
B
R

IC
S

N
S

-00-4
C

.B
rabrand:<

b
ig

w
ig

>
Version

1.3
—

R
eference

M
anual

BRICS
Basic Research in Computer Science

<bigwig> Version 1.3
Reference Manual

Claus Brabrand

BRICS Notes Series NS-00-4

ISSN 0909-3206 September 2000

Copyright c© 2000, Claus Brabrand.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Notes Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory NS/00/4/

<bigwig> Version 1.3

Reference Manual

Claus Brabrand
brabrand@brics.dk

September 2000

<Reference Manual>

This reference manual concisely describes the whole <bigwig> language. We advise new
<bigwig> programmers to start by reading the tutorial and studying the examples.

1. Keyword Index
Page 2

2. Lexical Structure
Page 3

3. Syntax
Page 5

4. Operators
Page 13

5. Scope Rules
Page 15

6. Types
Page 16

7. Core Language
Page 20

8. Control Structures
Page 22

9. Files
Page 25

10. Macros
Page 27

11. Form Input
Page 30

12. Formats
Page 33

13. Dynamic Documents
Page 37

14. Database
Page 44

15. Security
Page 47

16. Concurrency Control
Page 48

17. Web Specifics
Page 52

18. Time
Page 55

<bigwig> refman

http://www.brics.dk/bigwig/Refman/ [22/09/2000 12:31:25]

1

http://www.brics.dk/bigwig/tutorial/
http://www.brics.dk/bigwig/examples/

<Keyword Index>

[A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z]

This section contains a list of all keywords in the <bigwig> language and macros in the standard
macro package, "std.wigmac". Black names are keywords and blue names are the macros defined in
the standard macro package and are thus only active in a service program if this package is required.
A: all allow anychar
B: bool break by
C: cart case char charcomplement close complement concat const

constraint continue
D: default difftime dir do
E: else eof exclusive exit extend

F: factor false file fileerror fix flash float for forbid forever
format

G: get getcookie getenv getYear getMonth getDay getHour getMinute
getSecond getWeekday

H: htaccess html
I: if ignoreformats #include int intersection is

J: -
K: -
L: label loop

M: macro match maybe md5 metamorph mutex
N: never notime now
O: open optional
P: pi plus post print println protected

Q: -
R: random range rawhtml reader receive refresh regexp region

relation relax repeat require resource restrict return

S: scan scanln schema selective sendemail sendmail service session
setcookie setYear setMonth setDay setHour setMinute setSecond
shared show singular sort span ssl star string switch syntax
system

T: time timeout track trigger true tuple typeof
U: union url userid
V: vector void
W: wait when while writer
X: -
Y: -
Z: -

<bigwig> keywords refman

http://www.brics.dk/bigwig/Refman/keywords/ [22/09/2000 12:31:28]

2

http://www.brics.dk/bigwig/macro/
Javascript:jumpInfo('allow', KEYWORD_INFO)
Javascript:jumpInfo('charcomplement', KEYWORD_INFO)
Javascript:jumpInfo('do', KEYWORD_INFO)
Javascript:jumpInfo('exclusive', KEYWORD_INFO)
Javascript:jumpInfo('forbid', KEYWORD_INFO)
Javascript:jumpInfo('forever', KEYWORD_INFO)
Javascript:jumpInfo('#include', KEYWORD_INFO)
Javascript:jumpInfo('loop', KEYWORD_INFO)
Javascript:jumpInfo('maybe', KEYWORD_INFO)
Javascript:jumpInfo('md5', KEYWORD_INFO)
Javascript:jumpInfo('mutex', KEYWORD_INFO)
Javascript:jumpInfo('never', KEYWORD_INFO)
Javascript:jumpInfo('optional', KEYWORD_INFO)
Javascript:jumpInfo('pi', KEYWORD_INFO)
Javascript:jumpInfo('plus', KEYWORD_INFO)
Javascript:jumpInfo('protected', KEYWORD_INFO)
Javascript:jumpInfo('reader', KEYWORD_INFO)
Javascript:jumpInfo('region', KEYWORD_INFO)
Javascript:jumpInfo('repeat', KEYWORD_INFO)
Javascript:jumpInfo('resource', KEYWORD_INFO)
Javascript:jumpInfo('sendemail', KEYWORD_INFO)
Javascript:jumpInfo('setYear', KEYWORD_INFO)
Javascript:jumpInfo('setMonth', KEYWORD_INFO)
Javascript:jumpInfo('setDay', KEYWORD_INFO)
Javascript:jumpInfo('setHour', KEYWORD_INFO)
Javascript:jumpInfo('setMinute', KEYWORD_INFO)
Javascript:jumpInfo('setSecond', KEYWORD_INFO)
Javascript:jumpInfo('writer', KEYWORD_INFO)

<Lexical Structure>

[Tokens | Case-sensitivity | Comments | Lexical Inclusion | Macros]

Tokens

The table below contains an explanation of the seven token kinds, INT, FLOAT, CHAR, STRING,
IDENTIFIER, DEFATTR, and WHATEVER.

Token Regexp (Yacc) Examples
INT [0-9]+ 0, 7, 42, 087

FLOAT [0-9]* \. [0-9]+ 0.0, .99, 3.14, 01.10

CHAR '[^\"'\n\t]' 'c', ' ', 'ø', '\n', '\t'

STRING \"((\\\")|([^\"\n\t]))*\" "", "c", "foo", "hello !\n"

IDENTIFIER
[a-zA-Z]([a-zA-Z0-9]|
(_[a-zA-Z0-9]))*

x, x87, X_1, name, Amount

DEFATTR [^ \n\t&<>\"=\[\]]+ x, 87, -8a, xyz, år, foo'

WHATEVER [^<>\n]* basically, any!, ' $line@#

Case-sensitivity

<bigwig> is case-sensitive meaning that it distinguishes between upper and lower-case characters.
Thus the identifiers "amount", "Amount", and "AMOUNT" are different. However, within
html-documents (excepting gap names), <bigwig> is case-insensitive. For instance, <textarea>,
<Textarea>, and <TEXTAREA> mean the same.

Comments

There are two way of forming comments in <bigwig>. As in C or Java, comments are written
within /* (slash-asterisk) and */ (asterisk-slash). However, unlike the two languages, <bigwig>
supports arbitrary nesting of comments. Also, comments can be formed using // (double-slash), with
the effect that the rest of the line is taken as a comment. The two ways of forming comments are
respectively referred to as region comments and line comments. In HTML mode the usual <!--
... --> comments apply, meaning that anything within is ignored by <bigwig>. Note, however,
that such comments are generated in the document output.

Lexical Inclusion

As in C, lexical file inclusion is performed by the directive "#include". This directive takes one

<bigwig> lex refman

http://www.brics.dk/bigwig/Refman/lex/ (1 of 2) [22/09/2000 12:31:30]

3

argument, namely a URL in quotes. The URL can be either a file or a hyper-reference (beginning
with "http://"). If a file is specified, <bigwig> will fetch the file from the file-system, as in C.
If a hyper-reference is specified, the URL-file will be fetched from the Internet (using W3C's
Libwww) at compile-time. The URL can also be supplied in angled brackets, in which case the URL
is prepended with a string (defaulting to "http://www.brics.dk/bigwig/macro/"). This is
typically used for including macro packages from "<bigwig>-central", but the prepend-string can
be altered in <bigwig>'s configuration file ".bigwig".

Macros

<bigwig> provides no lexical macro concept, but has a much more powerful syntactic macro
concept.

<bigwig> lex refman

http://www.brics.dk/bigwig/Refman/lex/ (2 of 2) [22/09/2000 12:31:30]

4

http://www.w3c.org/
http://www.w3c.org/Library/

<Syntax>

The BNF definition of the <bigwig> syntax:

bigwig : require_list service

require_list : require
require : require <URL>

| require stringconst

service : mode_list service { toplevel_list }
toplevel_list : toplevel
toplevel : mode_list session

| decl_list
| constraint
| format
| schema

session : session id (argument_list) { toplevel_list stm_list }
mode_list : mode
mode : ssl

| singular
| selective (exp_list)
| span (exp)
| refresh (exp)
| htaccess (exp)

html : <html> htmlbody_list </html>
| <html> htmlbody_list </html> @ stringconst

htmlbody_list : htmlbody
htmlbody : < defattr attribute_list >

| </ defattr >
| <bigwig>
| <title> htmlbody </title>
| <body> htmlbody </body>
| WHATEVER
| <!-- ... -->
| < [] >

<bigwig> syntax refman

http://www.brics.dk/bigwig/Refman/syntax/ (1 of 8) [22/09/2000 12:31:37]

5

| < [id] >
| < [(exp)] >
| < [compound_stm] >
| <input attribute_list >
| <textarea attribute_list > htmlbody_list </textarea>
| <select attribute_list > htmlbody_list </select>
| <tuple attribute_list > htmlbody_list </tuple>
| <continue attribute_list > htmlbody_list </continue>
| <applet attribute_list > htmlbody_list </applet>
| <param attribute_list >
| <result attribute_list >

attribute_list : attribute
attribute : mode_list

| name = id
| format = id
| attr
| attr = attr

attr : defattr
| []
| [id]
| [(exp)]
| [compound_stm]

defattr : DEFATTR
| STRINGCONST

constraint : constraint { constraintbody_list }
constraintbody_list : constraintbody
constraintbody : label

| trigger
| formula ;

label : label id_list ;
trigger : trigger id when trigexp == trigexp ;
trigexp : trigexp + trigexp

| trigexp - trigexp
| + trigexp
| - trigexp
| intconst
| # id

formula : true
| false

<bigwig> syntax refman

http://www.brics.dk/bigwig/Refman/syntax/ (2 of 8) [22/09/2000 12:31:37]

6

| restrict formula by id
| is id : formula
| all id : formula
| formula && formula
| formula || formula
| formula => formula
| formula <=> formula
| ! formula
| id == id
| id != id
| id < id
| id > id
| id <= id
| id >= id
| id (id)
| (formula)

format : format id = regexp ;
regexp_list : regexp
regexp : id

| stringconst
| anychar
| star (regexp)
| concat (regexp_list)
| union (regexp_list)
| intersection (regexp_list)
| complement (regexp)
| range (stringconst , stringconst)
| fix (intconst , intconst)
| relax (intconst , intconst)
| regexp (stringconst)
| [id = regexp]

schema : schema id { field_list }
field_list : field
field : type id_list ;

decl_list : decl
decl : type id_list ;

| type id_list = exp ;
| type id_list (argument_list) compound_stm

<bigwig> syntax refman

http://www.brics.dk/bigwig/Refman/syntax/ (3 of 8) [22/09/2000 12:31:37]

7

| type id_list (argument_list) ;
argument_list : argument
argument : type id

type : modifier_list void
| modifier_list bool
| modifier_list int
| modifier_list float
| modifier_list char
| modifier_list string
| modifier_list time
| modifier_list file
| modifier_list tuple id
| modifier_list relation id
| modifier_list vector id
| modifier_list vector type
| modifier_list html
| typeof (exp)

modifier_list : modifier
modifier : const

| shared

stm_list : stm
stm : /* empty */ ;

| exp ;
| exit ;
| exit mode_list exp ;
| flash mode_list exp ;
| show mode_list exp ;
| show mode_list exp timeout stm
| show mode_list exp receive [getinput_list] ;
| show mode_list exp receive [getinput_list] timeout stm
| wait id ;
| wait { waitbranch_list }
| return ;
| return exp ;
| if (exp) stm
| if (exp) stm else stm
| while (exp) stm
| for (exp? ; exp? ; exp?) stm

<bigwig> syntax refman

http://www.brics.dk/bigwig/Refman/syntax/ (4 of 8) [22/09/2000 12:31:37]

8

| switch (exp) { switchbranch_list }
| sendmail (exp , exp)
| compound_stm

compound_stm : { decl_list stm_list }
waitbranch_list : waitbranch
waitbranch : case id : stm_list break ;

| timeout exp : stm_list break ;
switchbranch_list : switchbranch
switchbranch : case exp : stm_list break ;

| default : stm_list break ;
getinput_list : getinput
getinput : exp = id

exp_list : exp
exp : #

| @
| @ intconst
| dir
| url
| url id (exp_list)
| userid
| time (exp , exp , exp)
| time (exp , exp , exp , exp , exp , exp)
| now
| notime
| difftime (exp , exp)
| boolconst
| intconst
| floatconst
| charconst
| stringconst
| tuple { tupleexp_list }
| relation { exp_list }
| vector { exp_list }
| html
| id
| id (exp_list)
| (exp)
| + exp
| - exp

<bigwig> syntax refman

http://www.brics.dk/bigwig/Refman/syntax/ (5 of 8) [22/09/2000 12:31:37]

9

| exp = exp
| exp += exp
| exp -= exp
| exp *= exp
| exp /= exp
| exp %= exp
| exp =<[plug_list]
| ++ exp
| exp ++
| -- exp
| exp --
| exp ? exp : exp
| ! exp
| exp == exp
| exp != exp
| exp < exp
| exp > exp
| exp >= exp
| exp <= exp
| exp && exp
| exp || exp
| | exp |
| exp + exp
| exp - exp
| exp * exp
| exp / exp
| exp % exp
| exp >> exp
| exp << exp
| exp . id
| exp [exp]
| exp [exp .. exp]
| exp \+ (id_list)
| exp \- (id_list)
| (type) exp
| md5 (exp)
| getcookie (exp)
| setcookie (exp , exp)
| getenv (exp)
| getYear (exp)

<bigwig> syntax refman

http://www.brics.dk/bigwig/Refman/syntax/ (6 of 8) [22/09/2000 12:31:37]

10

Javascript:jumpInfo('md5', KEYWORD_INFO)

| getMonth (exp)
| getDay (exp)
| getHour (exp)
| getMinute (exp)
| getSecond (exp)
| getWeekday (exp)
| open (exp , stringconst)
| open (exp , exp)
| print (exp , exp)
| println (exp , exp)
| scan (exp , id)
| scanln (exp)
| eof (exp)
| close (exp)
| fileerror (exp)
| random (exp)
| system (exp)
| exp <[plug_list]
| rawhtml (exp)
| track (exp)
| match (exp , exp) [getinput_list]
| get (exp)
| get (exp) [cgiinput_list]
| post (exp)
| post (exp) [cgiinput_list]
| sort (exp)
| sort (exp ; id_list)
| cart (exp , exp)
| factor (exp_list) stm
| factor (exp_list ; id_list) stm
| (compound_stm)

tupleexp_list : tupleexp
tupleexp : id = exp
plug_list : plug
plug : id = exp
cgiinput_list : cgiinput
cgiinput : exp = exp

boolconst : BOOLCONST

<bigwig> syntax refman

http://www.brics.dk/bigwig/Refman/syntax/ (7 of 8) [22/09/2000 12:31:37]

11

intconst : INTCONST
floatconst : FLOATCONST
charconst : CHARCONST
stringconst : STRINGCONST
id_list : id
id : IDENTIFIER

| ` id
| id ~ id

Legend

NT : Zero-or-more repetitions of the nonterminal NT.

NT : Zero-or-more comma separated repetitions of the nonterminal NT.

NT : One-or-more repetitions of the nonterminal NT.

NT : One-or-more comma separated repetitions of the nonterminal NT.

<bigwig> syntax refman

http://www.brics.dk/bigwig/Refman/syntax/ (8 of 8) [22/09/2000 12:31:37]

12

<Operators>

Expressions

The precedences are listed in decreasing precedence order. For instance, multiplication binds
stronger than addition, which means that "1+2*3" is understood as "1+(2*3)"

Operator Description Associativity

(__) parentheses N/A
(type) __ type conversion N/A
|__| vector size N/A
|__| relation size N/A
|__| string size N/A
({__}) expression-statement N/A

__[__] string indexing (from 0 to |s|-1) N/A
__[__] vector indexing (from 0 to |v|-1) N/A
__[__..__] substring N/A
__[__..__] subvector N/A
__.__ tuple member reference left

!__ logical NOT N/A
-__ unary minus N/A
+__ unary plus N/A
++__ pre increment N/A
--__ pre decrement N/A
__++ post increment N/A
__-- post decrement N/A

__<[__] document plug N/A

__*__ multiplication left
__/__ integer division left
__/__ float division left
__%__ modulo left

__\+(__) tuple project N/A
__\-(__) tuple project complement N/A

__+__ addition left
__+__ string concatenation left
__+__ vector concatenation left
__-__ substraction left

__<<__ left tuple overwrite left
__>>__ right tuple overwrite left

<bigwig> operators refman

http://www.brics.dk/bigwig/Refman/operators/ (1 of 2) [22/09/2000 12:31:41]

13

__<__ less than N/A
__>__ greater than N/A
__<=__ less than or equal N/A
__>=__ greater than or equal N/A

__==__ equal left
__!=__ not equal left

__&&__ lazy logical AND left

__||__ lazy logical OR left

__?__:__ conditional operator right

__=__ assignment right
__+=__ addition, then assignment right
__-=__ substraction, then assignment right
__*=__ multiplication, then assignment right
__/=__ division, then assignment right
__%=__ modulo, then assignment right
__=<[__] plug, then assign right

lazy
means that if the result of an expression can be determined by evaluating the left operand only,
then the right operand is not evaluated. This makes a difference when the right operand has
side-effects or does not terminate.

left

means that the given operator is left-associative. For instance, "x+y+z" will be parsed as
"(x+y)+z".

right

means that the given operator is right-associative. For instance, "x=y=z" will be parsed as
"x=(y=z)".

<bigwig> operators refman

http://www.brics.dk/bigwig/Refman/operators/ (2 of 2) [22/09/2000 12:31:41]

14

<Scope>

Scope

The scope rules in <bigwig> are static (or lexical) for both functions and variables. The following
constructs cause a new scope frame:

Scope frame #passes

service 2
session 2
schema 2
function 2
function prototype 2

compound statement 1
factor 1
all 1
is 1

<bigwig> scope refman

http://www.brics.dk/bigwig/Refman/scope/ [22/09/2000 12:31:42]

15

<Types>

[Basic Types | Composite Types | Type Modifiers | Initial Values | Conversion | Coercion]

[void | bool | int | float | char | string | time | file | html | tuple | relation | vector]

Basic Types

void
The type void is special and purely used in association with the declaration of functions not
returning anything (a.k.a. procedures). It is not possible to create a variable of type void.

bool
There are only two possible values of type bool (a.k.a. boolean), namely "true" and "false".
The type would thus ideally occupy one bit at runtime. However, for reasons of efficiency it is
represented internally by an int.

int
The integer type, int, is for signed numbers. It corresponds directly to C's int's, thus its
precision is implementation specific. The size will typically reflect the natural word size of the
host machine, the size is typically 32 (or 64) bits, although it is guaranteed to be at least 16
bits.

float
The float type is for signed pseudo real numbers. They correspond to C's double the
precision of which is implementation specific. They will typically be 64 (or 128) bits.

char
The values of type char are (ascii) characters that occupy 8 bits at runtime.

string
A string is a basic type, the values of which are arbitrary sequences of chars starting from
zero. All strings are at runtime represented as indices into a local string-pool holding the
actual string along with its length. Thus operations such as string-compare "s==t" and
string-length "|s|" takes constant (not linear!) time. The lexicographic order operators "<"
and ">" take linear time.

time
The values of type time are legal points in time. That is, a (gregorian calender) date and an
hour-minute-second time of day. Illegal times, such as "1999/02/29, 20:61:30" are
automatically converted to legal ones ("1999/03/01, 21:01:30"). The predefined
function now() returns the current time. All time values must be within the following range
[1970/01/01, 00:00:00..2038/01/19, 03:14:07]. Any attempts to construct a
time not in this interval will result in the special time value called notime which is also the
default value for the type time. See Time for more information.

file

<bigwig> types refman

http://www.brics.dk/bigwig/Refman/types/ (1 of 4) [22/09/2000 12:31:44]

16

The values of type file are file-handles with a limited number of operations. See Files for more
information.

html
html is a special type in <bigwig> . A value of type html is an html document with a number
of named gaps that can be plugged with strings or other html documents at runtime. The html
documents are represented in a very compressed format with maximum sharing and where the
plug operation takes constant time. See Dynamic Documents for more information.

Composite Types

tuple
The tuple type is defined relative to a schema which is essentially a mapping from identifiers
to basic types. A tuple value is thus a mapping from identifiers to basic values corresponding
to the names and types of the associated schema. The tuple identifiers are commonly referred
to as attributes. See Database for more information.

relation
A relation is a set of tuples with no notion of order and where no value is present twice (any
redundant values are implicitly removed). The factor operation is available for traversing
relations. See Database for more information.

vector
There are two kinds of Vectors (a.k.a. lists or arrays) in <bigwig>; basic vectors and tuple
vectors. Basic vectors are capable of storing lists of basic values, while tuple vectors contain
lists of tuples. Both kinds can be multi-dimensional. See Database for more information.

Type Modifiers

const
Any type can be prefixed with the type modifier const, that will generate a type that cannot be
assigned values.

shared
This modifier can be applied to a declarations to make them persistent and shared among all
sessions in the service.

Initial Values

<bigwig> initializes all variables upon declaration, hence all types have associated initial values.
The precisions are inherited by the compilation target language (C). These values can be seen in the
table below:

Type Min. prec. Typ. prec. Initial Value Order Equality
void N/A N/A N/A N/A N/A

<bigwig> types refman

http://www.brics.dk/bigwig/Refman/types/ (2 of 4) [22/09/2000 12:31:44]

17

bool 1 bit 1 bit false N/A yes
int 16 bits 32 bits 0 numeric yes
float 32 bits 64 bits 0.0 numeric yes
char 8 bits 8 bits ' ' (space) ascii yes
string N/A N/A "" lexicographic yes
time 32 bits 32 bits notime numeric yes
file N/A N/A N/A N/A no
html N/A N/A <html></html> N/A no

tuple N/A N/A tuple { ... * } N/A yes

relation N/A N/A relation { } N/A no
vector N/A N/A vector { } N/A no

*) The individual attributes in the tuple will have initial values dictated by their types. The types of
attributes in a tuple are all required to be basic.

Type Conversion

<bigwig> provides a simple means for explicit conversion. The legal conversions and their
semantics are listed below. All types (except file) can be converted to and from string.
Conversion is specified by prefixing a given expression with the name of the type in parentheses.

bool can be converted to:
string: true and false become "true" and "false", respectively.❍

html: true and false become <html>true</html> and
<html>false</html>, respectively.

❍

●

int can be converted to:
float: Straightforward. For instance, 42 becomes 42.0.❍

char: Integers are converted to chars according to their ascii value (modulo 256). For
instance, 65 becomes 'A'.

❍

string: Straightforward. For instance, 42 becomes "42".❍

html: Straightforward. For instance, 42 becomes <html>42</html>.❍

●

float can be converted to:
int: Floating point numbers are truncated to integers. For instance, 1.75 becomes 1.❍

string: Straightforward. For instance, 3.14 becomes "3.14".❍

html: Straightforward. For instance, 3.14 becomes <html>3.14</html>.❍

●

char can be converted to:
int: Chars are converted to ints according to their ascii value. For instance, 'A'
becomes 65.

❍

string: All chars are converted to a strings of length one. For instance, 'x' becomes
"x".

❍

html: Straightforward. For instance, 'x' becomes <html>x</html>.❍

●

<bigwig> types refman

http://www.brics.dk/bigwig/Refman/types/ (3 of 4) [22/09/2000 12:31:44]

18

string can be converted to:
bool: "false" becomes false, the rest becomes true.❍

int: Strings only containing ciphers (and white-spaces) are translated directly into
integers. All other strings become 0. For instance, " 42" becomes 42

❍

float: As above, except that the string may contain one dot. For instance "3 . 14"
becomes 3.14.

❍

char: Empty strings become '\0', the rest become the first character in the string. For
instance, "hello" becomes 'h'.

❍

time: Currently Strings must be "yyyy/mm/dd, hh:mm:ss".❍

html: Strings are translated into html by escaping angled brackets. For instance, the
string "<bigwig>" is turned into "<html><bigwig></html>".
Alternatively, if the brackets should not be escaped, the type conversion construct
rawhtml may be used. Use with caution!

❍

tuple: The string will be unserialized. Note: Not yet implemented.❍

relation: The string will be unserialized. Note: Not yet implemented.❍

vector: The string will be unserialized. Note: Not yet implemented.❍

●

time can be converted to:
string: Returns "yyyy/mm/dd, hh:mm:ss".❍

●

tuple can be converted to:
string: The tuple will be serialized.❍

●

relation can be converted to:
string: The relation will be serialized.❍

vector: Straightforward. The order of the individual tuples is unspecified.❍

●

vector can be converted to:
string: The vector will be serialized.❍

relation: Straightforward. Identical entries are removed.❍

●

Coercion

<bigwig> generally does not coerce expressions. The exceptions to this rule are plug, receive, and
string concatenation. Any basic value can be plugged into a document gap, causing a coercion from
this type to the html type as explained under conversion above. Similarly, at receive the assigned
variable can have any basic type (wherever a basic type is expected, see Form Input Table).

<bigwig> types refman

http://www.brics.dk/bigwig/Refman/types/ (4 of 4) [22/09/2000 12:31:44]

19

<Core Language>

[Parameter Mechanisms | Garbage Collection | Prototype Functions | Miscellaneous]

Parameter Mechanisms

All assignments (including implicit assignments of actual parameters to formal parameters induced
by function calls) involving basic types in <bigwig> are call-by-value. Those involving composite
types are performed by copy-on-write, which is semantically equivalent to call-by-value, only much
more efficient.

Garbage Collection

All values in <bigwig> are garbage collected when they are no longer live (reachable by program
variables). This happens incrementally, automatically, and transparently via a built-in reference
counting garbage collector.

Prototype Functions

<bigwig> is equipped with the possibility of interacting with functions written (externally) in C.
This is done through prototype functions (i.e. function declarations with no body). Whenever the
<bigwig> compiler encounters such a declaration, it will assume that the body of the function is
provided by some C code. This can sometimes be useful, when constructions that are not directly
provided by <bigwig> are needed. [See the getting started tutorial].

Miscellaneous

service
A <bigwig> program is also referred to as a Web service and begins with the keyword
service. A service is comprised of a number of toplevel declarations plus a number of sessions.

session
Sessions are the entry points to the Web service, much like the main routine in C and Java
programs. However, unlike C and Java programs, a <bigwig> service may have more than
one session. A session contains a number of toplevel declarations plus a sequence of
statements that is executed when the session is invoked (via a CGI request). This sequential
action may at various points chose to interact with the client who invoked the session (almost
reversing the roles of client and server), asking for values to be entered and submitted. Unlike
CGI programs, <bigwig> sessions preserve the state across interactions. A session gives rise
to a session process on the Web server as depicted below:

<bigwig> core refman

http://www.brics.dk/bigwig/Refman/core/ (1 of 2) [22/09/2000 12:31:46]

20

http://www.brics.dk/bigwig/tutorial/intro/#external

getenv
This built-in function takes a string argument naming an environment variable and returns the
(string) value of this variable.

random
This built-in function takes an int value and returns a (pseudo-) random int value between
(including both end points) zero and the value given minus one.

system
This built-in function is similar to C's system function. It takes a string which is executed in a
shell and returns the (integer) exit status produced by the shell. Caution: be careful when
using this command!!!

Expression-Statements

Statements can now be embedded in expressions (exp ::= '(' compound_stm ')') as in Gnu C.
The result is the value of the last statement if it is a statement-expression (stm ::= exp ';') and
void otherwise.

typeof
This construct takes an expression in parentheses. The type of the construct is equal to the type
of the expression. Note that the expression is solely used for determining the type and is thus
never run. The construction is mostly intended for use via the syntax macros.

<bigwig> core refman

http://www.brics.dk/bigwig/Refman/core/ (2 of 2) [22/09/2000 12:31:46]

21

<Control Structures>

[if-else | while | for | return | exit | switch | wait]

if
stm ::= if (exp) stm
stm ::= if (exp) stm else stm

The if / if-else statement provides the simplest form of conditional execution. The expression
(usually called the condition) that must be of type bool is evaluated. If it evaluates to true, the
statement immediately following the expression in parentheses is executed. It is usually called
the then-statement. If the expression evaluates to false, the statement following the else (if any)
is executed. This statement is commonly referred to as the else-statement. An else will always
be bound to the closest else-less previous if statement.

while
stm ::= while (exp) stm

The simplest form of iteration (or looping) is provided by the while statement. The expression
(called the condition) that must be of type bool is evaluated. If it evaluates to false, the while
statement has been executed. If on the other hand it evaluates to true, the while statement
(usually called the body of the while), is executed. Once executed, control is passed once again
to the entire while statement, and the procedure is repeated.

for

stm ::= for (exp? ; exp? ; exp?) stm

The for statement is a variant of while. The three expressions (called the initialization,
condition, and increment) are all optional. If present, the condition must be of type bool.
Initially, the initialization expression is evaluated for its side-effects. Hereafter, as with while,
the condition is evaluated and if false, the for statement has been executed. If the condition
evaluates to true, the statement (called the body of the for) is executed. Once the statement has
been executed, the increment expression is evaluated for its side-effects and control is passed
again to the entire for statement and the procedure is repeated, ignoring the initialization
expression. The statements "for (E1; E2; E3) S" and "{ E1; while (E2) {
S; E3; } }" are completely equivalent.

return
stm ::= return ;
stm ::= return exp ;

The return statement serves two purposes in <bigwig>. The return without an expression is
used for returning from procedures (functions with return type void). The return statement has
the effect that control is passed to the point immediately following the point that called the
procedure (function). The second is used for returning values from functions. The type of the
expression, which is required to be the same as the return-type of the function, is evaluated and

<bigwig> control refman

http://www.brics.dk/bigwig/Refman/control/ (1 of 3) [22/09/2000 12:31:47]

22

returned to the point where the function was called. Hereafter control resumes at this point.
Another use of the return statement is in conjunction with the factor statement.

exit
stm ::= exit ;
stm ::= exit exp ;

The exit statement causes the session to terminate. If an expression is supplied, it is required to
be either of type html or string. If the type is html, the document resulting from the evaluation
of the expression will be shown to the client just prior to termination. If the type is string, the
expression is assumed to evaluate to an URL. The page shown will contain a jump to the
specified URL. If on the other hand, no expression is supplied, a default termination message
will be shown.

switch
stm ::= switch (exp) { switchbranch-list }

switchbranch-list ::= switchbranch+

switchbranch ::= case exp : stm-list break;
switchbranch ::= default : stm-list break;

The switch statement is basically a multi-dimensional if statement. The expression in
parentheses (called the switch-expression) is evaluated to a value. Then, the case-expressions
are evaluated, in order, one by one, until the value of one of them is equal to the
switch-expression. At this point the rest of the case-expressions are ignored and control is past
to the corresponding case's statement after which the switch statement has completed. All the
involved expressions must have the same basic type. The switch statement works with all basic
types, except html and the expressions involved do not have to be constant (as in, for instance
C or Java). A switch statement is allowed to have maximum one default branch and if such a
branch exists, it must be specified after all the case branches. If none of the expressions
matched the switch-expression and there is a default branch, the default-statement is executed.
The break keyword is required at the end of each branch.

wait
stm ::= wait id ;
stm ::= wait { waitbranch-list }

waitbranch-list ::= waitbranch+

waitbranch ::= case id : stm-list break;
waitbranch ::= timeout exp : stm-list break;

The wait statement is special to <bigwig>. It provides the interaction with the runtime
controller. There are two kinds of wait statements, namely the short wait corresponding to the
first two productions above, and the general wait corresponding to the third production above.

The short wait:
When executing a short wait statement "wait L;" (where L is some label defined as a
constraint), the session thread will contact the runtime controller, requesting permission to pass
the label L. If the entire service is in a state where it is safe for the session thread to pass the
label L (i.e. without violating the safety contraints, meaning that L is enabled), the runtime
controller will grant the session thread permission to proceed. Otherwise the session is

<bigwig> control refman

http://www.brics.dk/bigwig/Refman/control/ (2 of 3) [22/09/2000 12:31:47]

23

suspended (even indefinitely), until it is safe for it to proceed.

The general wait:
The general wait is like the short wait, except that it allows the session thread to branch on the
state of the runtime controller. The semantics is that permission to proceed is granted when one
of the labels is passed (enabled). Execution proceeds afterwards at the case corresponding to
the label passed. A general wait can also contain one timeout branch (where the expression
evaluates to an integer). The expression is evaluated to a time bound (in seconds) and if the
runtime controller cannot grant permission to continue within this bound, execution resumes
with the timeout statement-list. Only one timeout is allowed in a wait statement and it must be
specified after all the cases.

<bigwig> control refman

http://www.brics.dk/bigwig/Refman/control/ (3 of 3) [22/09/2000 12:31:47]

24

<Files>

[open | close | fileerror | print | println | scan | scanln | eof]

The values of the file type are file handles with only a limited number of operations.

Opening and closing files

exp ::= open (exp)
exp ::= open (exp , exp)

The first argument is a string designating a file on the server's file system. The second
argument specifies the open mode and must be on of the strings "read", "write", or "append",
defaulting to "read" if not present.

exp ::= close (exp)
Will close the file associated with the file handle given as argument. The expression will return
void.

exp ::= fileerror (exp)
Takes an expression of type file and returns a boolean that is true if a previous open on the
file was successful and false if not.

Printing in files

exp ::= print (exp , exp)
The string specified in the second argument is printed to the file designated by the first
argument. The file must be in either write or append mode. The expression will return void.

exp ::= println (exp , exp)
The string specified in the second argument plus a newline character is printed to the file
designated by the first argument. The file must be in either write or append mode. The
expression will return void.

Scanning in files

exp ::= scan (exp , id)
Scan will take two arguments, a file handle and a format. It will scan as much of the file from
the current file position that is in the regular language defined by the format and advance the
file pointer accordingly. The file must be in read mode. The expression will return what was
scanned from the file.

<bigwig> files refman

http://www.brics.dk/bigwig/Refman/files/ (1 of 2) [22/09/2000 12:31:49]

25

exp ::= scanln (exp)
Scans and returns one line from the file specified in the argument. After this, the file pointer is
advanced accordingly. The file must be in read mode.

exp ::= eof (exp)
Returns a true if the file designated by the argument is at the end-of-file mark, false if not. The
file must be in read mode.

<bigwig> files refman

http://www.brics.dk/bigwig/Refman/files/ (2 of 2) [22/09/2000 12:31:49]

26

<Macros>

[Macro Syntax | Packages | Overloading | Alpha Conversion | Order of Expansion | Nonterminals |
Macro Libraries]

Macro Syntax

package : req_ext macro
req_ext : require <URL> | require stringconst

| extend <URL> | extend stringconst
macro : syntax <nonterm> id param ::= { body }

| metamorph <nonterm> id --> param ::= { body }
param : token

| <nonterm id>
| <id: nonterm id>

A syntax macro has four constituents: a nonterminal result type, an identifier naming the macro, a
parameter list specifying the invocation syntax, and a body that must comply with the result type.

A metamorphism has the four constituents: a nonterminal result type, an identifier naming a user
defined nonterminal (left-hand side meta grammar production), a parameter list specifying the
invocation syntax, and a body that must comply with the result type.

Syntax macros: operators on parse trees.

Packages

A package is a file containing macro definitions. A package is viewed as a set, that is, we use two

<bigwig> macro refman

http://www.brics.dk/bigwig/Refman/macro/ (1 of 3) [22/09/2000 12:31:54]

27

pass scope rules where all definitions are visible to each other and the order is insignificant. A
dependency analysis intercepts and rejects cyclic definitions.

A package may require or extend other packages. Consider a package P that contains a set of macro
definitions M, requires a package R, and extends another package E. The definitions visible inside the
bodies of macros in M are M R E and those that are exported from P are M E. Thus, require
is used for obtaining local macros.

There is no scoping mechanism for undeclaring a macro.

Overloading

Macros may be overloaded meaning that two macro definitions the same identifier name but have
different invocation syntax (different parameters) and different bodies. However, macros with the
same name must have same nonterminal return type.

When there are more than one macro with the same name, we base the invocation selection on the
concept of specificity which is independent of the macro definition order. This is done by gradually
challenging each parameter list with the input tokens. There are three cases for a challenge:

if a list is empty, then it always survives;●

if a list starts with a token, then it survives if it equals the input token; and●

if a list starts with an argument <N id>, then it survives if the input token belongs to first(N) in
the host grammar.

●

if a list starts with an argument <M: N a>, then it survives if the input token belongs to first(M)
in the metamorph grammar.

●

Several parameter lists may survive the challenge. Among those, we only keep the most specific
ones. The empty list is always eliminated unless all lists are empty. Among a set of non-empty lists,
the survivors are those whose first parameter is maximal in the ordering p q defined as (q)

(p), where is:

: param 2TOKEN

(token) = {token}
(<N id>) = first(N) ...in the host grammar
(<M: N a>) = first(M) ...in the metamorph grammar.

The tails of the surviving lists are then challenged with the next input token, and so on.

Note that the strategy is greedy, since it prefers to continue with longer parameter lists.

Alpha Conversion

The body of a macro constitutes a closed scope. Free identifiers in a macro body are alpha converted
to avoid identifier clashes and shading after the expansion. Alpha conversion can also be supressed
using the identifier prefix operator: ` (backping), which only makes sense in the bodies of macro
definitions.

<bigwig> macro refman

http://www.brics.dk/bigwig/Refman/macro/ (2 of 3) [22/09/2000 12:31:54]

28

The predicate determines if an identifier will be -converted:
(`i) = false;●

(i~j) = (i) (j);●

(<i>) = false, if <i> is a macro argument of type id; and●

(i) = true, otherwise.●

Order of Expansion

In the presence of nested macro invocations, we expand the innermost first yielding applicative order
of reduction. This results in a call-by-value expansion semantics.

Nonterminals

The nonterm above can be any of the 55 syntactic categories below:

[argument | argument_list | attr | attribute | attribute_list | boolconst | charconst | compound_stm |
constraint | constraintbody | constraintbody_list | decl | decl_list | defattr | exp | exp_list | field |
field_list | floatconst | format | formula | getinput | getinput_list | html | htmlbody | htmlbody_list |
identifier | identifier_list | intconst | label | mode | mode_list | modifier | modifier_list | plug | plug_list
| regexp | regexp_list | schema | service | session | stm | stm_list | stringconst | switchbranch |
switchbranch_list | toplevel | toplevel_list | trigexp | trigger | tupleexp | tupleexp_list | type |
waitbranch | waitbranch_list]

Macro Libraries

"std.wigmac" (the standard macro library).
It contains constant definitions, control structures, and high-level concurrency abstractions.

"sql.wigmac" (the SQL macro library).
It contains SQL statements for operating on relations.

"enum.wigmac".
It contains the "enum" (metamorph) construction.

<bigwig> macro refman

http://www.brics.dk/bigwig/Refman/macro/ (3 of 3) [22/09/2000 12:31:54]

29

http://www.brics.dk/bigwig/macro/std.wigmac
http://www.brics.dk/bigwig/macro/sql.wigmac
http://www.brics.dk/bigwig/macro/enum.wigmac

<Form Input>

[button | checkbox | file | hidden | image | password | radio | reset | submit | text | <textarea> |
<select> | <tuple> | <continue>]

Form input table

tag type name value submits multiplicity return type

<input> button no no basic
<input> checkbox no yes list { value }
<input> file - no no basic/tuple*
<input> hidden no no basic
<input> image - yes no tuple { x,y }

<input> password no no basic
<input> radio no yes basic
<input> reset - no - -
<input> submit C yes yes basic
<input> text no no basic

<textarea> no no basic
<select> - no no basic
<select multiple> - no no list { value }
<tuple>** - no yes list { ... }
<continue>** C yes yes basic

Attribute required.
Attribute optional.

C The name is implicitly "continue".
*) The file input field may return a tuple with three strings named filename, contents, and

type.
**) These tags are special to <bigwig>. They are not part of standard HTML. They are compiled

to other tags and JavaScript; The client never sees these tags.
multiplicity

Multiple input elements allowed with the same name (value of the name attribute).
basic

Can be either: bool, int, float, char, string, and time. An implicit coercion from type string
will take place.

list

Can be either a vector or a relation, with schemas containing the mentioned attribute names

<bigwig> input refman

http://www.brics.dk/bigwig/Refman/input/ (1 of 3) [22/09/2000 12:31:57]

30

(all of which are of basic type).

button

Straightforward.
checkbox

Multiple checkboxes with the same name is allowed, they will together return a list with the
values of all the boxes checked.

file

May be received as either a string or a tuple with three strings named filename,
contents, and type. In the former case, the value received will be the name of the file the
client selected. In the latter case, the tuple three fields will respectively receive the name of the
file, the contents of the file, and the mime type of the file.

hidden

Straightforward.
image

Will return the x and y coordinates of the point clicked in the image as a tuple with two
attributes "x" and "y". The click will cause the page to be submitted.

password

The text field always returns a basic type and is required to have a name attribute. If a
value attribute is supplied, this will be the text initially present in the field. A multitude of
sophisticated (optional) attributes are available for manipulating the field's functionality and
look-and-feel (see PowerForms).

radio

Multiple radio buttons with the same name is allowed, but as in HTML only one of them will
be returned.

reset

Will cause the form to reset.
submit

Will submit the form.
text

text is the default type for form input elements. The text field always returns a basic type
and is required to have a name attribute. If a value attribute is supplied, this will be the text
initially present in the field. A multitude of sophisticated (optional) attributes are available for
manipulating the field's functionality and look-and-feel (see PowerForms).

<textarea>

Straightforward.
<select>

If the "multiple" tag is present, the field will return a list of the options selected. If not, it will
return the option selected as a basic value.

<tuple>

The tuple input field allows information of dynamically varying size to be received and

<bigwig> input refman

http://www.brics.dk/bigwig/Refman/input/ (2 of 3) [22/09/2000 12:31:57]

31

collated into vectors or a relations on the server-side. Tuples baring the same name are viewed
as a single input field. This extension allows multiple occurrences of the same input field name
to appear in a document. When the field values are received, they are automatically
transformed into tuples in a vector or a relation with corresponding schema. Since
<bigwig> does not have support for higher-order relations, tuples cannot be nested.

<continue>

The continue field is added as a convenient way of submitting values. A continue field cannot
have a name, instead the keyword continue is available for value reception in (show-)receive
statements. The value attribute is optional, but must be received if present. The continue field
has two variants "type=button" and "type=text" (default), controlling the appearance of the
submission field. That is, whether it should be a button or a text link. The continue field is
compiled into a button or an HTML anchor with embedded JavaScript that will take care of
submitting the form when clicked.

Note: This will only work for JavaScript enabled browsers.

<bigwig> input refman

http://www.brics.dk/bigwig/Refman/input/ (3 of 3) [22/09/2000 12:31:57]

32

<Formats>

[Syntax | Semantics | Format Uses | PowerForms | Ignoreformats | String Matching | File Scanning]

Syntax for format related constructs

format ::= format id = regexp ; format definition

regexp_list ::= regexp
regexp ::= id format reference

| stringconst constant

| anychar anychar

| complement (regexp) complement

| concat (regexp_list) concatenation

| fix (intconst , intconst) fixed integer interval

| intersection (regexp_list) intersection

| range (charconst , charconst) character range

| regexp (stringconst) (perl) regexp

| relax (intconst , intconst) relaxed integer interval

| star (regexp) kleene's star

| union (regexp_list) union

| [id = regexp] record regexp

Semantics for format related constructs

id (format reference)
This rule is for referencing regular expressions defined by other formats. The effect of
referring to another regular expression is as if the expression had been written on the spot
directly. Due to the non-recursive nature of regular expressions, these id's may not be used
recursively. The same thing goes for mutual recursion.

stringconst (constant)
This regular expression will only match the string constant itself.

anychar
This is a constant regular expression that will match any ascii character.

complement
This regular expression will match anything the regular expression argument to this construct
does not. It constitutes complement with respect to ascii*.

concat
This will be the regular expression corresponding to the concatenation of the regular
expression arguments.

<bigwig> formats refman

http://www.brics.dk/bigwig/Refman/formats/ (1 of 4) [22/09/2000 12:32:01]

33

Javascript:jumpInfo('complement', KEYWORD_INFO)

fix
This will be the regular expression matching any number in the interval (both end-points
included) specified by the two intconst arguments.

intersection
This will be the regular expression corresponding to the intersection of the regular expression
arguments. That is, a string is matched if and only if it is matched by all of the regular
expression arguments.

range
This regular expression will only match characters in the interval (both end-points included)
specified by the two charconst arguments.

regexp
This regular expression allows regular expressions to be specified in Perl style. Characters
escaping requires prefixing of two backslash characters.

relax
This will be the regular expression matching any number in the interval (both end-points
included) specified by the two intconst arguments. It will however not match numbers prefixed
with zeros (as in "007").

star
This will be the regular expression corresponding to kleene's star of the supplied regular
expression. That is, any number (including zero) of repetitions of the regular expression
supplied.

union
This will be the regular expression corresponding to the union of the regular expression
arguments. That is, a string is matched if and only if it is matched by at least one of the regular
expression arguments.

record
This regular expression is the identity on the regexp argument specified to the right of the
equality character, but with the exception of one side-effect. The effect is that when used for
testing strings the regexp is ``recorded'' and becomes available for reception using the name
specified in the identifier.

Format Uses

The format construct is available for defining regular expressions that can be used for three things in
<bigwig>:

"PowerForms" - restricting form inputs in html documents,●

String matching (against regular expressions), and●

File scanning.●

See also the PowerForms Stand-alone package homepage

<bigwig> formats refman

http://www.brics.dk/bigwig/Refman/formats/ (2 of 4) [22/09/2000 12:32:01]

34

http://www.brics.dk/bigwig/powerforms/

"PowerForms" - Restricting form input in html documents

The primary usage of formats is in conjunction with "text" or "password" input fields in html forms.
The syntax for adding a format to a text input field is:

<input type=text format=id name=defattr ... >

Such "enhanced" text fields (a.k.a. power fields) will be compiled into standard html text-fields with
JavaScript ensuring increased functionality. The effect of adding a format to a text field is that the
client will check (through JavaScript interpreting deterministic finite automata) that the contents of
the text field complies with the associated regular expression. As long as there are text fields that do
not comply with their associated formats, the html page cannot be submitted and a suitable message
will be given. This form input validation will be performed incrementally (that is, as the client enters
the data) and the results will be visualized in a dynamically updated image next to the input field. At
any point in time, this image will show one of three images (corresponding to the current state of the
deterministic finite automaton):
"../formats/green.gif":

when the input fields current string is in the language defined by the regular expression.
"../formats/yellow.gif":

when the input fields current string is in the prefix closure of the language defined by the
regular expression, but not in the language itself.

"../formats/red.gif":
when the input fields current string is neither in the prefix closure of the language defined by
the regular expression, nor in the language itself.

The three images default to a traffic-light style as shown below:

Example:

The field accepts strings with zero, three, or six characters.

For reasons of security the fields are double checked at reception time on the server-side. The
following options are available:

attribute effect

green
The value is the text shown in the browser's status bar when the input is in the
language defined by the regular expression.

red
The value is the text shown in the browser's status bar when the input is neither in
the language defined by the regular expression, nor in the prefix of this language.

yellow
The value is the text shown in the browser's status bar when the input is in the
prefix of the language defined by the regular expression, but not (yet) in this
language itself.

ignoreformats - Overriding Form Input Validation

The submission blockage caused by fields not complying with their associated formats can be
overridden using the ignoreformats attribute. This attribute will only make sense for buttons

<bigwig> formats refman

http://www.brics.dk/bigwig/Refman/formats/ (3 of 4) [22/09/2000 12:32:01]

35

that cause a page to be submitted (i.e. submit-buttons, <continue>, and input-images).

String Matching

For all defined formats, the match construct is available for testing whether a string complies
with the associated regular expression defined by the format. The result will be a boolean
stating whether or not the string is in the language induced by the regular expression. Any
recordings are available as the right hand sides of assignments in the comma-separated list
enclosed in square brackets.

File Scanning

Formats can also be used for scanning in files. Syntactically, scan takes an expression
designating a file and an identifier denominating a format.
exp ::= scan (exp , id) file scan

A call to scan will return the longest (possibly empty) string in the regular expression defined
by the format at the current position in the file specified. After this, the current file position
will be updated accordingly.

<bigwig> formats refman

http://www.brics.dk/bigwig/Refman/formats/ (4 of 4) [22/09/2000 12:32:01]

36

<Dynamic Documents>

[Introduction | Document Values | Static safety | Syntax | Semantics | Flow Join Requirements |
HTML Prototypes | Code Gaps]

Introduction

In addition to the usual general-purpose programming-language types, (bool, int, float, and so forth),
<bigwig> is equiped with a more domain specific type, namely that of html. The type html, ranges
over html documents that may contain named gaps that act as placeholders for either HTML
fragments or attributes in tags. HTML documents are first-class values that may be computed and
stored in variables. The documents are represented in a very compressed format, with maximum
sharing and where the plug operations takes constant time only. A flow-sensitive type checker
ensures that documents are used in a consistent manner.

Document Values

An html document value is comprised of three distinct constituents, gaps, fields, and text:
Gaps
Gaps are named placeholders that can be plugged with other html documents or strings at
runtime using the plug operator. Since those values may themselves contain further gaps, this
is a highly dynamic mechanism for building documents. There are two kinds of gaps, namely
document gaps (html gaps) and attribute gaps (string gaps).

Document gaps: A document gap is written
<[gap_name]> or <["gap_name"]>

and acts as a named placeholder for other html documents or strings.

❍

Attribute gaps: An attribute gap is written
<tag ... [gap_name] ...> or <tag ... ["gap_name"] ...>.

The important difference from the above is that these gaps are written inside tags,
meaning that there is at least one attribute between the open angled bracket '<' and the
actual gap. Such attribute gaps act as placeholders for strings. They cannot be plugged
with html documents.

❍

Gap requirements: No html documents may have the same named gap present more than once.

●

Fields
Fields or rather "input fields" are document constituents that allow for information to be
somehow entered or selected, typically using a browser. Thus, when documents containing
input fields are shown (via the show construct) they will have an information flow back to the
service that must be received using the receive construct.

●

<bigwig> dyndoc refman

http://www.brics.dk/bigwig/Refman/dyndoc/ (1 of 7) [22/09/2000 12:32:06]

37

Field requirements: The fields must meet the requirements mentioned in the form input
elements table.
Text
This is basically "the rest" of the document, which is everything not containing gaps nor
input-fields. This is the actual verbatim text in the document with all tokens verbatim
(including whitespaces) along with the formatting.

●

The default value for variables of type html is the empty html document <html></html>,
containing no gaps, no fields, and no text.

Static safety

Using a specialized data-flow analysis, we check programs and provide static safety. Once a program
has been checked and found to be well-typed, we can provide static safety, that is, we can statically
guarantee that:

all documents constructed meet the gap and field requirements above;●

the document to be plugged has the gap specified in the plug operation;●

the number receiving program variables in a show-receive call equals the number of document
input fields; and

●

the types of receiving program variables in a show-receive call match the corresponding input
field kinds.

●

Static safety is provided by introducing a somewhat complicated notion of document type. However,
these types are not explicitly written by the programmer, but are inferred by the compiler using a
global flow analysis. A document type has two distinct components: a gap map and a field map. The
gap map describes which gaps are present in a document along with their kinds (html, string) and,
similarly, the field map describes its input fields and their kinds (text, radio, checkbox, etc...).

Our interprocedural monovariant first-order forward flow analysis associates sound gap and field
information for each document variable to each program point. Based on this information we can
then determine if a program is type correct. If it is we can provide static safety, that is, we can
statically guarantee that the four properties listed above will in fact hold.

Syntax for html related constructs

exp ::= <html> htmlbody_list </html> constant

| id variable

| exp = exp assignment

| exp <[{ id = exp }] plug

| id ({ exp }) function call

| track (exp) track
stm ::= flash exp ; flash

| show exp ; show

<bigwig> dyndoc refman

http://www.brics.dk/bigwig/Refman/dyndoc/ (2 of 7) [22/09/2000 12:32:06]

38

Javascript:jumpInfo('show', KEYWORD_INFO)
Javascript:jumpInfo('show', KEYWORD_INFO)

| show exp receive [{ exp = id }] ; show-receive

| show exp timeout stm show/timeout

| show exp receive [{ exp = id }] timeout stm show/timeout

| exit exp ; exit

Legend:

{ X } : Zero-or-more comma-seperated occurences of X.
{ X } : One-or-more comma-seperated occurences of X.

Semantics for html related constructs

Constant
exp ::= <html> htmlbody_list </html>

html constants are standard html documents augmented with named gaps and a few extra
<bigwig> specific input fields (see Document Values above).

Requirements: An html constant must meet the gap requirements and field requirements
mentioned above.

Variable
exp ::= id

All variables in <bigwig> must be explicitly declared, html variables are no exception. As
usual, they can be either local to the session or shared.

Requirements: Shared html variables are required to have the same flowtype throughout their
existence. This flowtype is dictated by the flowtype of the initialization expression.

Assignment
exp ::= exp = exp

The leftmost expression is evaluated first to an html l-value. Hereafter, the rightmost
expression is evaluated to an html (r-) value which is assigned by-value to the location
designated by the first.

Requirements: Both expressions must be of type html. Furthermore, the first must designate
an l-value.

Plug

exp ::= exp <[{ id = exp }]

The first expression is evaluated to a document value that is required to have a gap by the
name of the identifier. After this, the second is evaluated to a document value. Then the second
document is plugged (inserted) into a copy of the first where the gap was, filling the gap. Due
to efficient runtime representation of document values, the operation takes constant time only!
Note that "<[" is one token.

<bigwig> dyndoc refman

http://www.brics.dk/bigwig/Refman/dyndoc/ (3 of 7) [22/09/2000 12:32:06]

39

There are actually two kinds of plug operations depending on whether the second expression is
an html document or a string:
x1 <[y = x2] document plug (html plug)
x1 <[y = s] attribute plug (string plug)

Plug: "x1 <[y = x2]"

Requirements:

Gap present: In both cases there must be a gap named "y" present in x1. In the first,
there is an additional requirement that the gap "y" be a document gap (i.e. not an
attribute gap).

❍

Consistent gap union: In order to meet the gap requirement above, it is required that the
two sets of gaps "gaps(x1) \ {y}" and "gaps(x2)" are disjoint. This will be the set of gaps
for the resulting document.

❍

Consistent field union: The fields of the two documents added together must meet the
field requirements mentioned above.

❍

Function Call

id ({ exp })

Functions may take html documents as parameters (which are treated as call-by-value) and
return html documents. However, since we use a monovariant interprocedural dataflow
analysis to infer document flow types, there are certain demands on the functions. All free html
variables in a function and all actual parameters must have the same flow types at all calling
points for the function. Also, the flow type of the returned document must be the same for all
calling points.

Track
track (exp)

This built-in function is purely included to aid debugging. It acts as the identity function on
html documents, but with one important compile-time side-effect. At compile-time, all track
expressions will report the flow type of their argument as inferred by the flow analyzer.

Flash
stm ::= flash exp ;

The expression, that must be of type html, is evaluated yielding a document value, whose
remaining gaps are implicitly closed (filled with nothing). The effect of executing the flash
statement is that whenever no response is given within some time bound (eight seconds by
default), this document appears in the client's browser. It can be used to give a reason
explaining the delay (e.g. "Searching database - this might take a while..."). By default, a

<bigwig> dyndoc refman

http://www.brics.dk/bigwig/Refman/dyndoc/ (4 of 7) [22/09/2000 12:32:06]

40

document stating "Reply not ready yet - please wait..." is flashed. This may be overwritten by
any other flash statement.

Requirements: The expression is of type html and the flashed document must not contain any
input fields.

Show
stm ::= show exp ;

The expression, that must be of type html, is evaluated yielding a document value, whose
remaining gaps are implicitly closed (filled with nothing). If no continue fields were present, a
default continue button labeled "Continue" (or a submit button if the service is compiled with
"--nojavascript") will be added to the document (lefthand bottom corner). The document is
subsequently shown to the client after which the session goes to sleep. When the client clicks
one of the continue fields, the session resumes from whence it paused (with the local state
preserved).

Requirements: The expression is of type html and the shown document must not contain any
value-submitting input fields.

Show-Receive

stm ::= show exp receive [{ exp = id }] ;

The semantics is as for show. When the document is submitted, the input fields listed in the
receive are assigned to the mentioned variables. After this, execution resumes (with the local
state preserved).

Requirements: The expression must be of type html and the number of received program
variables must equal the number of document input fields in the document. Also, the types of
the received program variables must match the corresponding input field kinds in the
document. No input field or program variable may be mentioned twice in the receive
assignment list.

Show/Timeout
stm ::= show exp timeout stm

stm ::= show exp receive [{ exp = id }] timeout stm

The show statement may include a timeout statement that will be executed if the client does
not submit the page shown before a certain amount of time has passed. This amount of time
can be defined either globally in the <bigwig> configuration file (SPANDEFAULT [48hrs
by default]) or per service, per session, or even per show statement using the span modifier.
The span modifier takes an expression in parentheses and can be placed after the show
keyword in show statements.

Exit
stm ::= exit exp ;

The expression, that must be of type html, is evaluated yielding a document value, whose
remaining gaps are implicitly closed (filled with nothing). The exit statement will show the
computed document to the client and the service will terminate. Exit can also be called with a
string (designating a URL) argument or with no arguments. We refer to the Control Structures

<bigwig> dyndoc refman

http://www.brics.dk/bigwig/Refman/dyndoc/ (5 of 7) [22/09/2000 12:32:06]

41

http://www.brics.dk/bigwig/compiler/options/
http://www.brics.dk/bigwig/compiler/configuration/
http://www.brics.dk/bigwig/compiler/configuration/#SPANDEFAULT

section for information on these two variants.

Requirements: The expression is of type html and the exited document must not contain any
input fields.

Flow Join Requirements

Because the flow analysis needs to infer the flow types of all html variables at all program points, all
flow paths joining together must agree on the flow types of all live document variables.

If a gap is not present in all flows joining together at some program point, the gap is implicitly closed
(plugged with nothing) by the compiler and henceforth no longer available for plugging.

These rules may appear slightly complicated and may take a little getting used to, but they are crucial
in ensuring static safety.

HTML prototypes

html ::= <html> htmlbody_list </html> @ stringconst

The stringconst must designate an html file. If the file is not present (at compile-time), the value of
the construct is the value of the constant document listed. If, however, the file is present (at
compile-time), it will be the value of the construct. The html document in the file is required to have
the same document type as the constant document (i.e. same gaps and fields) which is checked at
compile-time. The idea behind this construct is to provide a means for rapid prototyping. The
programmer rapidly makes some prototype html documents, with focus on the functionality (fields
and gaps) and not on the graphical layout of the document. Then, as the real documents are gradually
created, they replace the prototype ones.

Code Gaps

Code gaps are reminiscent of PHP and ASP evaluation tags. There are two kinds available in
<bigwig>:
Code Expressions:

htmlbody ::= <[(exp)]>
attr ::= [(exp)]

Documents are allowed to contain in-lined expressions that are evaluated just before the
document is shown. The value of such an expression is coerced to a string and inserted in the
document in the place of the code expression.

Code Statements:
htmlbody ::= <[compound_stm]>
attr ::= [compound_stm]

The same thing is possible with statements. The last statement in the compound_stm must be a

<bigwig> dyndoc refman

http://www.brics.dk/bigwig/Refman/dyndoc/ (6 of 7) [22/09/2000 12:32:06]

42

statement-expression (stm ::= exp ;) whose type must not be void and whose value (coerced to
a string) is inserted in the document.

Code gaps are evaluated in the order of occurrence in the document shown.

More information:

Research paper: "A Type System for Dynamic Web Documents".

<bigwig> dyndoc refman

http://www.brics.dk/bigwig/Refman/dyndoc/ (7 of 7) [22/09/2000 12:32:06]

43

http://www.brics.dk/bigwig/research/publications/#dyndoc

<Database>

[Shared data | Schema Declarations | tuple | relation | vector]

Shared data

All variables declarations preceeded by the modifier shared will be persistent and shared among all
session threads and will be managed by <bigwig>'s internal database. Fine grained concurrency
control is not provided by the compiler and must be programmed explicitly by the service
programmer. However, this happens transparently when using the high-level concurrency
abstractions supplied by the standard macros library ("std.wigmac").

The macro package "sql.wigmac" provides an SQL like interface to the database.

Schema Declarations

All tuples, relations, and vector variables need to be declared according to some schema. The
schemas themselves are declared explicitly as follows:

schema ::= schema id { field_list }
field_list ::= field*
field ::= type id_list ;

Note that schemas are only allowed to contain basic types.

Tuples

The tuple type is defined relative to a schema which is essentially a mapping of identifiers to basic
types. A tuple value is thus a mapping from identifiers to basic types corresponding to the names and
types of the associated schema. The tuple identifiers are commonly referred to as attributes. The
following constructor is available for creating tuples:

exp ::= tuple { exp_list }

The expression list must be assignments to identifiers that are the attribute names. Below is a list of
the operators for manipulating tuples.

Operator Description
__==__ equal. The conjunction of the equality of the tuple's constituents.
__!=__ not equal. The negation of the conjunction of the equality of the tuple's constituents.
__=__ assignment. Conceptually assign-by-value, but implemented as copy-on-write.

<bigwig> database refman

http://www.brics.dk/bigwig/Refman/database/ (1 of 3) [22/09/2000 12:32:09]

44

Javascript:jumpInfo('shared', KEYWORD_INFO)
http://www.brics.dk/bigwig/macro/std.wigmac
http://www.brics.dk/bigwig/macro/sql.wigmac

__<<__
left tuple overwrite. Creates a tuple with the union of all the attributes of the two
tuples. Whenever both tuples have a given attribute, the value of the rightmost argument
tuple is taken.

__>>__
right tuple overwrite. Creates a tuple with the union of all the attributes of the two
tuples. Whenever both tuples have a given attribute, the value of the leftmost argument
tuple is taken.

__.__ tuple member reference. Accesses a member field in a tuple.

__\+__
tuple project. Creates a copy of the left argument tuple, keepin only the attributes
mentioned in the right argument (a comma separated list of identifiers in parentheses).

__\-__
tuple project complement. Creates a copy of the left argument tuple, projecting away
all attributes mentioned in the right argument (a comma separated list of identifiers in
parentheses).

Relations

A relation is a set of tuples with no notion of order and where no value is present twice (any
redundant values are implicitly removed). The following two operators operate on relations:

Operator Description
__=__ assignment. Conceptually assign-by-value, but implemented as copy-on-write.
|__| size. Returns the number of tuples in the relation.

The following built-in functions operate on relations:
exp ::= relation { exp_list }

Takes a comma separated list of tuple expressions in curly brackets and turns them into a
relation.

exp ::= cart (exp , exp)
Takes two relation arguments in parentheses and produces the cartesian product.

exp ::= factor (exp_list) stm
exp ::= factor (exp_list ; id_list) stm

First we explain the semantics of the simplest possible factor expression, namely when there is
only one expression and no identifiers. The expression is evaluated to a relation on which the
factor expression will operate. The statement is executed once for each tuple in this relation
where "#" will hold the current tuple. The statement may return tuples or relations (all required
to have the same schema) which are union'ed together to form the ultimate result of the factor
operation.

The next case is when a comma separated list of identifiers is supplied after the semi-colon.
The relation resulting from the evaluation of the expression argument is projected onto these
attributes forming a new relation for which any duplicates are removed. The statement will
then be executed once per tuple in this relation, setting "#" to the value of the current tuple.
The remaining attributes will be available in the variable "@" (or "@1") that will be a relation
containing all tuples that contributed to the current "#" tuple.

Finally, multiple expressions may be given as arguments. In this case, all expressions are

<bigwig> database refman

http://www.brics.dk/bigwig/Refman/database/ (2 of 3) [22/09/2000 12:32:09]

45

evaluated to relations from left to right. If no identifiers are specified, the type of "#" will be a
tuple with the intersection of the attributes from all the expressions. As usual, the statement
will be executed on the relation with all such tuples, setting "#" to the current. The individual
contributions from the expressions will be available in the variables "@1" to "@n", where "n"
is the number of identifiers specified ("@" is a shortcut for "@1").

Vectors

There are two kinds of Vectors (a.k.a. lists or arrays) in <bigwig>; basic vectors and tuple vectors.
Basic vectors are capable of storing lists of basic values, while tuple vectors contain lists of tuples.
Both kinds can be multi-dimensional. The following operators operate on vectors:

Operator Description
__=__ assignment. Conceptually assign-by-value, but implemented as copy-on-write.
__+__ concatenation. Returns the concatenation of two vectors.

__[__]
index. Takes a vector and an integer (n) in square parentheses and extracts the nth

element from the vector.

__[__..__]
range. Takes a vector and two integers (low and high) separated by two dots and
extracts the subvector beginning with low and ending in high-1.

|__| length. Returns the number of elements in the vector.

The following built-in functions operate on vectors:
exp ::= vector { exp_list }

Takes a comma separated list of expressions (of the same type) in curly brackets and constructs
a vector from them.

exp ::= sort (exp)
exp ::= sort (exp ; id_list)

There are two variants of the sort function; one for sorting basic vectors and one for sorting
tuple vectors. The basic vector variant takes a basic vector and sorts it. The tuple vector variant
takes a tuple vector, a semi-colon token, and a list of identifiers and sorts the tuple vector
according to the attributes specified in the identifier list.

<bigwig> database refman

http://www.brics.dk/bigwig/Refman/database/ (3 of 3) [22/09/2000 12:32:09]

46

<Security>

[htaccess | md5 | selective | singular | ssl]

The keywords below are all modifiers that affect the level of security of certain areas in the service.
They can be applied to an entire service, a session, a show, a flash, or an exit statement.
htaccess

Takes as argument a string designating a file that is to be used for login-password verification
through the browser/web-server built-in htaccess protocol.

md5
This built-in (message digest 5) function, md5, takes a string and returns a string, namely the
md5 hash value of the argument given.

selective
This modifier takes a comma separated list of string expressions in parentheses as arguments
and verifies that the IP number of the client is in this list. There are three possibilities for the
strings in the list:

A (partial) domain-name: Host whose name is, or ends in, this string are allowed access.❍

A full IP address: An IP address of a host allowed access❍

A partial IP address: The first 1 to 3 bytes of an IP address, for subnet restriction.❍

singular
This modifier will cause the server to inspect the IP number of the client when the session is
started and subsequently verify that it does not change. Thus, it makes sure the client remains
the same throughout the execution of the session.

ssl
This modifier will make the entire service or a particular session subject to the SSL
cryptographic protocol. It requires that the web server supports SSL.

<bigwig> security refman

http://www.brics.dk/bigwig/Refman/security/ [22/09/2000 12:32:10]

47

Javascript:jumpInfo('md5', KEYWORD_INFO)
Javascript:jumpInfo('md5', KEYWORD_INFO)

<Concurrency Control>

[The Compilation Process | Constraints | Labels | Formulas | Triggers | Wait]

The Compilation Process

The compilation process.

The <bigwig> service code can contain checkpoints (wait) statements. The global sequence in
which individual session threads at runtime pass these checkpoints may be constrained by formulas
specified in monadic first-order logic (on strings/sequences). The <bigwig> service program is
compiled into a C/CGI script and the logic formulas into a runtime safety controller (based on
deterministic finite automata - DFAs). Every time a session thread (executing the compiled service
code) wants to pass a checkpoint (at runtime), the safety controller is asked for permission. If the
entire system is in a state in which the passing of this checkpoint does not violate the specified
constraints, permission is granted, otherwise the session thread waits until it is safe to proceed.

Constraints

Constraints along with the wait statements control concurrency. The wait statement provides a means
for inserting labels (or checkpoints) in the code for the session to pass as it executes. At any time, a
service will have a number of executing sessions. Together, these sessions will give rise to a
perpetually growing sequence of labels, namely the sequence of labels past in wait statements. It is
this sequence that can be constrained through the use of contraints. Unwanted execution sequences
may be described in logic and prohibited from occurring. All contraints are compiled into one
centralized runtime controller process that will make sure the execution of sessions never violates the
specified constraints.

Constraints are declared at toplevel and are comprised of three elements: label events, logic formulas,
and trigger events.

<bigwig> concurrency refman

http://www.brics.dk/bigwig/Refman/concurrency/ (1 of 4) [22/09/2000 12:32:12]

48

The macro package "std.wigmac" provides a number of high-level concurrency control abstractions.

Labels

Labels need to be explicitly declared. They are what is passed in the wait statements and what is
referred to in the formulas.

Formulas

The formulas are specified in monadic first-order logic on strings (here, the sequence of labels past in
wait statements during execution).
Constants

The two constants formulas true and false are available.
Operators

The table below holds all the operators available in the formulas. The precedences are listed in
decreasing precedence order. For instance, logical OR binds stronger than logical implication,
which means that "true => false || true" is understood as "true => (false
|| true)"

Operator Description Operands Assoc.
(__) parentheses formula N/A
!__ negation formula N/A
__&&__ logical AND formulas left
__||__ logical OR formulas left
__=>__ logical implication formulas right
__<=>__ logical bi-implication formulas right
__==__
__!=__
__<__
__>__
__<=__
__>=__

equal
not equal
less than
greater than
less than or equal
greater than or equal

q.v.
q.v.
q.v.
q.v.
q.v.
q.v.

N/A
N/A
N/A
N/A
N/A
N/A

q.v.
Refers to quantifier variables.

left

means that the given operator is left-associative. For instance, "x && y && z" will
be parsed as "(x && y) && z".

right

means that the given operator is right-associative. For instance, "x => y => z" will
be parsed as "x => (y => z)".

Quantifiers

<bigwig> concurrency refman

http://www.brics.dk/bigwig/Refman/concurrency/ (2 of 4) [22/09/2000 12:32:12]

49

http://www.brics.dk/bigwig/macro/std.wigmac

There are two quantifiers, namely universal and existential quantification. The syntax of the
two constructs is:

all id : formula
is id : formula

The contructs both introduce a quantifier variable which is available in the subsequent formula.
The quantifier variable refers to points in the global sequence of labels past in wait statements
during execution.

Restrict-by
The formula restrict-by has the following syntax:

restrict formula by id

It is true if and only if the formula is true where all its quantifier variables are restricted to be
before the point indicated by the identifier (quantifier variable).

Triggers

Triggers are a means of getting beyond the boundaries of regularity imposed by the logic. A trigger is
declared as follows:
trigger : trigger id when trigexp == trigexp ;
trigexp : trigexp + trigexp

| trigexp - trigexp
| + trigexp
| - trigexp
| intconst
| # id

A trigger declares an event (named by the identifier) that is triggered once each time the two trigger
expressions are equal (goes from unequal to equal). Trigger expressions are integer expressions,
counting the number of times various labels are past by wait statements. They can be referred to in
the formulas as with labels and in this way provide the counting facilities required to take us beyond
regularity.

Wait

stm ::= wait id ;
stm ::= wait { waitbranch-list }
waitbranch-list ::= waitbranch+

waitbranch ::= case id : stm-list break;
waitbranch ::= timeout exp : stm-list break;

The wait statement is special to <bigwig>. It provides the interaction with the runtime controller.
There are two kinds of wait statements, namely the short wait corresponding to the first two

<bigwig> concurrency refman

http://www.brics.dk/bigwig/Refman/concurrency/ (3 of 4) [22/09/2000 12:32:12]

50

productions above, and the general wait corresponding to the third production above.

The short wait:
When executing a short wait statement "wait L;" (where L is some label defined as a constraint), the
session thread will contact the runtime controller, requesting permission to pass the label L. If the
entire service is in a state where it is safe for the session thread to pass the label L (i.e. without
violating the safety contraints, meaning that L is enabled), the runtime controller will grant the
session thread permission to proceed. Otherwise the session is suspended (even indefinitely), until it
is safe for it to proceed.

The general wait:
The general wait is like the short wait, except that it allows the session thread to branch on the state
of the runtime controller. The semantics is that permission to proceed is granted when one of the
labels is passed (enabled). Execution proceeds afterwards at the case corresponding to the label
passed. A general wait can also contain one timeout branch (where the expression evaluates to an
integer). The expression is evaluated to a time bound (in seconds) and if the runtime controller cannot
grant permission to continue within this bound, execution resumes with the timeout statement-list.
Only one timeout is allowed in a wait statement and it must be specified after all the cases.

<bigwig> concurrency refman

http://www.brics.dk/bigwig/Refman/concurrency/ (4 of 4) [22/09/2000 12:32:12]

51

<Web Specifics>

[get | post | match | refresh | sendmail | url | dir | userid]

Get and Post

exp ::= get(exp)
exp ::= get (exp) [exp_list]

The expression is evaluated to a string designating a URL. The expressions in the expression
list must all be assignments. The left hand sides in the assignments will be the names and the
right hand sides, the values. This URL is fetched dynamically from the internet, supplying
the string arguments specified in the expression list using the GET method. The result is a
string containing the internet document fetched (it cannot be of type html since we do not
statically know its flow type).

exp ::= post(exp)
exp ::= post (exp) [exp_list]

The expression is evaluated to a string designating a URL. The expressions in the expression
list must all be assignments. The left hand sides in the assignments will be the names and the
right hand sides, the values. This URL is fetched dynamically from the internet, supplying
the string arguments specified in the expression list using the POST method. The result is a
string containing the internet document fetched (it cannot be of type html since we do not
statically know its flow type).

Match

exp ::= match (exp , exp) [exp_list]

There are two variants of the match construct. The first argument must always be a string, namely
the string on which the match construct will operate. The second argument can either be an html
document template with a number of gaps or a format with a number of record constructs. The
expressions in the expression list must all be assignments. The right hand sides will denote gaps or
record constructs and the left hand sides will denote variables that will be assigned the values
matched in the gaps or record constructs.
Matching against html document templates:

The string is matched against the html document template, requiring the non-gap constituents
(text and fields) to match completely and treating the gaps as "wildcards" that will match
anything. The construct employes an eager strategy to find a match and if successful, the
assignments in the expression list will take place. The expressions on the right hand sides of
the assignments must be identifiers naming the gaps of the document, evaluating to the parts of
the string they matched. The string typically comes from a get or a post operation and can thus
be used to extract certain patterns in a document gotten from the internet. The construct will

<bigwig> web refman

http://www.brics.dk/bigwig/Refman/web/ (1 of 3) [22/09/2000 12:32:14]

52

Javascript:jumpInfo('get', KEYWORD_INFO)
Javascript:jumpInfo('post', KEYWORD_INFO)

return a boolean signalling whether a match was possible or not.
Matching against regular expression formats:

The string is matched against the regular expression format, any record constructs will record
what their internal regular expressions matched. The expressions on the right hand sides of the
assignments must be identifiers naming the recording constructs in the format, evaluating to
the parts of the string they matched. The construct will return a boolean signalling whether a
match was possible or not.

Miscellaneous

mode ::= refresh (exp)
This construct sets the auto refresh rate used when documents are flashed, using the flash
statement. The expression must evaluate to an integer which becomes the new refresh rate in
seconds. The area of effect is either an entire service, a session, or a single flash statement,
depending on where the mode was applied.

exp ::= sendmail (exp , exp)
This construct sends an email. The first argument must be a relation or a vector with a schema
with two attributes named "name" and "value". The second argument is a string containing the
actual message to be sent. The relation/vector part will be used to generate the header
information in the email and should for this reason at least contain "to", "subject" and "from"
tuples with corresponding "value"'s.

exp ::= url
exp ::= url id (exp_list)

The url expression (without arguments) returns a string which is the URL of the HTML reply
file associated with the current session. The variant with arguments will take an identifier
naming a session in the current service plus a list of appropriate arguments. The construct will
not call the session with the arguments, but instead provide an html string that does (using the
GET method) when accessed by a browser.

exp ::= dir

The dir expression returns a string which is the directory of the HTML reply file associated
with the current session. It is typically used for manipulating files in the session's private
directory.

exp ::= userid

This expression allows a service to remember the identity of a client beyond a session run
through the use of a cookie. If the expression is present somewhere in a service, the service
will when started generate a random string which is set as a cookie by the runtime system. The
expression userid will henceforth return the value of this string.

exp ::= getcookie (exp)
This built-in function takes a string argument naming a cookie and returns the value of this
cookie. The function returns the empty string if there is no cookie with the given name.

exp ::= setcookie (exp , exp)
This built-in function takes two string arguments. The cookie named by the first argument is

<bigwig> web refman

http://www.brics.dk/bigwig/Refman/web/ (2 of 3) [22/09/2000 12:32:14]

53

set to the value designated by the second argument. However, the cookie setting will only take
effect at the next show or exit statement.

<bigwig> web refman

http://www.brics.dk/bigwig/Refman/web/ (3 of 3) [22/09/2000 12:32:14]

54

<Time>

[Values | now | notime | Type Constructors | Get | difftime | Operators]

Values

The values of type time are legal points in time. That is, a (gregorian calender) date and an
hour-minute-second time of day. Illegal times, such as "1999/02/29, 20:61:30" are
automatically converted to legal ones ("1999/03/01, 21:01:30"). All time values must be
within the following range [1970/01/01, 00:00:00..2038/01/19, 03:14:07]. Any
attempts to construct a time not in this interval will result in the special time value called notime
which is also the default value for the type time. All time values are assumed to be in the server's
local timezone.

now

This predefined function returns the current local time.

notime

This is a constant time value which is less than all other time values. It is the default value for
variables of type time and it is produced whenever illegal time operations are performed. Attempts to
get components from a notime value will produce a runtime error.

Type Constructors

exp ::= time (exp , exp , exp)
This time contructor takes three integer arguments, a year (1970-2038), a month (1-12), and a
day (1-31) and will construct the corresponding point in time (with time-of-day: 00:00:00).

exp ::= time (exp , exp , exp , exp , exp , exp)
This time contructor takes six integer arguments, a year (1970-2038), a month (1-12), a day
(1-31), an hour (0-23), a minute (0-59), and a second (0-59) and will construct the
corresponding point in time.

Get

exp ::= getYear (exp)
Returns an integer (1970-2038) with the year component of the given time value.

<bigwig> time refman

http://www.brics.dk/bigwig/Refman/time/ (1 of 2) [22/09/2000 12:32:16]

55

Javascript:jumpInfo('<tt

exp ::= getMonth (exp)
Returns an integer (1-12) with the month component of the given time value.

exp ::= getDay (exp)
Returns an integer (1-31) with the day component of the given time value.

exp ::= getHour (exp)
Returns an integer (0-23) with the hour component of the given time value.

exp ::= getMinute (exp)
Returns an integer (0-59) with the minute component of the given time value.

exp ::= getSecond (exp)
Returns an integer (0-59) with the second component of the given time value.

exp ::= getWeekday (exp)
Returns an integer (1-7) with the weekday component of the given time value (Monday is one
and Sunday is seven).

difftime

exp ::= difftime (exp , exp)

This predefined function takes two time values and produces an integer holding the difference
between the two points in time in seconds.

Operators

The following binary operators are available on values of type time:

Operator Description
__<__ less than
__>__ greater than
__<=__ less than or equal
__>=__ greater than or equal
__==__ equal
__!=__ not equal
__=__ assignment

<bigwig> time refman

http://www.brics.dk/bigwig/Refman/time/ (2 of 2) [22/09/2000 12:32:16]

56

Recent BRICS Notes Series Publications

NS-00-4 Claus Brabrand.<bigwig> Version 1.3 — Reference Manual.
September 2000. ii+56 pp.

NS-00-3 Patrick Cousot, Eric Goubault, Jeremy Gunawardena, Mau-
rice Herlihy, Martin Raussen, and Vladimiro Sassone, edi-
tors. Preliminary Proceedings of the Workshop on Geometry
and Topology in Concurrency Theory, GETCO ’00,(State Col-
lege, USA, August 21, 2000), August 2000. vi+116 pp.

NS-00-2 Luca Aceto and Bj̈orn Victor, editors. Preliminary Proceedings
of the 7th International Workshop on Expressiveness in Concur-
rency, EXPRESS ’00,(State College, USA, August 21, 2000),
August 2000. vi+130 pp.

NS-00-1 Bernd G̈artner. Randomization and Abstraction — Useful Tools
for Optimization. February 2000. 106 pp.

NS-99-3 Peter D. Mosses and David A. Watt, editors.Proceedings of the
Second International Workshop on Action Semantics, AS ’99,
(Amsterdam, The Netherlands, March 21, 1999), May 1999.
iv+172 pp.

NS-99-2 Hans Ḧuttel, Josva Kleist, Uwe Nestmann, and Ant́onio
Ravara, editors. Proceedings of the Workshop on Semantics of
Objects As Processes, SOAP ’99,(Lisbon, Portugal, June 15,
1999), May 1999. iv+64 pp.

NS-99-1 Olivier Danvy, editor. ACM SIGPLAN Workshop on Par-
tial Evaluation and Semantics-Based Program Manipulation,
PEPM ’99, (San Antonio, Texas, USA, January 22–23, 1999),
January 1999.

NS-98-8 Olivier Danvy and Peter Dybjer, editors. Proceedings of
the 1998 APPSEM Workshop on Normalization by Evaluation,
NBE ’98 Proceedings,(Gothenburg, Sweden, May 8–9, 1998),
December 1998.

NS-98-7 John Power.2-Categories. August 1998. 18 pp.

NS-98-6 Carsten Butz, Ulrich Kohlenbach, Søren Riis, and Glynn
Winskel, editors. Abstracts of the Workshop on Proof Theory
and Complexity, PTAC ’98,(Aarhus, Denmark, August 3–7,
1998), July 1998. vi+16 pp.

	BRICS-NS-00-4
	<bigwig> refman
	<bigwig> keywords refman
	<bigwig> lex refman
	<bigwig> syntax refman
	<bigwig> operators refman
	<bigwig> scope refman
	<bigwig> types refman
	<bigwig> core refman
	<bigwig> control refman
	<bigwig> files refman
	<bigwig> macro refman
	<bigwig> input refman
	<bigwig> formats refman
	<bigwig> dyndoc refman
	<bigwig> database refman
	<bigwig> security refman
	<bigwig> concurrency refman
	<bigwig> web refman
	<bigwig> time refman

	GCOMHDHACCNOANEDHJPGOEAGBNFGOFJK:
	form1:
	x:
	f1:

