...;

 forever show H;
 }
}

A macro can easily be defined in terms of another as is the case in this example, where we have
defined a new macro forever in terms of repeat-until. The repeat-until macro will only be expanded
once, namely when the forever macro is defined (i.e. parsed).

2pass scope rules

---forever.wigmac---

syntax <stm> forever <stm S> ::= {
 repeat <S> until (false);
}

syntax <stm> repeat <stm S> until (<exp E>) ; ::= {
 {
 <S>
 while (!<E>) <S>
 }
}

require "forever.wigmac"

service {
 session S() {

<bigwig> macro tutorial

http://www.brics.dk/bigwig/Tutorial/macro/ (4 of 17) [16/11/2000 15:48:06]

68

Javascript:jumpInfo('repeat', KEYWORD_INFO)
Javascript:jumpInfo('forever', KEYWORD_INFO)
Javascript:jumpInfo('forever', KEYWORD_INFO)
Javascript:jumpInfo('repeat',KEYWORD_INFO)
Javascript:jumpInfo('repeat', KEYWORD_INFO)
Javascript:jumpInfo('forever', KEYWORD_INFO)
Javascript:jumpInfo('repeat', KEYWORD_INFO)

 html H = ...;

 forever show H;
 }
}

<bigwig> macro definitions have two-pass scope rules, which means that a macro is available in a
package even before its lexical point of definition. This service is semantically equivalent to the
previous one.

Recursion not allowed!

---illegal.wigmac---

syntax <stm> Rec ::= {
 ...Rec...;
}

require "illegal.wigmac"

service {
 ...
}

Without a compile-time language for ``breaking the recursion'', recursion can only yield infinite
program fragments. Therefore, macro recursion (and mutual recursion) is not permittet in <bigwig>.
However, as we shall see later, <bigwig> supports metamorphic macros which enable recursive
definitions that yield finite expansions.

Stacking packages

---repeat_until.wigmac---

syntax <stm> repeat <stm S> until (<exp E>) ; ::= {
 {
 <S>
 while (!<E>) <S>
 }
}

---forever.wigmac---

require "repeat_until.wigmac"

syntax <stm> forever <stm S> ::= {
 repeat <S> until (false);
}

<bigwig> macro tutorial

http://www.brics.dk/bigwig/Tutorial/macro/ (5 of 17) [16/11/2000 15:48:06]

69

Javascript:jumpInfo('forever', KEYWORD_INFO)
Javascript:jumpInfo('repeat', KEYWORD_INFO)

require "forever.wigmac"

/* Only the `forever' macro is available here! */
service {
 session S() {
 html H = ...;

 forever show H;
 }
}

This service is again semantically equivalent to the two previous ones. Here, we have split the
package into two packages, one for each macro. The forever package requires the repeat package in
order to use it. Since the repeat package is required (as opposed to extended), it is local to the
forever package and will not be exported beyond it (to the service). Thus, only the forever macro is
available in the service.

Extend

---repeat_until.wigmac---

syntax <stm> repeat <stm S> until (<exp E>) ; ::= {
 {
 <S>
 while (!<E>) <S>
 }
}

---forever.wigmac---

extend "repeat_until.wigmac"

syntax <stm> forever <stm S> ::= {
 repeat <S> until (false);
}

require "forever.wigmac"

/* Both macros are available here! */
service {
 session S() {
 html H = ...;

 repeat show H; until (1==2);
 }
}

<bigwig> macro tutorial

http://www.brics.dk/bigwig/Tutorial/macro/ (6 of 17) [16/11/2000 15:48:06]

70

Javascript:jumpInfo('forever', KEYWORD_INFO)
Javascript:jumpInfo('repeat', KEYWORD_INFO)
Javascript:jumpInfo('repeat', KEYWORD_INFO)

This service is slightly different than the previous one in that the forever package extends the repeat
package. This means that both macros are exported from the forever package into the service.

Intermediate

Specificity (split: ``end'' vs. terminal)

---split.wigmac---

syntax <stm> si (<exp E>) <stm S1> ::= {
 if (<E>) <S1>
}

syntax <stm> si (<exp E>) <stm S1> sinon <stm S2>
 ::= {
 if (<E>) <S1> else <S2>
}

require "split.wigmac"

service {
 session S() {
 int x,y;

 ...;
 si (f(x)>0) si (f(y)<0) x++; sinon y--;
 ...;
 }
}

In <bigwig> several macros may have the same name. However, macros with the same name must
all have the same nonterminal return type. Also, their headers (invocation syntax design) are not
allowed to be exactly the same which means that at some point the headers are said to split. In the
example the two si macros have same headers up until after the statement argument (S1); after which
the first macro ``ends'' and the second has a (terminal symbol) "sinon" identifier. Invocation parsing
always selects the most specific definition for an invocation. In the example, the first "si" will
commence macro parsing, the second "si" will commence another instance of macro parsing and will
after the "x++;" statement be left with a choice of whether to take the first definition (stop) or the
second (match the "sinon"). The macros are greedy, to the second definition will be taken; correctly
solving the dangling-sinon problem.

In detail: There are three kinds of header elements; terminals, nonterminals, and ``end''. Invocation
parsing is conducted in challenge rounds, header element after header element. Whenever a macro
invocation is parsed, the current token on the input stream is matched against all (live) macro
definitions to see if they are compatible. Those macro definitions that are not are immediately

<bigwig> macro tutorial

http://www.brics.dk/bigwig/Tutorial/macro/ (7 of 17) [16/11/2000 15:48:07]

71

Javascript:jumpInfo('si', KEYWORD_INFO)
Javascript:jumpInfo('si', KEYWORD_INFO)

eliminated (set to non-live). Between the compatible macro definitions, the ones (there may be more
than one) that are the most specific are kept, the others are eliminated. The following specificity
relation is used:

terminal < nonterminal < ``end''

Specificity (split: terminal vs. nonterminal)

---split.wigmac---

syntax <stm> pay 1 dollar ; ::= {
 ...1...;
}

syntax <stm> pay <exp E> dollars ; ::= {
 ...<E>...;
}

require "split.wigmac"

service {
 session S() {
 ...;
 pay 1 dollar; // 1st definition.
 pay 7 dollars; // 2nd definition.

 ...;
 }
}

This example again illustrates the specificity splitting. The "1" in the first macro invocation "pay 1
dollar;" matches both definitions, since "1" is in the set of first-tokens of expressions. However, due to
the specificity relation, the terminal is favored over the nonterminal; meaning that the first definition
is chosen.

Pretty printer directives

<bigwig> macro tutorial

http://www.brics.dk/bigwig/Tutorial/macro/ (8 of 17) [16/11/2000 15:48:07]

72

Javascript:jumpInfo('pay', KEYWORD_INFO)
Javascript:jumpInfo('pay', KEYWORD_INFO)

---split.wigmac---

syntax <stm> si (<exp E>) <stm S1> ::= {
 if (<E>) <S1>
}

syntax <stm> si (<exp E>) <stm S1> \n sinon <stm S2>
 ::= {
 if (<E>) <S1> else <S2>
}

require "split.wigmac"

service {
 session S() {
 int x,y;

 ...;
 si (f(x)>0) si (f(y)<0) x++; sinon y--;
 ...;
 }
}

The <bigwig> pretty printer is able to ``unparse'' the source code with or without expanding macros.
When unparsing without macro expansion, the macro programmer is allowed to instruct the pretty
printer how to pretty print a macro invocation. That is, when to insert newlines, whitespaces, even
how to indent a macro invocation. The characters \n (newline), \+ (indent), and \- (unindent) are
available for this. In the example, the "si-sinon" macro is instructed to print a newline character before
the "sinon". Also, whitespaces are significant in the definition headers. Note that there are no spaces
between the expression argument (E) and the parentheses. This means that the expression will be
printed in parentheses without spaces.

Repeat-until: Alpha-conversion

---alpha.wigmac---

syntax <stm> repeat <stm S> until (<exp E>) ; ::= {
 {
 bool first = true; // first is alpha-converted!

 while (first || !<E>) {
 <S>
 first = false;
 }
 }
}

<bigwig> macro tutorial

http://www.brics.dk/bigwig/Tutorial/macro/ (9 of 17) [16/11/2000 15:48:07]

73

Javascript:jumpInfo('si', KEYWORD_INFO)
Javascript:jumpInfo('si', KEYWORD_INFO)

require "alpha.wigmac"

service {
 session S() {
 int x, y, z;

 ...;
 repeat {
 x = x * y;
 y--;
 } until (y==0);
 ...;
 }
}

As promised we define a repeat-until macro that does not cause parse tree explosion. We exploit
runtime behaviour of <bigwig> (the host language) to give our macro the right semantics. We
introduce a new bool variable first to remember (at runtime) whether or not we have executed the
statement S. Note that as in C, the boolean-or operator "||" is lazy and since first is initially true, E
never gets evaluated the ``first time around''. One could suspect that invocations of such a macro
could yield identifier clashes if the statement contained a reference to an identifier first that was
defined outside the invocation. However, with the <bigwig> macros this is not the case. Any
non-argument identifier in a macro is automatically alpha-converted (renamed) to avoid accidental
name-clashes. This hygienic property allows us to safely define macros such as the one above.

Alpha-conversion suppression: ` (operator)

---declare_i.wigmac---

syntax <decl> declare_i ; ::= {
 int `i = 42; // Caution!
}

require "declare_i.wigmac"

service {
 session S() {
 declare_i;

 i = 87;
 ...;
 }
}

We have as a feature introduced an alpha-conversion suppression operator "`" (backping). So in this
example, the code produced by the invocation of the macro declare_i declares an identifier named
exactly i which is the one subsequently assigned 87.

<bigwig> macro tutorial

http://www.brics.dk/bigwig/Tutorial/macro/ (10 of 17) [16/11/2000 15:48:07]

74

Javascript:jumpInfo('repeat', KEYWORD_INFO)
Javascript:jumpInfo('repeat', KEYWORD_INFO)
Javascript:jumpInfo('declare_i', KEYWORD_INFO)
Javascript:jumpInfo('declare_i', KEYWORD_INFO)

Caution: This operator should be used with caution, as macros defined using it become highly context
sensitive!

Advanced
This section of the macro tutorial will present the concept of metamorphisms. A metamorphism is a
user defined (meta-grammar) nonterminal along with a rule specifying how the new (macro) syntax is
morphed into host language (<bigwig>) syntax. As we shall see, metamorphisms can be used to
define macros accepting almost arbitrary syntax with a varying number of arguments.

We will commence by gently introducing metamorphisms through a couple of toy examples after
which we will look at some "real" examples.

Metamorphisms: Abbreviation

---si.wigmac---

metamorph <exp> until_part --> until (<exp Cond>) ::=
{
 <Cond>
}

syntax <stm> repeat <stm S> <until_part: exp E> ; ::=
{
 {
 <S>
 while (!<E>) <S>
 }
}

require "si.wigmac"

service {
 session S() {
 int x, y, z;

 ...;
 repeat {
 x = x * y;
 y--;
 } until (y==0);
 ...;
 }
}

<bigwig> macro tutorial

http://www.brics.dk/bigwig/Tutorial/macro/ (11 of 17) [16/11/2000 15:48:08]

75

Javascript:jumpInfo('repeat', KEYWORD_INFO)

A simple use of metamorphisms is to abbreviate definitions. In this toy example we have written the
previous "repeat-until" macro, but where we have cut the definition in two parts by introducing a new
nonterminal until_part. When a "repeat" macro invocation is being parsed and the parser comes to the
metamorph argument...

<until_part: exp E>

...the parser will parse a (user defined) until_part which will yield an expression that will be called
(E). Hereafter, parsing of the repeat macro is resumed, which will parse the terminal ";". This
example is not very useful in the sense that it could easily have been defined as a (normal) macro, but
it serves to illustrate metamorphisms.

Metamorphisms: Splitting

---si.wigmac---

metamorph <stm> opt_else --> ::= {
 /* empty */;
}

metamorph <stm> opt_else --> sinon <stm S> ::= {
 <S>
}

syntax <stm> si (<exp E>) <stm S1>
 <opt_else: stm S2> ::= {
 if (<E>) <S1> else <S2>
}

require "si.wigmac"

service {
 session S() {
 int x,y;

 ...;
 si (f(x)>0) si (f(y)<0) x++; sinon y--;
 ...;
 }
}

The same splitting rules we saw for the (normal) macros also apply to metamorphisms. The specificity
relation is extended in the following way:

terminal < nonterminal < metamorph < ``end''

Metamorphisms: Lists

<bigwig> macro tutorial

http://www.brics.dk/bigwig/Tutorial/macro/ (12 of 17) [16/11/2000 15:48:08]

76

Javascript:jumpInfo('si', KEYWORD_INFO)
Javascript:jumpInfo('si', KEYWORD_INFO)

---xlist.wigmac---

metamorph <stm> xlist --> ::= {
 /* empty */;
}

metamorph <stm> xlist --> X <xlist: stm S> ::= {
 <S>
}

syntax <stm> Xlist <xlist: stm S> ; ::= {
 <S>
}

require "xlist.wigmac"

service {
 session S() {
 Xlist X X X X;
 }
}

This example shows how lists can easily be defined with metamorphisms. The macro "Xlist" takes a
metamorph argument xlist that can do one of two things; stop or parse an "X" followed by an ``xlist''.
The result is that the macro will parse "Xlist" followed by an arbitrary number of "X"'es and transform
this into the empty statement.

Metamorphisms: No Left Recursion!

---illegal.wigmac---

metamorph <stm> xlist --> ::= {
 /* empty */;
}

metamorph <stm> xlist --> <xlist: stm S> X ::= {
 <S>
}

syntax <stm> Xlist <xlist: stm S> ; ::= {
 <S>
}

require "illegal.wigmac"

service {
 session S() {

<bigwig> macro tutorial

http://www.brics.dk/bigwig/Tutorial/macro/ (13 of 17) [16/11/2000 15:48:08]

77

Javascript:jumpInfo('list', KEYWORD_INFO)

 Xlist X X X X;
 }
}

This is an example of an illegal service. Since the parser is a modified LL(1) top-down parser, left
recursion would cause it to loop. Consequently, left recursion is intercepted and rejected by the parser.
One should instead make the metamorphisms right recursive as in the previous example.

Metamorphisms: Productivity!

---illegal.wigmac---

metamorph <stm> xlist --> X <xlist: stm S> ::= {
 <S>
}

syntax <stm> Xlist <xlist: stm S> ; ::= {
 <S>
}

require "illegal.wigmac"

service {
 session S() {
 Xlist X X X X ...
 }
}

This is another example of an illegal macro. As a sanity check, the <bigwig> parser will check that
all metamorphisms derive something (finite). The xlist nonterminal in this example cannot derive
something finite and is thus rejected.

Metamorphisms: Palindrome

---palindrome.wigmac---

metamorph <stm> p --> C ::= {
 /* empty */;
}

metamorph <stm> p --> A <p: stm S> A ::= {
 <S>
}

metamorph <stm> p --> B <p: stm S> B ::= {
 <S>
}

<bigwig> macro tutorial

http://www.brics.dk/bigwig/Tutorial/macro/ (14 of 17) [16/11/2000 15:48:09]

78

Javascript:jumpInfo('list', KEYWORD_INFO)
Javascript:jumpInfo('list', KEYWORD_INFO)

syntax <stm> palindrome (<p: stm S>) ; ::= {
 <S>
}

require "palindrome.wigmac"

service {
 session S() {
 palindrome (A B A C A B A);
 }
}

So far we have seen how metamorphisms could be used to parse list structures. This (toy) example
shows how also tree structures can be parsed. The macro "palindrome" accepts palindromes over the
alphabet {"A", "B"} with a "C" in the middle.

Metamorphisms: Enum

---enum.wigmac---

syntax <decl_list> enum { <id I>
 <enum_list: decl_list EL> } ; ::= {
 int e;
 const int <I> = e++;
 <EL>
}

metamorph <decl_list> enum_list --> ::= {
}

metamorph <decl_list> enum_list --> , <id I>
 <enum_list: decl_list EL> ::= {
 const int <I> = e++;
 <EL>
}

require "enum.wigmac"

service {
 session S() {
 int n;
 enum { ZERO, ONE, TWO, THREE };

 n = ONE+TWO*THREE;
 }
}

<bigwig> macro tutorial

http://www.brics.dk/bigwig/Tutorial/macro/ (15 of 17) [16/11/2000 15:48:09]

79

Javascript:jumpInfo('palindrome', KEYWORD_INFO)
Javascript:jumpInfo('enum', KEYWORD_INFO)

This real example shows how enums can easily be added to the <bigwig> language. The "enum"
macro produces a list of declarations using an integer variable for e generating the enumeration
values. This e will be alpha converted to the same fresh identifier in the macro and the two
metamorphisms.

Metamorphisms: Switch

---Switch.wigmac---

syntax <stm> Switch { \+\n <swbody: stm S> \-\n } ::=
{
 {
 typeof(<E>) x = <E>;
 <S>
 }
}

metamorph <stm> swbody --> Case <exp E> :
 <stm_list SL> Break ; <swbody: stm S> ::= {
 if (x==<E>) { <SL> } else <S>
}

metamorph <stm> swbody --> Case <exp E> :
 <stm_list SL> Break ; ::= {
 if (x==<E>) { <SL> }
}

require "Switch.wigmac"

service {
 session S() {
 int x, y, dot_com, dot_org;
 string s;

 ...;
 Switch (s) {
 Case ".com":
 dot_com++;
 f(x);
 Break;
 Case ".org":
 dot_org++;
 g(y);
 Break;
 }
 }
}

<bigwig> macro tutorial

http://www.brics.dk/bigwig/Tutorial/macro/ (16 of 17) [16/11/2000 15:48:09]

80

Javascript:jumpInfo('Switch', KEYWORD_INFO)

This example shows how to make the "Switch" statement with a capital S (because <bigwig>
already has a switch statement).

See also: The Standard Macro Library Tutorial

<bigwig> macro tutorial

http://www.brics.dk/bigwig/Tutorial/macro/ (17 of 17) [16/11/2000 15:48:09]

81

<Standard Macro Library Tutorial>

Note: This tutorial assumes basic knowledge on:
Concurrency Control●

allow-when (in terms of restrict-by)

syntax <formula> allow <id L> when <formula F> ::= {
 all t: <L>(t) => restrict <F> by t
}

require <std.wigmac>

service {
 constraint {
 label Run, Init;
 allow Run when is t: Init(t);
 }
}

forbid-when (in terms of allow-when)

syntax <formula> forbid <id L> when <formula F> ::= {
 allow <L> when !<F>
}

require <std.wigmac>

service {
 constraint {
 label Run, Init;
 forbid Run when all t: !Init(t);
 }
}

mutex (in terms of forbid-when)

<bigwig> std tutorial

http://www.brics.dk/bigwig/Tutorial/std/ (1 of 4) [16/11/2000 15:48:11]

82

Javascript:jumpInfo('allow', KEYWORD_INFO)
Javascript:jumpInfo('when', KEYWORD_INFO)
Javascript:jumpInfo('allow', KEYWORD_INFO)
Javascript:jumpInfo('when', KEYWORD_INFO)
Javascript:jumpInfo('forbid', KEYWORD_INFO)
Javascript:jumpInfo('when', KEYWORD_INFO)

syntax <formula> mutex (<id A> , <id B>) ::= {
 forbid <A> when is t: <A>(t) &&
 (all tt: t<tt => !(tt))
}

require <std.wigmac>

service {
 constraint {
 label Enter, Exit;
 mutex(Enter, Exit);
 }
}

region (in terms of mutex)

syntax <toplevel> region <id R> ; ::= {
 constraint {
 label <R>~A, <R>~B;
 mutex(<R>~A, <R>~B);
 }
}

syntax <stm> exclusive (<id R>) <stm S> ::= {
 {
 wait <R>~A;
 <S>
 wait <R>~B;
 }
}

require <std.wigmac>

service {
 session S() {
 shared int x, y;
 region reg;

 ...;
 exclusive (reg) {
 int temp = x; // swap x and y (atomically)

 x = y;
 y = temp;
 }
 ...;
 }

<bigwig> std tutorial

http://www.brics.dk/bigwig/Tutorial/std/ (2 of 4) [16/11/2000 15:48:11]

83

Javascript:jumpInfo('forbid', KEYWORD_INFO)
Javascript:jumpInfo('when', KEYWORD_INFO)
Javascript:jumpInfo('mutex', KEYWORD_INFO)
Javascript:jumpInfo('mutex', KEYWORD_INFO)
Javascript:jumpInfo('region', KEYWORD_INFO)
Javascript:jumpInfo('exclusive', KEYWORD_INFO)

}

resource (in terms of region)

syntax <toplevel> resource <id R> ::= {
 region <R>;

 constraint {
 label <R>~enterR, <R>~exitR, <R>~P;
 trigger <R>~RC when #<R>~enterR == #<R>~exitR;
 trigger <R>~PC when #<R>~P == #<R>~B;
 allow <R>~enterR when never(<R>~P) ||
 (is t: <R>~PC(t) &&
 (all tt: t<tt => !<R>~P(tt)));
 allow <R>~A when never(<R>~enterR) ||
 (is t: <R>~RC(t) &&
 (all tt: t<tt => !<R>~enterR(tt)));
 }
}

syntax <stm> reader (<id R>) <stm S> ::= {
 {
 wait <R>~enterR;
 <S>
 wait <R>~exitR;
 }
}

syntax <stm> writer (<id R>) <stm S> ::= {
 {
 wait <R>~P;
 exclusive (<R>) <S>
 }
}

require <std.wigmac>

service {
 session S() {
 int n;
 shared int x;
 resource res;

 ...;
 reader (res) n = x;
 ...;
 writer (res) {

<bigwig> std tutorial

http://www.brics.dk/bigwig/Tutorial/std/ (3 of 4) [16/11/2000 15:48:12]

84

Javascript:jumpInfo('region', KEYWORD_INFO)
Javascript:jumpInfo('allow', KEYWORD_INFO)
Javascript:jumpInfo('allow', KEYWORD_INFO)
Javascript:jumpInfo('never', KEYWORD_INFO)
Javascript:jumpInfo('allow', KEYWORD_INFO)
Javascript:jumpInfo('allow', KEYWORD_INFO)
Javascript:jumpInfo('never', KEYWORD_INFO)
Javascript:jumpInfo('exclusive', KEYWORD_INFO)
Javascript:jumpInfo('resource', KEYWORD_INFO)
Javascript:jumpInfo('reader', KEYWORD_INFO)
Javascript:jumpInfo('writer', KEYWORD_INFO)

 n = x + n*3;
 x = x * 2;
 }
 ...;
 }
}

protected (in terms of resource)

syntax <toplevel_list> protected <type T> <id V> ;
 ::= {
 <T> <V>;

 resource <V>;
}

require <std.wigmac>

service {
 session S() {
 protected shared int n;

 ...;
 }
}

<bigwig> std tutorial

http://www.brics.dk/bigwig/Tutorial/std/ (4 of 4) [16/11/2000 15:48:12]

85

Javascript:jumpInfo('resource', KEYWORD_INFO)
Javascript:jumpInfo('protected', KEYWORD_INFO)

<SQL Macro Library Tutorial>

Note: This tutorial assumes basic knowledge on:
Database●

join

syntax <exp> join (<exp R1>, <exp R2>) ::= {
 factor(<R1>, <R2>) {
 return cart(relation{ # }, cart(@1, @2));
 }
}

require <sql.wigmac>

service {
 session S() {
 ...;
 rs = join (r,s);
 }
}

Union

syntax <exp> Union (<exp R1>, <exp R2>) ::= {
 factor(<R1>, <R2>) {
 return #;
 }
}

require <sql.wigmac>

service {
 session S() {
 ...;
 rs = Union (r,s);
 }
}

Select

<bigwig> sql tutorial

http://www.brics.dk/bigwig/Tutorial/sql/ (1 of 6) [16/11/2000 15:48:15]

86

Javascript:jumpInfo('join', KEYWORD_INFO)
Javascript:jumpInfo('Union', KEYWORD_INFO)

syntax <exp> Select * from <exp R> ::= {
 factor(<R>) {
 return #;
 }
}

require <sql.wigmac>

service {
 session S() {
 ...;
 s = Select * from r;
 }
}

Select

syntax <exp> Select * from <exp R> where <exp C>
 ::= {
 factor(<R>) {
 if (<C>) {
 return #;
 }
 }
}

require <sql.wigmac>

service {
 session S() {
 ...;
 s = Select * from r where id!=0;
 }
}

Delete

<bigwig> sql tutorial

http://www.brics.dk/bigwig/Tutorial/sql/ (2 of 6) [16/11/2000 15:48:15]

87

Javascript:jumpInfo('select', KEYWORD_INFO)
Javascript:jumpInfo('select', KEYWORD_INFO)

syntax <exp> Delete from <exp R> where <exp C>
 ::= {
 <R> = factor(<R>) {
 if (!<C>) {
 return #;
 }
 }
}

require <sql.wigmac>

service {
 session S() {
 ...;
 Delete from r where id==0;
 }
}

project

syntax <exp> project <exp R> on (<id_list IL>)
 ::= {
 factor(<R>) {
 return # \+ (<IL>);
 }
}

require <sql.wigmac>

service {
 session S() {
 ...;
 s = project r on (id, name);
 }
}

Update

<bigwig> sql tutorial

http://www.brics.dk/bigwig/Tutorial/sql/ (3 of 6) [16/11/2000 15:48:15]

88

Javascript:jumpInfo('delete', KEYWORD_INFO)
Javascript:jumpInfo('project', KEYWORD_INFO)

syntax <exp> Update <exp R1> set <exp New> where
 <exp C> ::= {
 <R1> = factor(<R1>) {
 if (<C>) {
 return <New>;
 } else {
 return #;
 }
 }
}

require <sql.wigmac>

service {
 session S() {
 ...;
 Update r set t where id==0;
 }
}

Update

syntax <exp> Update (<exp R1> with <exp R2> using
 <id_list IL> ::= {
 factor(<R1>, <R2>; <IL>) {
 if (|@2|==0) return cart(@1,relation{#});
 else return cart(@2,relation{#});
 }
}

require <sql.wigmac>

service {
 session S() {
 ...;
 rs = Update r with s using id, name;
 }
}

rename

<bigwig> sql tutorial

http://www.brics.dk/bigwig/Tutorial/sql/ (4 of 6) [16/11/2000 15:48:15]

89

Javascript:jumpInfo('Update', KEYWORD_INFO)
Javascript:jumpInfo('update', KEYWORD_INFO)

syntax <exp> rename in <exp R> from <id A> to <id B>
 ::= {
 factor(<R>) {
 return (# \- (<A>)) << tuple { = #.<A> };
 }
}

require <sql.wigmac>

service {
 session S() {
 ...;
 s = rename in r from id to key;
 }
}

difference

syntax <exp> difference (<exp R1>, <exp R2>) ::= {
 factor(<R1>, <R2>) {
 if (|@2| == 0) {
 return #;
 }
 }
}

require <sql.wigmac>

service {
 session S() {
 ...;
 rs = difference (r,s);
 }
}

aggregate

<bigwig> sql tutorial

http://www.brics.dk/bigwig/Tutorial/sql/ (5 of 6) [16/11/2000 15:48:15]

90

Javascript:jumpInfo('rename', KEYWORD_INFO)
Javascript:jumpInfo('difference', KEYWORD_INFO)

syntax <exp> aggregate (<exp R>, <stm S>) ::= {
 factor(<R>) {
 <S>
 }
}

require <sql.wigmac>

service {
 session S() {
 ...;
 rs = aggregate (r,s);
 }
}

<bigwig> sql tutorial

http://www.brics.dk/bigwig/Tutorial/sql/ (6 of 6) [16/11/2000 15:48:15]

91

Javascript:jumpInfo('aggregate', KEYWORD_INFO)

Recent BRICS Notes Series Publications

NS-00-5 Claus Brabrand. <bigwig> Version 1.3 — Tutorial. Septem-
ber 2000. ii+92 pp.

NS-00-4 Claus Brabrand.<bigwig> Version 1.3 — Reference Manual.
September 2000. ii+56 pp.

NS-00-3 Patrick Cousot, Eric Goubault, Jeremy Gunawardena, Mau-
rice Herlihy, Martin Raussen, and Vladimiro Sassone, edi-
tors. Preliminary Proceedings of the Workshop on Geometry
and Topology in Concurrency Theory, GETCO ’00,(State Col-
lege, USA, August 21, 2000), August 2000. vi+116 pp.

NS-00-2 Luca Aceto and Bj̈orn Victor, editors. Preliminary Proceedings
of the 7th International Workshop on Expressiveness in Concur-
rency, EXPRESS ’00,(State College, USA, August 21, 2000),
August 2000. vi+130 pp.

NS-00-1 Bernd G̈artner. Randomization and Abstraction — Useful Tools
for Optimization. February 2000. 106 pp.

NS-99-3 Peter D. Mosses and David A. Watt, editors.Proceedings of the
Second International Workshop on Action Semantics, AS ’99,
(Amsterdam, The Netherlands, March 21, 1999), May 1999.
iv+172 pp.

NS-99-2 Hans Ḧuttel, Josva Kleist, Uwe Nestmann, and Ant́onio
Ravara, editors. Proceedings of the Workshop on Semantics of
Objects As Processes, SOAP ’99,(Lisbon, Portugal, June 15,
1999), May 1999. iv+64 pp.

NS-99-1 Olivier Danvy, editor. ACM SIGPLAN Workshop on Par-
tial Evaluation and Semantics-Based Program Manipulation,
PEPM ’99, (San Antonio, Texas, USA, January 22–23, 1999),
January 1999.

NS-98-8 Olivier Danvy and Peter Dybjer, editors. Proceedings of
the 1998 APPSEM Workshop on Normalization by Evaluation,
NBE ’98 Proceedings,(Gothenburg, Sweden, May 8–9, 1998),
December 1998.

NS-98-7 John Power.2-Categories. August 1998. 18 pp.

	<bigwig> tutorial
	<bigwig> introduction
	Introduction
	Runtime System
	Dynamic Documents
	Database
	Concurrency Control
	Macro Mechanism
	Availability

	<bigwig> intro tutorial
	Basics
	Service structure
	Shortest Hello World
	Local declarations
	Shared declarations
	Two independent sessions
	Two collaborating sessions
	Two-pass scope rules
	Show (local state preserved)
	Show/Receive (interaction)
	Session calls
	Session arguments
	Interacting with other services (get/post)
	Security
	Directory structure and garbage collection

	Intermediate
	Show/Receive/Timeout: (timeout clean-up)
	Calling external (C-) functions from <bigwig>

	Advanced
	Flash (impatience handling)

	<bigwig> dyndoc tutorial
	Basics
	Shortest Hello World
	Introducing an `html' variable
	Initialization of `html' variables
	Gaps and String plugging
	Plug evaluates to a document value
	Plug: Implicit coercion
	Plug: Character escaping
	Plug: Bypassing character escaping
	Attribute gaps (vs. html gaps)
	Show: Local state preserved
	Input fields and Show-receive
	Checkboxes
	Shorthand: ``Plug, then assign''
	Iteration and `html' documents
	Code Gaps: Code Expressions
	Code Gaps: Code Statements
	Code Gaps: Scope Restrictions
	Separating designer/programmer tasks by lexical inclusion

	Intermediate
	Rapid prototyping
	Auto-wrapped tags
	Gaps are unordered
	Implicit closing of gaps
	A gap may not occur twice in the same document
	Analysis inference (track)
	Functions and `html' documents
	Recursive functions and `html' documents
	Matching `html' documents

	Advanced
	Attribute and html gaps (continued)
	Tuple fields
	Analysis shortcomings (undecidability)
	Analysis shortcomings (monovariance)

	<bigwig> powerforms tutorial
	Basics
	Formats: Client-side input validation
	Perl style
	Defining formats
	Perl style
	No circularly defined formats
	Email format
	Escaping validation: ignoreformats
	Customizing errors and warnings
	Changing the status icons
	Formats: String matching
	String recording
	Formats: File-scanning

	Intermediate
	Complex format

	Advanced
	Match: Strange special cases...

	<bigwig> database tutorial
	Basics
	A shared declaration
	Time
	Vectors
	Notes on efficiency!
	Schemas and tuples
	Tuples are unordered
	Tuple manipulation
	Vectors of tuples

	Intermediate
	Factor (and `#')
	Factor (and return)
	Factor (and identifier arguments)

	Advanced
	Factor (and `@')
	Factor (and mutiple relation arguments)
	Factor (and `@n ')

	<bigwig> concurrency tutorial
	Basics
	Wait and constraints
	Formulas

	Intermediate
	Mutex
	Mutex (using forbid macro)
	Mutex (using mutex macro)
	Region/Exclusive (using region/exclusive macro)
	A bad idea!
	Initialization example
	Wait-branch (timeout)

	Advanced
	All formulas get prefix closed
	Beyond regularity (triggers)
	Protected/Reader/Writer macros

	<bigwig> macro tutorial
	Basics
	A very simple macro: Pi
	A macro with an argument: Maybe
	A macro definition with token separators: Plus
	A macro with an identifier delimiter: Repeat-until
	A macro in terms of another: Forever
	2pass scope rules
	Recursion not allowed!
	Stacking packages
	Extend

	Intermediate
	Specificity (split: ``end'' vs. terminal)
	Specificity (split: terminal vs. nonterminal)
	Pretty printer directives
	Repeat-until: Alpha-conversion
	Alpha-conversion suppression: ` (operator)

	Advanced
	Metamorphisms: Abbreviation
	Metamorphisms: Splitting
	Metamorphisms: Lists
	Metamorphisms: No Left Recursion!
	Metamorphisms: Productivity!
	Metamorphisms: Palindrome
	Metamorphisms: Enum
	Metamorphisms: Switch

	<bigwig> std tutorial
	allow-when (in terms of restrict-by)
	forbid-when (in terms of allow-when)
	mutex (in terms of forbid-when)
	region (in terms of mutex)
	resource (in terms of region)
	protected (in terms of resource)

	<bigwig> sql tutorial
	join
	Union
	Select
	Select
	Delete
	project
	Update
	Update
	rename
	difference
	aggregate

	DMCIHAGMLGJEEPJNFBPDJACCMEACLALP:
	form1:
	x:
	f1: foo

	form2:
	x:
	f1: Off
	f2: Off

	form3:
	x:
	f1:
	f2:

	form4:
	x:
	f1:
	f2:

	form5:
	x:
	f1:
	f2: Off

